diff --git a/official/cv/dpn/README.md b/official/cv/dpn/README.md index 655aaf47dfb43af07a6a77a7a131b8e2fc999d71..f1ece0a32454618cfb44b70351dd7a6d1e3964d3 100644 --- a/official/cv/dpn/README.md +++ b/official/cv/dpn/README.md @@ -318,10 +318,10 @@ DPN evaluate success! ### [Export MindIR](#contents) ```shell -python export.py --config_path [CONFIG_PATH] --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] +python export.py --config_path [CONFIG_PATH] --checkpoint_path [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT] ``` -The ckpt_file parameter is required, +The `checkpoint_path` parameter is required, `FILE_FORMAT` should be in ["AIR", "MINDIR"] - Export MindIR on Modelarts @@ -356,7 +356,7 @@ bash run_infer_310.sh [MINDIR_PATH] [DATASET_PATH] [DEVICE_ID] ``` - `MINDIR_PATH` specifies path of used "MINDIR" OR "AIR" model. -- `DATASET_PATH` specifies path of cifar10 datasets +- `DATASET_PATH` specifies path of imagenet2012 datasets - `DEVICE_ID` is optional, default value is 0. ### [Result](#contents) diff --git a/official/cv/faster_rcnn/train.py b/official/cv/faster_rcnn/train.py index ce2ef9def96bd00641ccf88680b754c4ba933620..c810397c8c569c687e62607388e73f6971614f5a 100644 --- a/official/cv/faster_rcnn/train.py +++ b/official/cv/faster_rcnn/train.py @@ -202,7 +202,7 @@ def train_fasterrcnn(): cb += [eval_cb] model = Model(net) - model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=False) + model.train(config.epoch_size, dataset, callbacks=cb) if __name__ == '__main__': diff --git a/research/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_gpu.sh b/research/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_gpu.sh index a0688ff39eb99cc65b75f5ab607a12aeaaf007ec..8fd2cff5b730f9d61216ead66ff0c19ce253a625 100644 --- a/research/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_gpu.sh +++ b/research/cv/deeplabv3plus/scripts/run_eval_s8_multiscale_gpu.sh @@ -42,7 +42,7 @@ cd ${eval_path} || exit python ./eval.py --data_root=$DATA_ROOT \ --data_lst=$DATA_LST \ - --batch_size=16 \ + --batch_size=8 \ --crop_size=513 \ --ignore_label=255 \ --num_classes=21 \