From cf4f577b992064f33c985f682f0ffa9310e0ae08 Mon Sep 17 00:00:00 2001 From: Xiao Tianci <xiaotianci1@huawei.com> Date: Mon, 29 Aug 2022 21:39:16 +0800 Subject: [PATCH] update iterating on string numpy --- official/cv/crnn_seq2seq_ocr/eval.py | 2 +- official/cv/psenet/infer_psenet_onnx.py | 2 +- official/cv/psenet/test.py | 2 +- official/nlp/bert/src/finetune_data_preprocess.py | 14 +++++++------- research/cv/CycleGAN/eval.py | 4 ++-- research/cv/CycleGAN/eval_onnx.py | 4 ++-- research/cv/FaceDetection/eval.py | 6 +++--- research/cv/FaceDetection/preprocess.py | 6 +++--- research/cv/Pix2PixHD/precompute_feature_maps.py | 2 +- research/cv/res2net/infer.py | 2 +- 10 files changed, 22 insertions(+), 22 deletions(-) diff --git a/official/cv/crnn_seq2seq_ocr/eval.py b/official/cv/crnn_seq2seq_ocr/eval.py index 4d756a3e2..3e28a5d74 100644 --- a/official/cv/crnn_seq2seq_ocr/eval.py +++ b/official/cv/crnn_seq2seq_ocr/eval.py @@ -167,7 +167,7 @@ def run_eval(): batch_decoded_label.append(ele.asnumpy()) for b in range(config.eval_batch_size): - text = data["annotation"][b].decode("utf8") + text = data["annotation"][b] text = text_standardization(text) decoded_label = list(np.array(batch_decoded_label)[:, b]) decoded_words = [] diff --git a/official/cv/psenet/infer_psenet_onnx.py b/official/cv/psenet/infer_psenet_onnx.py index 698e9130c..bb9335917 100644 --- a/official/cv/psenet/infer_psenet_onnx.py +++ b/official/cv/psenet/infer_psenet_onnx.py @@ -107,7 +107,7 @@ def test(): # get data img, img_resized, img_name = data img = img[0].astype(np.uint8).copy() - img_name = img_name[0].decode('utf-8') + img_name = img_name[0] get_data_pts = time.time() get_data_time.update(get_data_pts - end_pts) diff --git a/official/cv/psenet/test.py b/official/cv/psenet/test.py index c9238d954..83ae226a8 100644 --- a/official/cv/psenet/test.py +++ b/official/cv/psenet/test.py @@ -126,7 +126,7 @@ def test(): # get data img, img_resized, img_name = data img = img[0].astype(np.uint8).copy() - img_name = img_name[0].decode('utf-8') + img_name = img_name[0] get_data_pts = time.time() get_data_time.update(get_data_pts - end_pts) diff --git a/official/nlp/bert/src/finetune_data_preprocess.py b/official/nlp/bert/src/finetune_data_preprocess.py index 3f9f682b5..6906fca79 100644 --- a/official/nlp/bert/src/finetune_data_preprocess.py +++ b/official/nlp/bert/src/finetune_data_preprocess.py @@ -58,8 +58,8 @@ def process_tnews_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage lookup = text.Lookup(vocab, unknown_token='[UNK]') dataset = dataset.map(operations=tokenizer, input_columns=["sentence"]) dataset = dataset.map(operations=ops.Slice(slice(0, max_seq_len)), input_columns=["sentence"]) - dataset = dataset.map(operations=ops.Concatenate(prepend=np.array(["[CLS]"], dtype='S'), - append=np.array(["[SEP]"], dtype='S')), input_columns=["sentence"]) + dataset = dataset.map(operations=ops.Concatenate(prepend=np.array(["[CLS]"]), + append=np.array(["[SEP]"])), input_columns=["sentence"]) dataset = dataset.map(operations=lookup, input_columns=["sentence"], output_columns=["text_ids"]) dataset = dataset.map(operations=ops.PadEnd([max_seq_len], 0), input_columns=["text_ids"]) dataset = dataset.map(operations=ops.Duplicate(), input_columns=["text_ids"], @@ -107,10 +107,10 @@ def