From 93fbd09c96f21fdca06069ab978946a570a7b65f Mon Sep 17 00:00:00 2001 From: deepr <hexiangdong2020@outlook.com> Date: Tue, 20 Jul 2021 23:02:41 +0800 Subject: [PATCH] =?UTF-8?q?=E8=A7=A3=E5=86=B3utils=E5=BC=95=E7=94=A8?= =?UTF-8?q?=E5=86=B2=E7=AA=81?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- main.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/main.py b/main.py index f4ad80b..2a920a4 100644 --- a/main.py +++ b/main.py @@ -14,7 +14,7 @@ from unet_medical.unet_model import UNetMedical from nets.deeplab_v3 import deeplab_v3 from dataset import GetDatasetGenerator from loss import SoftmaxCrossEntropyLoss -from utils.learning_rates import exponential_lr +import utils.learning_rates as learning_rates context.set_context(mode=context.PYNATIVE_MODE, save_graphs=False, device_target='Ascend', device_id=7) @@ -25,7 +25,7 @@ train_dataset_generator = GetDatasetGenerator('./datasets', 'train') train_dataset = ds.GeneratorDataset(train_dataset_generator, ["data", "label"], shuffle=True) train_dataset = train_dataset.batch(4, drop_remainder=True) -lr_iter = exponential_lr(3e-5, 20, 0.98, 500, staircase=True) +lr_iter = learning_rates.exponential_lr(3e-5, 20, 0.98, 500, staircase=True) net_loss = SoftmaxCrossEntropyLoss(6, 255) net_opt = nn.Adam(net.trainable_params(), learning_rate=lr_iter) -- GitLab