diff --git a/official/cv/deeplabv3plus/README_CN.md b/official/cv/deeplabv3plus/README_CN.md
deleted file mode 100644
index 29c133a23e2882a338e335991634eab85eba1f33..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/README_CN.md
+++ /dev/null
@@ -1,565 +0,0 @@
-# 目录
-
-<!-- TOC -->
-
-- [目录](#目录)
-- [DeepLabV3+描述](#deeplabv3+描述)
-    - [描述](#描述)
-- [模型架构](#模型架构)
-- [数据集](#数据集)
-- [特性](#特性)
-    - [混合精度](#混合精度)
-- [环境要求](#环境要求)
-- [快速入门](#快速入门)
-- [脚本说明](#脚本说明)
-    - [脚本及样例代码](#脚本及样例代码)
-    - [脚本参数](#脚本参数)
-    - [训练过程](#训练过程)
-        - [用法](#用法)
-            - [Ascend处理器环境运行](#ascend处理器环境运行)
-        - [结果](#结果)
-    - [评估过程](#评估过程)
-        - [用法](#用法-1)
-            - [Ascend处理器环境运行](#ascend处理器环境运行-1)
-        - [结果](#结果-1)
-            - [训练准确率](#训练准确率)
-- [模型描述](#模型描述)
-    - [性能](#性能)
-        - [评估性能](#评估性能)
-- [随机情况说明](#随机情况说明)
-- [ModelZoo主页](#modelzoo主页)
-
-<!-- /TOC -->
-
-# DeepLabV3+描述
-
-## 描述
-
-DeepLab是一系列图像语义分割模型,DeepLabv3+通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层,
-其骨干网络使用了Resnet模型,提高了语义分割的健壮性和运行速率。
-
-有关网络详细信息,请参阅[论文][1]
-`Chen, Liang-Chieh, et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation." Proceedings of the European conference on computer vision (ECCV). 2018.`
-
-[1]: https://arxiv.org/abs/1802.02611
-
-# 模型架构
-
-以ResNet-101为骨干,通过encoder-decoder进行多尺度信息的融合,使用空洞卷积进行密集特征提取。
-
-# 数据集
-
-Pascal VOC数据集和语义边界数据集(Semantic Boundaries Dataset,SBD)
-
-- 下载分段数据集。
-
-- 准备Backbone模型
-
-准备resnet101模型,点此下载(https://download.mindspore.cn/model_zoo/r1.2/resnet101_ascend_v120_imagenet2012_official_cv_bs32_acc78/resnet101_ascend_v120_imagenet2012_official_cv_bs32_acc78.ckpt).
-
-- 准备训练数据清单文件。清单文件用于保存图片和标注对的相对路径。如下:
-
-     ```text
-     VOCdevkit/VOC2012/JPEGImages/2007_000032.jpg VOCdevkit/VOC2012/SegmentationClassGray/2007_000032.png
-     VOCdevkit/VOC2012/JPEGImages/2007_000039.jpg VOCdevkit/VOC2012/SegmentationClassGray/2007_000039.png
-     VOCdevkit/VOC2012/JPEGImages/2007_000063.jpg VOCdevkit/VOC2012/SegmentationClassGray/2007_000063.png
-     VOCdevkit/VOC2012/JPEGImages/2007_000068.jpg VOCdevkit/VOC2012/SegmentationClassGray/2007_000068.png
-     ......
-     ```
-
-你也可以通过运行脚本:`python get_dataset_list.py --data_root=/PATH/TO/DATA` 来自动生成数据清单文件。
-
-- 配置并运行get_dataset_mindrecord.sh,将数据集转换为MindRecords。scripts/get_dataset_mindrecord.sh中的参数:
-
-     ```
-     --data_root                 训练数据的根路径
-     --data_lst                  训练数据列表(如上准备)
-     --dst_path                  MindRecord所在路径
-     --num_shards                MindRecord的分片数
-     --shuffle                   是否混洗
-     ```
-
-# 特性
-
-## 混合精度
-
-采用[混合精度](https://www.mindspore.cn/tutorials/experts/zh-CN/master/others/mixed_precision.html)的训练方法使用支持单精度和半精度数据来提高深度学习神经网络的训练速度,同时保持单精度训练所能达到的网络精度。混合精度训练提高计算速度、减少内存使用的同时,支持在特定硬件上训练更大的模型或实现更大批次的训练。
-以FP16算子为例,如果输入数据类型为FP32,MindSpore后台会自动降低精度来处理数据。用户可打开INFO日志,搜索“reduce precision”查看精度降低的算子。
-
-# 环境要求
-
-- 硬件(Ascend)
-    - 准备Ascend处理器搭建硬件环境。
-- 框架
-    - [MindSpore](https://www.mindspore.cn/install)
-- 如需查看详情,请参见如下资源:
-    - [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html)
-    - [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html)
-- 安装requirements.txt中的python包。
-- 生成config json文件用于8卡训练。
-
-     ```
-     # 从项目根目录进入
-     cd src/tools/
-     python3 get_multicards_json.py 10.111.*.*
-     # 10.111.*.*为计算机IP地址
-     ```
-
-# 快速入门
-
-通过官方网站安装MindSpore后,您可以按照如下步骤进行训练和评估:
-
-- Ascend处理器环境运行
-
-在DeepLabV3+原始论文的基础上,我们对VOCaug(也称为trainaug)数据集进行了两次训练实验,并对voc val数据集进行了评估。
-
-运行以下训练脚本配置单卡训练参数:
-
-```bash
-进入shell脚本修改 data_file和ckpt_pre_trained参数
-# example:
-data_file=/home/DataSet/VOC2012/vocaug_mindrecords/vocaug.mindrecord0
-ckpt_pre_trained=/home/model/deeplabv3/predtrained/resnet101_ascend_v120_imagenet2012_official_cv_bs32_acc78.ckpt
-
-bash run_alone_train.sh
-```
-
-按照以下训练步骤进行8卡训练:
-
-1.使用VOCaug数据集训练s16,微调ResNet-101预训练模型。脚本如下:
-
-```bash
-进入shell脚本修改 data_file和ckpt_pre_trained参数
-# example:
-data_file=/home/DataSet/VOC2012/vocaug_mindrecords/vocaug.mindrecord0
-ckpt_pre_trained=/home/model/deeplabv3/predtrained/resnet101_ascend_v120_imagenet2012_official_cv_bs32_acc78.ckpt
-
-bash run_distribute_train_s16_r1.sh ~/hccl_8p.json
-```
-
-2.使用VOCaug数据集训练s8,微调上一步的模型。脚本如下:
-
-```bash
-进入shell脚本修改 data_file和ckpt_pre_trained参数
-# example:
-data_file=/home/DataSet/VOC2012/vocaug_mindrecords/vocaug.mindrecord0
-ckpt_pre_trained=/home/model/deeplabv3/predtrained/resnet101_ascend_v120_imagenet2012_official_cv_bs32_acc78.ckpt
-
-bash run_distribute_train_s8_r1.sh ~/hccl_8p.json
-```
-
-3.使用VOCtrain数据集训练s8,微调上一步的模型。脚本如下:
-
-```bash
-进入shell脚本修改 data_file和ckpt_pre_trained参数
-注意:本次训练预训练权重采用上一步训练的权重文件,数据集也有所变化
-# example:
-data_file=/home/DataSet/VOC2012/voctrain_mindrecords/votrain.mindrecord0
-ckpt_pre_trained=/home/model/deeplabv3/ckpt/deeplabv3-800_330.ckpt
-
-bash run_distribute_train_s8_r2.sh ~/hccl_8p.json
-```
-
-评估步骤如下:
-
-1. 进入对应的shell脚本修改参数
-
-```shell
-# example:
-data_root=/home/DataSet/VOC2012
-data_lst=/home/DataSet/VOC2012/voc_val_lst.txt
-ckpt_path=/home/model/deeplabv3/ckpt/deeplabv3-800_330.ckpt
-```
-
-2.使用voc val数据集评估s16。评估脚本如下:
-
-```bash
-bash run_eval_s16.sh
-```
-
-3.使用voc val数据集评估多尺度s16。评估脚本如下:
-
-```bash
-bash run_eval_s16_multiscale.sh
-```
-
-4.使用voc val数据集评估多尺度和翻转s16。评估脚本如下:
-
-```bash
-bash run_eval_s16_multiscale_flip.sh
-```
-
-5.使用voc val数据集评估s8。评估脚本如下:
-
-```bash
-bash run_eval_s8.sh
-```
-
-6.使用voc val数据集评估多尺度s8。评估脚本如下:
-
-```bash
-bash run_eval_s8_multiscale.sh
-```
-
-7.使用voc val数据集评估多尺度和翻转s8。评估脚本如下:
-
-```bash
-bash run_eval_s8_multiscale_flip.sh
-```
-
-# 脚本说明
-
-## 脚本及样例代码
-
-```shell
-.
