ROS2 Navigation

Introduction, Overview and Status
8/2/18

Target Use Cases

* 2D Navigation
 Warehouse robot

* 2D Navigation + elevation
e Search and rescue robot

* Indoor Navigation in multi-story building
* Room service robot

* Qutdoor Navigation
* Campus delivery robot

Stretch Target
* 3D Navigation
* Drones

More info: https://github.com/ros-planning/navigation2/tree/master/doc/use cases

https://github.com/ros-planning/navigation2/tree/master/doc/use_cases

Target Improvements (based on feedback)

* Modularity / ability to easily replace planners & localization algorithms
* Use (language neutral) ROS Nodes and Actions instead of plugins and C++ API calls

* Map Abstraction - Easy to use different map types
* ex: OccupancyGrid, grid_map, octomap

* Ability to add special properties / zones to maps
 ex: keep out zones, slow zones, directional lanes

* Flexible / dynamic state machines and recovery methods
* Ability to support different robot types

* ex: Ackerman steering

* Extensibility for tasks such as docking, moving into elevators, etc

Additional Improvements

« Modular, extensible framework

* Allow for integration various kinds of tasks, both navigation and
non-navigation

« Generalize the base code as a task dispatch engine (e.g., Behavior Tree)

* Integrate recovery behaviors as tasks (ROS Actions)

« Allow for different deployment architectures

* For example, central management of delivery robots bringing work items to robot at a
work pod

* Provide an Environmental Model
* Extend the framework to provide interfaces to Perception, Prediction, Mapping, etc.

* Make the development of task code simpler and more uniform

High-Level Architecture

e Command Chain

* Robot Management System (“orchestration”)
* Mission Planning

* Mission Execution
e Tasks
* Robot

e Support Infrastructure
* Perception
* Prediction
* Mapping
* Localization

High-Level Architecture

Provider
(Perception)

Provider
(Mapping)

566

Provider
(etc.)

High-Level Architecture

* Task Hierarchy - Tasks can be
composed from other (sub-)tasks

* Task Coordination - Can coordinate
tasks w/ simple code, state
machine, or Behavior Trees,
depending on complexity

* Programming Language
Independence - As ROS Actions,
tasks can be implemented in
various languages, encouraging
experimentation

High-Level Architecture

* Environmental Model - Aggregates knowledge of
Provider the environment.

(Perception} Various Input Sources - Input from Perception,
Mapping, Prediction, etc.

* Service Interfaces - Provides several service
interfaces to clients to retrieve info.

Provider
(Mapping)

566

Provider
(etc.)

High-Level Architecture

SN * Abstraction - Provide higher-level

abstractions of what task
implementers need.

I * Encapsulation - Internal
| Object Prediction Info | representation for the environmental
model may vary

Provider
(Perception)

_ \ Object Tracking Info
Provider S

(Mapping)

b

l Object Information

l Safety Zones |

l Static Map |

Provider
(etc.)

A Mission Plan could be a
detailed Behavior tree,
incorporating recovery nodes.

ExecuteMissionCommand
(MissionPlan)

ExecuteMissionResult
(Empty)

A task can coordinate subtasks using hand-coded
logic, state machines, or behavior trees, depending

- on the complexity of the task coordination. For
example, a simple BT sequential node could be
used to sequence tasks:

MissionExecutionTask

NavigateToPoseResylf
(Empty) -

NavigateToPoseCommand
(PoseWithCovariance)

NavigateToPoseTask

FollowPathResult
(Empty)

ComputePathToPoseCommand
(PathEndPoints)

ComputePathToPoseResult FollowPathCo
(Path) (Path)

ComputePathToPoseTask FollowPathTask
(Astar) (Dwa)

Status

 Posted first revision of requirements: _ _
https://github.com/ros-planning/navigation2/blob/master/doc/requirements/requirements.md

* Completed initial design for Command Chain
* Developed a short-term stand-in for ActionLib, ‘til the ROS2 version is ready
* Implemented an executable shell of the navigation task hierarchy

e Starting a Behavior-Tree-based implementation of Mission Execution
* Input a Mission Plan (specification of a behavior tree), execute using a BT library

* Implementing some Tasks

* NavigateToPose using a Point-to-Point Planner (A*) and a Controller (DWA)
* Porting A* and DWA to ROS2

* Defining services interfaces for mapping, perception, etc.

Backup

rcicpp::Node
TaskServer

TaskServer(std::string&)
~TaskServer(]
executeAsync(typ Comn
cancelRequested(): bool
setCanceled(): void
setResult{ResultMsg&): void
workerThread(): void
startWorkerThread(): void
stopWorkerThread(): void
onCommandReceived(typename CommandMsg::SharedPtr): void

dMsg::SharedPtr): TaskStatus

ERE I R R A R

onCancelReceived|CancelMsg::SharedPtr): void

d, ResultMsg:

ionResult>

<CommandMsz->FollowPathCommand, ResultMsz->FollowPathResult >

< CommandMsg->NavigateToPoseCommand, ResultMsg->NavigateToPoseResult >

<CommandMsg->ComputePathToPoseCommand, ResultMsg->*ComputePathToPoseResult >

Mission Execution Navigation Planning Control
atypedef»
atypedefs atypedefs) Stypedety FollowPathTaskServer
MissionExecutionTaskServer NavigateToPoseTaskServer PointToPointPlanningTaskServer
OtherMissionExecutionTaskSarvers (OtherNavigationTaskServers| OtherPlanningTaskServers OtherControlTaskSevers
DwaController
MissionExecution SimpleNavigator AStarPlanner
e + DwaController{std::string&)
- navigationTask_: std::unique_ptr<NavigateToPoseTaskClient> # planner_: std::unique_ptr<PointTaPointPlanningTaskClient> i AStarPIanner[lstd“strlng&) + DwaContraller()
controller_: std::unique_ptr<FollowPathTaskClient> + AstarFlanner() + ~DwaController()
£ MissionExerutionnd=tiner to hStarplanned) + executeAsync(FollowPathCommand::SharedPtr): TaskStatus
+ MissionExecution() + SimpleNavigator(std::string&) + executeAsync(ComputePathToPoseCommand::SharedPtr): TaskStatus A el oo Z 2
+ ~MissionExacution() + SimpleNavigator()
+ executeAsync(ExecuteMissionCommand::SharedPtr): TaskStatus + ~SimpleNavigator(}
g + executeAsync(NavigateToPoseCommand::SharedPtr): TaskStatus

Behavior Tree implementation of
Mission Execution Simple sequential execution of

planner and then controller