process_cmnli_clue_dataset(data_dir, label_list, bert_vocab_path, data_usage dataset = dataset.map(operations=text.TruncateSequencePair(max_seq_len - 3), input_columns=["sentence1", "sentence2"]) ### Adding special tokens - dataset = dataset.map(operations=ops.Concatenate(prepend=np.array(["[CLS]"], dtype='S'), - append=np.array(["[SEP]"], dtype='S')), + dataset = dataset.map(operations=ops.Concatenate(prepend=np.array(["[CLS]"]), + append=np.array(["[SEP]"])), input_columns=["sentence1"]) - dataset = dataset.map(operations=ops.Concatenate(append=np.array(["[SEP]"], dtype='S')), + dataset = dataset.map(operations=ops.Concatenate(append=np.array(["[SEP]"])), input_columns=["sentence2"]) ### Generating segment_ids dataset = dataset.map(operations=ops.Duplicate(), input_columns=["sentence1"], @@ -209,8 +209,8 @@ def process_ner_msra_dataset(data_dir, label_list, bert_vocab_path, max_seq_len= unicode_char_tokenizer = text.UnicodeCharTokenizer() dataset = dataset.map(operations=unicode_char_tokenizer, input_columns=["text"], output_columns=["sentence"]) dataset = dataset.map(operations=ops.Slice(slice(0, max_seq_len-2)), input_columns=["sentence"]) - dataset = dataset.map(operations=ops.Concatenate(prepend=np.array(["[CLS]"], dtype='S'), - append=np.array(["[SEP]"], dtype='S')), input_columns=["sentence"]) + dataset = dataset.map(operations=ops.Concatenate(prepend=np.array(["[CLS]"]), + append=np.array(["[SEP]"])), input_columns=["sentence"]) dataset = dataset.map(operations=lookup, input_columns=["sentence"], output_columns=["input_ids"]) dataset = dataset.map(operations=ops.PadEnd([max_seq_len], 0), input_columns=["input_ids"]) dataset = dataset.map(operations=ops.Duplicate(), input_columns=["input_ids"], diff --git a/research/cv/CycleGAN/eval.py b/research/cv/CycleGAN/eval.py index 62f688636..a4949825d 100644 --- a/research/cv/CycleGAN/eval.py +++ b/research/cv/CycleGAN/eval.py @@ -45,7 +45,7 @@ def predict(): reporter.start_predict("A to B") for data in ds.create_dict_iterator(output_numpy=True): img_A = Tensor(data["image"]) - path_A = str(data["image_name"][0], encoding="utf-8") + path_A = data["image_name"][0] path_B = path_A[0:-4] + "_fake_B.jpg" fake_B = G_A(img_A) save_image(fake_B, os.path.join(imgs_out, "fake_B", path_B)) @@ -58,7 +58,7 @@ def predict(): reporter.start_predict("B to A") for data in ds.create_dict_iterator(output_numpy=True): img_B = Tensor(data["image"]) - path_B = str(data["image_name"][0], encoding="utf-8") + path_B = data["image_name"][0] path_A = path_B[0:-4] + "_fake_A.jpg" fake_A = G_B(img_B) save_image(fake_A, os.path.join(imgs_out, "fake_A", path_A)) diff --git a/research/cv/CycleGAN/eval_onnx.py b/research/cv/CycleGAN/eval_onnx.py index d896be42f..372650fd5 100644 --- a/research/cv/CycleGAN/eval_onnx.py +++ b/research/cv/CycleGAN/eval_onnx.py @@ -63,7 +63,7 @@ def predict(): reporter.start_predict("A to B") for data in ds.create_dict_iterator(output_numpy=True): img_a = data["image"] - path_a = str(data["image_name"][0], encoding="utf-8") + path_a = data["image_name"][0] path_b = path_a[0:-4] + "_fake_B.jpg" [fake_b] = gen_a.run(None, {gen_a_input_name: img_a}) save_image(fake_b, os.path.join(imgs_out, "fake_B", path_b)) @@ -77,7 +77,7 @@ def predict(): reporter.start_predict("B to A") for data in ds.create_dict_iterator(output_numpy=True): img_b = data["image"] - path_b = str(data["image_name"][0], encoding="utf-8") + path_b = data["image_name"][0] path_a = path_b[0:-4] + "_fake_A.jpg" [fake_a] = gen_b.run(None, {gen_b_input_name: img_b}) save_image(fake_a, os.path.join(imgs_out, "fake_A", path_a)) diff --git a/research/cv/FaceDetection/eval.py b/research/cv/FaceDetection/eval.py index 3ded3b96e..95960072a 100644 --- a/research/cv/FaceDetection/eval.py +++ b/research/cv/FaceDetection/eval.py @@ -232,9 +232,9 @@ def run_eval(): single_dets.extend(tdets[op][b]) dets.append(single_dets) - det.update({batch_image_name[k].decode('UTF-8'): v for k, v in enumerate(dets)}) - img_size.update({batch_image_name[k].decode('UTF-8'): v for k, v in enumerate(batch_image_size)}) - img_anno.update({batch_image_name[k].decode('UTF-8'): v for k, v in enumerate(batch_labels)}) + det.update({batch_image_name[k]: v for k, v in enumerate(dets)}) + img_size.update({batch_image_name[k]: v for k, v in enumerate(batch_image_size)}) + img_anno.update({batch_image_name[k]: v for k, v in enumerate(batch_labels)}) print('eval times:', eval_times) print('batch size: ', config.batch_size) diff --git a/research/cv/FaceDetection/preprocess.py b/research/cv/FaceDetection/preprocess.py index 205d31531..35d3c56c0 100644 --- a/research/cv/FaceDetection/preprocess.py +++ b/research/cv/FaceDetection/preprocess.py @@ -78,9 +78,9 @@ def preprocess(): images, labels, image_name, image_size = data[0:4] images = Image.fromarray(images[0].astype('uint8')).convert('RGB') images.save(os.path.join(images_path, image_name[0].decode() + ".jpg")) - labels.tofile(os.path.join(labels_path, image_name[0].decode() + ".bin")) - image_name.tofile(os.path.join(image_name_path, image_name[0].decode() + ".bin")) - image_size.tofile(os.path.join(image_size_path, image_name[0].decode() + ".bin")) + labels.tofile(os.path.join(labels_path, image_name[0] + ".bin")) + image_name.tofile(os.path.join(image_name_path, image_name[0] + ".bin")) + image_size.tofile(os.path.join(image_size_path, image_name[0] + ".bin")) if __name__ == '__main__': diff --git a/research/cv/Pix2PixHD/precompute_feature_maps.py b/research/cv/Pix2PixHD/precompute_feature_maps.py index 70a30684e..e17dd3768 100644 --- a/research/cv/Pix2PixHD/precompute_feature_maps.py +++ b/research/cv/Pix2PixHD/precompute_feature_maps.py @@ -47,6 +47,6 @@ for i, data in enumerate(data_loader): inst = ms.Tensor(data['inst']) feat_map = netE(image, inst) feat_map = resizeBilinear(feat_map, scale_factor=2) - save_path = data['path'][0].decode('utf-8').replace('/train_label', '/train_feat') + save_path = data['path'][0].replace('/train_label', '/train_feat') save_path = os.path.splitext(save_path)[0] save_image(feat_map, save_path, format_name='.png') diff --git a/research/cv/res2net/infer.py b/research/cv/res2net/infer.py index 52cff20a3..83f845353 100644 --- a/research/cv/res2net/infer.py +++ b/research/cv/res2net/infer.py @@ -40,7 +40,7 @@ def show_predict_info(label_list, prediction_list, filename_list, predict_ng): """show_predict_info""" label_index = 0 for label_index, predict_index, filename in zip(label_list, prediction_list, filename_list): - filename = np.array(filename).tostring().decode('utf8') + filename = np.array(filename).tostring() if label_index == -1: print("file: '{}' predict class id is: {}".format( filename, predict_index)) -- GitLab