-└──deeplabv3plus
-  ├── script
-    ├── get_dataset_mindrecord.sh                 # 将原始数据转换为MindRecord数据集
-    ├── run_alone_train.sh                        # 启动Ascend单机训练(单卡)
-    ├── run_distribute_train_s16_r1.sh            # 使用s16结构的VOCaug数据集启动Ascend分布式训练(8卡)
-    ├── run_distribute_train_s8_r1.sh             # 使用s8结构的VOCaug数据集启动Ascend分布式训练(8卡)
-    ├── run_distribute_train_s8_r2.sh             # 使用s8结构的VOCtrain数据集启动Ascend分布式训练(8卡)
-    ├── run_eval_s16.sh                           # 使用s16结构启动Ascend评估
-    ├── run_eval_s16_multiscale.sh                # 使用多尺度s16结构启动Ascend评估
-    ├── run_eval_s16_multiscale_filp.sh           # 使用多尺度和翻转s16结构启动Ascend评估
-    ├── run_eval_s8.sh                            # 使用s8结构启动Ascend评估
-    ├── run_eval_s8_multiscale.sh                 # 使用多尺度s8结构启动Ascend评估
-    ├── run_eval_s8_multiscale_filp.sh            # 使用多尺度和翻转s8结构启动Ascend评估
-  ├── src
-    ├── tools
-        ├── get_dataset_list.py               # 获取数据清单文件
-        ├── get_dataset_mindrecord.py         # 获取MindRecord文件
-        ├── get_multicards_json.py            # 获取rank table文件
-        ├── get_pretrained_model.py           # 获取resnet预训练模型
-    ├── dataset.py                            # 数据预处理
-    ├── deeplab_v3plus.py                     # DeepLabV3+网络结构
-    ├── learning_rates.py                     # 生成学习率
-    ├── loss.py                               # DeepLabV3+的损失定义
-  ├── eval.py                                 # 评估网络
-  ├── train.py                                # 训练网络
-  ├──requirements.txt                        # requirements文件
-  └──README.md
-```
-
-## 脚本参数
-
-默认配置
-
-```bash
-"data_file":"/PATH/TO/MINDRECORD_NAME"            # 数据集路径
-"device_target":Ascend                            # 训练后端类型
-"train_epochs":300                                # 总轮次数
-"batch_size":32                                   # 输入张量的批次大小
-"crop_size":513                                   # 裁剪大小
-"base_lr":0.08                                    # 初始学习率
-"lr_type":cos                                     # 用于生成学习率的衰减模式
-"min_scale":0.5                                   # 数据增强的最小尺度
-"max_scale":2.0                                   # 数据增强的最大尺度
-"ignore_label":255                                # 忽略标签
-"num_classes":21                                  # 类别数
-"model":DeepLabV3plus_s16                         # 选择模型
-"ckpt_pre_trained":"/PATH/TO/PRETRAIN_MODEL"      # 加载预训练检查点的路径
-"is_distributed":                                 # 分布式训练,设置该参数为True
-"save_steps":410                                  # 用于保存的迭代间隙
-"freeze_bn":                                      # 设置该参数freeze_bn为True
-"keep_checkpoint_max":200                         # 用于保存的最大检查点
-```
-
-## 训练过程
-
-### 用法
-
-#### Ascend处理器环境运行
-
-在DeepLabV3+原始论文的基础上,我们对vocaug(也称为trainaug)数据集进行了两次训练实验,并对voc val数据集进行了评估。
-
-运行以下训练脚本配置单卡训练参数:
-
-```bash
-# run_alone_train.sh
-python ${train_code_path}/train.py --data_file=/PATH/TO/MINDRECORD_NAME  \
-                    --train_dir=${train_path}/ckpt  \
-                    --train_epochs=200  \
-                    --batch_size=32  \
-                    --crop_size=513  \
-                    --base_lr=0.015  \
-                    --lr_type=cos  \
-                    --min_scale=0.5  \
-                    --max_scale=2.0  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s16  \
-                    --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                    --save_steps=1500  \
-                    --keep_checkpoint_max=200 >log 2>&1 &
-```
-
-按照以下训练步骤进行8卡训练:
-
-1.使用VOCaug数据集训练s16,微调ResNet-101预训练模型。脚本如下:
-
-```bash
-# run_distribute_train_s16_r1.sh
-for((i=0;i<=$RANK_SIZE-1;i++));
-do
-    export RANK_ID=$i
-    export DEVICE_ID=`expr $i + $RANK_START_ID`
-    echo 'start rank='$i', device id='$DEVICE_ID'...'
-    mkdir ${train_path}/device$DEVICE_ID
-    cd ${train_path}/device$DEVICE_ID
-    ython ${train_code_path}/train.py --train_dir=${train_path}/ckpt  \
-                                               --data_file=/PATH/TO/MINDRECORD_NAME  \
-                                               --train_epochs=300  \
-                                               --batch_size=32  \
-                                               --crop_size=513  \
-                                               --base_lr=0.08  \
-                                               --lr_type=cos  \
-                                               --min_scale=0.5  \
-                                               --max_scale=2.0  \
-                                               --ignore_label=255  \
-                                               --num_classes=21  \
-                                               --model=DeepLabV3plus_s16  \
-                                               --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                                               --is_distributed  \
-                                               --save_steps=410  \
-                                               --keep_checkpoint_max=200 >log 2>&1 &
-done
-```
-
-2.使用VOCaug数据集训练s8,微调上一步的模型。脚本如下:
-
-```bash
-# run_distribute_train_s8_r1.sh
-for((i=0;i<=$RANK_SIZE-1;i++));
-do
-    export RANK_ID=$i
-    export DEVICE_ID=`expr $i + $RANK_START_ID`
-    echo 'start rank='$i', device id='$DEVICE_ID'...'
-    mkdir ${train_path}/device$DEVICE_ID
-    cd ${train_path}/device$DEVICE_ID
-    python ${train_code_path}/train.py --train_dir=${train_path}/ckpt  \
-                                               --data_file=/PATH/TO/MINDRECORD_NAME  \
-                                               --train_epochs=800  \
-                                               --batch_size=16  \
-                                               --crop_size=513  \
-                                               --base_lr=0.02  \
-                                               --lr_type=cos  \
-                                               --min_scale=0.5  \
-                                               --max_scale=2.0  \
-                                               --ignore_label=255  \
-                                               --num_classes=21  \
-                                               --model=DeepLabV3plus_s8  \
-                                               --loss_scale=2048  \
-                                               --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                                               --is_distributed  \
-                                               --save_steps=820  \
-                                               --keep_checkpoint_max=200 >log 2>&1 &
-done
-```
-
-3.使用VOCtrain数据集训练s8,微调上一步的模型。脚本如下:
-
-```bash
-# run_distribute_train_s8_r2.sh
-for((i=0;i<=$RANK_SIZE-1;i++));
-do
-    export RANK_ID=$i
-    export DEVICE_ID=`expr $i + $RANK_START_ID`
-    echo 'start rank='$i', device id='$DEVICE_ID'...'
-    mkdir ${train_path}/device$DEVICE_ID
-    cd ${train_path}/device$DEVICE_ID
-    python ${train_code_path}/train.py --train_dir=${train_path}/ckpt  \
-                                               --data_file=/PATH/TO/MINDRECORD_NAME  \
-                                               --train_epochs=300  \
-                                               --batch_size=16  \
-                                               --crop_size=513  \
-                                               --base_lr=0.008  \
-                                               --lr_type=cos  \
-                                               --min_scale=0.5  \
-                                               --max_scale=2.0  \
-                                               --ignore_label=255  \
-                                               --num_classes=21  \
-                                               --model=DeepLabV3plus_s8  \
-                                               --loss_scale=2048  \
-                                               --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                                               --is_distributed  \
-                                               --save_steps=110  \
-                                               --keep_checkpoint_max=200 >log 2>&1 &
-done
-```
-
-#### ModelArts环境运行
-
-按以下样例配置训练参数,启动ModelArts训练:
-
-```shell
-python  train.py    --train_url=/PATH/TO/OUTPUT_DIR \
-                    --data_url=/PATH/TO/MINDRECORD  \
-                    --model=DeepLabV3plus_s16  \
-                    --modelArts_mode=True  \
-                    --dataset_filename=MINDRECORD_NAME  \
-                    --pretrainedmodel_filename=PRETRAIN_MODELNAME  \
-                    --train_epochs=300  \
-                    --batch_size=32  \
-                    --crop_size=513  \
-                    --base_lr=0.08  \
-                    --lr_type=cos  \
-                    --save_steps=410  \
-```
-
-### 结果
-
-#### Ascend处理器环境运行
-
-- 使用s16结构训练VOCaug
-
-```bash
-# 分布式训练结果(8P)
-epoch: 1 step: 41, loss is 0.81338423
-epoch time: 202199.339 ms, per step time: 4931.691 ms
-epoch: 2 step: 41, loss is 0.34089813
-epoch time: 23811.338 ms, per step time: 580.764 ms
-epoch: 3 step: 41, loss is 0.32335973
-epoch time: 23794.863 ms, per step time: 580.363 ms
-epoch: 4 step: 41, loss is 0.18254203
-epoch time: 23796.674 ms, per step time: 580.407 ms
-epoch: 5 step: 41, loss is 0.27708685
-epoch time: 23794.654 ms, per step time: 580.357 ms
-epoch: 6 step: 41, loss is 0.37388346
-epoch time: 23845.658 ms, per step time: 581.601 ms
-...
-```
-
-- 使用s8结构训练VOCaug
-
-```bash
-# 分布式训练结果(8P)
-epoch: 1 step: 82, loss is 0.073864505
-epoch time: 226610.999 ms, per step time: 2763.549 ms
-epoch: 2 step: 82, loss is 0.06908825
-epoch time: 44474.187 ms, per step time: 542.368 ms
-epoch: 3 step: 82, loss is 0.059860937
-epoch time: 44485.142 ms, per step time: 542.502 ms
-epoch: 4 step: 82, loss is 0.084193744
-epoch time: 44472.924 ms, per step time: 542.353 ms
-epoch: 5 step: 82, loss is 0.072242916
-epoch time: 44466.738 ms, per step time: 542.277 ms
-epoch: 6 step: 82, loss is 0.04948996
-epoch time: 44474.549 ms, per step time: 542.373 ms
-...
-```
-
-- 使用s8结构训练VOCtrain
-
-```bash
-# 分布式训练结果(8P)
-epoch: 1 step: 11, loss is 0.0055908263
-epoch time: 183966.044 ms, per step time: 16724.186 ms
-epoch: 2 step: 11, loss is 0.008914589
-epoch time: 5985.108 ms, per step time: 544.101 ms
-epoch: 3 step: 11, loss is 0.0073758443
-epoch time: 5977.932 ms, per step time: 543.448 ms
-epoch: 4 step: 11, loss is 0.00677738
-epoch time: 5978.866 ms, per step time: 543.533 ms
-epoch: 5 step: 11, loss is 0.0053799236
-epoch time: 5987.879 ms, per step time: 544.353 ms
-epoch: 6 step: 11, loss is 0.0049248594
-epoch time: 5979.642 ms, per step time: 543.604 ms
-...
-```
-
-#### ModelArts环境运行
-
-- 使用s16结构训练VOCaug
-
-```bash
-epoch: 1 step: 41, loss is 0.6122837
-epoch: 2 step: 41, loss is 0.4066103
-epoch: 3 step: 41, loss is 0.3504579
-...
