diff --git a/official/cv/nasnet/src/nasnet_a_mobile.py b/official/cv/nasnet/src/nasnet_a_mobile.py
index 0988a50a8acc07b4403db6b16c14402595dea6f6..10904a52e55fc2ddb6577be7940f6f366e3a4a11 100644
--- a/official/cv/nasnet/src/nasnet_a_mobile.py
+++ b/official/cv/nasnet/src/nasnet_a_mobile.py
@@ -18,9 +18,7 @@ import numpy as np
from mindspore import context
from mindspore import Tensor
import mindspore.nn as nn
-
from mindspore.nn.loss.loss import LossBase
-
import mindspore.ops.operations as P
import mindspore.ops.functional as F
import mindspore.ops.composite as C
@@ -61,9 +59,8 @@ def _clip_grad(clip_type, clip_value, grad):
class CrossEntropy(LossBase):
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
- def __init__(self, smooth_factor=0, num_classes=1000, factor=0.4):
+ def __init__(self, smooth_factor=0, num_classes=1000):
super(CrossEntropy, self).__init__()
- self.factor = factor
self.onehot = P.OneHot()
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
@@ -71,14 +68,11 @@ class CrossEntropy(LossBase):
self.mean = P.ReduceMean(False)
def construct(self, logits, label):
- logit, aux = logits
+ logit = logits[0]
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss_logit = self.ce(logit, one_hot_label)
loss_logit = self.mean(loss_logit, 0)
- one_hot_label_aux = self.onehot(label, F.shape(aux)[1], self.on_value, self.off_value)
- loss_aux = self.ce(aux, one_hot_label_aux)
- loss_aux = self.mean(loss_aux, 0)
- return loss_logit + self.factor*loss_aux
+ return loss_logit
class AuxLogits(nn.Cell):
@@ -896,7 +890,7 @@ class NASNetAMobileWithLoss(nn.Cell):
super(NASNetAMobileWithLoss, self).__init__()
self.network = NASNetAMobile(config.num_classes, is_training)
self.loss = CrossEntropy(smooth_factor=config.label_smooth_factor,
- num_classes=config.num_classes, factor=config.aux_factor)
+ num_classes=config.num_classes)
self.cast = P.Cast()
def construct(self, data, label):