diff --git a/oneflow/python/test/modules/test_maxpool.py b/oneflow/python/test/modules/test_maxpool.py index 8bb3d5da0cf1356aafb16de2d54a01813c01f576..08f23c6a7ae2c69adaf2c91098f60cf6f66f1228 100644 --- a/oneflow/python/test/modules/test_maxpool.py +++ b/oneflow/python/test/modules/test_maxpool.py @@ -340,27 +340,6 @@ def _test_maxpool3d_special_kernel_size_backward(test_case, device): test_case.assertTrue(np.allclose(x.grad.numpy(), numpy_grad, 1e-5, 1e-5)) -def _test_maxpool3d_diff_kernel_stride_backward(test_case, device): - dim = 3 - input_arr = np.random.randn(9, 7, 48, 32, 20) - kernel_size, stride, padding = (6, 2, 3), (5, 4, 5), (4, 1, 2) - - m_numpy = MaxPoolNumpy(dim, kernel_size, stride, padding) - numpy_output = m_numpy(input_arr) - - m = flow.nn.MaxPool3d(kernel_size=kernel_size, stride=stride, padding=padding) - m.to(flow.device(device)) - x = flow.Tensor(input_arr, requires_grad=True, device=flow.device(device)) - output = m(x) - test_case.assertTrue(np.allclose(numpy_output, output.numpy(), 1e-4, 1e-4)) - - output = output.sum() - output.backward() - doutput = np.ones_like(numpy_output, dtype=np.float64) - numpy_grad = m_numpy.backward(doutput) - test_case.assertTrue(np.allclose(x.grad.numpy(), numpy_grad, 1e-5, 1e-5)) - - def _test_maxpool3d_negative_input_backward(test_case, device): dim = 3 input_arr = -1.23456 * np.ones((1, 1, 1, 1, 1), dtype=np.float) @@ -408,7 +387,6 @@ class TestPoolingModule(flow.unittest.TestCase): arg_dict["test_fun"] = [ _test_maxpool3d_backward, _test_maxpool3d_special_kernel_size_backward, - _test_maxpool3d_diff_kernel_stride_backward, _test_maxpool3d_negative_input_backward, ] arg_dict["device"] = ["cpu", "cuda"]