-```
-
-## 评估过程
-
-### 用法
-
-#### Ascend处理器环境运行
-
-使用--ckpt_path配置检查点,运行脚本,在eval_path/eval_log中打印mIOU。
-
-```bash
-./run_eval_s16.sh                     # 测试s16
-./run_eval_s16_multiscale.sh          # 测试s16 + 多尺度
-./run_eval_s16_multiscale_flip.sh     # 测试s16 + 多尺度 + 翻转
-./run_eval_s8.sh                      # 测试s8
-./run_eval_s8_multiscale.sh           # 测试s8 + 多尺度
-./run_eval_s8_multiscale_flip.sh      # 测试s8 + 多尺度 + 翻转
-```
-
-测试脚本示例如下:
-
-```bash
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=16  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s8  \
-                    --scales=0.5  \
-                    --scales=0.75  \
-                    --scales=1.0  \
-                    --scales=1.25  \
-                    --scales=1.75  \
-                    --flip  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
-```
-
-### 结果
-
-运行适用的训练脚本获取结果。要获得相同的结果,请按照快速入门中的步骤操作。
-
-#### 训练准确率
-
-| **网络** | OS=16 | OS=8 | MS |翻转| mIOU |论文中的mIOU |
-| :----------: | :-----: | :----: | :----: | :-----: | :-----: | :-------------: |
-| deeplab_v3+ | √     |      |      |       | 79.78 | 78.85    |
-| deeplab_v3+ | √     |     | √    |       | 80.59 |80.09   |
-| deeplab_v3+ | √     |     | √    | √     | 80.76 | 80.22        |
-| deeplab_v3+ |       | √    |      |       | 79.56 | 79.35    |
-| deeplab_v3+ |       | √    | √    |       | 80.43 |80.43   |
-| deeplab_v3+ |       | √    | √    | √     | 80.69 | 80.57        |
-
-注意:OS指输出步长(output stride), MS指多尺度(multiscale)。
-
-# 模型描述
-
-## 性能
-
-### 评估性能
-
-| 参数 | Ascend 910|
-| -------------------------- | -------------------------------------- |
-| 模型版本 | DeepLabV3+ |
-| 资源 | Ascend 910 |
-| 上传日期 | 2021-03-16 |
-| MindSpore版本 | 1.1.1 |
-| 数据集 | PASCAL VOC2012 + SBD |
-| 训练参数 | epoch = 300, batch_size = 32 (s16_r1)  epoch = 800, batch_size = 16 (s8_r1)  epoch = 300, batch_size = 16 (s8_r2) |
-| 优化器 | Momentum |
-| 损失函数 | Softmax交叉熵 |
-| 输出 | 概率 |
-| 损失 | 0.0041095633 |
-| 性能 | 187736.386 ms(单卡,s16)<br>  44474.187 ms(八卡,s16) |  
-| 微调检查点 | 453M (.ckpt文件) |
-| 脚本 | [链接](https://gitee.com/mindspore/models/tree/master/official/cv/deeplabv3plus) |
-
-# 随机情况说明
-
-dataset.py中设置了“create_dataset”函数内的种子,同时还使用了train.py中的随机种子。
-
-# ModelZoo主页
-
- 请浏览官网[主页](https://gitee.com/mindspore/models)。
diff --git a/official/cv/deeplabv3plus/eval.py b/official/cv/deeplabv3plus/eval.py
deleted file mode 100644
index ba54b14290e2b13fbb0635c2ebda91490f2edb47..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/eval.py
+++ /dev/null
@@ -1,197 +0,0 @@
-import os
-import argparse
-import numpy as np
-import cv2
-from mindspore import Tensor
-import mindspore.common.dtype as mstype
-import mindspore.nn as nn
-from mindspore import context
-from mindspore.train.serialization import load_checkpoint, load_param_into_net
-from src.deeplab_v3plus import DeepLabV3Plus
-context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
-                    device_id=int(os.getenv('DEVICE_ID')))
-
-
-def parse_args():
-    parser = argparse.ArgumentParser('MindSpore DeepLabV3+ eval')
-
-    # val data
-    parser.add_argument('--data_root', type=str, default='', help='root path of val data')
-    parser.add_argument('--data_lst', type=str, default='', help='list of val data')
-    parser.add_argument('--batch_size', type=int, default=16, help='batch size')
-    parser.add_argument('--crop_size', type=int, default=513, help='crop size')
-    parser.add_argument('--image_mean', type=list, default=[103.53, 116.28, 123.675], help='image mean')
-    parser.add_argument('--image_std', type=list, default=[57.375, 57.120, 58.395], help='image std')
-    parser.add_argument('--scales', type=float, action='append', help='scales of evaluation')
-    parser.add_argument('--flip', action='store_true', help='perform left-right flip')
-    parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
-    parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
-
-    # model
-    parser.add_argument('--model', type=str, default='', help='select model')
-    parser.add_argument('--freeze_bn', action='store_true', default=False, help='freeze bn')
-    parser.add_argument('--ckpt_path', type=str, default='', help='model to evaluate')
-
-    args, _ = parser.parse_known_args()
-    return args
-
-
-def cal_hist(a, b, n):
-    k = (a >= 0) & (a < n)
-    return np.bincount(n * a[k].astype(np.int32) + b[k], minlength=n ** 2).reshape(n, n)
-
-
-def resize_long(img, long_size=513):
-    h, w, _ = img.shape
-    if h > w:
-        new_h = long_size
-        new_w = int(1.0 * long_size * w / h)
-    else:
-        new_w = long_size
-        new_h = int(1.0 * long_size * h / w)
-    imo = cv2.resize(img, (new_w, new_h))
-    return imo
-
-
-class BuildEvalNetwork(nn.Cell):
-    def __init__(self, network):
-        super(BuildEvalNetwork, self).__init__()
-        self.network = network
-        self.softmax = nn.Softmax(axis=1)
-
-    def construct(self, input_data):
-        output = self.network(input_data)
-        output = self.softmax(output)
-        return output
-
-
-def pre_process(args, img_, crop_size=513):
-    # resize
-    img_ = resize_long(img_, crop_size)
-    resize_h, resize_w, _ = img_.shape
-
-    # mean, std
-    image_mean = np.array(args.image_mean)
-    image_std = np.array(args.image_std)
-    img_ = (img_ - image_mean) / image_std
-
-    # pad to crop_size
-    pad_h = crop_size - img_.shape[0]
-    pad_w = crop_size - img_.shape[1]
-    if pad_h > 0 or pad_w > 0:
-        img_ = cv2.copyMakeBorder(img_, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=0)
-
-    # hwc to chw
-    img_ = img_.transpose((2, 0, 1))
-    return img_, resize_h, resize_w
-
-
-def eval_batch(args, eval_net, img_lst, crop_size=513, flip=True):
-    result_lst = []
-    batch_size = len(img_lst)
-    batch_img = np.zeros((args.batch_size, 3, crop_size, crop_size), dtype=np.float32)
-    resize_hw = []
-    for l in range(batch_size):
-        img_ = img_lst[l]
-        img_, resize_h, resize_w = pre_process(args, img_, crop_size)
-        batch_img[l] = img_
-        resize_hw.append([resize_h, resize_w])
-
-    batch_img = np.ascontiguousarray(batch_img)
-    net_out = eval_net(Tensor(batch_img, mstype.float32))
-    net_out = net_out.asnumpy()
-
-    if flip:
-        batch_img = batch_img[:, :, :, ::-1]
-        net_out_flip = eval_net(Tensor(batch_img, mstype.float32))
-        net_out += net_out_flip.asnumpy()[:, :, :, ::-1]
-
-    for bs in range(batch_size):
-        probs_ = net_out[bs][:, :resize_hw[bs][0], :resize_hw[bs][1]].transpose((1, 2, 0))
-        ori_h, ori_w = img_lst[bs].shape[0], img_lst[bs].shape[1]
-        probs_ = cv2.resize(probs_, (ori_w, ori_h))
-        result_lst.append(probs_)
-
-    return result_lst
-
-
-def eval_batch_scales(args, eval_net, img_lst, scales,
-                      base_crop_size=513, flip=True):
-    sizes_ = [int((base_crop_size - 1) * sc) + 1 for sc in scales]
-    probs_lst = eval_batch(args, eval_net, img_lst, crop_size=sizes_[0], flip=flip)
-    print(sizes_)
-    for crop_size_ in sizes_[1:]:
-        probs_lst_tmp = eval_batch(args, eval_net, img_lst, crop_size=crop_size_, flip=flip)
-        for pl, _ in enumerate(probs_lst):
-            probs_lst[pl] += probs_lst_tmp[pl]
-
-    result_msk = []
-    for i in probs_lst:
-        result_msk.append(i.argmax(axis=2))
-    return result_msk
-
-
-def net_eval():
-    args = parse_args()
-
-    # data list
-    with open(args.data_lst) as f:
-        img_lst = f.readlines()
-
-    # network
-    if args.model == 'DeepLabV3plus_s16':
-        network = DeepLabV3Plus('eval', args.num_classes, 16, args.freeze_bn)
-    elif args.model == 'DeepLabV3plus_s8':
-        network = DeepLabV3Plus('eval', args.num_classes, 8, args.freeze_bn)
-    else:
-        raise NotImplementedError('model [{:s}] not recognized'.format(args.model))
-
-    eval_net = BuildEvalNetwork(network)
-
-    # load model
-    param_dict = load_checkpoint(args.ckpt_path)
-    load_param_into_net(eval_net, param_dict)
-    eval_net.set_train(False)
-
-    # evaluate
-    hist = np.zeros((args.num_classes, args.num_classes))
-    batch_img_lst = []
-    batch_msk_lst = []
-    bi = 0
-    image_num = 0
-    for i, line in enumerate(img_lst):
-        img_path, msk_path = line.strip().split(' ')
-        img_path = os.path.join(args.data_root, img_path)
-        msk_path = os.path.join(args.data_root, msk_path)
-        img_ = cv2.imread(img_path)
-        msk_ = cv2.imread(msk_path, cv2.IMREAD_GRAYSCALE)
-        batch_img_lst.append(img_)
-        batch_msk_lst.append(msk_)
-        bi += 1
-        if bi == args.batch_size:
-            batch_res = eval_batch_scales(args, eval_net, batch_img_lst, scales=args.scales,
-                                          base_crop_size=args.crop_size, flip=args.flip)
-            for mi in range(args.batch_size):
-                hist += cal_hist(batch_msk_lst[mi].flatten(), batch_res[mi].flatten(), args.num_classes)
-
-            bi = 0
-            batch_img_lst = []
-            batch_msk_lst = []
-            print('processed {} images'.format(i+1))
-        image_num = i
-
-    if bi > 0:
-        batch_res = eval_batch_scales(args, eval_net, batch_img_lst, scales=args.scales,
-                                      base_crop_size=args.crop_size, flip=args.flip)
-        for mi in range(bi):
-            hist += cal_hist(batch_msk_lst[mi].flatten(), batch_res[mi].flatten(), args.num_classes)
-        print('processed {} images'.format(image_num + 1))
-
-    print(hist)
-    iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
-    print('per-class IoU', iu)
-    print('mean IoU', np.nanmean(iu))
-
-
-if __name__ == '__main__':
-    net_eval()
diff --git a/official/cv/deeplabv3plus/export.py b/official/cv/deeplabv3plus/export.py
deleted file mode 100644
index 90e5808d8d3d44c34fb288e88135a2fa624f8bd7..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/export.py
+++ /dev/null
@@ -1,27 +0,0 @@
-"""export AIR file."""
