diff --git a/official/recommend/deepfm/README.md b/official/recommend/deepfm/README.md index 827de641eaa9228cd3b0e53a2ccb8e76f6be79d9..53be80b0527e1a85fd48fafe05f95219a27366a0 100644 --- a/official/recommend/deepfm/README.md +++ b/official/recommend/deepfm/README.md @@ -56,16 +56,16 @@ After installing MindSpore via the official website, you can start training and - preprocess dataset - '''bash + ```bash #download dataset - #Please refer to [1] to obtain the download link + #Please refer to [Criteo Kaggle Display Advertising Challenge Dataset] to get the download URL and assign it to `DATA_LINK` mkdir -p data/origin_data && cd data/origin_data wget DATA_LINK tar -zxvf dac.tar.gz #preprocess dataset python -m src.preprocess_data --data_path=./data/ --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0 - ''' + ``` - running on Ascend diff --git a/official/recommend/deepfm/README_CN.md b/official/recommend/deepfm/README_CN.md index e4df14338d0e0343778ddbc434926c9a4f5a4803..5a86bfc5e78b9f49baa2dee21ac24cd7e9fa9116 100644 --- a/official/recommend/deepfm/README_CN.md +++ b/official/recommend/deepfm/README_CN.md @@ -59,16 +59,17 @@ FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从 通过官方网站安装MindSpore后,您可以按照如下步骤进行训练和评估: - 数据集预处理 - '''bash + + ```bash #下载数据集 - #请参考[1]获得下载链接 + #请参考[Criteo Kaggle Display Advertising Challenge Dataset]获得下载链接并赋值给`DATA_LINK` mkdir -p data/origin_data && cd data/origin_data wget DATA_LINK tar -zxvf dac.tar.gz - #数据集预处理脚步执行 + #数据集预处理脚本执行 python -m src.preprocess_data --data_path=./data/ --dense_dim=13 --slot_dim=26 --threshold=100 --train_line_count=45840617 --skip_id_convert=0 - ''' + ``` - Ascend处理器环境运行