diff --git a/official/cv/unet/train.py b/official/cv/unet/train.py index f6986c597f2001b8f1fcf8928ee4cffb5c553d6f..3fe67f67561696b97c24123db9f1486133e5c2b5 100644 --- a/official/cv/unet/train.py +++ b/official/cv/unet/train.py @@ -89,7 +89,9 @@ def train_net(cross_valid_ind=1, eval_resize=config.eval_resize, split=split, shuffle=False) else: repeat = config.repeat - dataset_sink_mode = True + dataset_sink_mode = False + if config.device_target == "GPU": + dataset_sink_mode = True per_print_times = 1 train_dataset, valid_dataset = create_dataset(data_dir, repeat, batch_size, True, cross_valid_ind, run_distribute, config.crop, config.image_size) diff --git a/official/recommend/naml/README.md b/official/recommend/naml/README.md index 95481ff1f51a56ab49606fa04a53f82cd51414b9..c3371b9fc6cc4f325de00fe2f9a24d1ca28e928e 100644 --- a/official/recommend/naml/README.md +++ b/official/recommend/naml/README.md @@ -22,7 +22,9 @@ NAML is a multi-view news recommendation approach. The core of NAML is a news en # [Dataset](#contents) -Dataset used: [MIND](https://msnews.github.io/) +Dataset used: [MIND](https://msnews.github.io/). You can download [MINDlarge_train](https://mind201910small.blob.core.windows.net/release/MINDlarge_train.zip), +[MINDlarge_dev](https://mind201910small.blob.core.windows.net/release/MINDlarge_dev.zip), +[MINDlarge_utils](https://mind201910small.blob.core.windows.net/release/MINDlarge_utils.zip) MIND contains about 160k English news articles and more than 15 million impression logs generated by 1 million users.