-import argparse
-import numpy as np
-from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
-from src.deeplab_v3plus import DeepLabV3Plus
-
-context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
-
-if __name__ == '__main__':
-    parser = argparse.ArgumentParser(description='checkpoint export')
-    parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of deeplabv3 (Default: None)')
-    parser.add_argument('--model', type=str, default='DeepLabV3plus_s8',
-                        choices=['DeepLabV3plus_s16', 'DeepLabV3plus_s8'],
-                        help='Select model structure (Default: DeepLabV3plus_s8)')
-    parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)')
-    args = parser.parse_args()
-
-    if args.model == 'DeepLabV3plus_s16':
-        network = DeepLabV3Plus('eval', args.num_classes, 16, True)
-    else:
-        network = DeepLabV3Plus('eval', args.num_classes, 8, True)
-    param_dict = load_checkpoint(args.checkpoint)
-
-    # load the parameter into net
-    load_param_into_net(network, param_dict)
-    input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32)
-    export(network, Tensor(input_data), file_name=args.model + '-300_11.air', file_format='MINDIR')
diff --git a/official/cv/deeplabv3plus/mindspore_hub_conf.py b/official/cv/deeplabv3plus/mindspore_hub_conf.py
deleted file mode 100644
index 6066effe5f83f4d83034cc92feff059a14a886a7..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/mindspore_hub_conf.py
+++ /dev/null
@@ -1,14 +0,0 @@
-"""hub config."""
-from src.deeplab_v3plus import DeepLabV3Plus
-
-
-def create_network(name, *args, **kwargs):
-    freeze_bn = True
-    num_classes = kwargs["num_classes"]
-    if name == 'DeepLabV3plus_s16':
-        DeepLabV3plus_s16_network = DeepLabV3Plus('eval', num_classes, 16, freeze_bn)
-        return DeepLabV3plus_s16_network
-    if name == 'DeepLabV3plus_s8':
-        DeepLabV3plus_s8_network = DeepLabV3Plus('eval', num_classes, 8, freeze_bn)
-        return DeepLabV3plus_s8_network
-    raise NotImplementedError(f"{name} is not implemented in the repo")
diff --git a/official/cv/deeplabv3plus/requirements.txt b/official/cv/deeplabv3plus/requirements.txt
deleted file mode 100644
index 374ade36324d50617133f2e153a9f4bb256aaf31..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/requirements.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-mindspore
-numpy
-Pillow
-python-opencv
diff --git a/official/cv/deeplabv3plus/scripts/get_dataset_mindrecord.sh b/official/cv/deeplabv3plus/scripts/get_dataset_mindrecord.sh
deleted file mode 100644
index a8e763f10595a18518bf24fefdf22afbe388079e..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/get_dataset_mindrecord.sh
+++ /dev/null
@@ -1,7 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=7
-python /PATH/TO/MODEL_ZOO_CODE/data/get_dataset_mindrecord.py  --data_root=/PATH/TO/DATA_ROOT  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --dst_path=/PATH/TO/MINDRECORED_NAME.mindrecord  \
-                    --num_shards=1  \
-                    --shuffle=True
\ No newline at end of file
diff --git a/official/cv/deeplabv3plus/scripts/run_alone_train.sh b/official/cv/deeplabv3plus/scripts/run_alone_train.sh
deleted file mode 100644
index 5c236df8826d85da9ebf6fd2fec8dc621178f842..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_alone_train.sh
+++ /dev/null
@@ -1,29 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=5
-export SLOG_PRINT_TO_STDOUT=0
-train_path=/PATH/TO/EXPERIMENTS_DIR
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-
-if [ -d ${train_path} ]; then
-  rm -rf ${train_path}
-fi
-mkdir -p ${train_path}
-mkdir ${train_path}/device${DEVICE_ID}
-mkdir ${train_path}/ckpt
-cd ${train_path}/device${DEVICE_ID} || exit
-
-python ${train_code_path}/train.py --data_file=/PATH/TO/MINDRECORD_NAME  \
-                    --train_dir=${train_path}/ckpt  \
-                    --train_epochs=200  \
-                    --batch_size=32  \
-                    --crop_size=513  \
-                    --base_lr=0.015  \
-                    --lr_type=cos  \
-                    --min_scale=0.5  \
-                    --max_scale=2.0  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s16  \
-                    --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                    --save_steps=1500  \
-                    --keep_checkpoint_max=200 >log 2>&1 &
\ No newline at end of file
diff --git a/official/cv/deeplabv3plus/scripts/run_distribute_train_s16_r1.sh b/official/cv/deeplabv3plus/scripts/run_distribute_train_s16_r1.sh
deleted file mode 100644
index c32f7eb5125a05d0608303099a58e47870dbac58..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_distribute_train_s16_r1.sh
+++ /dev/null
@@ -1,39 +0,0 @@
-#!/bin/bash
-ulimit -c unlimited
-train_path=/PATH/TO/EXPERIMENTS_DIR
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-export RANK_TABLE_FILE=${train_code_path}/src/tools/rank_table_8p.json
-export RANK_SIZE=8
-export RANK_START_ID=0
-
-if [ -d ${train_path} ]; then
-  rm -rf ${train_path}
-fi
-mkdir -p ${train_path}
-mkdir ${train_path}/ckpt
-
-for((i=0;i<=$RANK_SIZE-1;i++));
-do
-    export RANK_ID=${i}
-    export DEVICE_ID=$((i + RANK_START_ID))
-    echo 'start rank='${i}', device id='${DEVICE_ID}'...'
-    mkdir ${train_path}/device${DEVICE_ID}
-    cd ${train_path}/device${DEVICE_ID} || exit
-    python ${train_code_path}/train.py --train_dir=${train_path}/ckpt  \
-                                               --data_file=/PATH/TO/MINDRECORD_NAME  \
-                                               --train_epochs=300  \
-                                               --batch_size=32  \
-                                               --crop_size=513  \
-                                               --base_lr=0.08  \
-                                               --lr_type=cos  \
-                                               --min_scale=0.5  \
-                                               --max_scale=2.0  \
-                                               --ignore_label=255  \
-                                               --num_classes=21  \
-                                               --model=DeepLabV3plus_s16  \
-                                               --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                                               --is_distributed  \
-                                               --save_steps=410  \
-                                               --keep_checkpoint_max=200 >log 2>&1 &
-done
diff --git a/official/cv/deeplabv3plus/scripts/run_distribute_train_s8_r1.sh b/official/cv/deeplabv3plus/scripts/run_distribute_train_s8_r1.sh
deleted file mode 100644
index 4110cf0a6cec9891e49244ecacd749a9b0b63684..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_distribute_train_s8_r1.sh
+++ /dev/null
@@ -1,40 +0,0 @@
-#!/bin/bash
-ulimit -c unlimited
-train_path=/PATH/TO/EXPERIMENTS_DIR
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-export RANK_TABLE_FILE=${train_code_path}/src/tools/rank_table_8p.json
-export RANK_SIZE=8
-export RANK_START_ID=0
-
-if [ -d ${train_path} ]; then
-  rm -rf ${train_path}
-fi
-mkdir -p ${train_path}
-mkdir ${train_path}/ckpt
-
-for((i=0;i<=$RANK_SIZE-1;i++));
-do
-    export RANK_ID=${i}
-    export DEVICE_ID=$((i + RANK_START_ID))
-    echo 'start rank='${i}', device id='${DEVICE_ID}'...'
-    mkdir ${train_path}/device${DEVICE_ID}
-    cd ${train_path}/device${DEVICE_ID} || exit
-    python ${train_code_path}/train.py --train_dir=${train_path}/ckpt  \
-                                               --data_file=/PATH/TO/MINDRECORD_NAME  \
-                                               --train_epochs=800  \
-                                               --batch_size=16  \
-                                               --crop_size=513  \
-                                               --base_lr=0.02  \
-                                               --lr_type=cos  \
-                                               --min_scale=0.5  \
-                                               --max_scale=2.0  \
-                                               --ignore_label=255  \
-                                               --num_classes=21  \
-                                               --model=DeepLabV3plus_s8  \
-                                               --loss_scale=2048  \
-                                               --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                                               --is_distributed  \
-                                               --save_steps=820  \
-                                               --keep_checkpoint_max=200 >log 2>&1 &
-done
diff --git a/official/cv/deeplabv3plus/scripts/run_distribute_train_s8_r2.sh b/official/cv/deeplabv3plus/scripts/run_distribute_train_s8_r2.sh
deleted file mode 100644
index 3b73ad061fe94b856573f68223544b3b9a0eb5ca..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_distribute_train_s8_r2.sh
+++ /dev/null
@@ -1,40 +0,0 @@
-#!/bin/bash
-ulimit -c unlimited
-train_path=/PATH/TO/EXPERIMENTS_DIR
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-export RANK_TABLE_FILE=${train_code_path}/src/tools/rank_table_8p.json
-export RANK_SIZE=8
-export RANK_START_ID=0
-
-if [ -d ${train_path} ]; then
-  rm -rf ${train_path}
-fi
-mkdir -p ${train_path}
-mkdir ${train_path}/ckpt
-
-for((i=0;i<=$RANK_SIZE-1;i++));
-do
-    export RANK_ID=${i}
-    export DEVICE_ID=$((i + RANK_START_ID))
-    echo 'start rank='${i}', device id='${DEVICE_ID}'...'
