diff --git a/official/cv/yolov3_darknet53_quant/README.md b/official/cv/yolov3_darknet53_quant/README.md index ad2bff29e36375722a9b66e9a40c2d60d99aabf2..7b9fe87b09d908cc40036548ea7b082f63e5d051 100644 --- a/official/cv/yolov3_darknet53_quant/README.md +++ b/official/cv/yolov3_darknet53_quant/README.md @@ -201,7 +201,7 @@ optional arguments: bash run_distribute_train.sh dataset/coco2014 yolov3_darknet53_noquant.ckpt rank_table_8p.json ``` -The above shell script will run distribute training in the background. You can view the results through the file `train_parallel[X]/log.txt`. The loss value will be achieved as follows: +The above shell script will run distribute training in the background. You can view the results through the file `train_parallel0/log.txt`. The loss value will be achieved as follows: ```bash # distribute training result(8p) diff --git a/official/cv/yolov3_darknet53_quant/README_CN.md b/official/cv/yolov3_darknet53_quant/README_CN.md index ff0f48692f37405787cd17dd159caab1ed4316e9..0703b4ab79fdf5cbcab8618104cda887f8fc69cc 100644 --- a/official/cv/yolov3_darknet53_quant/README_CN.md +++ b/official/cv/yolov3_darknet53_quant/README_CN.md @@ -208,7 +208,7 @@ train.py中主要参数如下: bash run_distribute_train.sh dataset/coco2014 yolov3_darknet53_noquant.ckpt rank_table_8p.json ``` -上述shell脚本将在后台运行分布训练。您可以通过`train_parallel[X]/log.txt`文件查看结果。损失值的实现如下: +上述shell脚本将在后台运行分布训练。您可以通过`train_parallel0/log.txt`文件查看结果。损失值的实现如下: ```text # 分布式训练示例(8卡)