diff --git a/.jenkins/check/config/filter_pylint.txt b/.jenkins/check/config/filter_pylint.txt index 0be60f38a67d76e2bcd6217e64e1b5bc6b80c2ba..5c609f01b4fdde746d27d28e9d70f061673e38ae 100644 --- a/.jenkins/check/config/filter_pylint.txt +++ b/.jenkins/check/config/filter_pylint.txt @@ -9,3 +9,6 @@ "models/official/cv" "missing-docstring" "models/official/cv" "c-extension-no-member" "models/official/nlp/bert_thor/src/bert_model.py" "redefined-outer-name" + +# research +"models/research/cvtmodel" "missing-docstring" \ No newline at end of file diff --git a/.jenkins/check/config/whitelizard.txt b/.jenkins/check/config/whitelizard.txt index cc67c0413ece3e1b81b894af5f3d1f2e5d3b99c2..11170800b5b7c565d37f8b7fa68a9b87ada9fd41 100644 --- a/.jenkins/check/config/whitelizard.txt +++ b/.jenkins/check/config/whitelizard.txt @@ -5,3 +5,20 @@ # models/official/recommend/wide_and_deep/src/wide_and_deep.py:__init__ models/official/recommend/wide_and_deep_multitable/src/wide_and_deep.py:__init__ +models/research/cvtmodel/wide_resnet/src/wide_resnet101_2.py:__init__ +models/research/cvtmodel/resnest/src/resnest200.py:__init__ +models/research/cvtmodel/resnest/src/resnest200.py:construct +models/research/cvtmodel/resnest/src/resnest101.py:__init__ +models/research/cvtmodel/resnest/src/resnest101.py:construct +models/research/cvtmodel/resnest/src/resnest50.py:__init__ +models/research/cvtmodel/resnest/src/resnest50.py:construct +models/research/cvtmodel/resnest/src/resnest269.py:__init__ +models/research/cvtmodel/resnest/src/resnest269.py:construct +models/research/cvtmodel/densenet/src/densenet169.py:__init__ +models/research/cvtmodel/densenet/src/densenet169.py:construct +models/research/cvtmodel/densenet/src/densenet201.py:__init__ +models/research/cvtmodel/densenet/src/densenet201.py:construct +models/research/cvtmodel/densenet/src/densenet121.py:__init__ +models/research/cvtmodel/densenet/src/densenet121.py:construct +models/research/cvtmodel/densenet/src/densenet161.py:__init__ +models/research/cvtmodel/densenet/src/densenet161.py:construct diff --git a/research/cvtmodel/README_CN.md b/research/cvtmodel/README_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..9dc845ee94fc04f9e95a37e13f506104f9b262ae --- /dev/null +++ b/research/cvtmodel/README_CN.md @@ -0,0 +1,36 @@ +# Cvtmodel说明与要求 + +## Cvtmodel介绍 + +Cvtmodel文件夹中包含的模型,均是通过Mindconverter直接转换Pytorch所提供的pth模型,并实现了对该网络的Ascend 310推理。 + +## Cvtmodel使用流程 + +### 模型下载 + +以densenet系列网络为例, 首先需要在pytorch提供网页上找到模型的下载方式,按照指南将pth模型文件下载并转化为onnx模型文件。(参考https://pytorch.org/hub/pytorch_vision_densenet/) + +### 模型转换 + +在成功获得onnx文件以后,使用Mindconverter对onnx进行转化,示例如下。 + +'''shell +export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp +mindconverter --model_file ./onnx/densenet-121.onnx --shape 1,3,224,224 --input_nodes images --output_nodes output --output ./ +''' + +### 模型推理 + +Mindconverter转换出ckpt文件后,再使用export.py脚本导出MINDIR文件,根据模型文件夹内readme所写的指令进行Ascend 310推理即可。 + +## 环境要求 + +- 硬件(Ascend/GPU) +- 准备Ascend或GPU处理器搭建硬件环境。 +- 框架 +- [MindSpore](https://www.mindspore.cn/install) +- [MindInsight] (https://www.mindspore.cn/mindinsight/docs/zh-CN/master/mindinsight_install.html) +- 如需查看详情,请参见如下资源: +- [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html) +- [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html) +- [MindConverter教程] (https://www.mindspore.cn/mindinsight/docs/zh-CN/master/migrate_3rd_scripts_mindconverter.html) \ No newline at end of file diff --git a/research/cvtmodel/densenet/README_CN.md b/research/cvtmodel/densenet/README_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..9e1e57a7eb1a18b558ea767267942e42acc38d1b --- /dev/null +++ b/research/cvtmodel/densenet/README_CN.md @@ -0,0 +1,126 @@ +# 目录 + +<!-- TOC --> + +- [目录](#目录) +- [DenseNet描述](#densenet描述) +- [模型架构](#模型架构) +- [数据集](#数据集) +- [环境要求](#环境要求) +- [脚本说明](#脚本说明) + - [脚本及样例代码](#脚本及样例代码) + - [导出过程](#导出过程) + - [导出](#导出) + - [推理过程](#推理过程) + - [推理](#推理) +- [ModelZoo主页](#modelzoo主页) + +<!-- /TOC --> + +# DenseNet描述 + +DenseNet是一个基于卷积的神经网络,用于图像分类。有关该模型的描述,可查阅[此论文](https://arxiv.org/abs/1608.06993)。 +本仓库中是基于提供的模型文件,使用MindConverter工具转化出Mindspore框架内的ckpt文件,进行全量推理以验证模型文件精度。 +模型可从网址中下载https://pytorch.org/hub/pytorch_vision_densenet/。 + +# 模型架构 + +DenseNet模型支持四种模式:DenseNet-121, DenseNet-161,DenseNet-169, DenseNet-201。数字表示网络中包含的卷积层数量。 + +# 数据集 + +DenseNet使用的数据集: ImageNet + +数据集的默认配置如下: + +- 测试数据集预处理: + - 图像的输入尺寸:224\*224(将图像缩放到256\*256,然后在中央区域裁剪图像) + - 根据平均值和标准偏差对输入图像进行归一化 + +# 环境要求 + +- 硬件(Ascend/GPU) +- 准备Ascend或GPU处理器搭建硬件环境。 +- 框架 +- [MindSpore](https://www.mindspore.cn/install) +- 如需查看详情,请参见如下资源: +- [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html) +- [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html) + +# 脚本说明 + +## 脚本及样例代码 + +```shell +├── model_zoo + ├── README.md // 所有模型的说明 + ├── densenet + ├── README_CN.md // DenseNet相关说明 + ├── ascend310_infer // 实现310推理源代码 + ├── scripts + │ ├── run_infer_310.sh // Ascend 310 推理shell脚本 + ├── src + │ ├── densenet121.py // densenet-121模型文件 + │ ├── densenet161.py // densenet-161模型文件 + │ ├── densenet169.py // densenet-169模型文件 + │ ├── densenet201.py // densenet-201模型文件 + ├── export.py // 导出脚本 + ├── postprocess.py // 310 推理后处理脚本 +``` + +## 导出过程 + +### 导出 + +```shell +python export.py --backbone [NET_NAME] --ckpt_path [CKPT_PATH] --device_target [DEVICE_TARGET] --device_id 0 --file_format [EXPORT_FORMAT] --file_name [FILE_NAME] +``` + +`backbone` 可选 ["densenet121", "densenet161", "densenet169", "densenet201"] +`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"] + +## 推理过程 + +### 推理 + +在推理之前需要先导出模型,AIR模型只能在昇腾910环境上导出,MINDIR可以在任意环境上导出。 + +```shell +# 昇腾310 推理 +bash run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] +``` + +-注: Densnet系列网络使用ImageNet数据集,图片的label是将文件夹排序后从0开始编号所得的数字. + +推理的结果保存在当前目录下,在acc.log日志文件中可以找到类似以下的结果。 +Densenet-121网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=37244, tot=50000, acc=74.49% + after allreduce eval: top5_correct=46060, tot=50000, acc=92.12% + ``` + +Densenet-161网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=38773, tot=50000, acc=77.55% + after allreduce eval: top5_correct=46971, tot=50000, acc=93.94% + ``` + +Densenet-169网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=38076, tot=50000, acc=76.15% + after allreduce eval: top5_correct=46563, tot=50000, acc=93.13% + ``` + +Densenet-201网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=38469, tot=50000, acc=76.94% + after allreduce eval: top5_correct=46776, tot=50000, acc=93.55% + ``` + +# ModelZoo主页 + + 请浏览官网[主页](https://gitee.com/mindspore/models)。 diff --git a/research/cvtmodel/densenet/ascend310_infer/CMakeLists.txt b/research/cvtmodel/densenet/ascend310_infer/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee3c85447340e0449ff2b70ed24f60a17e07b2b6 --- /dev/null +++ b/research/cvtmodel/densenet/ascend310_infer/CMakeLists.txt @@ -0,0 +1,14 @@ +cmake_minimum_required(VERSION 3.14.1) +project(Ascend310Infer) +add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") +set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) +option(MINDSPORE_PATH "mindspore install path" "") +include_directories(${MINDSPORE_PATH}) +include_directories(${MINDSPORE_PATH}/include) +include_directories(${PROJECT_SRC_ROOT}) +find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) +file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) + +add_executable(main src/main.cc src/utils.cc) +target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) diff --git a/research/cvtmodel/densenet/ascend310_infer/build.sh b/research/cvtmodel/densenet/ascend310_infer/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..770a8851efade7f352039fc8665d307ae1abbb00 --- /dev/null +++ b/research/cvtmodel/densenet/ascend310_infer/build.sh @@ -0,0 +1,23 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [ ! -d out ]; then + mkdir out +fi +cd out || exit +cmake .. \ + -DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" +make diff --git a/research/cvtmodel/densenet/ascend310_infer/inc/utils.h b/research/cvtmodel/densenet/ascend310_infer/inc/utils.h new file mode 100644 index 0000000000000000000000000000000000000000..efebe03a8c1179f5a1f9d5f7ee07e0352a9937c6 --- /dev/null +++ b/research/cvtmodel/densenet/ascend310_infer/inc/utils.h @@ -0,0 +1,32 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_INFERENCE_UTILS_H_ +#define MINDSPORE_INFERENCE_UTILS_H_ + +#include <sys/stat.h> +#include <dirent.h> +#include <vector> +#include <string> +#include <memory> +#include "include/api/types.h" + +std::vector<std::string> GetAllFiles(std::string_view dirName); +DIR *OpenDir(std::string_view dirName); +std::string RealPath(std::string_view path); +mindspore::MSTensor ReadFileToTensor(const std::string &file); +int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs); +#endif diff --git a/research/cvtmodel/densenet/ascend310_infer/src/main.cc b/research/cvtmodel/densenet/ascend310_infer/src/main.cc new file mode 100644 index 0000000000000000000000000000000000000000..a3885312e2690acf34137bfd4490dd0401c21de4 --- /dev/null +++ b/research/cvtmodel/densenet/ascend310_infer/src/main.cc @@ -0,0 +1,166 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <sys/time.h> +#include <gflags/gflags.h> +#include <dirent.h> +#include <iostream> +#include <string> +#include <algorithm> +#include <iosfwd> +#include <vector> +#include <fstream> + +#include "../inc/utils.h" +#include "include/dataset/execute.h" +#include "include/dataset/transforms.h" +#include "include/dataset/vision.h" +#include "include/dataset/vision_ascend.h" +#include "include/api/types.h" +#include "include/api/model.h" +#include "include/api/serialization.h" +#include "include/api/context.h" + +using mindspore::Serialization; +using mindspore::Model; +using mindspore::Context; +using mindspore::Status; +using mindspore::ModelType; +using mindspore::Graph; +using mindspore::GraphCell; +using mindspore::kSuccess; +using mindspore::MSTensor; +using mindspore::DataType; +using mindspore::dataset::Execute; +using mindspore::dataset::TensorTransform; +using mindspore::dataset::vision::Decode; +using mindspore::dataset::vision::Resize; +using mindspore::dataset::vision::CenterCrop; +using mindspore::dataset::vision::Normalize; +using mindspore::dataset::vision::HWC2CHW; + +using mindspore::dataset::transforms::TypeCast; + + +DEFINE_string(model_path, "", "model path"); +DEFINE_string(dataset, "ImageNet", "dataset: ImageNet or Cifar10"); +DEFINE_string(dataset_path, ".", "dataset path"); +DEFINE_int32(device_id, 0, "device id"); + +int main(int argc, char **argv) { + gflags::ParseCommandLineFlags(&argc, &argv, true); + if (RealPath(FLAGS_model_path).empty()) { + std::cout << "Invalid model" << std::endl; + return 1; + } + + std::transform(FLAGS_dataset.begin(), FLAGS_dataset.end(), FLAGS_dataset.begin(), ::tolower); + + auto context = std::make_shared<Context>(); + auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>(); + ascend310_info->SetDeviceID(FLAGS_device_id); + context->MutableDeviceInfo().push_back(ascend310_info); + + Graph graph; + Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph); + if (ret != kSuccess) { + std::cout << "Load model failed." << std::endl; + return 1; + } + + Model model; + ret = model.Build(GraphCell(graph), context); + if (ret != kSuccess) { + std::cout << "ERROR: Build failed." << std::endl; + return 1; + } + + std::vector<MSTensor> modelInputs = model.GetInputs(); + + auto all_files = GetAllFiles(FLAGS_dataset_path); + if (all_files.empty()) { + std::cout << "ERROR: no input data." << std::endl; + return 1; + } + + std::shared_ptr<TensorTransform> decode(new Decode()); + std::shared_ptr<TensorTransform> resize(new Resize({256, 256})); + std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({224, 224})); + std::shared_ptr<TensorTransform> normImageNet(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375})); + std::shared_ptr<TensorTransform> normCifar10(new Normalize({127.5, 127.5, 127.5}, {127.5, 127.5, 127.5})); + std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW()); + + mindspore::dataset::Execute transformImageNet({decode, resize, centerCrop, normImageNet, hwc2chw}); + mindspore::dataset::Execute transformCifar10({decode, normCifar10, hwc2chw}); + + std::map<double, double> costTime_map; + + size_t size = all_files.size(); + for (size_t i = 0; i < size; ++i) { + struct timeval start; + struct timeval end; + double startTime_ms; + double endTime_ms; + std::vector<MSTensor> inputs; + std::vector<MSTensor> outputs; + + std::cout << "Start predict input files:" << all_files[i] << std::endl; + mindspore::MSTensor image = ReadFileToTensor(all_files[i]); + + if (FLAGS_dataset.compare("cifar10") == 0) { + transformCifar10(image, &image); + } else if (FLAGS_dataset.compare("imagenet") == 0) { + transformImageNet(image, &image); + } else { + std::cout << "unsupported dataset ..."; + return 1; + } + + inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(), + image.Data().get(), image.DataSize()); + + gettimeofday(&start, NULL); + model.Predict(inputs, &outputs); + gettimeofday(&end, NULL); + + startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; + endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; + costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms)); + int rst = WriteResult(all_files[i], outputs); + if (rst != 0) { + std::cout << "write result failed." << std::endl; + return rst; + } + } + double average = 0.0; + int infer_cnt = 0; + char tmpCh[256] = {0}; + for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { + double diff = 0.0; + diff = iter->second - iter->first; + average += diff; + infer_cnt++; + } + + average = average/infer_cnt; + std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; + std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); + std::ofstream file_stream(file_name.c_str(), std::ios::trunc); + file_stream << tmpCh; + file_stream.close(); + costTime_map.clear(); + return 0; +} diff --git a/research/cvtmodel/densenet/ascend310_infer/src/utils.cc b/research/cvtmodel/densenet/ascend310_infer/src/utils.cc new file mode 100644 index 0000000000000000000000000000000000000000..653b1de44962614ac77d44481f8d1a7bde52caaf --- /dev/null +++ b/research/cvtmodel/densenet/ascend310_infer/src/utils.cc @@ -0,0 +1,160 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "inc/utils.h" + +#include <fstream> +#include <algorithm> +#include <iostream> + +using mindspore::MSTensor; +using mindspore::DataType; + +std::vector<std::string> GetAllFiles(std::string_view dirName) { + struct dirent *filename; + DIR *dir = OpenDir(dirName); + if (dir == nullptr) { + return {}; + } + std::vector<std::string> dirs; + std::vector<std::string> files; + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == "..") { + continue; + } else if (filename->d_type == DT_DIR) { + dirs.emplace_back(std::string(dirName) + "/" + filename->d_name); + } else if (filename->d_type == DT_REG) { + files.emplace_back(std::string(dirName) + "/" + filename->d_name); + } else { + continue; + } + } + + for (auto d : dirs) { + dir = OpenDir(d); + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == ".." || filename->d_type != DT_REG) { + continue; + } + files.emplace_back(std::string(d) + "/" + filename->d_name); + } + } + std::sort(files.begin(), files.end()); + for (auto &f : files) { + std::cout << "image file: " << f << std::endl; + } + return files; +} + +int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) { + std::string homePath = "./result_Files"; + const int INVALID_POINTER = -1; + const int ERROR = -2; + for (size_t i = 0; i < outputs.size(); ++i) { + size_t outputSize; + std::shared_ptr<const void> netOutput; + netOutput = outputs[i].Data(); + outputSize = outputs[i].DataSize(); + int pos = imageFile.rfind('/'); + std::string fileName(imageFile, pos + 1); + fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); + std::string outFileName = homePath + "/" + fileName; + FILE * outputFile = fopen(outFileName.c_str(), "wb"); + if (outputFile == nullptr) { + std::cout << "open result file " << outFileName << " failed" << std::endl; + return INVALID_POINTER; + } + size_t size = fwrite(netOutput.get(), sizeof(char), outputSize, outputFile); + if (size != outputSize) { + fclose(outputFile); + outputFile = nullptr; + std::cout << "write result file " << outFileName << " failed, write size[" << size << + "] is smaller than output size[" << outputSize << "], maybe the disk is full." << std::endl; + return ERROR; + } + fclose(outputFile); + outputFile = nullptr; + } + return 0; +} + +mindspore::MSTensor ReadFileToTensor(const std::string &file) { + if (file.empty()) { + std::cout << "Pointer file is nullptr" << std::endl; + return mindspore::MSTensor(); + } + + std::ifstream ifs(file); + if (!ifs.good()) { + std::cout << "File: " << file << " is not exist" << std::endl; + return mindspore::MSTensor(); + } + + if (!ifs.is_open()) { + std::cout << "File: " << file << "open failed" << std::endl; + return mindspore::MSTensor(); + } + + ifs.seekg(0, std::ios::end); + size_t size = ifs.tellg(); + mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size); + + ifs.seekg(0, std::ios::beg); + ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); + ifs.close(); + + return buffer; +} + + +DIR *OpenDir(std::string_view dirName) { + if (dirName.empty()) { + std::cout << " dirName is null ! " << std::endl; + return nullptr; + } + std::string realPath = RealPath(dirName); + struct stat s; + lstat(realPath.c_str(), &s); + if (!S_ISDIR(s.st_mode)) { + std::cout << "dirName is not a valid directory !" << std::endl; + return nullptr; + } + DIR *dir; + dir = opendir(realPath.c_str()); + if (dir == nullptr) { + std::cout << "Can not open dir " << dirName << std::endl; + return nullptr; + } + std::cout << "Successfully opened the dir " << dirName << std::endl; + return dir; +} + +std::string RealPath(std::string_view path) { + char realPathMem[PATH_MAX] = {0}; + char *realPathRet = nullptr; + realPathRet = realpath(path.data(), realPathMem); + + if (realPathRet == nullptr) { + std::cout << "File: " << path << " is not exist."; + return ""; + } + + std::string realPath(realPathMem); + std::cout << path << " realpath is: " << realPath << std::endl; + return realPath; +} diff --git a/research/cvtmodel/densenet/export.py b/research/cvtmodel/densenet/export.py new file mode 100644 index 0000000000000000000000000000000000000000..81f02f491feee0ca045a24a7e71d3c8b5d2f8597 --- /dev/null +++ b/research/cvtmodel/densenet/export.py @@ -0,0 +1,59 @@ +# Copyright 2020-2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""export checkpoint file into air, onnx, mindir models + Suggest run as python export.py --file_name [file_name] --ckpt_files [ckpt path] --file_format [file format] +""" +import argparse +import numpy as np +import mindspore as ms +from mindspore import context, Tensor +from mindspore.train.serialization import export, load_checkpoint, load_param_into_net + +parser = argparse.ArgumentParser(description='post process for 310 inference') +parser.add_argument("--backbone", type=str, required=True, default="densenet161", help="model backbone") +parser.add_argument("--ckpt_path", type=str, required=True, help="checkpoint file path") +parser.add_argument("--file_name", type=str, default="densenet161", help="file name") +parser.add_argument("--file_format", type=str, default="MINDIR", choices=["MINDIR", "AIR"], help="file format") +parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], help="device target") +parser.add_argument("--device_id", type=int, default=0, help="device target") +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) + +def model_export(): + '''main export func''' + if args.device_target == "Ascend": + context.set_context(device_id=args.device_id) + + if args.backbone == "densenet121": + from src.densenet121 import MainModel + elif args.backbone == "densenet161": + from src.densenet161 import MainModel + elif args.backbone == "densenet169": + from src.densenet169 import MainModel + elif args.backbone == "densenet201": + from