-    mkdir ${train_path}/device${DEVICE_ID}
-    cd ${train_path}/device${DEVICE_ID} || exit
-    python ${train_code_path}/train.py --train_dir=${train_path}/ckpt  \
-                                               --data_file=/PATH/TO/MINDRECORD_NAME  \
-                                               --train_epochs=300  \
-                                               --batch_size=16  \
-                                               --crop_size=513  \
-                                               --base_lr=0.008  \
-                                               --lr_type=cos  \
-                                               --min_scale=0.5  \
-                                               --max_scale=2.0  \
-                                               --ignore_label=255  \
-                                               --num_classes=21  \
-                                               --model=DeepLabV3plus_s8  \
-                                               --loss_scale=2048  \
-                                               --ckpt_pre_trained=/PATH/TO/PRETRAIN_MODEL  \
-                                               --is_distributed  \
-                                               --save_steps=110  \
-                                               --keep_checkpoint_max=200 >log 2>&1 &
-done
diff --git a/official/cv/deeplabv3plus/scripts/run_eval_s16.sh b/official/cv/deeplabv3plus/scripts/run_eval_s16.sh
deleted file mode 100644
index 801c8581f13ec55f3e35a2bb0759905b7ed05f37..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_eval_s16.sh
+++ /dev/null
@@ -1,22 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=3
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-eval_path=/PATH/TO/EVAL
-
-if [ -d ${eval_path} ]; then
-  rm -rf ${eval_path}
-fi
-mkdir -p ${eval_path}
-
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=32  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s16  \
-                    --scales=1.0  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
-
diff --git a/official/cv/deeplabv3plus/scripts/run_eval_s16_multiscale.sh b/official/cv/deeplabv3plus/scripts/run_eval_s16_multiscale.sh
deleted file mode 100644
index 3279ea9bebefdaeb592e029a752cb9e7344710cf..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_eval_s16_multiscale.sh
+++ /dev/null
@@ -1,25 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=3
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-eval_path=/PATH/TO/EVAL
-
-if [ -d ${eval_path} ]; then
-  rm -rf ${eval_path}
-fi
-mkdir -p ${eval_path}
-
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=16  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s16  \
-                    --scales=0.5  \
-                    --scales=0.75  \
-                    --scales=1.0  \
-                    --scales=1.25  \
-                    --scales=1.75  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
\ No newline at end of file
diff --git a/official/cv/deeplabv3plus/scripts/run_eval_s16_multiscale_flip.sh b/official/cv/deeplabv3plus/scripts/run_eval_s16_multiscale_flip.sh
deleted file mode 100644
index 0634161e651b50db2c24f31c3d30de637810da0c..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_eval_s16_multiscale_flip.sh
+++ /dev/null
@@ -1,27 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=3
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-eval_path=/PATH/TO/EVAL
-
-if [ -d ${eval_path} ]; then
-  rm -rf ${eval_path}
-fi
-mkdir -p ${eval_path}
-
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=16  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s16  \
-                    --scales=0.5  \
-                    --scales=0.75  \
-                    --scales=1.0  \
-                    --scales=1.25  \
-                    --scales=1.75  \
-                    --flip  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
-
diff --git a/official/cv/deeplabv3plus/scripts/run_eval_s8.sh b/official/cv/deeplabv3plus/scripts/run_eval_s8.sh
deleted file mode 100644
index 4be342abb65a91f58f1d072e55c92e2ede131edf..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_eval_s8.sh
+++ /dev/null
@@ -1,22 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=3
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-eval_path=/PATH/TO/EVAL
-
-if [ -d ${eval_path} ]; then
-  rm -rf ${eval_path}
-fi
-mkdir -p ${eval_path}
-
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=16  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s8  \
-                    --scales=1.0  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
-
diff --git a/official/cv/deeplabv3plus/scripts/run_eval_s8_multiscale.sh b/official/cv/deeplabv3plus/scripts/run_eval_s8_multiscale.sh
deleted file mode 100644
index d3c73ead8908783ac21e2639903485f36b20044d..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_eval_s8_multiscale.sh
+++ /dev/null
@@ -1,26 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=3
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-eval_path=/PATH/TO/EVAL
-
-if [ -d ${eval_path} ]; then
-  rm -rf ${eval_path}
-fi
-mkdir -p ${eval_path}
-
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=16  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s8  \
-                    --scales=0.5  \
-                    --scales=0.75  \
-                    --scales=1.0  \
-                    --scales=1.25  \
-                    --scales=1.75  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
-
diff --git a/official/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_flip.sh b/official/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_flip.sh
deleted file mode 100644
index 741774f7711873dbf47576ae80dfc886b5297afc..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_flip.sh
+++ /dev/null
@@ -1,27 +0,0 @@
-#!/bin/bash
-export DEVICE_ID=3
-export SLOG_PRINT_TO_STDOUT=0
-train_code_path=/PATH/TO/MODEL_ZOO_CODE
-eval_path=/PATH/TO/EVAL
-
-if [ -d ${eval_path} ]; then
-  rm -rf ${eval_path}
-fi
-mkdir -p ${eval_path}
-
-python ${train_code_path}/eval.py --data_root=/PATH/TO/DATA  \
-                    --data_lst=/PATH/TO/DATA_lst.txt  \
-                    --batch_size=16  \
-                    --crop_size=513  \
-                    --ignore_label=255  \
-                    --num_classes=21  \
-                    --model=DeepLabV3plus_s8  \
-                    --scales=0.5  \
-                    --scales=0.75  \
-                    --scales=1.0  \
-                    --scales=1.25  \
-                    --scales=1.75  \
-                    --flip  \
-                    --freeze_bn  \
-                    --ckpt_path=/PATH/TO/PRETRAIN_MODEL >${eval_path}/eval_log 2>&1 &
-
diff --git a/official/cv/deeplabv3plus/src/dataset.py b/official/cv/deeplabv3plus/src/dataset.py
deleted file mode 100644
index da19f5bdb269b74e8a3b44ccaa49a70fa9ccc0eb..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/dataset.py
+++ /dev/null
@@ -1,80 +0,0 @@
-import numpy as np
-import cv2
-import mindspore.dataset as de
-
-cv2.setNumThreads(0)
-
-
-class SegDataset:
-    def __init__(self,
-                 image_mean,
-                 image_std,
-                 data_file='',
-                 batch_size=32,
-                 crop_size=512,
-                 max_scale=2.0,
-                 min_scale=0.5,
-                 ignore_label=255,
-                 num_classes=21,
-                 num_readers=2,
-                 num_parallel_calls=4,
-                 shard_id=None,
-                 shard_num=None):
-
-        self.data_file = data_file
-        self.batch_size = batch_size
-        self.crop_size = crop_size
-        self.image_mean = np.array(image_mean, dtype=np.float32)
-        self.image_std = np.array(image_std, dtype=np.float32)
-        self.max_scale = max_scale
-        self.min_scale = min_scale
-        self.ignore_label = ignore_label
-        self.num_classes = num_classes
-        self.num_readers = num_readers
-        self.num_parallel_calls = num_parallel_calls
-        self.shard_id = shard_id
-        self.shard_num = shard_num
-        assert max_scale > min_scale
-
-    def preprocess_(self, image, label):
-        # bgr image
-        image_out = cv2.imdecode(np.frombuffer(image, dtype=np.uint8), cv2.IMREAD_COLOR)
-        label_out = cv2.imdecode(np.frombuffer(label, dtype=np.uint8), cv2.IMREAD_GRAYSCALE)
-
-        sc = np.random.uniform(self.min_scale, self.max_scale)
-        new_h, new_w = int(sc * image_out.shape[0]), int(sc * image_out.shape[1])
-        image_out = cv2.resize(image_out, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
-        label_out = cv2.resize(label_out, (new_w, new_h), interpolation=cv2.INTER_NEAREST)
-
-        image_out = (image_out - self.image_mean) / self.image_std
-        h_, w_ = max(new_h, self.crop_size), max(new_w, self.crop_size)
-        pad_h, pad_w = h_ - new_h, w_ - new_w
-        if pad_h > 0 or pad_w > 0:
-            image_out = cv2.copyMakeBorder(image_out, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=0)
-            label_out = cv2.copyMakeBorder(label_out, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=self.ignore_label)
-        offset_h = np.random.randint(0, h_ - self.crop_size + 1)
-        offset_w = np.random.randint(0, w_ - self.crop_size + 1)
-        image_out = image_out[offset_h: offset_h + self.crop_size, offset_w: offset_w + self.crop_size, :]
-        label_out = label_out[offset_h: offset_h + self.crop_size, offset_w: offset_w + self.crop_size]
-
-        if np.random.uniform(0.0, 1.0) > 0.5:
-            image_out = image_out[:, ::-1, :]
-            label_out = label_out[:, ::-1]
-
-        image_out = image_out.transpose((2, 0, 1))
-        image_out = image_out.copy()
-        label_out = label_out.copy()
-        return image_out, label_out
-
-    def get_dataset(self, repeat=1):
-        data_set = de.MindDataset(self.data_file, columns_list=["data", "label"],
-                                  shuffle=True, num_parallel_workers=self.num_readers,
-                                  num_shards=self.shard_num, shard_id=self.shard_id)
-        transforms_list = self.preprocess_
-        data_set = data_set.map(operations=transforms_list, input_columns=["data", "label"],
-                                output_columns=["data", "label"],
-                                num_parallel_workers=self.num_parallel_calls)
-        data_set = data_set.shuffle(buffer_size=self.batch_size * 10)
-        data_set = data_set.batch(self.batch_size, drop_remainder=True)
-        data_set = data_set.repeat(repeat)
-        return data_set
diff --git a/official/cv/deeplabv3plus/src/deeplab_v3plus.py b/official/cv/deeplabv3plus/src/deeplab_v3plus.py
deleted file mode 100644
index 04f737f3982760cabb792f98a10ecb5a39a77254..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/deeplab_v3plus.py
+++ /dev/null
@@ -1,224 +0,0 @@
-import mindspore.nn as nn
-from mindspore.ops import operations as P
-
-
-def conv1x1(in_planes, out_planes, stride=1):
-    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, weight_init='xavier_uniform')
-
-
-def conv3x3(in_planes, out_planes, stride=1, dilation=1, padding=1):
-    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, pad_mode='pad', padding=padding,
-                     dilation=dilation, weight_init='xavier_uniform')
-
-
-class Resnet(nn.Cell):
-    def __init__(self, block, block_num, output_stride, use_batch_statistics=True):
-        super(Resnet, self).__init__()
-        self.inplanes = 64
-        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, pad_mode='pad', padding=3,
-                               weight_init='xavier_uniform')
-        self.bn1 = nn.BatchNorm2d(self.inplanes, use_batch_statistics=use_batch_statistics)
-        self.relu = nn.ReLU()
-        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
-        self.layer1 = self._make_layer(block, 64, block_num[0], use_batch_statistics=use_batch_statistics)
-        self.layer2 = self._make_layer(block, 128, block_num[1], stride=2, use_batch_statistics=use_batch_statistics)
-
-        if output_stride == 16:
-            self.layer3 = self._make_layer(block, 256, block_num[2], stride=2,
-                                           use_batch_statistics=use_batch_statistics)
-            self.layer4 = self._make_layer(block, 512, block_num[3], stride=1, base_dilation=2, grids=[1, 2, 4],
-                                           use_batch_statistics=use_batch_statistics)
-        elif output_stride == 8:
-            self.layer3 = self._make_layer(block, 256, block_num[2], stride=1, base_dilation=2,
-                                           use_batch_statistics=use_batch_statistics)
-            self.layer4 = self._make_layer(block, 512, block_num[3], stride=1, base_dilation=4, grids=[1, 2, 4],
-                                           use_batch_statistics=use_batch_statistics)
-
-    def _make_layer(self, block, planes, blocks, stride=1, base_dilation=1, grids=None, use_batch_statistics=True):
-        if stride != 1 or self.inplanes != planes * block.expansion:
-            downsample = nn.SequentialCell([
-                conv1x1(self.inplanes, planes * block.expansion, stride),
-                nn.BatchNorm2d(planes * block.expansion, use_batch_statistics=use_batch_statistics)
-            ])
-
-        if grids is None:
-            grids = [1] * blocks
-
-        layers = [
-            block(self.inplanes, planes, stride, downsample, dilation=base_dilation * grids[0],
-                  use_batch_statistics=use_batch_statistics)
-        ]
-        self.inplanes = planes * block.expansion
-        for i in range(1, blocks):
-            layers.append(
-                block(self.inplanes, planes, dilation=base_dilation * grids[i],
-                      use_batch_statistics=use_batch_statistics))
-
-        return nn.SequentialCell(layers)
-
-    def construct(self, x):
-        out = self.conv1(x)
-        out = self.bn1(out)
-        out = self.relu(out)
-
-        out = self.maxpool(out)
-
-        out = self.layer1(out)
-        low_level_feat = out
-        out = self.layer2(out)
-        out = self.layer3(out)
-        out = self.layer4(out)
-        return out, low_level_feat
-
-
-class Bottleneck(nn.Cell):
-    expansion = 4
-
-    def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, use_batch_statistics=True):
-        super(Bottleneck, self).__init__()
-        self.conv1 = conv1x1(inplanes, planes)
-        self.bn1 = nn.BatchNorm2d(planes, use_batch_statistics=use_batch_statistics)
-
-        self.conv2 = conv3x3(planes, planes, stride, dilation, dilation)
-        self.bn2 = nn.BatchNorm2d(planes, use_batch_statistics=use_batch_statistics)
-
-        self.conv3 = conv1x1(planes, planes * self.expansion)
-        self.bn3 = nn.BatchNorm2d(planes * self.expansion, use_batch_statistics=use_batch_statistics)
-
-        self.relu = nn.ReLU()
-        self.downsample = downsample
-
-
-
-    def construct(self, x):
-        identity = x
-
-        out = self.conv1(x)
-        out = self.bn1(out)
-        out = self.relu(out)
-
-        out = self.conv2(out)
-        out = self.bn2(out)
-        out = self.relu(out)
-
-        out = self.conv3(out)
-        out = self.bn3(out)
-
-        if self.downsample is not None:
-            identity = self.downsample(x)
-
-
-        out = out + identity
-        out = self.relu(out)
-        return out
-
-
-class ASPPConv(nn.Cell):
-    def __init__(self, in_channels, out_channels, atrous_rate=1, use_batch_statistics=True):
-        super(ASPPConv, self).__init__()
-        if atrous_rate == 1:
-            conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, has_bias=False, weight_init='xavier_uniform')
-        else:
-            conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, pad_mode='pad', padding=atrous_rate,
-                             dilation=atrous_rate, weight_init='xavier_uniform')
-        bn = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics)
-        relu = nn.ReLU()
-        self.aspp_conv = nn.SequentialCell([conv, bn, relu])
-
-    def construct(self, x):
-        out = self.aspp_conv(x)
-        return out
-
-
-class ASPPPooling(nn.Cell):
-    def __init__(self, in_channels, out_channels, use_batch_statistics=True):
-        super(ASPPPooling, self).__init__()
-        self.conv = nn.SequentialCell([
-            nn.Conv2d(in_channels, out_channels, kernel_size=1, weight_init='xavier_uniform'),
-            nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics),
-            nn.ReLU()
-        ])
-        self.shape = P.Shape()
-
-    def construct(self, x):
-        size = self.shape(x)
-        out = nn.AvgPool2d(size[2])(x)
-        out = self.conv(out)
-        out = P.ResizeNearestNeighbor((size[2], size[3]), True)(out)
-        return out
-
-
-class ASPP(nn.Cell):
-    def __init__(self, atrous_rates, phase='train', in_channels=2048, num_classes=21,
-                 use_batch_statistics=True):
-        super(ASPP, self).__init__()
-        self.phase = phase
-        out_channels = 256
-        self.aspp1 = ASPPConv(in_channels, out_channels, atrous_rates[0], use_batch_statistics=use_batch_statistics)
-        self.aspp2 = ASPPConv(in_channels, out_channels, atrous_rates[1], use_batch_statistics=use_batch_statistics)
-        self.aspp3 = ASPPConv(in_channels, out_channels, atrous_rates[2], use_batch_statistics=use_batch_statistics)
-        self.aspp4 = ASPPConv(in_channels, out_channels, atrous_rates[3], use_batch_statistics=use_batch_statistics)
-        self.aspp_pooling = ASPPPooling(in_channels, out_channels)
-        self.conv1 = nn.Conv2d(out_channels * (len(atrous_rates) + 1), out_channels, kernel_size=1,
-                               weight_init='xavier_uniform')
-        self.bn1 = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics)
-        self.relu = nn.ReLU()
-        self.concat = P.Concat(axis=1)
-        self.drop = nn.Dropout(0.3)
-
-    def construct(self, x):
-        x1 = self.aspp1(x)
-        x2 = self.aspp2(x)
-        x3 = self.aspp3(x)
-        x4 = self.aspp4(x)
-        x5 = self.aspp_pooling(x)
-
-        x = self.concat((x1, x2))
-        x = self.concat((x, x3))
-        x = self.concat((x, x4))
-        x = self.concat((x, x5))
-
-        x = self.conv1(x)
-        x = self.bn1(x)
-        x = self.relu(x)
-        if self.phase == 'train':
-            x = self.drop(x)
-        return x
-
-
-class DeepLabV3Plus(nn.Cell):
-    def __init__(self, phase='train', num_classes=21, output_stride=16, freeze_bn=False):
-        super(DeepLabV3Plus, self).__init__()
-        use_batch_statistics = not freeze_bn
-        self.resnet = Resnet(Bottleneck, [3, 4, 23, 3], output_stride=output_stride,
-                             use_batch_statistics=use_batch_statistics)
-        self.aspp = ASPP([1, 6, 12, 18], phase, 2048, num_classes,
-                         use_batch_statistics=use_batch_statistics)
-        self.shape = P.Shape()
-        self.conv2 = nn.Conv2d(256, 48, kernel_size=1, weight_init='xavier_uniform')
-        self.bn2 = nn.BatchNorm2d(48, use_batch_statistics=use_batch_statistics)
-        self.relu = nn.ReLU()
-        self.concat = P.Concat(axis=1)
-        self.last_conv = nn.SequentialCell([
-            conv3x3(304, 256, stride=1, dilation=1, padding=1),
-            nn.BatchNorm2d(256, use_batch_statistics=use_batch_statistics),
-            nn.ReLU(),
-            conv3x3(256, 256, stride=1, dilation=1, padding=1),
-            nn.BatchNorm2d(256, use_batch_statistics=use_batch_statistics),
-            nn.ReLU(),
-            conv1x1(256, num_classes, stride=1)
-        ])
-
-    def construct(self, x):
-        size = self.shape(x)
-        out, low_level_features = self.resnet(x)
-        size2 = self.shape(low_level_features)
-        out = self.aspp(out)
-        out = P.ResizeNearestNeighbor((size2[2], size2[3]), True)(out)
-        low_level_features = self.conv2(low_level_features)
-        low_level_features = self.bn2(low_level_features)
-        low_level_features = self.relu(low_level_features)
-        out = self.concat((out, low_level_features))
-        out = self.last_conv(out)
-        out = P.ResizeBilinear((size[2], size[3]), True)(out)
-        return out
diff --git a/official/cv/deeplabv3plus/src/learning_rates.py b/official/cv/deeplabv3plus/src/learning_rates.py
deleted file mode 100644
index b7a1ac3b49060e9c0b9bb8917d6099a934f3ab4f..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/learning_rates.py
+++ /dev/null
@@ -1,22 +0,0 @@
-import numpy as np
-
-
-def cosine_lr(base_lr, decay_steps, total_steps):
-    for i in range(total_steps):
-        step_ = min(i, decay_steps)
-        yield base_lr * 0.5 * (1 + np.cos(np.pi * step_ / decay_steps))
-
-
-def poly_lr(base_lr, decay_steps, total_steps, end_lr=0.0001, power=0.9):
-    for i in range(total_steps):
-        step_ = min(i, decay_steps)
-        yield (base_lr - end_lr) * ((1.0 - step_ / decay_steps) ** power) + end_lr
-
-
-def exponential_lr(base_lr, decay_steps, decay_rate, total_steps, staircase=False):
-    for i in range(total_steps):
-        if staircase:
-            power_ = i // decay_steps
-        else:
-            power_ = float(i) / decay_steps
-        yield base_lr * (decay_rate ** power_)
diff --git a/official/cv/deeplabv3plus/src/loss.py b/official/cv/deeplabv3plus/src/loss.py
deleted file mode 100644
index b6109084f696dc82ac66e2cffdae76e722339125..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/loss.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from mindspore import Tensor
-import mindspore.common.dtype as mstype
-import mindspore.nn as nn
-from mindspore.ops import operations as P
-
-
-class SoftmaxCrossEntropyLoss(nn.Cell):
-    def __init__(self, num_cls=21, ignore_label=255):
-        super(SoftmaxCrossEntropyLoss, self).__init__()
-        self.one_hot = P.OneHot(axis=-1)
-        self.on_value = Tensor(1.0, mstype.float32)
-        self.off_value = Tensor(0.0, mstype.float32)
-        self.cast = P.Cast()
-        self.ce = nn.SoftmaxCrossEntropyWithLogits()
-        self.not_equal = P.NotEqual()
-        self.num_cls = num_cls
-        self.ignore_label = ignore_label
-        self.mul = P.Mul()
-        self.sum = P.ReduceSum(False)
-        self.div = P.RealDiv()
-        self.transpose = P.Transpose()
-        self.reshape = P.Reshape()
-
-    def construct(self, logits, labels):
-        labels_int = self.cast(labels, mstype.int32)
-        labels_int = self.reshape(labels_int, (-1,))
-        logits_ = self.transpose(logits, (0, 2, 3, 1))
-        logits_ = self.reshape(logits_, (-1, self.num_cls))
-        weights = self.not_equal(labels_int, self.ignore_label)
-        weights = self.cast(weights, mstype.float32)
-        one_hot_labels = self.one_hot(labels_int, self.num_cls, self.on_value, self.off_value)
-        loss = self.ce(logits_, one_hot_labels)
-        loss = self.mul(weights, loss)
-        loss = self.div(self.sum(loss), self.sum(weights))
-        return loss
diff --git a/official/cv/deeplabv3plus/src/tools/get_dataset_list.py b/official/cv/deeplabv3plus/src/tools/get_dataset_list.py
deleted file mode 100644
index 15900af77932d7580b2b6a8cf06088f92e7efe40..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/tools/get_dataset_list.py
+++ /dev/null
@@ -1,142 +0,0 @@
-import argparse
-import os
-
-import numpy as np
-import scipy.io
-from PIL import Image
-
-parser = argparse.ArgumentParser('dataset list generator')
-parser.add_argument("--data_dir", type=str, default='./', help='where dataset stored.')
-
-args, _ = parser.parse_known_args()
-
-data_dir = args.data_dir
-print("Data dir is:", data_dir)
-
-#
-VOC_IMG_DIR = os.path.join(data_dir, 'VOCdevkit/VOC2012/JPEGImages')
-VOC_ANNO_DIR = os.path.join(data_dir, 'VOCdevkit/VOC2012/SegmentationClass')
-VOC_ANNO_GRAY_DIR = os.path.join(data_dir, 'VOCdevkit/VOC2012/SegmentationClassGray')
-VOC_TRAIN_TXT = os.path.join(data_dir, 'VOCdevkit/VOC2012/ImageSets/Segmentation/train.txt')
-VOC_VAL_TXT = os.path.join(data_dir, 'VOCdevkit/VOC2012/ImageSets/Segmentation/val.txt')
-
-SBD_ANNO_DIR = os.path.join(data_dir, 'benchmark_RELEASE/dataset/cls')
-SBD_IMG_DIR = os.path.join(data_dir, 'benchmark_RELEASE/dataset/img')
-SBD_ANNO_PNG_DIR = os.path.join(data_dir, 'benchmark_RELEASE/dataset/cls_png')
-SBD_ANNO_GRAY_DIR = os.path.join(data_dir, 'benchmark_RELEASE/dataset/cls_png_gray')
-SBD_TRAIN_TXT = os.path.join(data_dir, 'benchmark_RELEASE/dataset/train.txt')
-SBD_VAL_TXT = os.path.join(data_dir, 'benchmark_RELEASE/dataset/val.txt')
-
-VOC_TRAIN_LST_TXT = os.path.join(data_dir, 'voc_train_lst.txt')
-VOC_VAL_LST_TXT = os.path.join(data_dir, 'voc_val_lst.txt')
-VOC_AUG_TRAIN_LST_TXT = os.path.join(data_dir, 'vocaug_train_lst.txt')
-
-
-def __get_data_list(data_list_file):
-    with open(data_list_file, mode='r') as f:
-        return f.readlines()
-
-
-def conv_voc_colorpng_to_graypng():
-    if not os.path.exists(VOC_ANNO_GRAY_DIR):
-        os.makedirs(VOC_ANNO_GRAY_DIR)
-
-    for ann in os.listdir(VOC_ANNO_DIR):
-        ann_im = Image.open(os.path.join(VOC_ANNO_DIR, ann))
-        ann_im = Image.fromarray(np.array(ann_im))
-        ann_im.save(os.path.join(VOC_ANNO_GRAY_DIR, ann))
-
-
-def __gen_palette(cls_nums=256):
-    palette = np.zeros((cls_nums, 3), dtype=np.uint8)
-    for i in range(cls_nums):
-        lbl = i
-        j = 0
-        while lbl:
-            palette[i, 0] |= (((lbl >> 0) & 1) << (7 - j))
-            palette[i, 1] |= (((lbl >> 1) & 1) << (7 - j))
-            palette[i, 2] |= (((lbl >> 2) & 1) << (7 - j))
-            lbl >>= 3
-            j += 1
-    return palette.flatten()
-
-
-def conv_sbd_mat_to_png():
-    if not os.path.exists(SBD_ANNO_PNG_DIR):
-        os.makedirs(SBD_ANNO_PNG_DIR)
-    if not os.path.exists(SBD_ANNO_GRAY_DIR):
-        os.makedirs(SBD_ANNO_GRAY_DIR)
-
-    palette = __gen_palette()
-    for an in os.listdir(SBD_ANNO_DIR):
-        img_id = an[:-4]
-        mat = scipy.io.loadmat(os.path.join(SBD_ANNO_DIR, an))
-        anno = mat['GTcls'][0]['Segmentation'][0].astype(np.uint8)
-        anno_png = Image.fromarray(anno)
-        # save to gray png
-        anno_png.save(os.path.join(SBD_ANNO_GRAY_DIR, img_id + '.png'))
-        # save to color png use palette
-        anno_png.putpalette(palette)
-        anno_png.save(os.path.join(SBD_ANNO_PNG_DIR, img_id + '.png'))
-
-
-def create_voc_train_lst_txt():
-    voc_train_data_lst = __get_data_list(VOC_TRAIN_TXT)
-    with open(VOC_TRAIN_LST_TXT, mode='w') as f:
-        for id_ in voc_train_data_lst:
-            id_ = id_.strip()
-            img_ = os.path.join(VOC_IMG_DIR, id_ + '.jpg').replace('./', '')
-            anno_ = os.path.join(VOC_ANNO_GRAY_DIR, id_ + '.png').replace('./', '')
-            f.write(img_ + ' ' + anno_ + '\n')
-
-
-def create_voc_val_lst_txt():
-    voc_val_data_lst = __get_data_list(VOC_VAL_TXT)
-    with open(VOC_VAL_LST_TXT, mode='w') as f:
-        for id_ in voc_val_data_lst:
-            id_ = id_.strip()
-            img_ = os.path.join(VOC_IMG_DIR, id_ + '.jpg').replace('./', '')
-            anno_ = os.path.join(VOC_ANNO_GRAY_DIR, id_ + '.png').replace('./', '')
-            f.write(img_ + ' ' + anno_ + '\n')
-
-
-def create_voc_train_aug_lst_txt():
-    voc_train_data_lst = __get_data_list(VOC_TRAIN_TXT)
-    voc_val_data_lst = __get_data_list(VOC_VAL_TXT)
-
-    sbd_train_data_lst = __get_data_list(SBD_TRAIN_TXT)
-    sbd_val_data_lst = __get_data_list(SBD_VAL_TXT)
-
-    with open(VOC_AUG_TRAIN_LST_TXT, mode='w') as f:
-        for id_ in sbd_train_data_lst + sbd_val_data_lst:
-            if id_ in voc_train_data_lst + voc_val_data_lst:
-                continue
-            id_ = id_.strip()
-            img_ = os.path.join(SBD_IMG_DIR, id_ + '.jpg').replace('./', '')
-            anno_ = os.path.join(SBD_ANNO_GRAY_DIR, id_ + '.png').replace('./', '')
-            f.write(img_ + ' ' + anno_ + '\n')
-
-        for id_ in voc_train_data_lst:
-            id_ = id_.strip()
-            img_ = os.path.join(VOC_IMG_DIR, id_ + '.jpg').replace('./', '')
-            anno_ = os.path.join(VOC_ANNO_GRAY_DIR, id_ + '.png').replace('./', '')
-            f.write(img_ + ' ' + anno_ + '\n')
-
-
-if __name__ == '__main__':
-    print('converting voc color png to gray png ...')
-    conv_voc_colorpng_to_graypng()
-    print('converting done.')
-
-    create_voc_train_lst_txt()
-    print('generating voc train list success.')
-
-    create_voc_val_lst_txt()
-    print('generating voc val list success.')
-
-    print('converting sbd annotations to png ...')
-    conv_sbd_mat_to_png()
-    print('converting done')
-
-    create_voc_train_aug_lst_txt()
-    print('generating voc train aug list success.')
diff --git a/official/cv/deeplabv3plus/src/tools/get_dataset_mindrecord.py b/official/cv/deeplabv3plus/src/tools/get_dataset_mindrecord.py
deleted file mode 100644
index defb4e342527c5d0826d7de06667027333da1246..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/tools/get_dataset_mindrecord.py
+++ /dev/null
@@ -1,57 +0,0 @@
-import os
-import argparse
-import numpy as np
-from mindspore.mindrecord import FileWriter
-
-
-seg_schema = {"file_name": {"type": "string"}, "label": {"type": "bytes"}, "data": {"type": "bytes"}}
-
-
-def parse_args():
-    parser = argparse.ArgumentParser('mindrecord')
-
-    parser.add_argument('--data_root', type=str, default='', help='root path of data')
-    parser.add_argument('--data_lst', type=str, default='', help='list of data')
-    parser.add_argument('--dst_path', type=str, default='', help='save path of mindrecords')
-    parser.add_argument('--num_shards', type=int, default=1, help='number of shards')
-    parser.add_argument('--shuffle', type=bool, default=True, help='shuffle or not')
-
-    parser_args, _ = parser.parse_known_args()
-    return parser_args
-
-
-if __name__ == '__main__':
-    args = parse_args()
-
-    data = []
-    with open(args.data_lst) as f:
-        lines = f.readlines()
-    if args.shuffle:
-        np.random.shuffle(lines)
-
-    dst_dir = '/'.join(args.dst_path.split('/')[:-1])
-    if not os.path.exists(dst_dir):
-        os.makedirs(dst_dir)
-
-    print('number of samples:', len(lines))
-    writer = FileWriter(file_name=args.dst_path, shard_num=args.num_shards)
-    writer.add_schema(seg_schema, "seg_schema")
-    cnt = 0
-    for l in lines:
-        img_path, label_path = l.strip().split(' ')
-        sample_ = {"file_name": img_path.split('/')[-1]}
-        with open(os.path.join(args.data_root, img_path), 'rb') as f:
-            sample_['data'] = f.read()
-        with open(os.path.join(args.data_root, label_path), 'rb') as f:
-            sample_['label'] = f.read()
-        data.append(sample_)
-        cnt += 1
-        if cnt % 1000 == 0:
-            writer.write_raw_data(data)
-            print('number of samples written:', cnt)
-            data = []
-
-    if data:
-        writer.write_raw_data(data)
-    writer.commit()
-    print('number of samples written:', cnt)
diff --git a/official/cv/deeplabv3plus/src/tools/get_multicards_json.py b/official/cv/deeplabv3plus/src/tools/get_multicards_json.py
deleted file mode 100644
index a19ae2a572a0fb0cf6d6fe0153a39bf0a4f98fb0..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/tools/get_multicards_json.py
+++ /dev/null
@@ -1,51 +0,0 @@
-import os
-import sys
-
-
-def get_multicards_json(server_id):
-    hccn_configs = open('/etc/hccn.conf', 'r').readlines()
-    device_ips = {}
-    for hccn_item in hccn_configs:
-        hccn_item = hccn_item.strip()
-        if hccn_item.startswith('address_'):
-            device_id, device_ip = hccn_item.split('=')
-            device_id = device_id.split('_')[1]
-            device_ips[device_id] = device_ip
-            print('device_id:{}, device_ip:{}'.format(device_id, device_ip))
-    hccn_table = {'board_id': '0x0000', 'chip_info': '910', 'deploy_mode': 'lab', 'group_count': '1', 'group_list': []}
-    instance_list = []
-    usable_dev = ''
-    for instance_id in range(8):
-        instance = {'devices': []}
-        device_id = str(instance_id)
-        device_ip = device_ips[device_id]
-        usable_dev += str(device_id)
-        instance['devices'].append({
-            'device_id': device_id,
-            'device_ip': device_ip,
-        })
-        instance['rank_id'] = str(instance_id)
-        instance['server_id'] = server_id
-        instance_list.append(instance)
-    hccn_table['group_list'].append({
-        'device_num': '8',
-        'server_num': '1',
-        'group_name': '',
-        'instance_count': '8',
-        'instance_list': instance_list,
-    })
-    hccn_table['para_plane_nic_location'] = 'device'
-    hccn_table['para_plane_nic_name'] = []
-    for instance_id in range(8):
-        hccn_table['para_plane_nic_name'].append('eth{}'.format(instance_id))
-    hccn_table['para_plane_nic_num'] = '8'
-    hccn_table['status'] = 'completed'
-    import json
-    table_fn = os.path.join(os.getcwd(), 'rank_table_8p.json')
-    print(table_fn)
-    with open(table_fn, 'w') as table_fp:
-        json.dump(hccn_table, table_fp, indent=4)
-
-
-host_server_id = sys.argv[1]
-get_multicards_json(host_server_id)
diff --git a/official/cv/deeplabv3plus/src/tools/get_pretrained_model.py b/official/cv/deeplabv3plus/src/tools/get_pretrained_model.py
deleted file mode 100644
index 3d767aba5d551664a52311197c05753a8cae9850..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/src/tools/get_pretrained_model.py
+++ /dev/null
@@ -1,31 +0,0 @@
-import torch
-from mindspore import Tensor, save_checkpoint
-
-
-def torch2ms(pth_path, ckpt_path):
-    pretrained_dict = torch.load(pth_path)
-    print('--------------------pretrained keys------------------------')
-    for k in pretrained_dict:
-        print(k)
-
-    print('---------------------torch2ms keys-----------------------')
-    new_params = []
-    for k, v in pretrained_dict.items():
-        if 'fc' in k:
-            continue
-        if 'bn' in k or 'downsample.1' in k:
-            k = k.replace('running_mean', 'moving_mean')
-            k = k.replace('running_var', 'moving_variance')
-            k = k.replace('weight', 'gamma')
-            k = k.replace('bias', 'beta')
-        k = 'network.resnet.' + k
-        print(k)
-        param_dict = {'name': k, 'data': Tensor(v.detach().numpy())}
-        new_params.append(param_dict)
-    save_checkpoint(new_params, ckpt_path)
-
-
-if __name__ == '__main__':
-    pth = "./resnet101-5d3b4d8f.pth"
-    ckpt = "./resnet.ckpt"
-    torch2ms(pth, ckpt)
diff --git a/official/cv/deeplabv3plus/train.py b/official/cv/deeplabv3plus/train.py
deleted file mode 100644
index 00828998bb3a673fb865da91cae1605d27c8234e..0000000000000000000000000000000000000000
--- a/official/cv/deeplabv3plus/train.py
+++ /dev/null
@@ -1,197 +0,0 @@
-import os
-import argparse
-import ast
-from mindspore import context
-from mindspore.train.model import Model
-from mindspore.context import ParallelMode
-import mindspore.nn as nn
-from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
-from mindspore.train.serialization import load_checkpoint, load_param_into_net
-from mindspore.communication.management import init, get_rank, get_group_size
-from mindspore.train.callback import LossMonitor, TimeMonitor
-from mindspore.train.loss_scale_manager import FixedLossScaleManager
-from mindspore.common import set_seed
-from src import dataset as data_generator
-from src import loss, learning_rates
-from src.deeplab_v3plus import DeepLabV3Plus
-
-set_seed(1)
-
-
-class BuildTrainNetwork(nn.Cell):
-    def __init__(self, network, criterion):
-        super(BuildTrainNetwork, self).__init__()
-        self.network = network
-        self.criterion = criterion
-
-    def construct(self, input_data, label):
-        output = self.network(input_data)
-        net_loss = self.criterion(output, label)
-        return net_loss
-
-
-def parse_args():
-    parser = argparse.ArgumentParser('MindSpore DeepLabV3+ training')
-    # Ascend or CPU
-    parser.add_argument('--train_dir', type=str, default='', help='where training log and CKPTs saved')
-
-    # dataset
-    parser.add_argument('--data_file', type=str, default='', help='path and Name of one MindRecord file')
-    parser.add_argument('--batch_size', type=int, default=32, help='batch size')
-    parser.add_argument('--crop_size', type=int, default=513, help='crop size')
-    parser.add_argument('--image_mean', type=list, default=[103.53, 116.28, 123.675], help='image mean')
-    parser.add_argument('--image_std', type=list, default=[57.375, 57.120, 58.395], help='image std')
-    parser.add_argument('--min_scale', type=float, default=0.5, help='minimum scale of data argumentation')
-    parser.add_argument('--max_scale', type=float, default=2.0, help='maximum scale of data argumentation')
-    parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
-    parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
-
-    # optimizer
-    parser.add_argument('--train_epochs', type=int, default=300, help='epoch')
-    parser.add_argument('--lr_type', type=str, default='cos', help='type of learning rate')
-    parser.add_argument('--base_lr', type=float, default=0.08, help='base learning rate')
-    parser.add_argument('--lr_decay_step', type=int, default=40000, help='learning rate decay step')
-    parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='learning rate decay rate')
-    parser.add_argument('--loss_scale', type=float, default=3072.0, help='loss scale')
-
-    # model
-    parser.add_argument('--model', type=str, default='DeepLabV3plus_s16', help='select model')
-    parser.add_argument('--freeze_bn', action='store_true', help='freeze bn')
-    parser.add_argument('--ckpt_pre_trained', type=str, default='', help='PreTrained model')
-
-    # train
-    parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'CPU'],
-                        help='device where the code will be implemented. (Default: Ascend)')
-    parser.add_argument('--is_distributed', action='store_true', help='distributed training')
-    parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
-    parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
-    parser.add_argument('--save_steps', type=int, default=110, help='steps interval for saving')
-    parser.add_argument('--keep_checkpoint_max', type=int, default=200, help='max checkpoint for saving')
-
-    # ModelArts
-    parser.add_argument('--modelArts_mode', type=ast.literal_eval, default=False,
-                        help='train on modelarts or not, default is False')
-    parser.add_argument('--train_url', type=str, default='', help='where training log and CKPTs saved')
-    parser.add_argument('--data_url', type=str, default='', help='the directory path of saved file')
-    parser.add_argument('--dataset_filename', type=str, default='', help='Name of the MindRecord file')
-    parser.add_argument('--pretrainedmodel_filename', type=str, default='', help='Name of the pretraining model file')
-
-    args, _ = parser.parse_known_args()
-    return args
-
-
-def train():
-    args = parse_args()
-    if args.device_target == "CPU":
-        context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="CPU")
-    else:
-        context.set_context(mode=context.GRAPH_MODE, save_graphs=False,
-                            device_target="Ascend", device_id=int(os.getenv('DEVICE_ID')))
-    # init multicards training
-    if args.modelArts_mode:
-        import moxing as mox
-        local_data_url = '/cache/data'
-        local_train_url = '/cache/ckpt'
-        device_id = int(os.getenv('DEVICE_ID'))
-        device_num = int(os.getenv('RANK_SIZE'))
-        if device_num > 1:
-            init()
-            args.rank = get_rank()
-            args.group_size = get_group_size()
-            parallel_mode = ParallelMode.DATA_PARALLEL
-            context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True,
-                                              device_num=args.group_size)
-            local_data_url = os.path.join(local_data_url, str(device_id))
-        # download dataset from obs to cache
-        mox.file.copy_parallel(src_url=args.data_url, dst_url=local_data_url)
-        data_file = local_data_url + '/' + args.dataset_filename
-        ckpt_file = local_data_url + '/' + args.pretrainedmodel_filename
-        train_dir = local_train_url
-    else:
-        if args.is_distributed:
-            init()
-            args.rank = get_rank()
-            args.group_size = get_group_size()
-
-            parallel_mode = ParallelMode.DATA_PARALLEL
-            context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True,
-                                              device_num=args.group_size)
-        data_file = args.data_file
-        ckpt_file = args.ckpt_pre_trained
-        train_dir = args.train_dir
-
-    # dataset
-    dataset = data_generator.SegDataset(image_mean=args.image_mean,
-                                        image_std=args.image_std,
-                                        data_file=data_file,
-                                        batch_size=args.batch_size,
-                                        crop_size=args.crop_size,
-                                        max_scale=args.max_scale,
-                                        min_scale=args.min_scale,
-                                        ignore_label=args.ignore_label,
-                                        num_classes=args.num_classes,
-                                        num_readers=2,
-                                        num_parallel_calls=4,
-                                        shard_id=args.rank,
-                                        shard_num=args.group_size)
-    dataset = dataset.get_dataset(repeat=1)
-
-    # network
-    if args.model == 'DeepLabV3plus_s16':
-        network = DeepLabV3Plus('train', args.num_classes, 16, args.freeze_bn)
-    elif args.model == 'DeepLabV3plus_s8':
-        network = DeepLabV3Plus('train', args.num_classes, 8, args.freeze_bn)
-    else:
-        raise NotImplementedError('model [{:s}] not recognized'.format(args.model))
-
-    # loss
-    loss_ = loss.SoftmaxCrossEntropyLoss(args.num_classes, args.ignore_label)
-    loss_.add_flags_recursive(fp32=True)
-    train_net = BuildTrainNetwork(network, loss_)
-
-    # load pretrained model
-    if args.ckpt_pre_trained or args.pretrainedmodel_filename:
-        param_dict = load_checkpoint(ckpt_file)
-        load_param_into_net(train_net, param_dict)
-
-    # optimizer
-    iters_per_epoch = dataset.get_dataset_size()
-    total_train_steps = iters_per_epoch * args.train_epochs
-    if args.lr_type == 'cos':
-        lr_iter = learning_rates.cosine_lr(args.base_lr, total_train_steps, total_train_steps)
-    elif args.lr_type == 'poly':
-        lr_iter = learning_rates.poly_lr(args.base_lr, total_train_steps, total_train_steps, end_lr=0.0, power=0.9)
-    elif args.lr_type == 'exp':
-        lr_iter = learning_rates.exponential_lr(args.base_lr, args.lr_decay_step, args.lr_decay_rate,
-                                                total_train_steps, staircase=True)
-    else:
-        raise ValueError('unknown learning rate type')
-    opt = nn.Momentum(params=train_net.trainable_params(), learning_rate=lr_iter, momentum=0.9, weight_decay=0.0001,
-                      loss_scale=args.loss_scale)
-
-    # loss scale
-    manager_loss_scale = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
-    amp_level = "O0" if args.device_target == "CPU" else "O3"
-    model = Model(train_net, optimizer=opt, amp_level=amp_level, loss_scale_manager=manager_loss_scale)
-
-    # callback for saving ckpts
-    time_cb = TimeMonitor(data_size=iters_per_epoch)
-    loss_cb = LossMonitor()
-    cbs = [time_cb, loss_cb]
-
-    if args.rank == 0:
-        config_ck = CheckpointConfig(save_checkpoint_steps=args.save_steps,
-                                     keep_checkpoint_max=args.keep_checkpoint_max)
-        ckpoint_cb = ModelCheckpoint(prefix=args.model, directory=train_dir, config=config_ck)
-        cbs.append(ckpoint_cb)
-
-    model.train(args.train_epochs, dataset, callbacks=cbs)
-
-    if args.modelArts_mode:
-        # copy train result from cache to obs
-        if args.rank == 0:
-            mox.file.copy_parallel(src_url=local_train_url, dst_url=args.train_url)
-
-
-if __name__ == '__main__':
-    train()