src.densenet201 import MainModel + + net = MainModel() + + param_dict = load_checkpoint(args.ckpt_path) + load_param_into_net(net, param_dict) + + input_arr = Tensor(np.zeros([1, 3, 224, 224]), ms.float32) + export(net, input_arr, file_name=args.file_name, file_format=args.file_format) + +if __name__ == '__main__': + model_export() diff --git a/research/cvtmodel/densenet/postprocess.py b/research/cvtmodel/densenet/postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..ee41ac3961e6054ca9e17bcd3ab8cb210ffa9e84 --- /dev/null +++ b/research/cvtmodel/densenet/postprocess.py @@ -0,0 +1,82 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +'''post process for 310 inference''' +import os +import argparse +import numpy as np + +parser = argparse.ArgumentParser(description='post process for 310 inference') +parser.add_argument("--dataset", type=str, default="imagenet", help="result file path") +parser.add_argument("--result_path", type=str, required=True, help="result file path") +parser.add_argument("--label_file", type=str, required=True, help="label file") +args = parser.parse_args() + +def get_top5_acc(top5_arg, gt_class): + sub_count = 0 + for top5, gt in zip(top5_arg, gt_class): + if gt in top5: + sub_count += 1 + return sub_count + +def read_label(label_file): + '''read label file''' + f = open(label_file, "r") + lines = f.readlines() + + img_label = {} + for line in lines: + img_id = line.split(":")[0] + label = line.split(":")[1] + img_label[img_id] = label + + return img_label + +def cal_acc(dataset, result_path, label_file): + '''main acc calculation function''' + img_label = read_label(label_file) + + img_tot = 0 + top1_correct = 0 + top5_correct = 0 + + files = os.listdir(result_path) + for file in files: + full_file_path = os.path.join(result_path, file) + if os.path.isfile(full_file_path): + result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000) + gt_classes = int(img_label[file[:-6]]) + + top1_output = np.argmax(result, (-1)) + top5_output = np.argsort(result)[:, -5:] + + t1_correct = np.equal(top1_output, gt_classes).sum() + top1_correct += t1_correct + top5_correct += get_top5_acc(top5_output, [gt_classes]) + img_tot += 1 + + results = [[top1_correct], [top5_correct], [img_tot]] + + results = np.array(results) + top1_correct = results[0, 0] + top5_correct = results[1, 0] + img_tot = results[2, 0] + acc1 = 100.0 * top1_correct / img_tot + acc5 = 100.0 * top5_correct / img_tot + print('after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'.format(top1_correct, img_tot, acc1)) + if dataset == 'imagenet': + print('after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'.format(top5_correct, img_tot, acc5)) + +if __name__ == "__main__": + cal_acc(args.dataset, args.result_path, args.label_file) diff --git a/research/cvtmodel/densenet/scripts/run_infer_310.sh b/research/cvtmodel/densenet/scripts/run_infer_310.sh new file mode 100644 index 0000000000000000000000000000000000000000..e4c119abc74e0ac0e0d699e638bef77579137b46 --- /dev/null +++ b/research/cvtmodel/densenet/scripts/run_infer_310.sh @@ -0,0 +1,106 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [[ $# -lt 4 || $# -gt 5 ]]; then + echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] + DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" +exit 1 +fi + +get_real_path(){ + if [ "${1:0:1}" == "/" ]; then + echo "$1" + else + echo "$(realpath -m $PWD/$1)" + fi +} + +model=$(get_real_path $1) +dataset=$2 +data_path=$(get_real_path $3) +label_file=$(get_real_path $4) + +device_id=0 + +if [ $# == 4 ]; then + device_id=$4 +fi + +echo $model +echo $dataset +echo $data_path +echo $label_file +echo $device_id + +export ASCEND_HOME=/usr/local/Ascend/ +if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then + export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH + export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH + export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe + export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp +else + export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH + export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH + export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=$ASCEND_HOME/opp +fi + +function compile_app() +{ + cd ../ascend310_infer || exit + if [ -f "Makefile" ]; then + make clean + fi + sh build.sh &> build.log + + if [ $? -ne 0 ]; then + echo "compile app code failed" + exit 1 + fi + cd - || exit +} + +function infer() +{ + if [ -d result_Files ]; then + rm -rf ./result_Files + fi + if [ -d time_Result ]; then + rm -rf ./time_Result + fi + mkdir result_Files + mkdir time_Result + ../ascend310_infer/out/main --model_path=$model --dataset=$dataset --dataset_path=$data_path --device_id=$device_id &> infer.log + + if [ $? -ne 0 ]; then + echo "execute inference failed" + exit 1 + fi +} + +function cal_acc() +{ + python ../postprocess.py --dataset=$dataset --label_file=$label_file --result_path=result_Files &> acc.log + if [ $? -ne 0 ]; then + echo "calculate accuracy failed" + exit 1 + fi +} + +compile_app +infer +cal_acc diff --git a/research/cvtmodel/densenet/src/densenet121.py b/research/cvtmodel/densenet/src/densenet121.py new file mode 100644 index 0000000000000000000000000000000000000000..deea310222f87de786a59925c076070be945b249 --- /dev/null +++ b/research/cvtmodel/densenet/src/densenet121.py @@ -0,0 +1,541 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module0(nn.Cell): + def __init__(self, batchnorm2d_1_num_features, conv2d_3_in_channels): + super(Module0, self).__init__() + self.concat_0 = P.Concat(axis=1) + self.batchnorm2d_1 = nn.BatchNorm2d(num_features=batchnorm2d_1_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_4 = nn.ReLU() + self.conv2d_5 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + opt_concat_0 = self.concat_0((x,)) + opt_batchnorm2d_1 = self.batchnorm2d_1(opt_concat_0) + opt_relu_2 = self.relu_2(opt_batchnorm2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_relu_4 = self.relu_4(opt_conv2d_3) + opt_conv2d_5 = self.conv2d_5(opt_relu_4) + return opt_conv2d_5 + + +class Module1(nn.Cell): + def __init__(self, batchnorm2d_0_num_features): + super(Module1, self).__init__() + self.batchnorm2d_0 = nn.BatchNorm2d(num_features=batchnorm2d_0_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_batchnorm2d_0 = self.batchnorm2d_0(x) + opt_relu_1 = self.relu_1(opt_batchnorm2d_0) + return opt_relu_1 + + +class Module4(nn.Cell): + def __init__(self, conv2d_0_in_channels, module1_0_batchnorm2d_0_num_features): + super(Module4, self).__init__() + self.module1_0 = Module1(batchnorm2d_0_num_features=module1_0_batchnorm2d_0_num_features) + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.conv2d_2 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + module1_0_opt = self.module1_0(x) + opt_conv2d_0 = self.conv2d_0(module1_0_opt) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_conv2d_2 = self.conv2d_2(opt_relu_1) + return opt_conv2d_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(7, 7), + stride=(2, 2), + padding=(3, 3, 3, 3), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.pad_maxpool2d_2 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module0_0 = Module0(batchnorm2d_1_num_features=64, conv2d_3_in_channels=64) + self.concat_9 = P.Concat(axis=1) + self.module4_0 = Module4(conv2d_0_in_channels=96, module1_0_batchnorm2d_0_num_features=96) + self.concat_15 = P.Concat(axis=1) + self.module4_1 = Module4(conv2d_0_in_channels=128, module1_0_batchnorm2d_0_num_features=128) + self.concat_21 = P.Concat(axis=1) + self.module4_2 = Module4(conv2d_0_in_channels=160, module1_0_batchnorm2d_0_num_features=160) + self.concat_27 = P.Concat(axis=1) + self.module4_3 = Module4(conv2d_0_in_channels=192, module1_0_batchnorm2d_0_num_features=192) + self.concat_33 = P.Concat(axis=1) + self.module4_4 = Module4(conv2d_0_in_channels=224, module1_0_batchnorm2d_0_num_features=224) + self.concat_39 = P.Concat(axis=1) + self.module1_0 = Module1(batchnorm2d_0_num_features=256) + self.conv2d_42 = nn.Conv2d(in_channels=256, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_43 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_43 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_1 = Module0(batchnorm2d_1_num_features=128, conv2d_3_in_channels=128) + self.concat_50 = P.Concat(axis=1) + self.module4_5 = Module4(conv2d_0_in_channels=160, module1_0_batchnorm2d_0_num_features=160) + self.concat_56 = P.Concat(axis=1) + self.module4_6 = Module4(conv2d_0_in_channels=192, module1_0_batchnorm2d_0_num_features=192) + self.concat_62 = P.Concat(axis=1) + self.module4_7 = Module4(conv2d_0_in_channels=224, module1_0_batchnorm2d_0_num_features=224) + self.concat_68 = P.Concat(axis=1) + self.module4_8 = Module4(conv2d_0_in_channels=256, module1_0_batchnorm2d_0_num_features=256) + self.concat_74 = P.Concat(axis=1) + self.module4_9 = Module4(conv2d_0_in_channels=288, module1_0_batchnorm2d_0_num_features=288) + self.concat_80 = P.Concat(axis=1) + self.module4_10 = Module4(conv2d_0_in_channels=320, module1_0_batchnorm2d_0_num_features=320) + self.concat_86 = P.Concat(axis=1) + self.module4_11 = Module4(conv2d_0_in_channels=352, module1_0_batchnorm2d_0_num_features=352) + self.concat_92 = P.Concat(axis=1) + self.module4_12 = Module4(conv2d_0_in_channels=384, module1_0_batchnorm2d_0_num_features=384) + self.concat_98 = P.Concat(axis=1) + self.module4_13 = Module4(conv2d_0_in_channels=416, module1_0_batchnorm2d_0_num_features=416) + self.concat_104 = P.Concat(axis=1) + self.module4_14 = Module4(conv2d_0_in_channels=448, module1_0_batchnorm2d_0_num_features=448) + self.concat_110 = P.Concat(axis=1) + self.module4_15 = Module4(conv2d_0_in_channels=480, module1_0_batchnorm2d_0_num_features=480) + self.concat_116 = P.Concat(axis=1) + self.module1_1 = Module1(batchnorm2d_0_num_features=512) + self.conv2d_119 = nn.Conv2d(in_channels=512, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_120 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_120 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_2 = Module0(batchnorm2d_1_num_features=256, conv2d_3_in_channels=256) + self.concat_127 = P.Concat(axis=1) + self.module4_16 = Module4(conv2d_0_in_channels=288, module1_0_batchnorm2d_0_num_features=288) + self.concat_133 = P.Concat(axis=1) + self.module4_17 = Module4(conv2d_0_in_channels=320, module1_0_batchnorm2d_0_num_features=320) + self.concat_139 = P.Concat(axis=1) + self.module4_18 = Module4(conv2d_0_in_channels=352, module1_0_batchnorm2d_0_num_features=352) + self.concat_145 = P.Concat(axis=1) + self.module4_19 = Module4(conv2d_0_in_channels=384, module1_0_batchnorm2d_0_num_features=384) + self.concat_151 = P.Concat(axis=1) + self.module4_20 = Module4(conv2d_0_in_channels=416, module1_0_batchnorm2d_0_num_features=416) + self.concat_157 = P.Concat(axis=1) + self.module4_21 = Module4(conv2d_0_in_channels=448, module1_0_batchnorm2d_0_num_features=448) + self.concat_163 = P.Concat(axis=1) + self.module4_22 = Module4(conv2d_0_in_channels=480, module1_0_batchnorm2d_0_num_features=480) + self.concat_169 = P.Concat(axis=1) + self.module4_23 = Module4(conv2d_0_in_channels=512, module1_0_batchnorm2d_0_num_features=512) + self.concat_175 = P.Concat(axis=1) + self.module4_24 = Module4(conv2d_0_in_channels=544, module1_0_batchnorm2d_0_num_features=544) + self.concat_181 = P.Concat(axis=1) + self.module4_25 = Module4(conv2d_0_in_channels=576, module1_0_batchnorm2d_0_num_features=576) + self.concat_187 = P.Concat(axis=1) + self.module4_26 = Module4(conv2d_0_in_channels=608, module1_0_batchnorm2d_0_num_features=608) + self.concat_193 = P.Concat(axis=1) + self.module4_27 = Module4(conv2d_0_in_channels=640, module1_0_batchnorm2d_0_num_features=640) + self.concat_199 = P.Concat(axis=1) + self.module4_28 = Module4(conv2d_0_in_channels=672, module1_0_batchnorm2d_0_num_features=672) + self.concat_205 = P.Concat(axis=1) + self.module4_29 = Module4(conv2d_0_in_channels=704, module1_0_batchnorm2d_0_num_features=704) + self.concat_211 = P.Concat(axis=1) + self.module4_30 = Module4(conv2d_0_in_channels=736, module1_0_batchnorm2d_0_num_features=736) + self.concat_217 = P.Concat(axis=1) + self.module4_31 = Module4(conv2d_0_in_channels=768, module1_0_batchnorm2d_0_num_features=768) + self.concat_223 = P.Concat(axis=1) + self.module4_32 = Module4(conv2d_0_in_channels=800, module1_0_batchnorm2d_0_num_features=800) + self.concat_229 = P.Concat(axis=1) + self.module4_33 = Module4(conv2d_0_in_channels=832, module1_0_batchnorm2d_0_num_features=832) + self.concat_235 = P.Concat(axis=1) + self.module4_34 = Module4(conv2d_0_in_channels=864, module1_0_batchnorm2d_0_num_features=864) + self.concat_241 = P.Concat(axis=1) + self.module4_35 = Module4(conv2d_0_in_channels=896, module1_0_batchnorm2d_0_num_features=896) + self.concat_247 = P.Concat(axis=1) + self.module4_36 = Module4(conv2d_0_in_channels=928, module1_0_batchnorm2d_0_num_features=928) + self.concat_253 = P.Concat(axis=1) + self.module4_37 = Module4(conv2d_0_in_channels=960, module1_0_batchnorm2d_0_num_features=960) + self.concat_259 = P.Concat(axis=1) + self.module4_38 = Module4(conv2d_0_in_channels=992, module1_0_batchnorm2d_0_num_features=992) + self.concat_265 = P.Concat(axis=1) + self.module1_2 = Module1(batchnorm2d_0_num_features=1024) + self.conv2d_268 = nn.Conv2d(in_channels=1024, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_269 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_269 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_3 = Module0(batchnorm2d_1_num_features=512, conv2d_3_in_channels=512) + self.concat_276 = P.Concat(axis=1) + self.module4_39 = Module4(conv2d_0_in_channels=544, module1_0_batchnorm2d_0_num_features=544) + self.concat_282 = P.Concat(axis=1) + self.module4_40 = Module4(conv2d_0_in_channels=576, module1_0_batchnorm2d_0_num_features=576) + self.concat_288 = P.Concat(axis=1) + self.module4_41 = Module4(conv2d_0_in_channels=608, module1_0_batchnorm2d_0_num_features=608) + self.concat_294 = P.Concat(axis=1) + self.module4_42 = Module4(conv2d_0_in_channels=640, module1_0_batchnorm2d_0_num_features=640) + self.concat_300 = P.Concat(axis=1) + self.module4_43 = Module4(conv2d_0_in_channels=672, module1_0_batchnorm2d_0_num_features=672) + self.concat_306 = P.Concat(axis=1) + self.module4_44 = Module4(conv2d_0_in_channels=704, module1_0_batchnorm2d_0_num_features=704) + self.concat_312 = P.Concat(axis=1) + self.module4_45 = Module4(conv2d_0_in_channels=736, module1_0_batchnorm2d_0_num_features=736) + self.concat_318 = P.Concat(axis=1) + self.module4_46 = Module4(conv2d_0_in_channels=768, module1_0_batchnorm2d_0_num_features=768) + self.concat_324 = P.Concat(axis=1) + self.module4_47 = Module4(conv2d_0_in_channels=800, module1_0_batchnorm2d_0_num_features=800) + self.concat_330 = P.Concat(axis=1) + self.module4_48 = Module4(conv2d_0_in_channels=832, module1_0_batchnorm2d_0_num_features=832) + self.concat_336 = P.Concat(axis=1) + self.module4_49 = Module4(conv2d_0_in_channels=864, module1_0_batchnorm2d_0_num_features=864) + self.concat_342 = P.Concat(axis=1) + self.module4_50 = Module4(conv2d_0_in_channels=896, module1_0_batchnorm2d_0_num_features=896) + self.concat_348 = P.Concat(axis=1) + self.module4_51 = Module4(conv2d_0_in_channels=928, module1_0_batchnorm2d_0_num_features=928) + self.concat_354 = P.Concat(axis=1) + self.module4_52 = Module4(conv2d_0_in_channels=960, module1_0_batchnorm2d_0_num_features=960) + self.concat_360 = P.Concat(axis=1) + self.module4_53 = Module4(conv2d_0_in_channels=992, module1_0_batchnorm2d_0_num_features=992) + self.concat_366 = P.Concat(axis=1) + self.module1_3 = Module1(batchnorm2d_0_num_features=1024) + self.avgpool2d_369 = nn.AvgPool2d(kernel_size=(7, 7)) + self.flatten_370 = nn.Flatten() + self.dense_371 = nn.Dense(in_channels=1024, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_maxpool2d_2 = self.pad_maxpool2d_2(opt_relu_1) + opt_maxpool2d_2 = self.maxpool2d_2(opt_maxpool2d_2) + module0_0_opt = self.module0_0(opt_maxpool2d_2) + opt_concat_9 = self.concat_9((opt_maxpool2d_2, module0_0_opt,)) + module4_0_opt = self.module4_0(opt_concat_9) + opt_concat_15 = self.concat_15((opt_maxpool2d_2, module0_0_opt, module4_0_opt,)) + module4_1_opt = self.module4_1(opt_concat_15) + opt_concat_21 = self.concat_21((opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt,)) + module4_2_opt = self.module4_2(opt_concat_21) + opt_concat_27 = self.concat_27((opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt,)) + module4_3_opt = self.module4_3(opt_concat_27) + opt_concat_33 = self.concat_33( + (opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt, module4_3_opt, + )) + module4_4_opt = self.module4_4(opt_concat_33) + opt_concat_39 = self.concat_39( + (opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt, module4_3_opt, module4_4_opt, + )) + module1_0_opt = self.module1_0(opt_concat_39) + opt_conv2d_42 = self.conv2d_42(module1_0_opt) + opt_avgpool2d_43 = self.pad_avgpool2d_43(opt_conv2d_42) + opt_avgpool2d_43 = self.avgpool2d_43(opt_avgpool2d_43) + module0_1_opt = self.module0_1(opt_avgpool2d_43) + opt_concat_50 = self.concat_50((opt_avgpool2d_43, module0_1_opt,)) + module4_5_opt = self.module4_5(opt_concat_50) + opt_concat_56 = self.concat_56((opt_avgpool2d_43, module0_1_opt, module4_5_opt,)) + module4_6_opt = self.module4_6(opt_concat_56) + opt_concat_62 = self.concat_62((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt,)) + module4_7_opt = self.module4_7(opt_concat_62) + opt_concat_68 = self.concat_68((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt,)) + module4_8_opt = self.module4_8(opt_concat_68) + opt_concat_74 = self.concat_74( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, + )) + module4_9_opt = self.module4_9(opt_concat_74) + opt_concat_80 = self.concat_80( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + )) + module4_10_opt = self.module4_10(opt_concat_80) + opt_concat_86 = self.concat_86((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, + )) + module4_11_opt = self.module4_11(opt_concat_86) + opt_concat_92 = self.concat_92((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, module4_11_opt, + )) + module4_12_opt = self.module4_12(opt_concat_92) + opt_concat_98 = self.concat_98((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, module4_11_opt, module4_12_opt, + )) + module4_13_opt = self.module4_13(opt_concat_98) + opt_concat_104 = self.concat_104( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, + )) + module4_14_opt = self.module4_14(opt_concat_104) + opt_concat_110 = self.concat_110( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, module4_14_opt, + )) + module4_15_opt = self.module4_15(opt_concat_110) + opt_concat_116 = self.concat_116( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, module4_14_opt, module4_15_opt, + )) + module1_1_opt = self.module1_1(opt_concat_116) + opt_conv2d_119 = self.conv2d_119(module1_1_opt) + opt_avgpool2d_120 = self.pad_avgpool2d_120(opt_conv2d_119) + opt_avgpool2d_120 = self.avgpool2d_120(opt_avgpool2d_120) + module0_2_opt = self.module0_2(opt_avgpool2d_120) + opt_concat_127 = self.concat_127((opt_avgpool2d_120, module0_2_opt,)) + module4_16_opt = self.module4_16(opt_concat_127) + opt_concat_133 = self.concat_133((opt_avgpool2d_120, module0_2_opt, module4_16_opt,)) + module4_17_opt = self.module4_17(opt_concat_133) + opt_concat_139 = self.concat_139((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt,)) + module4_18_opt = self.module4_18(opt_concat_139) + opt_concat_145 = self.concat_145( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, + )) + module4_19_opt = self.module4_19(opt_concat_145) + opt_concat_151 = self.concat_151( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + )) + module4_20_opt = self.module4_20(opt_concat_151) + opt_concat_157 = self.concat_157((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, + module4_18_opt, module4_19_opt, module4_20_opt, + )) + module4_21_opt = self.module4_21(opt_concat_157) + opt_concat_163 = self.concat_163((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, + module4_18_opt, module4_19_opt, module4_20_opt, module4_21_opt, + )) + module4_22_opt = self.module4_22(opt_concat_163) + opt_concat_169 = self.concat_169( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, + )) + module4_23_opt = self.module4_23(opt_concat_169) + opt_concat_175 = self.concat_175( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, + )) + module4_24_opt = self.module4_24(opt_concat_175) + opt_concat_181 = self.concat_181( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, + )) + module4_25_opt = self.module4_25(opt_concat_181) + opt_concat_187 = self.concat_187( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + )) + module4_26_opt = self.module4_26(opt_concat_187) + opt_concat_193 = self.concat_193( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, + )) + module4_27_opt = self.module4_27(opt_concat_193) + opt_concat_199 = self.concat_199( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, + )) + module4_28_opt = self.module4_28(opt_concat_199) + opt_concat_205 = self.concat_205( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, + )) + module4_29_opt = self.module4_29(opt_concat_205) + opt_concat_211 = self.concat_211( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, + )) + module4_30_opt = self.module4_30(opt_concat_211) + opt_concat_217 = self.concat_217( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, + )) + module4_31_opt = self.module4_31(opt_concat_217) + opt_concat_223 = self.concat_223( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + )) + module4_32_opt = self.module4_32(opt_concat_223) + opt_concat_229 = self.concat_229( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, + )) + module4_33_opt = self.module4_33(opt_concat_229) + opt_concat_235 = self.concat_235( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, + )) + module4_34_opt = self.module4_34(opt_concat_235) + opt_concat_241 = self.concat_241( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, + )) + module4_35_opt = self.module4_35(opt_concat_241) + opt_concat_247 = self.concat_247( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, + )) + module4_36_opt = self.module4_36(opt_concat_247) + opt_concat_253 = self.concat_253( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, + )) + module4_37_opt = self.module4_37(opt_concat_253) + opt_concat_259 = self.concat_259( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + )) + module4_38_opt = self.module4_38(opt_concat_259) + opt_concat_265 = self.concat_265( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, + )) + module1_2_opt = self.module1_2(opt_concat_265) + opt_conv2d_268 = self.conv2d_268(module1_2_opt) + opt_avgpool2d_269 = self.pad_avgpool2d_269(opt_conv2d_268) + opt_avgpool2d_269 = self.avgpool2d_269(opt_avgpool2d_269) + module0_3_opt = self.module0_3(opt_avgpool2d_269) + opt_concat_276 = self.concat_276((opt_avgpool2d_269, module0_3_opt,)) + module4_39_opt = self.module4_39(opt_concat_276) + opt_concat_282 = self.concat_282((opt_avgpool2d_269, module0_3_opt, module4_39_opt,)) + module4_40_opt = self.module4_40(opt_concat_282) + opt_concat_288 = self.concat_288((opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt,)) + module4_41_opt = self.module4_41(opt_concat_288) + opt_concat_294 = self.concat_294( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, + )) + module4_42_opt = self.module4_42(opt_concat_294) + opt_concat_300 = self.concat_300( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + )) + module4_43_opt = self.module4_43(opt_concat_300) + opt_concat_306 = self.concat_306((opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, + module4_41_opt, module4_42_opt, module4_43_opt, + )) + module4_44_opt = self.module4_44(opt_concat_306) + opt_concat_312 = self.concat_312((opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, + module4_41_opt, module4_42_opt, module4_43_opt, module4_44_opt, + )) + module4_45_opt = self.module4_45(opt_concat_312) + opt_concat_318 = self.concat_318( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, + )) + module4_46_opt = self.module4_46(opt_concat_318) + opt_concat_324 = self.concat_324( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, + )) + module4_47_opt = self.module4_47(opt_concat_324) + opt_concat_330 = self.concat_330( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, + )) + module4_48_opt = self.module4_48(opt_concat_330) + opt_concat_336 = self.concat_336( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + )) + module4_49_opt = self.module4_49(opt_concat_336) + opt_concat_342 = self.concat_342( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + module4_49_opt, + )) + module4_50_opt = self.module4_50(opt_concat_342) + opt_concat_348 = self.concat_348( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + module4_49_opt, module4_50_opt, + )) + module4_51_opt = self.module4_51(opt_concat_348) + opt_concat_354 = self.concat_354( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + module4_49_opt, module4_50_opt, module4_51_opt, + )) + module4_52_opt = self.module4_52(opt_concat_354) + opt_concat_360 = self.concat_360( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + module4_49_opt, module4_50_opt, module4_51_opt, module4_52_opt, + )) + module4_53_opt = self.module4_53(opt_concat_360) + opt_concat_366 = self.concat_366( + (opt_avgpool2d_269, module0_3_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + module4_43_opt, module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + module4_49_opt, module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, + )) + module1_3_opt = self.module1_3(opt_concat_366) + opt_avgpool2d_369 = self.avgpool2d_369(module1_3_opt) + opt_flatten_370 = self.flatten_370(opt_avgpool2d_369) + opt_dense_371 = self.dense_371(opt_flatten_370) + return opt_dense_371 diff --git a/research/cvtmodel/densenet/src/densenet161.py b/research/cvtmodel/densenet/src/densenet161.py new file mode 100644 index 0000000000000000000000000000000000000000..26977d6f0155f8efd1973b03e05fbd14a9f399d5 --- /dev/null +++ b/research/cvtmodel/densenet/src/densenet161.py @@ -0,0 +1,741 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module0(nn.Cell): + def __init__(self, batchnorm2d_1_num_features, conv2d_3_in_channels): + super(Module0, self).__init__() + self.concat_0 = P.Concat(axis=1) + self.batchnorm2d_1 = nn.BatchNorm2d(num_features=batchnorm2d_1_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=192, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_4 = nn.ReLU() + self.conv2d_5 = nn.Conv2d(in_channels=192, + out_channels=48, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + opt_concat_0 = self.concat_0((x,)) + opt_batchnorm2d_1 = self.batchnorm2d_1(opt_concat_0) + opt_relu_2 = self.relu_2(opt_batchnorm2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_relu_4 = self.relu_4(opt_conv2d_3) + opt_conv2d_5 = self.conv2d_5(opt_relu_4) + return opt_conv2d_5 + + +class Module1(nn.Cell): + def __init__(self, batchnorm2d_0_num_features): + super(Module1, self).__init__() + self.batchnorm2d_0 = nn.BatchNorm2d(num_features=batchnorm2d_0_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_batchnorm2d_0 = self.batchnorm2d_0(x) + opt_relu_1 = self.relu_1(opt_batchnorm2d_0) + return opt_relu_1 + + +class Module4(nn.Cell): + def __init__(self, conv2d_0_in_channels, module1_0_batchnorm2d_0_num_features): + super(Module4, self).__init__() + self.module1_0 = Module1(batchnorm2d_0_num_features=module1_0_batchnorm2d_0_num_features) + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=192, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.conv2d_2 = nn.Conv2d(in_channels=192, + out_channels=48, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + module1_0_opt = self.module1_0(x) + opt_conv2d_0 = self.conv2d_0(module1_0_opt) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_conv2d_2 = self.conv2d_2(opt_relu_1) + return opt_conv2d_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=96, + kernel_size=(7, 7), + stride=(2, 2), + padding=(3, 3, 3, 3), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.pad_maxpool2d_2 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module0_0 = Module0(batchnorm2d_1_num_features=96, conv2d_3_in_channels=96) + self.concat_9 = P.Concat(axis=1) + self.module4_0 = Module4(conv2d_0_in_channels=144, module1_0_batchnorm2d_0_num_features=144) + self.concat_15 = P.Concat(axis=1) + self.module4_1 = Module4(conv2d_0_in_channels=192, module1_0_batchnorm2d_0_num_features=192) + self.concat_21 = P.Concat(axis=1) + self.module4_2 = Module4(conv2d_0_in_channels=240, module1_0_batchnorm2d_0_num_features=240) + self.concat_27 = P.Concat(axis=1) + self.module4_3 = Module4(conv2d_0_in_channels=288, module1_0_batchnorm2d_0_num_features=288) + self.concat_33 = P.Concat(axis=1) + self.module4_4 = Module4(conv2d_0_in_channels=336, module1_0_batchnorm2d_0_num_features=336) + self.concat_39 = P.Concat(axis=1) + self.module1_0 = Module1(batchnorm2d_0_num_features=384) + self.conv2d_42 = nn.Conv2d(in_channels=384, + out_channels=192, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_43 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_43 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_1 = Module0(batchnorm2d_1_num_features=192, conv2d_3_in_channels=192) + self.concat_50 = P.Concat(axis=1) + self.module4_5 = Module4(conv2d_0_in_channels=240, module1_0_batchnorm2d_0_num_features=240) + self.concat_56 = P.Concat(axis=1) + self.module4_6 = Module4(conv2d_0_in_channels=288, module1_0_batchnorm2d_0_num_features=288) + self.concat_62 = P.Concat(axis=1) + self.module4_7 = Module4(conv2d_0_in_channels=336, module1_0_batchnorm2d_0_num_features=336) + self.concat_68 = P.Concat(axis=1) + self.module4_8 = Module4(conv2d_0_in_channels=384, module1_0_batchnorm2d_0_num_features=384) + self.concat_74 = P.Concat(axis=1) + self.module4_9 = Module4(conv2d_0_in_channels=432, module1_0_batchnorm2d_0_num_features=432) + self.concat_80 = P.Concat(axis=1) + self.module4_10 = Module4(conv2d_0_in_channels=480, module1_0_batchnorm2d_0_num_features=480) + self.concat_86 = P.Concat(axis=1) + self.module4_11 = Module4(conv2d_0_in_channels=528, module1_0_batchnorm2d_0_num_features=528) + self.concat_92 = P.Concat(axis=1) + self.module4_12 = Module4(conv2d_0_in_channels=576, module1_0_batchnorm2d_0_num_features=576) + self.concat_98 = P.Concat(axis=1) + self.module4_13 = Module4(conv2d_0_in_channels=624, module1_0_batchnorm2d_0_num_features=624) + self.concat_104 = P.Concat(axis=1) + self.module4_14 = Module4(conv2d_0_in_channels=672, module1_0_batchnorm2d_0_num_features=672) + self.concat_110 = P.Concat(axis=1) + self.module4_15 = Module4(conv2d_0_in_channels=720, module1_0_batchnorm2d_0_num_features=720) + self.concat_116 = P.Concat(axis=1) + self.module1_1 = Module1(batchnorm2d_0_num_features=768) + self.conv2d_119 = nn.Conv2d(in_channels=768, + out_channels=384, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_120 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_120 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_2 = Module0(batchnorm2d_1_num_features=384, conv2d_3_in_channels=384) + self.concat_127 = P.Concat(axis=1) + self.module4_16 = Module4(conv2d_0_in_channels=432, module1_0_batchnorm2d_0_num_features=432) + self.concat_133 = P.Concat(axis=1) + self.module4_17 = Module4(conv2d_0_in_channels=480, module1_0_batchnorm2d_0_num_features=480) + self.concat_139 = P.Concat(axis=1) + self.module4_18 = Module4(conv2d_0_in_channels=528, module1_0_batchnorm2d_0_num_features=528) + self.concat_145 = P.Concat(axis=1) + self.module4_19 = Module4(conv2d_0_in_channels=576, module1_0_batchnorm2d_0_num_features=576) + self.concat_151 = P.Concat(axis=1) + self.module4_20 = Module4(conv2d_0_in_channels=624, module1_0_batchnorm2d_0_num_features=624) + self.concat_157 = P.Concat(axis=1) + self.module4_21 = Module4(conv2d_0_in_channels=672, module1_0_batchnorm2d_0_num_features=672) + self.concat_163 = P.Concat(axis=1) + self.module4_22 = Module4(conv2d_0_in_channels=720, module1_0_batchnorm2d_0_num_features=720) + self.concat_169 = P.Concat(axis=1) + self.module4_23 = Module4(conv2d_0_in_channels=768, module1_0_batchnorm2d_0_num_features=768) + self.concat_175 = P.Concat(axis=1) + self.module4_24 = Module4(conv2d_0_in_channels=816, module1_0_batchnorm2d_0_num_features=816) + self.concat_181 = P.Concat(axis=1) + self.module4_25 = Module4(conv2d_0_in_channels=864, module1_0_batchnorm2d_0_num_features=864) + self.concat_187 = P.Concat(axis=1) + self.module4_26 = Module4(conv2d_0_in_channels=912, module1_0_batchnorm2d_0_num_features=912) + self.concat_193 = P.Concat(axis=1) + self.module4_27 = Module4(conv2d_0_in_channels=960, module1_0_batchnorm2d_0_num_features=960) + self.concat_199 = P.Concat(axis=1) + self.module4_28 = Module4(conv2d_0_in_channels=1008, module1_0_batchnorm2d_0_num_features=1008) + self.concat_205 = P.Concat(axis=1) + self.module4_29 = Module4(conv2d_0_in_channels=1056, module1_0_batchnorm2d_0_num_features=1056) + self.concat_211 = P.Concat(axis=1) + self.module4_30 = Module4(conv2d_0_in_channels=1104, module1_0_batchnorm2d_0_num_features=1104) + self.concat_217 = P.Concat(axis=1) + self.module4_31 = Module4(conv2d_0_in_channels=1152, module1_0_batchnorm2d_0_num_features=1152) + self.concat_223 = P.Concat(axis=1) + self.module4_32 = Module4(conv2d_0_in_channels=1200, module1_0_batchnorm2d_0_num_features=1200) + self.concat_229 = P.Concat(axis=1) + self.module4_33 = Module4(conv2d_0_in_channels=1248, module1_0_batchnorm2d_0_num_features=1248) + self.concat_235 = P.Concat(axis=1) + self.module4_34 = Module4(conv2d_0_in_channels=1296, module1_0_batchnorm2d_0_num_features=1296) + self.concat_241 = P.Concat(axis=1) + self.module4_35 = Module4(conv2d_0_in_channels=1344, module1_0_batchnorm2d_0_num_features=1344) + self.concat_247 = P.Concat(axis=1) + self.module4_36 = Module4(conv2d_0_in_channels=1392, module1_0_batchnorm2d_0_num_features=1392) + self.concat_253 = P.Concat(axis=1) + self.module4_37 = Module4(conv2d_0_in_channels=1440, module1_0_batchnorm2d_0_num_features=1440) + self.concat_259 = P.Concat(axis=1) + self.module4_38 = Module4(conv2d_0_in_channels=1488, module1_0_batchnorm2d_0_num_features=1488) + self.concat_265 = P.Concat(axis=1) + self.module4_39 = Module4(conv2d_0_in_channels=1536, module1_0_batchnorm2d_0_num_features=1536) + self.concat_271 = P.Concat(axis=1) + self.module4_40 = Module4(conv2d_0_in_channels=1584, module1_0_batchnorm2d_0_num_features=1584) + self.concat_277 = P.Concat(axis=1) + self.module4_41 = Module4(conv2d_0_in_channels=1632, module1_0_batchnorm2d_0_num_features=1632) + self.concat_283 = P.Concat(axis=1) + self.module4_42 = Module4(conv2d_0_in_channels=1680, module1_0_batchnorm2d_0_num_features=1680) + self.concat_289 = P.Concat(axis=1) + self.module4_43 = Module4(conv2d_0_in_channels=1728, module1_0_batchnorm2d_0_num_features=1728) + self.concat_295 = P.Concat(axis=1) + self.module4_44 = Module4(conv2d_0_in_channels=1776, module1_0_batchnorm2d_0_num_features=1776) + self.concat_301 = P.Concat(axis=1) + self.module4_45 = Module4(conv2d_0_in_channels=1824, module1_0_batchnorm2d_0_num_features=1824) + self.concat_307 = P.Concat(axis=1) + self.module4_46 = Module4(conv2d_0_in_channels=1872, module1_0_batchnorm2d_0_num_features=1872) + self.concat_313 = P.Concat(axis=1) + self.module4_47 = Module4(conv2d_0_in_channels=1920, module1_0_batchnorm2d_0_num_features=1920) + self.concat_319 = P.Concat(axis=1) + self.module4_48 = Module4(conv2d_0_in_channels=1968, module1_0_batchnorm2d_0_num_features=1968) + self.concat_325 = P.Concat(axis=1) + self.module4_49 = Module4(conv2d_0_in_channels=2016, module1_0_batchnorm2d_0_num_features=2016) + self.concat_331 = P.Concat(axis=1) + self.module4_50 = Module4(conv2d_0_in_channels=2064, module1_0_batchnorm2d_0_num_features=2064) + self.concat_337 = P.Concat(axis=1) + self.module1_2 = Module1(batchnorm2d_0_num_features=2112) + self.conv2d_340 = nn.Conv2d(in_channels=2112, + out_channels=1056, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_341 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_341 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_3 = Module0(batchnorm2d_1_num_features=1056, conv2d_3_in_channels=1056) + self.concat_348 = P.Concat(axis=1) + self.module4_51 = Module4(conv2d_0_in_channels=1104, module1_0_batchnorm2d_0_num_features=1104) + self.concat_354 = P.Concat(axis=1) + self.module4_52 = Module4(conv2d_0_in_channels=1152, module1_0_batchnorm2d_0_num_features=1152) + self.concat_360 = P.Concat(axis=1) + self.module4_53 = Module4(conv2d_0_in_channels=1200, module1_0_batchnorm2d_0_num_features=1200) + self.concat_366 = P.Concat(axis=1) + self.module4_54 = Module4(conv2d_0_in_channels=1248, module1_0_batchnorm2d_0_num_features=1248) + self.concat_372 = P.Concat(axis=1) + self.module4_55 = Module4(conv2d_0_in_channels=1296, module1_0_batchnorm2d_0_num_features=1296) + self.concat_378 = P.Concat(axis=1) + self.module4_56 = Module4(conv2d_0_in_channels=1344, module1_0_batchnorm2d_0_num_features=1344) + self.concat_384 = P.Concat(axis=1) + self.module4_57 = Module4(conv2d_0_in_channels=1392, module1_0_batchnorm2d_0_num_features=1392) + self.concat_390 = P.Concat(axis=1) + self.module4_58 = Module4(conv2d_0_in_channels=1440, module1_0_batchnorm2d_0_num_features=1440) + self.concat_396 = P.Concat(axis=1) + self.module4_59 = Module4(conv2d_0_in_channels=1488, module1_0_batchnorm2d_0_num_features=1488) + self.concat_402 = P.Concat(axis=1) + self.module4_60 = Module4(conv2d_0_in_channels=1536, module1_0_batchnorm2d_0_num_features=1536) + self.concat_408 = P.Concat(axis=1) + self.module4_61 = Module4(conv2d_0_in_channels=1584, module1_0_batchnorm2d_0_num_features=1584) + self.concat_414 = P.Concat(axis=1) + self.module4_62 = Module4(conv2d_0_in_channels=1632, module1_0_batchnorm2d_0_num_features=1632) + self.concat_420 = P.Concat(axis=1) + self.module4_63 = Module4(conv2d_0_in_channels=1680, module1_0_batchnorm2d_0_num_features=1680) + self.concat_426 = P.Concat(axis=1) + self.module4_64 = Module4(conv2d_0_in_channels=1728, module1_0_batchnorm2d_0_num_features=1728) + self.concat_432 = P.Concat(axis=1) + self.module4_65 = Module4(conv2d_0_in_channels=1776, module1_0_batchnorm2d_0_num_features=1776) + self.concat_438 = P.Concat(axis=1) + self.module4_66 = Module4(conv2d_0_in_channels=1824, module1_0_batchnorm2d_0_num_features=1824) + self.concat_444 = P.Concat(axis=1) + self.module4_67 = Module4(conv2d_0_in_channels=1872, module1_0_batchnorm2d_0_num_features=1872) + self.concat_450 = P.Concat(axis=1) + self.module4_68 = Module4(conv2d_0_in_channels=1920, module1_0_batchnorm2d_0_num_features=1920) + self.concat_456 = P.Concat(axis=1) + self.module4_69 = Module4(conv2d_0_in_channels=1968, module1_0_batchnorm2d_0_num_features=1968) + self.concat_462 = P.Concat(axis=1) + self.module4_70 = Module4(conv2d_0_in_channels=2016, module1_0_batchnorm2d_0_num_features=2016) + self.concat_468 = P.Concat(axis=1) + self.module4_71 = Module4(conv2d_0_in_channels=2064, module1_0_batchnorm2d_0_num_features=2064) + self.concat_474 = P.Concat(axis=1) + self.module4_72 = Module4(conv2d_0_in_channels=2112, module1_0_batchnorm2d_0_num_features=2112) + self.concat_480 = P.Concat(axis=1) + self.module4_73 = Module4(conv2d_0_in_channels=2160, module1_0_batchnorm2d_0_num_features=2160) + self.concat_486 = P.Concat(axis=1) + self.module1_3 = Module1(batchnorm2d_0_num_features=2208) + self.avgpool2d_489 = nn.AvgPool2d(kernel_size=(7, 7)) + self.flatten_490 = nn.Flatten() + self.dense_491 = nn.Dense(in_channels=2208, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_maxpool2d_2 = self.pad_maxpool2d_2(opt_relu_1) + opt_maxpool2d_2 = self.maxpool2d_2(opt_maxpool2d_2) + module0_0_opt = self.module0_0(opt_maxpool2d_2) + opt_concat_9 = self.concat_9((opt_maxpool2d_2, module0_0_opt,)) + module4_0_opt = self.module4_0(opt_concat_9) + opt_concat_15 = self.concat_15((opt_maxpool2d_2, module0_0_opt, module4_0_opt,)) + module4_1_opt = self.module4_1(opt_concat_15) + opt_concat_21 = self.concat_21((opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt,)) + module4_2_opt = self.module4_2(opt_concat_21) + opt_concat_27 = self.concat_27((opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt,)) + module4_3_opt = self.module4_3(opt_concat_27) + opt_concat_33 = self.concat_33( + (opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt, module4_3_opt, + )) + module4_4_opt = self.module4_4(opt_concat_33) + opt_concat_39 = self.concat_39( + (opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt, module4_3_opt, module4_4_opt, + )) + module1_0_opt = self.module1_0(opt_concat_39) + opt_conv2d_42 = self.conv2d_42(module1_0_opt) + opt_avgpool2d_43 = self.pad_avgpool2d_43(opt_conv2d_42) + opt_avgpool2d_43 = self.avgpool2d_43(opt_avgpool2d_43) + module0_1_opt = self.module0_1(opt_avgpool2d_43) + opt_concat_50 = self.concat_50((opt_avgpool2d_43, module0_1_opt,)) + module4_5_opt = self.module4_5(opt_concat_50) + opt_concat_56 = self.concat_56((opt_avgpool2d_43, module0_1_opt, module4_5_opt,)) + module4_6_opt = self.module4_6(opt_concat_56) + opt_concat_62 = self.concat_62((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt,)) + module4_7_opt = self.module4_7(opt_concat_62) + opt_concat_68 = self.concat_68((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt,)) + module4_8_opt = self.module4_8(opt_concat_68) + opt_concat_74 = self.concat_74( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, + )) + module4_9_opt = self.module4_9(opt_concat_74) + opt_concat_80 = self.concat_80( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + )) + module4_10_opt = self.module4_10(opt_concat_80) + opt_concat_86 = self.concat_86((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, + )) + module4_11_opt = self.module4_11(opt_concat_86) + opt_concat_92 = self.concat_92((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, module4_11_opt, + )) + module4_12_opt = self.module4_12(opt_concat_92) + opt_concat_98 = self.concat_98((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, module4_11_opt, module4_12_opt, + )) + module4_13_opt = self.module4_13(opt_concat_98) + opt_concat_104 = self.concat_104( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, + )) + module4_14_opt = self.module4_14(opt_concat_104) + opt_concat_110 = self.concat_110( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, module4_14_opt, + )) + module4_15_opt = self.module4_15(opt_concat_110) + opt_concat_116 = self.concat_116( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, module4_14_opt, module4_15_opt, + )) + module1_1_opt = self.module1_1(opt_concat_116) + opt_conv2d_119 = self.conv2d_119(module1_1_opt) + opt_avgpool2d_120 = self.pad_avgpool2d_120(opt_conv2d_119) + opt_avgpool2d_120 = self.avgpool2d_120(opt_avgpool2d_120) + module0_2_opt = self.module0_2(opt_avgpool2d_120) + opt_concat_127 = self.concat_127((opt_avgpool2d_120, module0_2_opt,)) + module4_16_opt = self.module4_16(opt_concat_127) + opt_concat_133 = self.concat_133((opt_avgpool2d_120, module0_2_opt, module4_16_opt,)) + module4_17_opt = self.module4_17(opt_concat_133) + opt_concat_139 = self.concat_139((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt,)) + module4_18_opt = self.module4_18(opt_concat_139) + opt_concat_145 = self.concat_145( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, + )) + module4_19_opt = self.module4_19(opt_concat_145) + opt_concat_151 = self.concat_151( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + )) + module4_20_opt = self.module4_20(opt_concat_151) + opt_concat_157 = self.concat_157((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, + module4_18_opt, module4_19_opt, module4_20_opt, + )) + module4_21_opt = self.module4_21(opt_concat_157) + opt_concat_163 = self.concat_163((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, + module4_18_opt, module4_19_opt, module4_20_opt, module4_21_opt, + )) + module4_22_opt = self.module4_22(opt_concat_163) + opt_concat_169 = self.concat_169( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, + )) + module4_23_opt = self.module4_23(opt_concat_169) + opt_concat_175 = self.concat_175( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, + )) + module4_24_opt = self.module4_24(opt_concat_175) + opt_concat_181 = self.concat_181( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, + )) + module4_25_opt = self.module4_25(opt_concat_181) + opt_concat_187 = self.concat_187( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + )) + module4_26_opt = self.module4_26(opt_concat_187) + opt_concat_193 = self.concat_193( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, + )) + module4_27_opt = self.module4_27(opt_concat_193) + opt_concat_199 = self.concat_199( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, + )) + module4_28_opt = self.module4_28(opt_concat_199) + opt_concat_205 = self.concat_205( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, + )) + module4_29_opt = self.module4_29(opt_concat_205) + opt_concat_211 = self.concat_211( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, + )) + module4_30_opt = self.module4_30(opt_concat_211) + opt_concat_217 = self.concat_217( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, + )) + module4_31_opt = self.module4_31(opt_concat_217) + opt_concat_223 = self.concat_223( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + )) + module4_32_opt = self.module4_32(opt_concat_223) + opt_concat_229 = self.concat_229( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, + )) + module4_33_opt = self.module4_33(opt_concat_229) + opt_concat_235 = self.concat_235( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, + )) + module4_34_opt = self.module4_34(opt_concat_235) + opt_concat_241 = self.concat_241( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, + )) + module4_35_opt = self.module4_35(opt_concat_241) + opt_concat_247 = self.concat_247( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, + )) + module4_36_opt = self.module4_36(opt_concat_247) + opt_concat_253 = self.concat_253( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, + )) + module4_37_opt = self.module4_37(opt_concat_253) + opt_concat_259 = self.concat_259( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + )) + module4_38_opt = self.module4_38(opt_concat_259) + opt_concat_265 = self.concat_265( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, + )) + module4_39_opt = self.module4_39(opt_concat_265) + opt_concat_271 = self.concat_271( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, + )) + module4_40_opt = self.module4_40(opt_concat_271) + opt_concat_277 = self.concat_277( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, + )) + module4_41_opt = self.module4_41(opt_concat_277) + opt_concat_283 = self.concat_283( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, + )) + module4_42_opt = self.module4_42(opt_concat_283) + opt_concat_289 = self.concat_289( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + )) + module4_43_opt = self.module4_43(opt_concat_289) + opt_concat_295 = self.concat_295( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + )) + module4_44_opt = self.module4_44(opt_concat_295) + opt_concat_301 = self.concat_301( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, + )) + module4_45_opt = self.module4_45(opt_concat_301) + opt_concat_307 = self.concat_307( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, + )) + module4_46_opt = self.module4_46(opt_concat_307) + opt_concat_313 = self.concat_313( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, + )) + module4_47_opt = self.module4_47(opt_concat_313) + opt_concat_319 = self.concat_319( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, + )) + module4_48_opt = self.module4_48(opt_concat_319) + opt_concat_325 = self.concat_325( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + )) + module4_49_opt = self.module4_49(opt_concat_325) + opt_concat_331 = self.concat_331( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + )) + module4_50_opt = self.module4_50(opt_concat_331) + opt_concat_337 = self.concat_337( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, + )) + module1_2_opt = self.module1_2(opt_concat_337) + opt_conv2d_340 = self.conv2d_340(module1_2_opt) + opt_avgpool2d_341 = self.pad_avgpool2d_341(opt_conv2d_340) + opt_avgpool2d_341 = self.avgpool2d_341(opt_avgpool2d_341) + module0_3_opt = self.module0_3(opt_avgpool2d_341) + opt_concat_348 = self.concat_348((opt_avgpool2d_341, module0_3_opt,)) + module4_51_opt = self.module4_51(opt_concat_348) + opt_concat_354 = self.concat_354((opt_avgpool2d_341, module0_3_opt, module4_51_opt,)) + module4_52_opt = self.module4_52(opt_concat_354) + opt_concat_360 = self.concat_360((opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt,)) + module4_53_opt = self.module4_53(opt_concat_360) + opt_concat_366 = self.concat_366( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, + )) + module4_54_opt = self.module4_54(opt_concat_366) + opt_concat_372 = self.concat_372( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + )) + module4_55_opt = self.module4_55(opt_concat_372) + opt_concat_378 = self.concat_378((opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, + module4_53_opt, module4_54_opt, module4_55_opt, + )) + module4_56_opt = self.module4_56(opt_concat_378) + opt_concat_384 = self.concat_384((opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, + module4_53_opt, module4_54_opt, module4_55_opt, module4_56_opt, + )) + module4_57_opt = self.module4_57(opt_concat_384) + opt_concat_390 = self.concat_390( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, + )) + module4_58_opt = self.module4_58(opt_concat_390) + opt_concat_396 = self.concat_396( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, + )) + module4_59_opt = self.module4_59(opt_concat_396) + opt_concat_402 = self.concat_402( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, + )) + module4_60_opt = self.module4_60(opt_concat_402) + opt_concat_408 = self.concat_408( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + )) + module4_61_opt = self.module4_61(opt_concat_408) + opt_concat_414 = self.concat_414( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, + )) + module4_62_opt = self.module4_62(opt_concat_414) + opt_concat_420 = self.concat_420( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, + )) + module4_63_opt = self.module4_63(opt_concat_420) + opt_concat_426 = self.concat_426( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, + )) + module4_64_opt = self.module4_64(opt_concat_426) + opt_concat_432 = self.concat_432( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, + )) + module4_65_opt = self.module4_65(opt_concat_432) + opt_concat_438 = self.concat_438( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, + )) + module4_66_opt = self.module4_66(opt_concat_438) + opt_concat_444 = self.concat_444( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + )) + module4_67_opt = self.module4_67(opt_concat_444) + opt_concat_450 = self.concat_450( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, + )) + module4_68_opt = self.module4_68(opt_concat_450) + opt_concat_456 = self.concat_456( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, + )) + module4_69_opt = self.module4_69(opt_concat_456) + opt_concat_462 = self.concat_462( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, + )) + module4_70_opt = self.module4_70(opt_concat_462) + opt_concat_468 = self.concat_468( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, + )) + module4_71_opt = self.module4_71(opt_concat_468) + opt_concat_474 = self.concat_474( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, + )) + module4_72_opt = self.module4_72(opt_concat_474) + opt_concat_480 = self.concat_480( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + )) + module4_73_opt = self.module4_73(opt_concat_480) + opt_concat_486 = self.concat_486( + (opt_avgpool2d_341, module0_3_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + module4_55_opt, module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + module4_61_opt, module4_62_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, + )) + module1_3_opt = self.module1_3(opt_concat_486) + opt_avgpool2d_489 = self.avgpool2d_489(module1_3_opt) + opt_flatten_490 = self.flatten_490(opt_avgpool2d_489) + opt_dense_491 = self.dense_491(opt_flatten_490) + return opt_dense_491 diff --git a/research/cvtmodel/densenet/src/densenet169.py b/research/cvtmodel/densenet/src/densenet169.py new file mode 100644 index 0000000000000000000000000000000000000000..33b2f2fa80888ce4b2c872f31d6f6f618551544b --- /dev/null +++ b/research/cvtmodel/densenet/src/densenet169.py @@ -0,0 +1,1462 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module0(nn.Cell): + def __init__(self, batchnorm2d_1_num_features, conv2d_3_in_channels): + super(Module0, self).__init__() + self.concat_0 = P.Concat(axis=1) + self.batchnorm2d_1 = nn.BatchNorm2d(num_features=batchnorm2d_1_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_4 = nn.ReLU() + self.conv2d_5 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + opt_concat_0 = self.concat_0((x,)) + opt_batchnorm2d_1 = self.batchnorm2d_1(opt_concat_0) + opt_relu_2 = self.relu_2(opt_batchnorm2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_relu_4 = self.relu_4(opt_conv2d_3) + opt_conv2d_5 = self.conv2d_5(opt_relu_4) + return opt_conv2d_5 + + +class Module21(nn.Cell): + def __init__(self, batchnorm2d_0_num_features): + super(Module21, self).__init__() + self.batchnorm2d_0 = nn.BatchNorm2d(num_features=batchnorm2d_0_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_batchnorm2d_0 = self.batchnorm2d_0(x) + opt_relu_1 = self.relu_1(opt_batchnorm2d_0) + return opt_relu_1 + + +class Module24(nn.Cell): + def __init__(self, conv2d_0_in_channels, module21_0_batchnorm2d_0_num_features): + super(Module24, self).__init__() + self.module21_0 = Module21(batchnorm2d_0_num_features=module21_0_batchnorm2d_0_num_features) + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.conv2d_2 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + module21_0_opt = self.module21_0(x) + opt_conv2d_0 = self.conv2d_0(module21_0_opt) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_conv2d_2 = self.conv2d_2(opt_relu_1) + return opt_conv2d_2 + + +class Module26(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, module21_0_batchnorm2d_0_num_features): + super(Module26, self).__init__() + self.module21_0 = Module21(batchnorm2d_0_num_features=module21_0_batchnorm2d_0_num_features) + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + module21_0_opt = self.module21_0(x) + opt_conv2d_0 = self.conv2d_0(module21_0_opt) + return opt_conv2d_0 + + +class Module20(nn.Cell): + def __init__( + self, batchnorm2d_2_num_features, conv2d_4_in_channels, batchnorm2d_8_num_features, conv2d_10_in_channels, + batchnorm2d_14_num_features, conv2d_16_in_channels, batchnorm2d_20_num_features, conv2d_22_in_channels, + batchnorm2d_26_num_features, conv2d_28_in_channels, batchnorm2d_32_num_features, conv2d_34_in_channels, + batchnorm2d_38_num_features, conv2d_40_in_channels, batchnorm2d_44_num_features, conv2d_46_in_channels, + batchnorm2d_50_num_features, conv2d_52_in_channels, batchnorm2d_56_num_features, conv2d_58_in_channels, + batchnorm2d_62_num_features, conv2d_64_in_channels, batchnorm2d_68_num_features, conv2d_70_in_channels, + batchnorm2d_74_num_features, conv2d_76_in_channels, batchnorm2d_80_num_features, conv2d_82_in_channels, + batchnorm2d_86_num_features, conv2d_88_in_channels, batchnorm2d_92_num_features, conv2d_94_in_channels, + batchnorm2d_98_num_features, conv2d_100_in_channels, batchnorm2d_104_num_features, conv2d_106_in_channels, + batchnorm2d_110_num_features, conv2d_112_in_channels, batchnorm2d_116_num_features, conv2d_118_in_channels, + batchnorm2d_122_num_features, conv2d_124_in_channels, batchnorm2d_128_num_features, conv2d_130_in_channels, + batchnorm2d_134_num_features, conv2d_136_in_channels, batchnorm2d_140_num_features, conv2d_142_in_channels, + batchnorm2d_146_num_features, conv2d_148_in_channels, batchnorm2d_152_num_features, conv2d_154_in_channels, + batchnorm2d_158_num_features, conv2d_160_in_channels, batchnorm2d_164_num_features, conv2d_166_in_channels, + batchnorm2d_170_num_features, conv2d_172_in_channels, batchnorm2d_176_num_features, conv2d_178_in_channels, + batchnorm2d_182_num_features, conv2d_184_in_channels, module0_0_batchnorm2d_1_num_features, + module0_0_conv2d_3_in_channels): + super(Module20, self).__init__() + self.pad_avgpool2d_0 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_0 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_0 = Module0(batchnorm2d_1_num_features=module0_0_batchnorm2d_1_num_features, + conv2d_3_in_channels=module0_0_conv2d_3_in_channels) + self.concat_1 = P.Concat(axis=1) + self.batchnorm2d_2 = nn.BatchNorm2d(num_features=batchnorm2d_2_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_3 = nn.ReLU() + self.conv2d_4 = nn.Conv2d(in_channels=conv2d_4_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_5 = nn.ReLU() + self.conv2d_6 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_7 = P.Concat(axis=1) + self.batchnorm2d_8 = nn.BatchNorm2d(num_features=batchnorm2d_8_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_9 = nn.ReLU() + self.conv2d_10 = nn.Conv2d(in_channels=conv2d_10_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_11 = nn.ReLU() + self.conv2d_12 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_13 = P.Concat(axis=1) + self.batchnorm2d_14 = nn.BatchNorm2d(num_features=batchnorm2d_14_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_15 = nn.ReLU() + self.conv2d_16 = nn.Conv2d(in_channels=conv2d_16_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_17 = nn.ReLU() + self.conv2d_18 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_19 = P.Concat(axis=1) + self.batchnorm2d_20 = nn.BatchNorm2d(num_features=batchnorm2d_20_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_21 = nn.ReLU() + self.conv2d_22 = nn.Conv2d(in_channels=conv2d_22_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_23 = nn.ReLU() + self.conv2d_24 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_25 = P.Concat(axis=1) + self.batchnorm2d_26 = nn.BatchNorm2d(num_features=batchnorm2d_26_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_27 = nn.ReLU() + self.conv2d_28 = nn.Conv2d(in_channels=conv2d_28_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_29 = nn.ReLU() + self.conv2d_30 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_31 = P.Concat(axis=1) + self.batchnorm2d_32 = nn.BatchNorm2d(num_features=batchnorm2d_32_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_33 = nn.ReLU() + self.conv2d_34 = nn.Conv2d(in_channels=conv2d_34_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_35 = nn.ReLU() + self.conv2d_36 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_37 = P.Concat(axis=1) + self.batchnorm2d_38 = nn.BatchNorm2d(num_features=batchnorm2d_38_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_39 = nn.ReLU() + self.conv2d_40 = nn.Conv2d(in_channels=conv2d_40_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_41 = nn.ReLU() + self.conv2d_42 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_43 = P.Concat(axis=1) + self.batchnorm2d_44 = nn.BatchNorm2d(num_features=batchnorm2d_44_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_45 = nn.ReLU() + self.conv2d_46 = nn.Conv2d(in_channels=conv2d_46_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_47 = nn.ReLU() + self.conv2d_48 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_49 = P.Concat(axis=1) + self.batchnorm2d_50 = nn.BatchNorm2d(num_features=batchnorm2d_50_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_51 = nn.ReLU() + self.conv2d_52 = nn.Conv2d(in_channels=conv2d_52_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_53 = nn.ReLU() + self.conv2d_54 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_55 = P.Concat(axis=1) + self.batchnorm2d_56 = nn.BatchNorm2d(num_features=batchnorm2d_56_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_57 = nn.ReLU() + self.conv2d_58 = nn.Conv2d(in_channels=conv2d_58_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_59 = nn.ReLU() + self.conv2d_60 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_61 = P.Concat(axis=1) + self.batchnorm2d_62 = nn.BatchNorm2d(num_features=batchnorm2d_62_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_63 = nn.ReLU() + self.conv2d_64 = nn.Conv2d(in_channels=conv2d_64_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_65 = nn.ReLU() + self.conv2d_66 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_67 = P.Concat(axis=1) + self.batchnorm2d_68 = nn.BatchNorm2d(num_features=batchnorm2d_68_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_69 = nn.ReLU() + self.conv2d_70 = nn.Conv2d(in_channels=conv2d_70_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_71 = nn.ReLU() + self.conv2d_72 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_73 = P.Concat(axis=1) + self.batchnorm2d_74 = nn.BatchNorm2d(num_features=batchnorm2d_74_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_75 = nn.ReLU() + self.conv2d_76 = nn.Conv2d(in_channels=conv2d_76_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_77 = nn.ReLU() + self.conv2d_78 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_79 = P.Concat(axis=1) + self.batchnorm2d_80 = nn.BatchNorm2d(num_features=batchnorm2d_80_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_81 = nn.ReLU() + self.conv2d_82 = nn.Conv2d(in_channels=conv2d_82_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_83 = nn.ReLU() + self.conv2d_84 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_85 = P.Concat(axis=1) + self.batchnorm2d_86 = nn.BatchNorm2d(num_features=batchnorm2d_86_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_87 = nn.ReLU() + self.conv2d_88 = nn.Conv2d(in_channels=conv2d_88_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_89 = nn.ReLU() + self.conv2d_90 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_91 = P.Concat(axis=1) + self.batchnorm2d_92 = nn.BatchNorm2d(num_features=batchnorm2d_92_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_93 = nn.ReLU() + self.conv2d_94 = nn.Conv2d(in_channels=conv2d_94_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_95 = nn.ReLU() + self.conv2d_96 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_97 = P.Concat(axis=1) + self.batchnorm2d_98 = nn.BatchNorm2d(num_features=batchnorm2d_98_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_99 = nn.ReLU() + self.conv2d_100 = nn.Conv2d(in_channels=conv2d_100_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_101 = nn.ReLU() + self.conv2d_102 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_103 = P.Concat(axis=1) + self.batchnorm2d_104 = nn.BatchNorm2d(num_features=batchnorm2d_104_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_105 = nn.ReLU() + self.conv2d_106 = nn.Conv2d(in_channels=conv2d_106_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_107 = nn.ReLU() + self.conv2d_108 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_109 = P.Concat(axis=1) + self.batchnorm2d_110 = nn.BatchNorm2d(num_features=batchnorm2d_110_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_111 = nn.ReLU() + self.conv2d_112 = nn.Conv2d(in_channels=conv2d_112_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_113 = nn.ReLU() + self.conv2d_114 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_115 = P.Concat(axis=1) + self.batchnorm2d_116 = nn.BatchNorm2d(num_features=batchnorm2d_116_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_117 = nn.ReLU() + self.conv2d_118 = nn.Conv2d(in_channels=conv2d_118_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_119 = nn.ReLU() + self.conv2d_120 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_121 = P.Concat(axis=1) + self.batchnorm2d_122 = nn.BatchNorm2d(num_features=batchnorm2d_122_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_123 = nn.ReLU() + self.conv2d_124 = nn.Conv2d(in_channels=conv2d_124_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_125 = nn.ReLU() + self.conv2d_126 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_127 = P.Concat(axis=1) + self.batchnorm2d_128 = nn.BatchNorm2d(num_features=batchnorm2d_128_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_129 = nn.ReLU() + self.conv2d_130 = nn.Conv2d(in_channels=conv2d_130_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_131 = nn.ReLU() + self.conv2d_132 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_133 = P.Concat(axis=1) + self.batchnorm2d_134 = nn.BatchNorm2d(num_features=batchnorm2d_134_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_135 = nn.ReLU() + self.conv2d_136 = nn.Conv2d(in_channels=conv2d_136_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_137 = nn.ReLU() + self.conv2d_138 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_139 = P.Concat(axis=1) + self.batchnorm2d_140 = nn.BatchNorm2d(num_features=batchnorm2d_140_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_141 = nn.ReLU() + self.conv2d_142 = nn.Conv2d(in_channels=conv2d_142_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_143 = nn.ReLU() + self.conv2d_144 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_145 = P.Concat(axis=1) + self.batchnorm2d_146 = nn.BatchNorm2d(num_features=batchnorm2d_146_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_147 = nn.ReLU() + self.conv2d_148 = nn.Conv2d(in_channels=conv2d_148_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_149 = nn.ReLU() + self.conv2d_150 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_151 = P.Concat(axis=1) + self.batchnorm2d_152 = nn.BatchNorm2d(num_features=batchnorm2d_152_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_153 = nn.ReLU() + self.conv2d_154 = nn.Conv2d(in_channels=conv2d_154_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_155 = nn.ReLU() + self.conv2d_156 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_157 = P.Concat(axis=1) + self.batchnorm2d_158 = nn.BatchNorm2d(num_features=batchnorm2d_158_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_159 = nn.ReLU() + self.conv2d_160 = nn.Conv2d(in_channels=conv2d_160_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_161 = nn.ReLU() + self.conv2d_162 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_163 = P.Concat(axis=1) + self.batchnorm2d_164 = nn.BatchNorm2d(num_features=batchnorm2d_164_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_165 = nn.ReLU() + self.conv2d_166 = nn.Conv2d(in_channels=conv2d_166_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_167 = nn.ReLU() + self.conv2d_168 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_169 = P.Concat(axis=1) + self.batchnorm2d_170 = nn.BatchNorm2d(num_features=batchnorm2d_170_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_171 = nn.ReLU() + self.conv2d_172 = nn.Conv2d(in_channels=conv2d_172_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_173 = nn.ReLU() + self.conv2d_174 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_175 = P.Concat(axis=1) + self.batchnorm2d_176 = nn.BatchNorm2d(num_features=batchnorm2d_176_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_177 = nn.ReLU() + self.conv2d_178 = nn.Conv2d(in_channels=conv2d_178_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_179 = nn.ReLU() + self.conv2d_180 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_181 = P.Concat(axis=1) + self.batchnorm2d_182 = nn.BatchNorm2d(num_features=batchnorm2d_182_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_183 = nn.ReLU() + self.conv2d_184 = nn.Conv2d(in_channels=conv2d_184_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_185 = nn.ReLU() + self.conv2d_186 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + self.concat_187 = P.Concat(axis=1) + + def construct(self, x): + opt_avgpool2d_0 = self.pad_avgpool2d_0(x) + opt_avgpool2d_0 = self.avgpool2d_0(opt_avgpool2d_0) + module0_0_opt = self.module0_0(opt_avgpool2d_0) + opt_concat_1 = self.concat_1((opt_avgpool2d_0, module0_0_opt,)) + opt_batchnorm2d_2 = self.batchnorm2d_2(opt_concat_1) + opt_relu_3 = self.relu_3(opt_batchnorm2d_2) + opt_conv2d_4 = self.conv2d_4(opt_relu_3) + opt_relu_5 = self.relu_5(opt_conv2d_4) + opt_conv2d_6 = self.conv2d_6(opt_relu_5) + opt_concat_7 = self.concat_7((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6,)) + opt_batchnorm2d_8 = self.batchnorm2d_8(opt_concat_7) + opt_relu_9 = self.relu_9(opt_batchnorm2d_8) + opt_conv2d_10 = self.conv2d_10(opt_relu_9) + opt_relu_11 = self.relu_11(opt_conv2d_10) + opt_conv2d_12 = self.conv2d_12(opt_relu_11) + opt_concat_13 = self.concat_13((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12,)) + opt_batchnorm2d_14 = self.batchnorm2d_14(opt_concat_13) + opt_relu_15 = self.relu_15(opt_batchnorm2d_14) + opt_conv2d_16 = self.conv2d_16(opt_relu_15) + opt_relu_17 = self.relu_17(opt_conv2d_16) + opt_conv2d_18 = self.conv2d_18(opt_relu_17) + opt_concat_19 = self.concat_19((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18,)) + opt_batchnorm2d_20 = self.batchnorm2d_20(opt_concat_19) + opt_relu_21 = self.relu_21(opt_batchnorm2d_20) + opt_conv2d_22 = self.conv2d_22(opt_relu_21) + opt_relu_23 = self.relu_23(opt_conv2d_22) + opt_conv2d_24 = self.conv2d_24(opt_relu_23) + opt_concat_25 = self.concat_25( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, + )) + opt_batchnorm2d_26 = self.batchnorm2d_26(opt_concat_25) + opt_relu_27 = self.relu_27(opt_batchnorm2d_26) + opt_conv2d_28 = self.conv2d_28(opt_relu_27) + opt_relu_29 = self.relu_29(opt_conv2d_28) + opt_conv2d_30 = self.conv2d_30(opt_relu_29) + opt_concat_31 = self.concat_31( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + )) + opt_batchnorm2d_32 = self.batchnorm2d_32(opt_concat_31) + opt_relu_33 = self.relu_33(opt_batchnorm2d_32) + opt_conv2d_34 = self.conv2d_34(opt_relu_33) + opt_relu_35 = self.relu_35(opt_conv2d_34) + opt_conv2d_36 = self.conv2d_36(opt_relu_35) + opt_concat_37 = self.concat_37((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, + opt_conv2d_24, opt_conv2d_30, opt_conv2d_36, + )) + opt_batchnorm2d_38 = self.batchnorm2d_38(opt_concat_37) + opt_relu_39 = self.relu_39(opt_batchnorm2d_38) + opt_conv2d_40 = self.conv2d_40(opt_relu_39) + opt_relu_41 = self.relu_41(opt_conv2d_40) + opt_conv2d_42 = self.conv2d_42(opt_relu_41) + opt_concat_43 = self.concat_43((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, + opt_conv2d_24, opt_conv2d_30, opt_conv2d_36, opt_conv2d_42, + )) + opt_batchnorm2d_44 = self.batchnorm2d_44(opt_concat_43) + opt_relu_45 = self.relu_45(opt_batchnorm2d_44) + opt_conv2d_46 = self.conv2d_46(opt_relu_45) + opt_relu_47 = self.relu_47(opt_conv2d_46) + opt_conv2d_48 = self.conv2d_48(opt_relu_47) + opt_concat_49 = self.concat_49((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, + opt_conv2d_24, opt_conv2d_30, opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, + )) + opt_batchnorm2d_50 = self.batchnorm2d_50(opt_concat_49) + opt_relu_51 = self.relu_51(opt_batchnorm2d_50) + opt_conv2d_52 = self.conv2d_52(opt_relu_51) + opt_relu_53 = self.relu_53(opt_conv2d_52) + opt_conv2d_54 = self.conv2d_54(opt_relu_53) + opt_concat_55 = self.concat_55( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, + )) + opt_batchnorm2d_56 = self.batchnorm2d_56(opt_concat_55) + opt_relu_57 = self.relu_57(opt_batchnorm2d_56) + opt_conv2d_58 = self.conv2d_58(opt_relu_57) + opt_relu_59 = self.relu_59(opt_conv2d_58) + opt_conv2d_60 = self.conv2d_60(opt_relu_59) + opt_concat_61 = self.concat_61( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, + )) + opt_batchnorm2d_62 = self.batchnorm2d_62(opt_concat_61) + opt_relu_63 = self.relu_63(opt_batchnorm2d_62) + opt_conv2d_64 = self.conv2d_64(opt_relu_63) + opt_relu_65 = self.relu_65(opt_conv2d_64) + opt_conv2d_66 = self.conv2d_66(opt_relu_65) + opt_concat_67 = self.concat_67( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, + )) + opt_batchnorm2d_68 = self.batchnorm2d_68(opt_concat_67) + opt_relu_69 = self.relu_69(opt_batchnorm2d_68) + opt_conv2d_70 = self.conv2d_70(opt_relu_69) + opt_relu_71 = self.relu_71(opt_conv2d_70) + opt_conv2d_72 = self.conv2d_72(opt_relu_71) + opt_concat_73 = self.concat_73( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + )) + opt_batchnorm2d_74 = self.batchnorm2d_74(opt_concat_73) + opt_relu_75 = self.relu_75(opt_batchnorm2d_74) + opt_conv2d_76 = self.conv2d_76(opt_relu_75) + opt_relu_77 = self.relu_77(opt_conv2d_76) + opt_conv2d_78 = self.conv2d_78(opt_relu_77) + opt_concat_79 = self.concat_79((opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, + opt_conv2d_24, opt_conv2d_30, opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, + opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, opt_conv2d_78, + )) + opt_batchnorm2d_80 = self.batchnorm2d_80(opt_concat_79) + opt_relu_81 = self.relu_81(opt_batchnorm2d_80) + opt_conv2d_82 = self.conv2d_82(opt_relu_81) + opt_relu_83 = self.relu_83(opt_conv2d_82) + opt_conv2d_84 = self.conv2d_84(opt_relu_83) + opt_concat_85 = self.concat_85( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, + )) + opt_batchnorm2d_86 = self.batchnorm2d_86(opt_concat_85) + opt_relu_87 = self.relu_87(opt_batchnorm2d_86) + opt_conv2d_88 = self.conv2d_88(opt_relu_87) + opt_relu_89 = self.relu_89(opt_conv2d_88) + opt_conv2d_90 = self.conv2d_90(opt_relu_89) + opt_concat_91 = self.concat_91( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, + )) + opt_batchnorm2d_92 = self.batchnorm2d_92(opt_concat_91) + opt_relu_93 = self.relu_93(opt_batchnorm2d_92) + opt_conv2d_94 = self.conv2d_94(opt_relu_93) + opt_relu_95 = self.relu_95(opt_conv2d_94) + opt_conv2d_96 = self.conv2d_96(opt_relu_95) + opt_concat_97 = self.concat_97( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, + )) + opt_batchnorm2d_98 = self.batchnorm2d_98(opt_concat_97) + opt_relu_99 = self.relu_99(opt_batchnorm2d_98) + opt_conv2d_100 = self.conv2d_100(opt_relu_99) + opt_relu_101 = self.relu_101(opt_conv2d_100) + opt_conv2d_102 = self.conv2d_102(opt_relu_101) + opt_concat_103 = self.concat_103( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, + )) + opt_batchnorm2d_104 = self.batchnorm2d_104(opt_concat_103) + opt_relu_105 = self.relu_105(opt_batchnorm2d_104) + opt_conv2d_106 = self.conv2d_106(opt_relu_105) + opt_relu_107 = self.relu_107(opt_conv2d_106) + opt_conv2d_108 = self.conv2d_108(opt_relu_107) + opt_concat_109 = self.concat_109( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, + )) + opt_batchnorm2d_110 = self.batchnorm2d_110(opt_concat_109) + opt_relu_111 = self.relu_111(opt_batchnorm2d_110) + opt_conv2d_112 = self.conv2d_112(opt_relu_111) + opt_relu_113 = self.relu_113(opt_conv2d_112) + opt_conv2d_114 = self.conv2d_114(opt_relu_113) + opt_concat_115 = self.concat_115( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + )) + opt_batchnorm2d_116 = self.batchnorm2d_116(opt_concat_115) + opt_relu_117 = self.relu_117(opt_batchnorm2d_116) + opt_conv2d_118 = self.conv2d_118(opt_relu_117) + opt_relu_119 = self.relu_119(opt_conv2d_118) + opt_conv2d_120 = self.conv2d_120(opt_relu_119) + opt_concat_121 = self.concat_121( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, + )) + opt_batchnorm2d_122 = self.batchnorm2d_122(opt_concat_121) + opt_relu_123 = self.relu_123(opt_batchnorm2d_122) + opt_conv2d_124 = self.conv2d_124(opt_relu_123) + opt_relu_125 = self.relu_125(opt_conv2d_124) + opt_conv2d_126 = self.conv2d_126(opt_relu_125) + opt_concat_127 = self.concat_127( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, + )) + opt_batchnorm2d_128 = self.batchnorm2d_128(opt_concat_127) + opt_relu_129 = self.relu_129(opt_batchnorm2d_128) + opt_conv2d_130 = self.conv2d_130(opt_relu_129) + opt_relu_131 = self.relu_131(opt_conv2d_130) + opt_conv2d_132 = self.conv2d_132(opt_relu_131) + opt_concat_133 = self.concat_133( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, + )) + opt_batchnorm2d_134 = self.batchnorm2d_134(opt_concat_133) + opt_relu_135 = self.relu_135(opt_batchnorm2d_134) + opt_conv2d_136 = self.conv2d_136(opt_relu_135) + opt_relu_137 = self.relu_137(opt_conv2d_136) + opt_conv2d_138 = self.conv2d_138(opt_relu_137) + opt_concat_139 = self.concat_139( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, + )) + opt_batchnorm2d_140 = self.batchnorm2d_140(opt_concat_139) + opt_relu_141 = self.relu_141(opt_batchnorm2d_140) + opt_conv2d_142 = self.conv2d_142(opt_relu_141) + opt_relu_143 = self.relu_143(opt_conv2d_142) + opt_conv2d_144 = self.conv2d_144(opt_relu_143) + opt_concat_145 = self.concat_145( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, + )) + opt_batchnorm2d_146 = self.batchnorm2d_146(opt_concat_145) + opt_relu_147 = self.relu_147(opt_batchnorm2d_146) + opt_conv2d_148 = self.conv2d_148(opt_relu_147) + opt_relu_149 = self.relu_149(opt_conv2d_148) + opt_conv2d_150 = self.conv2d_150(opt_relu_149) + opt_concat_151 = self.concat_151( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + )) + opt_batchnorm2d_152 = self.batchnorm2d_152(opt_concat_151) + opt_relu_153 = self.relu_153(opt_batchnorm2d_152) + opt_conv2d_154 = self.conv2d_154(opt_relu_153) + opt_relu_155 = self.relu_155(opt_conv2d_154) + opt_conv2d_156 = self.conv2d_156(opt_relu_155) + opt_concat_157 = self.concat_157( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + opt_conv2d_156, + )) + opt_batchnorm2d_158 = self.batchnorm2d_158(opt_concat_157) + opt_relu_159 = self.relu_159(opt_batchnorm2d_158) + opt_conv2d_160 = self.conv2d_160(opt_relu_159) + opt_relu_161 = self.relu_161(opt_conv2d_160) + opt_conv2d_162 = self.conv2d_162(opt_relu_161) + opt_concat_163 = self.concat_163( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + opt_conv2d_156, opt_conv2d_162, + )) + opt_batchnorm2d_164 = self.batchnorm2d_164(opt_concat_163) + opt_relu_165 = self.relu_165(opt_batchnorm2d_164) + opt_conv2d_166 = self.conv2d_166(opt_relu_165) + opt_relu_167 = self.relu_167(opt_conv2d_166) + opt_conv2d_168 = self.conv2d_168(opt_relu_167) + opt_concat_169 = self.concat_169( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + opt_conv2d_156, opt_conv2d_162, opt_conv2d_168, + )) + opt_batchnorm2d_170 = self.batchnorm2d_170(opt_concat_169) + opt_relu_171 = self.relu_171(opt_batchnorm2d_170) + opt_conv2d_172 = self.conv2d_172(opt_relu_171) + opt_relu_173 = self.relu_173(opt_conv2d_172) + opt_conv2d_174 = self.conv2d_174(opt_relu_173) + opt_concat_175 = self.concat_175( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + opt_conv2d_156, opt_conv2d_162, opt_conv2d_168, opt_conv2d_174, + )) + opt_batchnorm2d_176 = self.batchnorm2d_176(opt_concat_175) + opt_relu_177 = self.relu_177(opt_batchnorm2d_176) + opt_conv2d_178 = self.conv2d_178(opt_relu_177) + opt_relu_179 = self.relu_179(opt_conv2d_178) + opt_conv2d_180 = self.conv2d_180(opt_relu_179) + opt_concat_181 = self.concat_181( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + opt_conv2d_156, opt_conv2d_162, opt_conv2d_168, opt_conv2d_174, opt_conv2d_180, + )) + opt_batchnorm2d_182 = self.batchnorm2d_182(opt_concat_181) + opt_relu_183 = self.relu_183(opt_batchnorm2d_182) + opt_conv2d_184 = self.conv2d_184(opt_relu_183) + opt_relu_185 = self.relu_185(opt_conv2d_184) + opt_conv2d_186 = self.conv2d_186(opt_relu_185) + opt_concat_187 = self.concat_187( + (opt_avgpool2d_0, module0_0_opt, opt_conv2d_6, opt_conv2d_12, opt_conv2d_18, opt_conv2d_24, opt_conv2d_30, + opt_conv2d_36, opt_conv2d_42, opt_conv2d_48, opt_conv2d_54, opt_conv2d_60, opt_conv2d_66, opt_conv2d_72, + opt_conv2d_78, opt_conv2d_84, opt_conv2d_90, opt_conv2d_96, opt_conv2d_102, opt_conv2d_108, opt_conv2d_114, + opt_conv2d_120, opt_conv2d_126, opt_conv2d_132, opt_conv2d_138, opt_conv2d_144, opt_conv2d_150, + opt_conv2d_156, opt_conv2d_162, opt_conv2d_168, opt_conv2d_174, opt_conv2d_180, opt_conv2d_186, + )) + return opt_concat_187 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(7, 7), + stride=(2, 2), + padding=(3, 3, 3, 3), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.pad_maxpool2d_2 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module0_0 = Module0(batchnorm2d_1_num_features=64, conv2d_3_in_channels=64) + self.concat_9 = P.Concat(axis=1) + self.module24_0 = Module24(conv2d_0_in_channels=96, module21_0_batchnorm2d_0_num_features=96) + self.concat_15 = P.Concat(axis=1) + self.module24_1 = Module24(conv2d_0_in_channels=128, module21_0_batchnorm2d_0_num_features=128) + self.concat_21 = P.Concat(axis=1) + self.module24_2 = Module24(conv2d_0_in_channels=160, module21_0_batchnorm2d_0_num_features=160) + self.concat_27 = P.Concat(axis=1) + self.module24_3 = Module24(conv2d_0_in_channels=192, module21_0_batchnorm2d_0_num_features=192) + self.concat_33 = P.Concat(axis=1) + self.module24_4 = Module24(conv2d_0_in_channels=224, module21_0_batchnorm2d_0_num_features=224) + self.concat_39 = P.Concat(axis=1) + self.module26_0 = Module26(conv2d_0_in_channels=256, + conv2d_0_out_channels=128, + module21_0_batchnorm2d_0_num_features=256) + self.pad_avgpool2d_43 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_43 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_1 = Module0(batchnorm2d_1_num_features=128, conv2d_3_in_channels=128) + self.concat_50 = P.Concat(axis=1) + self.module24_5 = Module24(conv2d_0_in_channels=160, module21_0_batchnorm2d_0_num_features=160) + self.concat_56 = P.Concat(axis=1) + self.module24_6 = Module24(conv2d_0_in_channels=192, module21_0_batchnorm2d_0_num_features=192) + self.concat_62 = P.Concat(axis=1) + self.module24_7 = Module24(conv2d_0_in_channels=224, module21_0_batchnorm2d_0_num_features=224) + self.concat_68 = P.Concat(axis=1) + self.module24_8 = Module24(conv2d_0_in_channels=256, module21_0_batchnorm2d_0_num_features=256) + self.concat_74 = P.Concat(axis=1) + self.module24_9 = Module24(conv2d_0_in_channels=288, module21_0_batchnorm2d_0_num_features=288) + self.concat_80 = P.Concat(axis=1) + self.module24_10 = Module24(conv2d_0_in_channels=320, module21_0_batchnorm2d_0_num_features=320) + self.concat_86 = P.Concat(axis=1) + self.module24_11 = Module24(conv2d_0_in_channels=352, module21_0_batchnorm2d_0_num_features=352) + self.concat_92 = P.Concat(axis=1) + self.module24_12 = Module24(conv2d_0_in_channels=384, module21_0_batchnorm2d_0_num_features=384) + self.concat_98 = P.Concat(axis=1) + self.module24_13 = Module24(conv2d_0_in_channels=416, module21_0_batchnorm2d_0_num_features=416) + self.concat_104 = P.Concat(axis=1) + self.module24_14 = Module24(conv2d_0_in_channels=448, module21_0_batchnorm2d_0_num_features=448) + self.concat_110 = P.Concat(axis=1) + self.module24_15 = Module24(conv2d_0_in_channels=480, module21_0_batchnorm2d_0_num_features=480) + self.concat_116 = P.Concat(axis=1) + self.module26_1 = Module26(conv2d_0_in_channels=512, + conv2d_0_out_channels=256, + module21_0_batchnorm2d_0_num_features=512) + self.module20_0 = Module20(batchnorm2d_2_num_features=288, + conv2d_4_in_channels=288, + batchnorm2d_8_num_features=320, + conv2d_10_in_channels=320, + batchnorm2d_14_num_features=352, + conv2d_16_in_channels=352, + batchnorm2d_20_num_features=384, + conv2d_22_in_channels=384, + batchnorm2d_26_num_features=416, + conv2d_28_in_channels=416, + batchnorm2d_32_num_features=448, + conv2d_34_in_channels=448, + batchnorm2d_38_num_features=480, + conv2d_40_in_channels=480, + batchnorm2d_44_num_features=512, + conv2d_46_in_channels=512, + batchnorm2d_50_num_features=544, + conv2d_52_in_channels=544, + batchnorm2d_56_num_features=576, + conv2d_58_in_channels=576, + batchnorm2d_62_num_features=608, + conv2d_64_in_channels=608, + batchnorm2d_68_num_features=640, + conv2d_70_in_channels=640, + batchnorm2d_74_num_features=672, + conv2d_76_in_channels=672, + batchnorm2d_80_num_features=704, + conv2d_82_in_channels=704, + batchnorm2d_86_num_features=736, + conv2d_88_in_channels=736, + batchnorm2d_92_num_features=768, + conv2d_94_in_channels=768, + batchnorm2d_98_num_features=800, + conv2d_100_in_channels=800, + batchnorm2d_104_num_features=832, + conv2d_106_in_channels=832, + batchnorm2d_110_num_features=864, + conv2d_112_in_channels=864, + batchnorm2d_116_num_features=896, + conv2d_118_in_channels=896, + batchnorm2d_122_num_features=928, + conv2d_124_in_channels=928, + batchnorm2d_128_num_features=960, + conv2d_130_in_channels=960, + batchnorm2d_134_num_features=992, + conv2d_136_in_channels=992, + batchnorm2d_140_num_features=1024, + conv2d_142_in_channels=1024, + batchnorm2d_146_num_features=1056, + conv2d_148_in_channels=1056, + batchnorm2d_152_num_features=1088, + conv2d_154_in_channels=1088, + batchnorm2d_158_num_features=1120, + conv2d_160_in_channels=1120, + batchnorm2d_164_num_features=1152, + conv2d_166_in_channels=1152, + batchnorm2d_170_num_features=1184, + conv2d_172_in_channels=1184, + batchnorm2d_176_num_features=1216, + conv2d_178_in_channels=1216, + batchnorm2d_182_num_features=1248, + conv2d_184_in_channels=1248, + module0_0_batchnorm2d_1_num_features=256, + module0_0_conv2d_3_in_channels=256) + self.module26_2 = Module26(conv2d_0_in_channels=1280, + conv2d_0_out_channels=640, + module21_0_batchnorm2d_0_num_features=1280) + self.module20_1 = Module20(batchnorm2d_2_num_features=672, + conv2d_4_in_channels=672, + batchnorm2d_8_num_features=704, + conv2d_10_in_channels=704, + batchnorm2d_14_num_features=736, + conv2d_16_in_channels=736, + batchnorm2d_20_num_features=768, + conv2d_22_in_channels=768, + batchnorm2d_26_num_features=800, + conv2d_28_in_channels=800, + batchnorm2d_32_num_features=832, + conv2d_34_in_channels=832, + batchnorm2d_38_num_features=864, + conv2d_40_in_channels=864, + batchnorm2d_44_num_features=896, + conv2d_46_in_channels=896, + batchnorm2d_50_num_features=928, + conv2d_52_in_channels=928, + batchnorm2d_56_num_features=960, + conv2d_58_in_channels=960, + batchnorm2d_62_num_features=992, + conv2d_64_in_channels=992, + batchnorm2d_68_num_features=1024, + conv2d_70_in_channels=1024, + batchnorm2d_74_num_features=1056, + conv2d_76_in_channels=1056, + batchnorm2d_80_num_features=1088, + conv2d_82_in_channels=1088, + batchnorm2d_86_num_features=1120, + conv2d_88_in_channels=1120, + batchnorm2d_92_num_features=1152, + conv2d_94_in_channels=1152, + batchnorm2d_98_num_features=1184, + conv2d_100_in_channels=1184, + batchnorm2d_104_num_features=1216, + conv2d_106_in_channels=1216, + batchnorm2d_110_num_features=1248, + conv2d_112_in_channels=1248, + batchnorm2d_116_num_features=1280, + conv2d_118_in_channels=1280, + batchnorm2d_122_num_features=1312, + conv2d_124_in_channels=1312, + batchnorm2d_128_num_features=1344, + conv2d_130_in_channels=1344, + batchnorm2d_134_num_features=1376, + conv2d_136_in_channels=1376, + batchnorm2d_140_num_features=1408, + conv2d_142_in_channels=1408, + batchnorm2d_146_num_features=1440, + conv2d_148_in_channels=1440, + batchnorm2d_152_num_features=1472, + conv2d_154_in_channels=1472, + batchnorm2d_158_num_features=1504, + conv2d_160_in_channels=1504, + batchnorm2d_164_num_features=1536, + conv2d_166_in_channels=1536, + batchnorm2d_170_num_features=1568, + conv2d_172_in_channels=1568, + batchnorm2d_176_num_features=1600, + conv2d_178_in_channels=1600, + batchnorm2d_182_num_features=1632, + conv2d_184_in_channels=1632, + module0_0_batchnorm2d_1_num_features=640, + module0_0_conv2d_3_in_channels=640) + self.module21_0 = Module21(batchnorm2d_0_num_features=1664) + self.avgpool2d_513 = nn.AvgPool2d(kernel_size=(7, 7)) + self.flatten_514 = nn.Flatten() + self.dense_515 = nn.Dense(in_channels=1664, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_maxpool2d_2 = self.pad_maxpool2d_2(opt_relu_1) + opt_maxpool2d_2 = self.maxpool2d_2(opt_maxpool2d_2) + module0_0_opt = self.module0_0(opt_maxpool2d_2) + opt_concat_9 = self.concat_9((opt_maxpool2d_2, module0_0_opt,)) + module24_0_opt = self.module24_0(opt_concat_9) + opt_concat_15 = self.concat_15((opt_maxpool2d_2, module0_0_opt, module24_0_opt,)) + module24_1_opt = self.module24_1(opt_concat_15) + opt_concat_21 = self.concat_21((opt_maxpool2d_2, module0_0_opt, module24_0_opt, module24_1_opt,)) + module24_2_opt = self.module24_2(opt_concat_21) + opt_concat_27 = self.concat_27((opt_maxpool2d_2, module0_0_opt, module24_0_opt, module24_1_opt, module24_2_opt, + )) + module24_3_opt = self.module24_3(opt_concat_27) + opt_concat_33 = self.concat_33( + (opt_maxpool2d_2, module0_0_opt, module24_0_opt, module24_1_opt, module24_2_opt, module24_3_opt, + )) + module24_4_opt = self.module24_4(opt_concat_33) + opt_concat_39 = self.concat_39((opt_maxpool2d_2, module0_0_opt, module24_0_opt, module24_1_opt, module24_2_opt, + module24_3_opt, module24_4_opt, + )) + module26_0_opt = self.module26_0(opt_concat_39) + opt_avgpool2d_43 = self.pad_avgpool2d_43(module26_0_opt) + opt_avgpool2d_43 = self.avgpool2d_43(opt_avgpool2d_43) + module0_1_opt = self.module0_1(opt_avgpool2d_43) + opt_concat_50 = self.concat_50((opt_avgpool2d_43, module0_1_opt,)) + module24_5_opt = self.module24_5(opt_concat_50) + opt_concat_56 = self.concat_56((opt_avgpool2d_43, module0_1_opt, module24_5_opt,)) + module24_6_opt = self.module24_6(opt_concat_56) + opt_concat_62 = self.concat_62((opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt,)) + module24_7_opt = self.module24_7(opt_concat_62) + opt_concat_68 = self.concat_68((opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, + )) + module24_8_opt = self.module24_8(opt_concat_68) + opt_concat_74 = self.concat_74( + (opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, module24_8_opt, + )) + module24_9_opt = self.module24_9(opt_concat_74) + opt_concat_80 = self.concat_80((opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, + module24_8_opt, module24_9_opt, + )) + module24_10_opt = self.module24_10(opt_concat_80) + opt_concat_86 = self.concat_86((opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, + module24_8_opt, module24_9_opt, module24_10_opt, + )) + module24_11_opt = self.module24_11(opt_concat_86) + opt_concat_92 = self.concat_92((opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, + module24_8_opt, module24_9_opt, module24_10_opt, module24_11_opt, + )) + module24_12_opt = self.module24_12(opt_concat_92) + opt_concat_98 = self.concat_98( + (opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, module24_8_opt, + module24_9_opt, module24_10_opt, module24_11_opt, module24_12_opt, + )) + module24_13_opt = self.module24_13(opt_concat_98) + opt_concat_104 = self.concat_104( + (opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, module24_8_opt, + module24_9_opt, module24_10_opt, module24_11_opt, module24_12_opt, module24_13_opt, + )) + module24_14_opt = self.module24_14(opt_concat_104) + opt_concat_110 = self.concat_110( + (opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, module24_8_opt, + module24_9_opt, module24_10_opt, module24_11_opt, module24_12_opt, module24_13_opt, module24_14_opt, + )) + module24_15_opt = self.module24_15(opt_concat_110) + opt_concat_116 = self.concat_116( + (opt_avgpool2d_43, module0_1_opt, module24_5_opt, module24_6_opt, module24_7_opt, module24_8_opt, + module24_9_opt, module24_10_opt, module24_11_opt, module24_12_opt, module24_13_opt, module24_14_opt, + module24_15_opt, + )) + module26_1_opt = self.module26_1(opt_concat_116) + module20_0_opt = self.module20_0(module26_1_opt) + module26_2_opt = self.module26_2(module20_0_opt) + module20_1_opt = self.module20_1(module26_2_opt) + module21_0_opt = self.module21_0(module20_1_opt) + opt_avgpool2d_513 = self.avgpool2d_513(module21_0_opt) + opt_flatten_514 = self.flatten_514(opt_avgpool2d_513) + opt_dense_515 = self.dense_515(opt_flatten_514) + return opt_dense_515 diff --git a/research/cvtmodel/densenet/src/densenet201.py b/research/cvtmodel/densenet/src/densenet201.py new file mode 100644 index 0000000000000000000000000000000000000000..644b3e826b1f4e46cee9203e3467e4fac4eb4a70 --- /dev/null +++ b/research/cvtmodel/densenet/src/densenet201.py @@ -0,0 +1,975 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module0(nn.Cell): + def __init__(self, batchnorm2d_1_num_features, conv2d_3_in_channels): + super(Module0, self).__init__() + self.concat_0 = P.Concat(axis=1) + self.batchnorm2d_1 = nn.BatchNorm2d(num_features=batchnorm2d_1_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_4 = nn.ReLU() + self.conv2d_5 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + opt_concat_0 = self.concat_0((x,)) + opt_batchnorm2d_1 = self.batchnorm2d_1(opt_concat_0) + opt_relu_2 = self.relu_2(opt_batchnorm2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_relu_4 = self.relu_4(opt_conv2d_3) + opt_conv2d_5 = self.conv2d_5(opt_relu_4) + return opt_conv2d_5 + + +class Module1(nn.Cell): + def __init__(self, batchnorm2d_0_num_features): + super(Module1, self).__init__() + self.batchnorm2d_0 = nn.BatchNorm2d(num_features=batchnorm2d_0_num_features, + eps=9.999999747378752e-06, + momentum=0.8999999761581421) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_batchnorm2d_0 = self.batchnorm2d_0(x) + opt_relu_1 = self.relu_1(opt_batchnorm2d_0) + return opt_relu_1 + + +class Module4(nn.Cell): + def __init__(self, conv2d_0_in_channels, module1_0_batchnorm2d_0_num_features): + super(Module4, self).__init__() + self.module1_0 = Module1(batchnorm2d_0_num_features=module1_0_batchnorm2d_0_num_features) + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.conv2d_2 = nn.Conv2d(in_channels=128, + out_channels=32, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=False) + + def construct(self, x): + module1_0_opt = self.module1_0(x) + opt_conv2d_0 = self.conv2d_0(module1_0_opt) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_conv2d_2 = self.conv2d_2(opt_relu_1) + return opt_conv2d_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(7, 7), + stride=(2, 2), + padding=(3, 3, 3, 3), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.pad_maxpool2d_2 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module0_0 = Module0(batchnorm2d_1_num_features=64, conv2d_3_in_channels=64) + self.concat_9 = P.Concat(axis=1) + self.module4_0 = Module4(conv2d_0_in_channels=96, module1_0_batchnorm2d_0_num_features=96) + self.concat_15 = P.Concat(axis=1) + self.module4_1 = Module4(conv2d_0_in_channels=128, module1_0_batchnorm2d_0_num_features=128) + self.concat_21 = P.Concat(axis=1) + self.module4_2 = Module4(conv2d_0_in_channels=160, module1_0_batchnorm2d_0_num_features=160) + self.concat_27 = P.Concat(axis=1) + self.module4_3 = Module4(conv2d_0_in_channels=192, module1_0_batchnorm2d_0_num_features=192) + self.concat_33 = P.Concat(axis=1) + self.module4_4 = Module4(conv2d_0_in_channels=224, module1_0_batchnorm2d_0_num_features=224) + self.concat_39 = P.Concat(axis=1) + self.module1_0 = Module1(batchnorm2d_0_num_features=256) + self.conv2d_42 = nn.Conv2d(in_channels=256, + out_channels=128, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_43 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_43 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_1 = Module0(batchnorm2d_1_num_features=128, conv2d_3_in_channels=128) + self.concat_50 = P.Concat(axis=1) + self.module4_5 = Module4(conv2d_0_in_channels=160, module1_0_batchnorm2d_0_num_features=160) + self.concat_56 = P.Concat(axis=1) + self.module4_6 = Module4(conv2d_0_in_channels=192, module1_0_batchnorm2d_0_num_features=192) + self.concat_62 = P.Concat(axis=1) + self.module4_7 = Module4(conv2d_0_in_channels=224, module1_0_batchnorm2d_0_num_features=224) + self.concat_68 = P.Concat(axis=1) + self.module4_8 = Module4(conv2d_0_in_channels=256, module1_0_batchnorm2d_0_num_features=256) + self.concat_74 = P.Concat(axis=1) + self.module4_9 = Module4(conv2d_0_in_channels=288, module1_0_batchnorm2d_0_num_features=288) + self.concat_80 = P.Concat(axis=1) + self.module4_10 = Module4(conv2d_0_in_channels=320, module1_0_batchnorm2d_0_num_features=320) + self.concat_86 = P.Concat(axis=1) + self.module4_11 = Module4(conv2d_0_in_channels=352, module1_0_batchnorm2d_0_num_features=352) + self.concat_92 = P.Concat(axis=1) + self.module4_12 = Module4(conv2d_0_in_channels=384, module1_0_batchnorm2d_0_num_features=384) + self.concat_98 = P.Concat(axis=1) + self.module4_13 = Module4(conv2d_0_in_channels=416, module1_0_batchnorm2d_0_num_features=416) + self.concat_104 = P.Concat(axis=1) + self.module4_14 = Module4(conv2d_0_in_channels=448, module1_0_batchnorm2d_0_num_features=448) + self.concat_110 = P.Concat(axis=1) + self.module4_15 = Module4(conv2d_0_in_channels=480, module1_0_batchnorm2d_0_num_features=480) + self.concat_116 = P.Concat(axis=1) + self.module1_1 = Module1(batchnorm2d_0_num_features=512) + self.conv2d_119 = nn.Conv2d(in_channels=512, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_120 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_120 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_2 = Module0(batchnorm2d_1_num_features=256, conv2d_3_in_channels=256) + self.concat_127 = P.Concat(axis=1) + self.module4_16 = Module4(conv2d_0_in_channels=288, module1_0_batchnorm2d_0_num_features=288) + self.concat_133 = P.Concat(axis=1) + self.module4_17 = Module4(conv2d_0_in_channels=320, module1_0_batchnorm2d_0_num_features=320) + self.concat_139 = P.Concat(axis=1) + self.module4_18 = Module4(conv2d_0_in_channels=352, module1_0_batchnorm2d_0_num_features=352) + self.concat_145 = P.Concat(axis=1) + self.module4_19 = Module4(conv2d_0_in_channels=384, module1_0_batchnorm2d_0_num_features=384) + self.concat_151 = P.Concat(axis=1) + self.module4_20 = Module4(conv2d_0_in_channels=416, module1_0_batchnorm2d_0_num_features=416) + self.concat_157 = P.Concat(axis=1) + self.module4_21 = Module4(conv2d_0_in_channels=448, module1_0_batchnorm2d_0_num_features=448) + self.concat_163 = P.Concat(axis=1) + self.module4_22 = Module4(conv2d_0_in_channels=480, module1_0_batchnorm2d_0_num_features=480) + self.concat_169 = P.Concat(axis=1) + self.module4_23 = Module4(conv2d_0_in_channels=512, module1_0_batchnorm2d_0_num_features=512) + self.concat_175 = P.Concat(axis=1) + self.module4_24 = Module4(conv2d_0_in_channels=544, module1_0_batchnorm2d_0_num_features=544) + self.concat_181 = P.Concat(axis=1) + self.module4_25 = Module4(conv2d_0_in_channels=576, module1_0_batchnorm2d_0_num_features=576) + self.concat_187 = P.Concat(axis=1) + self.module4_26 = Module4(conv2d_0_in_channels=608, module1_0_batchnorm2d_0_num_features=608) + self.concat_193 = P.Concat(axis=1) + self.module4_27 = Module4(conv2d_0_in_channels=640, module1_0_batchnorm2d_0_num_features=640) + self.concat_199 = P.Concat(axis=1) + self.module4_28 = Module4(conv2d_0_in_channels=672, module1_0_batchnorm2d_0_num_features=672) + self.concat_205 = P.Concat(axis=1) + self.module4_29 = Module4(conv2d_0_in_channels=704, module1_0_batchnorm2d_0_num_features=704) + self.concat_211 = P.Concat(axis=1) + self.module4_30 = Module4(conv2d_0_in_channels=736, module1_0_batchnorm2d_0_num_features=736) + self.concat_217 = P.Concat(axis=1) + self.module4_31 = Module4(conv2d_0_in_channels=768, module1_0_batchnorm2d_0_num_features=768) + self.concat_223 = P.Concat(axis=1) + self.module4_32 = Module4(conv2d_0_in_channels=800, module1_0_batchnorm2d_0_num_features=800) + self.concat_229 = P.Concat(axis=1) + self.module4_33 = Module4(conv2d_0_in_channels=832, module1_0_batchnorm2d_0_num_features=832) + self.concat_235 = P.Concat(axis=1) + self.module4_34 = Module4(conv2d_0_in_channels=864, module1_0_batchnorm2d_0_num_features=864) + self.concat_241 = P.Concat(axis=1) + self.module4_35 = Module4(conv2d_0_in_channels=896, module1_0_batchnorm2d_0_num_features=896) + self.concat_247 = P.Concat(axis=1) + self.module4_36 = Module4(conv2d_0_in_channels=928, module1_0_batchnorm2d_0_num_features=928) + self.concat_253 = P.Concat(axis=1) + self.module4_37 = Module4(conv2d_0_in_channels=960, module1_0_batchnorm2d_0_num_features=960) + self.concat_259 = P.Concat(axis=1) + self.module4_38 = Module4(conv2d_0_in_channels=992, module1_0_batchnorm2d_0_num_features=992) + self.concat_265 = P.Concat(axis=1) + self.module4_39 = Module4(conv2d_0_in_channels=1024, module1_0_batchnorm2d_0_num_features=1024) + self.concat_271 = P.Concat(axis=1) + self.module4_40 = Module4(conv2d_0_in_channels=1056, module1_0_batchnorm2d_0_num_features=1056) + self.concat_277 = P.Concat(axis=1) + self.module4_41 = Module4(conv2d_0_in_channels=1088, module1_0_batchnorm2d_0_num_features=1088) + self.concat_283 = P.Concat(axis=1) + self.module4_42 = Module4(conv2d_0_in_channels=1120, module1_0_batchnorm2d_0_num_features=1120) + self.concat_289 = P.Concat(axis=1) + self.module4_43 = Module4(conv2d_0_in_channels=1152, module1_0_batchnorm2d_0_num_features=1152) + self.concat_295 = P.Concat(axis=1) + self.module4_44 = Module4(conv2d_0_in_channels=1184, module1_0_batchnorm2d_0_num_features=1184) + self.concat_301 = P.Concat(axis=1) + self.module4_45 = Module4(conv2d_0_in_channels=1216, module1_0_batchnorm2d_0_num_features=1216) + self.concat_307 = P.Concat(axis=1) + self.module4_46 = Module4(conv2d_0_in_channels=1248, module1_0_batchnorm2d_0_num_features=1248) + self.concat_313 = P.Concat(axis=1) + self.module4_47 = Module4(conv2d_0_in_channels=1280, module1_0_batchnorm2d_0_num_features=1280) + self.concat_319 = P.Concat(axis=1) + self.module4_48 = Module4(conv2d_0_in_channels=1312, module1_0_batchnorm2d_0_num_features=1312) + self.concat_325 = P.Concat(axis=1) + self.module4_49 = Module4(conv2d_0_in_channels=1344, module1_0_batchnorm2d_0_num_features=1344) + self.concat_331 = P.Concat(axis=1) + self.module4_50 = Module4(conv2d_0_in_channels=1376, module1_0_batchnorm2d_0_num_features=1376) + self.concat_337 = P.Concat(axis=1) + self.module4_51 = Module4(conv2d_0_in_channels=1408, module1_0_batchnorm2d_0_num_features=1408) + self.concat_343 = P.Concat(axis=1) + self.module4_52 = Module4(conv2d_0_in_channels=1440, module1_0_batchnorm2d_0_num_features=1440) + self.concat_349 = P.Concat(axis=1) + self.module4_53 = Module4(conv2d_0_in_channels=1472, module1_0_batchnorm2d_0_num_features=1472) + self.concat_355 = P.Concat(axis=1) + self.module4_54 = Module4(conv2d_0_in_channels=1504, module1_0_batchnorm2d_0_num_features=1504) + self.concat_361 = P.Concat(axis=1) + self.module4_55 = Module4(conv2d_0_in_channels=1536, module1_0_batchnorm2d_0_num_features=1536) + self.concat_367 = P.Concat(axis=1) + self.module4_56 = Module4(conv2d_0_in_channels=1568, module1_0_batchnorm2d_0_num_features=1568) + self.concat_373 = P.Concat(axis=1) + self.module4_57 = Module4(conv2d_0_in_channels=1600, module1_0_batchnorm2d_0_num_features=1600) + self.concat_379 = P.Concat(axis=1) + self.module4_58 = Module4(conv2d_0_in_channels=1632, module1_0_batchnorm2d_0_num_features=1632) + self.concat_385 = P.Concat(axis=1) + self.module4_59 = Module4(conv2d_0_in_channels=1664, module1_0_batchnorm2d_0_num_features=1664) + self.concat_391 = P.Concat(axis=1) + self.module4_60 = Module4(conv2d_0_in_channels=1696, module1_0_batchnorm2d_0_num_features=1696) + self.concat_397 = P.Concat(axis=1) + self.module4_61 = Module4(conv2d_0_in_channels=1728, module1_0_batchnorm2d_0_num_features=1728) + self.concat_403 = P.Concat(axis=1) + self.module4_62 = Module4(conv2d_0_in_channels=1760, module1_0_batchnorm2d_0_num_features=1760) + self.concat_409 = P.Concat(axis=1) + self.module1_2 = Module1(batchnorm2d_0_num_features=1792) + self.conv2d_412 = nn.Conv2d(in_channels=1792, + out_channels=896, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=False) + self.pad_avgpool2d_413 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_413 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.module0_3 = Module0(batchnorm2d_1_num_features=896, conv2d_3_in_channels=896) + self.concat_420 = P.Concat(axis=1) + self.module4_63 = Module4(conv2d_0_in_channels=928, module1_0_batchnorm2d_0_num_features=928) + self.concat_426 = P.Concat(axis=1) + self.module4_64 = Module4(conv2d_0_in_channels=960, module1_0_batchnorm2d_0_num_features=960) + self.concat_432 = P.Concat(axis=1) + self.module4_65 = Module4(conv2d_0_in_channels=992, module1_0_batchnorm2d_0_num_features=992) + self.concat_438 = P.Concat(axis=1) + self.module4_66 = Module4(conv2d_0_in_channels=1024, module1_0_batchnorm2d_0_num_features=1024) + self.concat_444 = P.Concat(axis=1) + self.module4_67 = Module4(conv2d_0_in_channels=1056, module1_0_batchnorm2d_0_num_features=1056) + self.concat_450 = P.Concat(axis=1) + self.module4_68 = Module4(conv2d_0_in_channels=1088, module1_0_batchnorm2d_0_num_features=1088) + self.concat_456 = P.Concat(axis=1) + self.module4_69 = Module4(conv2d_0_in_channels=1120, module1_0_batchnorm2d_0_num_features=1120) + self.concat_462 = P.Concat(axis=1) + self.module4_70 = Module4(conv2d_0_in_channels=1152, module1_0_batchnorm2d_0_num_features=1152) + self.concat_468 = P.Concat(axis=1) + self.module4_71 = Module4(conv2d_0_in_channels=1184, module1_0_batchnorm2d_0_num_features=1184) + self.concat_474 = P.Concat(axis=1) + self.module4_72 = Module4(conv2d_0_in_channels=1216, module1_0_batchnorm2d_0_num_features=1216) + self.concat_480 = P.Concat(axis=1) + self.module4_73 = Module4(conv2d_0_in_channels=1248, module1_0_batchnorm2d_0_num_features=1248) + self.concat_486 = P.Concat(axis=1) + self.module4_74 = Module4(conv2d_0_in_channels=1280, module1_0_batchnorm2d_0_num_features=1280) + self.concat_492 = P.Concat(axis=1) + self.module4_75 = Module4(conv2d_0_in_channels=1312, module1_0_batchnorm2d_0_num_features=1312) + self.concat_498 = P.Concat(axis=1) + self.module4_76 = Module4(conv2d_0_in_channels=1344, module1_0_batchnorm2d_0_num_features=1344) + self.concat_504 = P.Concat(axis=1) + self.module4_77 = Module4(conv2d_0_in_channels=1376, module1_0_batchnorm2d_0_num_features=1376) + self.concat_510 = P.Concat(axis=1) + self.module4_78 = Module4(conv2d_0_in_channels=1408, module1_0_batchnorm2d_0_num_features=1408) + self.concat_516 = P.Concat(axis=1) + self.module4_79 = Module4(conv2d_0_in_channels=1440, module1_0_batchnorm2d_0_num_features=1440) + self.concat_522 = P.Concat(axis=1) + self.module4_80 = Module4(conv2d_0_in_channels=1472, module1_0_batchnorm2d_0_num_features=1472) + self.concat_528 = P.Concat(axis=1) + self.module4_81 = Module4(conv2d_0_in_channels=1504, module1_0_batchnorm2d_0_num_features=1504) + self.concat_534 = P.Concat(axis=1) + self.module4_82 = Module4(conv2d_0_in_channels=1536, module1_0_batchnorm2d_0_num_features=1536) + self.concat_540 = P.Concat(axis=1) + self.module4_83 = Module4(conv2d_0_in_channels=1568, module1_0_batchnorm2d_0_num_features=1568) + self.concat_546 = P.Concat(axis=1) + self.module4_84 = Module4(conv2d_0_in_channels=1600, module1_0_batchnorm2d_0_num_features=1600) + self.concat_552 = P.Concat(axis=1) + self.module4_85 = Module4(conv2d_0_in_channels=1632, module1_0_batchnorm2d_0_num_features=1632) + self.concat_558 = P.Concat(axis=1) + self.module4_86 = Module4(conv2d_0_in_channels=1664, module1_0_batchnorm2d_0_num_features=1664) + self.concat_564 = P.Concat(axis=1) + self.module4_87 = Module4(conv2d_0_in_channels=1696, module1_0_batchnorm2d_0_num_features=1696) + self.concat_570 = P.Concat(axis=1) + self.module4_88 = Module4(conv2d_0_in_channels=1728, module1_0_batchnorm2d_0_num_features=1728) + self.concat_576 = P.Concat(axis=1) + self.module4_89 = Module4(conv2d_0_in_channels=1760, module1_0_batchnorm2d_0_num_features=1760) + self.concat_582 = P.Concat(axis=1) + self.module4_90 = Module4(conv2d_0_in_channels=1792, module1_0_batchnorm2d_0_num_features=1792) + self.concat_588 = P.Concat(axis=1) + self.module4_91 = Module4(conv2d_0_in_channels=1824, module1_0_batchnorm2d_0_num_features=1824) + self.concat_594 = P.Concat(axis=1) + self.module4_92 = Module4(conv2d_0_in_channels=1856, module1_0_batchnorm2d_0_num_features=1856) + self.concat_600 = P.Concat(axis=1) + self.module4_93 = Module4(conv2d_0_in_channels=1888, module1_0_batchnorm2d_0_num_features=1888) + self.concat_606 = P.Concat(axis=1) + self.module1_3 = Module1(batchnorm2d_0_num_features=1920) + self.avgpool2d_609 = nn.AvgPool2d(kernel_size=(7, 7)) + self.flatten_610 = nn.Flatten() + self.dense_611 = nn.Dense(in_channels=1920, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_maxpool2d_2 = self.pad_maxpool2d_2(opt_relu_1) + opt_maxpool2d_2 = self.maxpool2d_2(opt_maxpool2d_2) + module0_0_opt = self.module0_0(opt_maxpool2d_2) + opt_concat_9 = self.concat_9((opt_maxpool2d_2, module0_0_opt,)) + module4_0_opt = self.module4_0(opt_concat_9) + opt_concat_15 = self.concat_15((opt_maxpool2d_2, module0_0_opt, module4_0_opt,)) + module4_1_opt = self.module4_1(opt_concat_15) + opt_concat_21 = self.concat_21((opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt,)) + module4_2_opt = self.module4_2(opt_concat_21) + opt_concat_27 = self.concat_27((opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt,)) + module4_3_opt = self.module4_3(opt_concat_27) + opt_concat_33 = self.concat_33( + (opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt, module4_3_opt,)) + module4_4_opt = self.module4_4(opt_concat_33) + opt_concat_39 = self.concat_39( + (opt_maxpool2d_2, module0_0_opt, module4_0_opt, module4_1_opt, module4_2_opt, module4_3_opt, module4_4_opt, + )) + module1_0_opt = self.module1_0(opt_concat_39) + opt_conv2d_42 = self.conv2d_42(module1_0_opt) + opt_avgpool2d_43 = self.pad_avgpool2d_43(opt_conv2d_42) + opt_avgpool2d_43 = self.avgpool2d_43(opt_avgpool2d_43) + module0_1_opt = self.module0_1(opt_avgpool2d_43) + opt_concat_50 = self.concat_50((opt_avgpool2d_43, module0_1_opt,)) + module4_5_opt = self.module4_5(opt_concat_50) + opt_concat_56 = self.concat_56((opt_avgpool2d_43, module0_1_opt, module4_5_opt,)) + module4_6_opt = self.module4_6(opt_concat_56) + opt_concat_62 = self.concat_62((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt,)) + module4_7_opt = self.module4_7(opt_concat_62) + opt_concat_68 = self.concat_68((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt,)) + module4_8_opt = self.module4_8(opt_concat_68) + opt_concat_74 = self.concat_74( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, + )) + module4_9_opt = self.module4_9(opt_concat_74) + opt_concat_80 = self.concat_80( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + )) + module4_10_opt = self.module4_10(opt_concat_80) + opt_concat_86 = self.concat_86((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, + )) + module4_11_opt = self.module4_11(opt_concat_86) + opt_concat_92 = self.concat_92((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, module4_11_opt, + )) + module4_12_opt = self.module4_12(opt_concat_92) + opt_concat_98 = self.concat_98((opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, + module4_8_opt, module4_9_opt, module4_10_opt, module4_11_opt, module4_12_opt, + )) + module4_13_opt = self.module4_13(opt_concat_98) + opt_concat_104 = self.concat_104( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, + )) + module4_14_opt = self.module4_14(opt_concat_104) + opt_concat_110 = self.concat_110( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, module4_14_opt, + )) + module4_15_opt = self.module4_15(opt_concat_110) + opt_concat_116 = self.concat_116( + (opt_avgpool2d_43, module0_1_opt, module4_5_opt, module4_6_opt, module4_7_opt, module4_8_opt, module4_9_opt, + module4_10_opt, module4_11_opt, module4_12_opt, module4_13_opt, module4_14_opt, module4_15_opt, + )) + module1_1_opt = self.module1_1(opt_concat_116) + opt_conv2d_119 = self.conv2d_119(module1_1_opt) + opt_avgpool2d_120 = self.pad_avgpool2d_120(opt_conv2d_119) + opt_avgpool2d_120 = self.avgpool2d_120(opt_avgpool2d_120) + module0_2_opt = self.module0_2(opt_avgpool2d_120) + opt_concat_127 = self.concat_127((opt_avgpool2d_120, module0_2_opt,)) + module4_16_opt = self.module4_16(opt_concat_127) + opt_concat_133 = self.concat_133((opt_avgpool2d_120, module0_2_opt, module4_16_opt,)) + module4_17_opt = self.module4_17(opt_concat_133) + opt_concat_139 = self.concat_139((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt,)) + module4_18_opt = self.module4_18(opt_concat_139) + opt_concat_145 = self.concat_145( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, + )) + module4_19_opt = self.module4_19(opt_concat_145) + opt_concat_151 = self.concat_151( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + )) + module4_20_opt = self.module4_20(opt_concat_151) + opt_concat_157 = self.concat_157((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, + module4_18_opt, module4_19_opt, module4_20_opt, + )) + module4_21_opt = self.module4_21(opt_concat_157) + opt_concat_163 = self.concat_163((opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, + module4_18_opt, module4_19_opt, module4_20_opt, module4_21_opt, + )) + module4_22_opt = self.module4_22(opt_concat_163) + opt_concat_169 = self.concat_169( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, + )) + module4_23_opt = self.module4_23(opt_concat_169) + opt_concat_175 = self.concat_175( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, + )) + module4_24_opt = self.module4_24(opt_concat_175) + opt_concat_181 = self.concat_181( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, + )) + module4_25_opt = self.module4_25(opt_concat_181) + opt_concat_187 = self.concat_187( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + )) + module4_26_opt = self.module4_26(opt_concat_187) + opt_concat_193 = self.concat_193( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, + )) + module4_27_opt = self.module4_27(opt_concat_193) + opt_concat_199 = self.concat_199( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, + )) + module4_28_opt = self.module4_28(opt_concat_199) + opt_concat_205 = self.concat_205( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, + )) + module4_29_opt = self.module4_29(opt_concat_205) + opt_concat_211 = self.concat_211( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, + )) + module4_30_opt = self.module4_30(opt_concat_211) + opt_concat_217 = self.concat_217( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, + )) + module4_31_opt = self.module4_31(opt_concat_217) + opt_concat_223 = self.concat_223( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + )) + module4_32_opt = self.module4_32(opt_concat_223) + opt_concat_229 = self.concat_229( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, + )) + module4_33_opt = self.module4_33(opt_concat_229) + opt_concat_235 = self.concat_235( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, + )) + module4_34_opt = self.module4_34(opt_concat_235) + opt_concat_241 = self.concat_241( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, + )) + module4_35_opt = self.module4_35(opt_concat_241) + opt_concat_247 = self.concat_247( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, + )) + module4_36_opt = self.module4_36(opt_concat_247) + opt_concat_253 = self.concat_253( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, + )) + module4_37_opt = self.module4_37(opt_concat_253) + opt_concat_259 = self.concat_259( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + )) + module4_38_opt = self.module4_38(opt_concat_259) + opt_concat_265 = self.concat_265( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, + )) + module4_39_opt = self.module4_39(opt_concat_265) + opt_concat_271 = self.concat_271( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, + )) + module4_40_opt = self.module4_40(opt_concat_271) + opt_concat_277 = self.concat_277( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, + )) + module4_41_opt = self.module4_41(opt_concat_277) + opt_concat_283 = self.concat_283( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, + )) + module4_42_opt = self.module4_42(opt_concat_283) + opt_concat_289 = self.concat_289( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, + )) + module4_43_opt = self.module4_43(opt_concat_289) + opt_concat_295 = self.concat_295( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + )) + module4_44_opt = self.module4_44(opt_concat_295) + opt_concat_301 = self.concat_301( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, + )) + module4_45_opt = self.module4_45(opt_concat_301) + opt_concat_307 = self.concat_307( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, + )) + module4_46_opt = self.module4_46(opt_concat_307) + opt_concat_313 = self.concat_313( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, + )) + module4_47_opt = self.module4_47(opt_concat_313) + opt_concat_319 = self.concat_319( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, + )) + module4_48_opt = self.module4_48(opt_concat_319) + opt_concat_325 = self.concat_325( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, + )) + module4_49_opt = self.module4_49(opt_concat_325) + opt_concat_331 = self.concat_331( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + )) + module4_50_opt = self.module4_50(opt_concat_331) + opt_concat_337 = self.concat_337( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, + )) + module4_51_opt = self.module4_51(opt_concat_337) + opt_concat_343 = self.concat_343( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, + )) + module4_52_opt = self.module4_52(opt_concat_343) + opt_concat_349 = self.concat_349( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, + )) + module4_53_opt = self.module4_53(opt_concat_349) + opt_concat_355 = self.concat_355( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, + )) + module4_54_opt = self.module4_54(opt_concat_355) + opt_concat_361 = self.concat_361( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, + )) + module4_55_opt = self.module4_55(opt_concat_361) + opt_concat_367 = self.concat_367( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + )) + module4_56_opt = self.module4_56(opt_concat_367) + opt_concat_373 = self.concat_373( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, + )) + module4_57_opt = self.module4_57(opt_concat_373) + opt_concat_379 = self.concat_379( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, module4_57_opt, + )) + module4_58_opt = self.module4_58(opt_concat_379) + opt_concat_385 = self.concat_385( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, module4_57_opt, module4_58_opt, + )) + module4_59_opt = self.module4_59(opt_concat_385) + opt_concat_391 = self.concat_391( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, + )) + module4_60_opt = self.module4_60(opt_concat_391) + opt_concat_397 = self.concat_397( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, + )) + module4_61_opt = self.module4_61(opt_concat_397) + opt_concat_403 = self.concat_403( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, module4_61_opt, + )) + module4_62_opt = self.module4_62(opt_concat_403) + opt_concat_409 = self.concat_409( + (opt_avgpool2d_120, module0_2_opt, module4_16_opt, module4_17_opt, module4_18_opt, module4_19_opt, + module4_20_opt, module4_21_opt, module4_22_opt, module4_23_opt, module4_24_opt, module4_25_opt, + module4_26_opt, module4_27_opt, module4_28_opt, module4_29_opt, module4_30_opt, module4_31_opt, + module4_32_opt, module4_33_opt, module4_34_opt, module4_35_opt, module4_36_opt, module4_37_opt, + module4_38_opt, module4_39_opt, module4_40_opt, module4_41_opt, module4_42_opt, module4_43_opt, + module4_44_opt, module4_45_opt, module4_46_opt, module4_47_opt, module4_48_opt, module4_49_opt, + module4_50_opt, module4_51_opt, module4_52_opt, module4_53_opt, module4_54_opt, module4_55_opt, + module4_56_opt, module4_57_opt, module4_58_opt, module4_59_opt, module4_60_opt, module4_61_opt, + module4_62_opt, + )) + module1_2_opt = self.module1_2(opt_concat_409) + opt_conv2d_412 = self.conv2d_412(module1_2_opt) + opt_avgpool2d_413 = self.pad_avgpool2d_413(opt_conv2d_412) + opt_avgpool2d_413 = self.avgpool2d_413(opt_avgpool2d_413) + module0_3_opt = self.module0_3(opt_avgpool2d_413) + opt_concat_420 = self.concat_420((opt_avgpool2d_413, module0_3_opt,)) + module4_63_opt = self.module4_63(opt_concat_420) + opt_concat_426 = self.concat_426((opt_avgpool2d_413, module0_3_opt, module4_63_opt,)) + module4_64_opt = self.module4_64(opt_concat_426) + opt_concat_432 = self.concat_432((opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt,)) + module4_65_opt = self.module4_65(opt_concat_432) + opt_concat_438 = self.concat_438( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, + )) + module4_66_opt = self.module4_66(opt_concat_438) + opt_concat_444 = self.concat_444( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + )) + module4_67_opt = self.module4_67(opt_concat_444) + opt_concat_450 = self.concat_450((opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, + module4_65_opt, module4_66_opt, module4_67_opt, + )) + module4_68_opt = self.module4_68(opt_concat_450) + opt_concat_456 = self.concat_456((opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, + module4_65_opt, module4_66_opt, module4_67_opt, module4_68_opt, + )) + module4_69_opt = self.module4_69(opt_concat_456) + opt_concat_462 = self.concat_462( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, + )) + module4_70_opt = self.module4_70(opt_concat_462) + opt_concat_468 = self.concat_468( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, + )) + module4_71_opt = self.module4_71(opt_concat_468) + opt_concat_474 = self.concat_474( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, + )) + module4_72_opt = self.module4_72(opt_concat_474) + opt_concat_480 = self.concat_480( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + )) + module4_73_opt = self.module4_73(opt_concat_480) + opt_concat_486 = self.concat_486( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, + )) + module4_74_opt = self.module4_74(opt_concat_486) + opt_concat_492 = self.concat_492( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, + )) + module4_75_opt = self.module4_75(opt_concat_492) + opt_concat_498 = self.concat_498( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, + )) + module4_76_opt = self.module4_76(opt_concat_498) + opt_concat_504 = self.concat_504( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, + )) + module4_77_opt = self.module4_77(opt_concat_504) + opt_concat_510 = self.concat_510( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, + )) + module4_78_opt = self.module4_78(opt_concat_510) + opt_concat_516 = self.concat_516( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + )) + module4_79_opt = self.module4_79(opt_concat_516) + opt_concat_522 = self.concat_522( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, + )) + module4_80_opt = self.module4_80(opt_concat_522) + opt_concat_528 = self.concat_528( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, + )) + module4_81_opt = self.module4_81(opt_concat_528) + opt_concat_534 = self.concat_534( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, + )) + module4_82_opt = self.module4_82(opt_concat_534) + opt_concat_540 = self.concat_540( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, + )) + module4_83_opt = self.module4_83(opt_concat_540) + opt_concat_546 = self.concat_546( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, + )) + module4_84_opt = self.module4_84(opt_concat_546) + opt_concat_552 = self.concat_552( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + )) + module4_85_opt = self.module4_85(opt_concat_552) + opt_concat_558 = self.concat_558( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, + )) + module4_86_opt = self.module4_86(opt_concat_558) + opt_concat_564 = self.concat_564( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, + )) + module4_87_opt = self.module4_87(opt_concat_564) + opt_concat_570 = self.concat_570( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, + )) + module4_88_opt = self.module4_88(opt_concat_570) + opt_concat_576 = self.concat_576( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, module4_88_opt, + )) + module4_89_opt = self.module4_89(opt_concat_576) + opt_concat_582 = self.concat_582( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, module4_88_opt, module4_89_opt, + )) + module4_90_opt = self.module4_90(opt_concat_582) + opt_concat_588 = self.concat_588( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, module4_88_opt, module4_89_opt, module4_90_opt, + )) + module4_91_opt = self.module4_91(opt_concat_588) + opt_concat_594 = self.concat_594( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, module4_88_opt, module4_89_opt, module4_90_opt, + module4_91_opt, + )) + module4_92_opt = self.module4_92(opt_concat_594) + opt_concat_600 = self.concat_600( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, module4_88_opt, module4_89_opt, module4_90_opt, + module4_91_opt, module4_92_opt, + )) + module4_93_opt = self.module4_93(opt_concat_600) + opt_concat_606 = self.concat_606( + (opt_avgpool2d_413, module0_3_opt, module4_63_opt, module4_64_opt, module4_65_opt, module4_66_opt, + module4_67_opt, module4_68_opt, module4_69_opt, module4_70_opt, module4_71_opt, module4_72_opt, + module4_73_opt, module4_74_opt, module4_75_opt, module4_76_opt, module4_77_opt, module4_78_opt, + module4_79_opt, module4_80_opt, module4_81_opt, module4_82_opt, module4_83_opt, module4_84_opt, + module4_85_opt, module4_86_opt, module4_87_opt, module4_88_opt, module4_89_opt, module4_90_opt, + module4_91_opt, module4_92_opt, module4_93_opt, + )) + module1_3_opt = self.module1_3(opt_concat_606) + opt_avgpool2d_609 = self.avgpool2d_609(module1_3_opt) + opt_flatten_610 = self.flatten_610(opt_avgpool2d_609) + opt_dense_611 = self.dense_611(opt_flatten_610) + return opt_dense_611 diff --git a/research/cvtmodel/resnest/README_CN.md b/research/cvtmodel/resnest/README_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..43b6615a1e833720335f642216eec44ce50d9949 --- /dev/null +++ b/research/cvtmodel/resnest/README_CN.md @@ -0,0 +1,128 @@ +# 目录 + +<!-- TOC --> + +- [目录](#目录) +- [ResNeSt描述](#resnest描述) +- [模型架构](#模型架构) +- [数据集](#数据集) +- [环境要求](#环境要求) +- [脚本说明](#脚本说明) + - [脚本及样例代码](#脚本及样例代码) + - [导出过程](#导出过程) + - [导出](#导出) + - [推理过程](#推理过程) + - [推理](#推理) +- [ModelZoo主页](#modelzoo主页) + +<!-- /TOC --> + +# ResNeSt描述 + +ResNeSt是一个基于卷积的神经网络,用于图像分类。有关该模型的描述,可查阅(https://pytorch.org/hub/pytorch_vision_resnest/)。 +本仓库中是基于torch提供的模型文件,使用MindConverter工具转化出Mindspore来ckpt文件,进行全量推理以验证模型文件精度。 + +# 模型架构 + +ResNeSt模型支持四种模式:ResNeSt-50, ResNeSt-101,ResNeSt-201, ResNeSt-269。 + +# 数据集 + +ResNeSt使用的数据集: ImageNet + +数据集的默认配置如下: + +- 测试数据集预处理: + - 图像的输入尺寸(ResNeSt-50):224\*224(将图像缩放到256\*256,然后在中央区域裁剪图像) + - 图像的输入尺寸(ResNeSt-101):256\*256(将图像缩放到256\*256,然后在中央区域裁剪图像) + - 图像的输入尺寸(ResNeSt-200):320\*320(将图像缩放到320\*320,然后在中央区域裁剪图像) + - 图像的输入尺寸(ResNeSt-269):416\*416(将图像缩放到416\*416,然后在中央区域裁剪图像) + - 根据平均值和标准偏差对输入图像进行归一化 + +# 环境要求 + +- 硬件(Ascend/GPU) +- 准备Ascend或GPU处理器搭建硬件环境。 +- 框架 +- [MindSpore](https://www.mindspore.cn/install) +- 如需查看详情,请参见如下资源: +- [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html) +- [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html) + +# 脚本说明 + +## 脚本及样例代码 + +```shell +├── model_zoo + ├── README.md // 所有模型的说明 + ├── ResNeSt + ├── README_CN.md // ResNeSt相关说明 + ├── ascend310_infer // 实现310推理源代码 + ├── scripts + │ ├── run_infer_310.sh // Ascend 310 推理shell脚本 + ├── src + │ ├── resnest50.py // resnest-50模型文件 + │ ├── resnest101.py // resnest-101模型文件 + │ ├── resnest200.py // resnest-200模型文件 + │ ├── resnest269.py // resnest-269模型文件 + ├── export.py // 导出脚本 + ├── postprocess.py // 310 推理后处理脚本 +``` + +## 导出过程 + +### 导出 + +```shell +python export.py --backbone [NET_NAME] --ckpt_path [CKPT_PATH] --device_target [DEVICE_TARGET] --device_id 0 --file_format [EXPORT_FORMAT] --file_name [FILE_NAME] +``` + +`backbone` 可选 ["ResNeSt50", "ResNeSt101", "ResNeSt200", "ResNeSt269"] +`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"] + +## 推理过程 + +### 推理 + +在推理之前需要先导出模型,AIR模型只能在昇腾910环境上导出,MINDIR可以在任意环境上导出。 + +```shell +# 昇腾310 推理 +bash run_infer_310.sh [MINDIR_PATH] [BACKBONE] [DATASET] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] +``` + +-注: Densnet系列网络使用ImageNet数据集,图片的label是将文件夹排序后从0开始编号所得的数字. + +推理的结果保存在当前目录下,在acc.log日志文件中可以找到类似以下的结果。 +ResNeSt-50网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=40560, tot=50000, acc=81.12% + after allreduce eval: top5_correct=47792, tot=50000, acc=95.58% + ``` + +ResNeSt-101网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=41330, tot=50000, acc=82.66% + after allreduce eval: top5_correct=48151, tot=50000, acc=96.30% + ``` + +ResNeSt-200网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=42082, tot=50000, acc=84.16% + after allreduce eval: top5_correct=48469, tot=50000, acc=96.94% + ``` + +ResNeSt-269网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=42288, tot=50000, acc=84.58% + after allreduce eval: top5_correct=48562, tot=50000, acc=97.12% + ``` + +# ModelZoo主页 + + 请浏览官网[主页](https://gitee.com/mindspore/models)。 diff --git a/research/cvtmodel/resnest/ascend310_infer/CMakeLists.txt b/research/cvtmodel/resnest/ascend310_infer/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee3c85447340e0449ff2b70ed24f60a17e07b2b6 --- /dev/null +++ b/research/cvtmodel/resnest/ascend310_infer/CMakeLists.txt @@ -0,0 +1,14 @@ +cmake_minimum_required(VERSION 3.14.1) +project(Ascend310Infer) +add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") +set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) +option(MINDSPORE_PATH "mindspore install path" "") +include_directories(${MINDSPORE_PATH}) +include_directories(${MINDSPORE_PATH}/include) +include_directories(${PROJECT_SRC_ROOT}) +find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) +file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) + +add_executable(main src/main.cc src/utils.cc) +target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) diff --git a/research/cvtmodel/resnest/ascend310_infer/build.sh b/research/cvtmodel/resnest/ascend310_infer/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..770a8851efade7f352039fc8665d307ae1abbb00 --- /dev/null +++ b/research/cvtmodel/resnest/ascend310_infer/build.sh @@ -0,0 +1,23 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [ ! -d out ]; then + mkdir out +fi +cd out || exit +cmake .. \ + -DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" +make diff --git a/research/cvtmodel/resnest/ascend310_infer/inc/utils.h b/research/cvtmodel/resnest/ascend310_infer/inc/utils.h new file mode 100644 index 0000000000000000000000000000000000000000..efebe03a8c1179f5a1f9d5f7ee07e0352a9937c6 --- /dev/null +++ b/research/cvtmodel/resnest/ascend310_infer/inc/utils.h @@ -0,0 +1,32 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_INFERENCE_UTILS_H_ +#define MINDSPORE_INFERENCE_UTILS_H_ + +#include <sys/stat.h> +#include <dirent.h> +#include <vector> +#include <string> +#include <memory> +#include "include/api/types.h" + +std::vector<std::string> GetAllFiles(std::string_view dirName); +DIR *OpenDir(std::string_view dirName); +std::string RealPath(std::string_view path); +mindspore::MSTensor ReadFileToTensor(const std::string &file); +int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs); +#endif diff --git a/research/cvtmodel/resnest/ascend310_infer/src/main.cc b/research/cvtmodel/resnest/ascend310_infer/src/main.cc new file mode 100644 index 0000000000000000000000000000000000000000..5568919e170c25240ea41a234021bd3b717da93b --- /dev/null +++ b/research/cvtmodel/resnest/ascend310_infer/src/main.cc @@ -0,0 +1,174 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <sys/time.h> +#include <gflags/gflags.h> +#include <dirent.h> +#include <iostream> +#include <string> +#include <algorithm> +#include <iosfwd> +#include <vector> +#include <fstream> + +#include "../inc/utils.h" +#include "include/dataset/execute.h" +#include "include/dataset/transforms.h" +#include "include/dataset/vision.h" +#include "include/dataset/vision_ascend.h" +#include "include/api/types.h" +#include "include/api/model.h" +#include "include/api/serialization.h" +#include "include/api/context.h" + +using mindspore::Serialization; +using mindspore::Model; +using mindspore::Context; +using mindspore::Status; +using mindspore::ModelType; +using mindspore::Graph; +using mindspore::GraphCell; +using mindspore::kSuccess; +using mindspore::MSTensor; +using mindspore::DataType; +using mindspore::dataset::Execute; +using mindspore::dataset::TensorTransform; +using mindspore::dataset::vision::Decode; +using mindspore::dataset::vision::Resize; +using mindspore::dataset::vision::CenterCrop; +using mindspore::dataset::vision::Normalize; +using mindspore::dataset::vision::HWC2CHW; + +using mindspore::dataset::transforms::TypeCast; + + +DEFINE_string(model_path, "", "model path"); +DEFINE_int32(resize, 256, "resize size"); +DEFINE_int32(crop, 224, "crop size"); +DEFINE_string(dataset, "ImageNet", "dataset: ImageNet or Cifar10"); +DEFINE_string(dataset_path, ".", "dataset path"); +DEFINE_int32(device_id, 0, "device id"); + +int main(int argc, char **argv) { + gflags::ParseCommandLineFlags(&argc, &argv, true); + if (RealPath(FLAGS_model_path).empty()) { + std::cout << "Invalid model" << std::endl; + return 1; + } + + std::transform(FLAGS_dataset.begin(), FLAGS_dataset.end(), FLAGS_dataset.begin(), ::tolower); + + auto context = std::make_shared<Context>(); + auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>(); + ascend310_info->SetDeviceID(FLAGS_device_id); + context->MutableDeviceInfo().push_back(ascend310_info); + + Graph graph; + Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph); + if (ret != kSuccess) { + std::cout << "Load model failed." << std::endl; + return 1; + } + + Model model; + ret = model.Build(GraphCell(graph), context); + if (ret != kSuccess) { + std::cout << "ERROR: Build failed." << std::endl; + return 1; + } + + std::vector<MSTensor> modelInputs = model.GetInputs(); + + auto all_files = GetAllFiles(FLAGS_dataset_path); + if (all_files.empty()) { + std::cout << "ERROR: no input data." << std::endl; + return 1; + } + float c = static_cast<int>(FLAGS_crop); + float mean1 = static_cast<float>(c*0.485); + float mean2 = static_cast<float>(c*0.456); + float mean3 = static_cast<float>(c*0.406); + float std1 = static_cast<float>(c*0.229); + float std2 = static_cast<float>(c*0.224); + float std3 = static_cast<float>(c*0.225); + std::shared_ptr<TensorTransform> decode(new Decode()); + std::shared_ptr<TensorTransform> resize(new Resize({FLAGS_resize, FLAGS_resize})); + std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({FLAGS_crop, FLAGS_crop})); + std::shared_ptr<TensorTransform> normImageNet(new Normalize({mean1, mean2, mean3}, {std1, std2, std3})); + std::shared_ptr<TensorTransform> normCifar10(new Normalize({127.5, 127.5, 127.5}, {127.5, 127.5, 127.5})); + std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW()); + + mindspore::dataset::Execute transformImageNet({decode, resize, centerCrop, normImageNet, hwc2chw}); + mindspore::dataset::Execute transformCifar10({decode, normCifar10, hwc2chw}); + + std::map<double, double> costTime_map; + + size_t size = all_files.size(); + for (size_t i = 0; i < size; ++i) { + struct timeval start; + struct timeval end; + double startTime_ms; + double endTime_ms; + std::vector<MSTensor> inputs; + std::vector<MSTensor> outputs; + + std::cout << "Start predict input files:" << all_files[i] << std::endl; + mindspore::MSTensor image = ReadFileToTensor(all_files[i]); + + if (FLAGS_dataset.compare("cifar10") == 0) { + transformCifar10(image, &image); + } else if (FLAGS_dataset.compare("imagenet") == 0) { + transformImageNet(image, &image); + } else { + std::cout << "unsupported dataset ..."; + return 1; + } + + inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(), + image.Data().get(), image.DataSize()); + + gettimeofday(&start, NULL); + model.Predict(inputs, &outputs); + gettimeofday(&end, NULL); + + startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; + endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; + costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms)); + int rst = WriteResult(all_files[i], outputs); + if (rst != 0) { + std::cout << "write result failed." << std::endl; + return rst; + } + } + double average = 0.0; + int infer_cnt = 0; + char tmpCh[256] = {0}; + for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { + double diff = 0.0; + diff = iter->second - iter->first; + average += diff; + infer_cnt++; + } + + average = average/infer_cnt; + std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; + std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); + std::ofstream file_stream(file_name.c_str(), std::ios::trunc); + file_stream << tmpCh; + file_stream.close(); + costTime_map.clear(); + return 0; +} diff --git a/research/cvtmodel/resnest/ascend310_infer/src/utils.cc b/research/cvtmodel/resnest/ascend310_infer/src/utils.cc new file mode 100644 index 0000000000000000000000000000000000000000..653b1de44962614ac77d44481f8d1a7bde52caaf --- /dev/null +++ b/research/cvtmodel/resnest/ascend310_infer/src/utils.cc @@ -0,0 +1,160 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "inc/utils.h" + +#include <fstream> +#include <algorithm> +#include <iostream> + +using mindspore::MSTensor; +using mindspore::DataType; + +std::vector<std::string> GetAllFiles(std::string_view dirName) { + struct dirent *filename; + DIR *dir = OpenDir(dirName); + if (dir == nullptr) { + return {}; + } + std::vector<std::string> dirs; + std::vector<std::string> files; + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == "..") { + continue; + } else if (filename->d_type == DT_DIR) { + dirs.emplace_back(std::string(dirName) + "/" + filename->d_name); + } else if (filename->d_type == DT_REG) { + files.emplace_back(std::string(dirName) + "/" + filename->d_name); + } else { + continue; + } + } + + for (auto d : dirs) { + dir = OpenDir(d); + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == ".." || filename->d_type != DT_REG) { + continue; + } + files.emplace_back(std::string(d) + "/" + filename->d_name); + } + } + std::sort(files.begin(), files.end()); + for (auto &f : files) { + std::cout << "image file: " << f << std::endl; + } + return files; +} + +int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) { + std::string homePath = "./result_Files"; + const int INVALID_POINTER = -1; + const int ERROR = -2; + for (size_t i = 0; i < outputs.size(); ++i) { + size_t outputSize; + std::shared_ptr<const void> netOutput; + netOutput = outputs[i].Data(); + outputSize = outputs[i].DataSize(); + int pos = imageFile.rfind('/'); + std::string fileName(imageFile, pos + 1); + fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); + std::string outFileName = homePath + "/" + fileName; + FILE * outputFile = fopen(outFileName.c_str(), "wb"); + if (outputFile == nullptr) { + std::cout << "open result file " << outFileName << " failed" << std::endl; + return INVALID_POINTER; + } + size_t size = fwrite(netOutput.get(), sizeof(char), outputSize, outputFile); + if (size != outputSize) { + fclose(outputFile); + outputFile = nullptr; + std::cout << "write result file " << outFileName << " failed, write size[" << size << + "] is smaller than output size[" << outputSize << "], maybe the disk is full." << std::endl; + return ERROR; + } + fclose(outputFile); + outputFile = nullptr; + } + return 0; +} + +mindspore::MSTensor ReadFileToTensor(const std::string &file) { + if (file.empty()) { + std::cout << "Pointer file is nullptr" << std::endl; + return mindspore::MSTensor(); + } + + std::ifstream ifs(file); + if (!ifs.good()) { + std::cout << "File: " << file << " is not exist" << std::endl; + return mindspore::MSTensor(); + } + + if (!ifs.is_open()) { + std::cout << "File: " << file << "open failed" << std::endl; + return mindspore::MSTensor(); + } + + ifs.seekg(0, std::ios::end); + size_t size = ifs.tellg(); + mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size); + + ifs.seekg(0, std::ios::beg); + ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); + ifs.close(); + + return buffer; +} + + +DIR *OpenDir(std::string_view dirName) { + if (dirName.empty()) { + std::cout << " dirName is null ! " << std::endl; + return nullptr; + } + std::string realPath = RealPath(dirName); + struct stat s; + lstat(realPath.c_str(), &s); + if (!S_ISDIR(s.st_mode)) { + std::cout << "dirName is not a valid directory !" << std::endl; + return nullptr; + } + DIR *dir; + dir = opendir(realPath.c_str()); + if (dir == nullptr) { + std::cout << "Can not open dir " << dirName << std::endl; + return nullptr; + } + std::cout << "Successfully opened the dir " << dirName << std::endl; + return dir; +} + +std::string RealPath(std::string_view path) { + char realPathMem[PATH_MAX] = {0}; + char *realPathRet = nullptr; + realPathRet = realpath(path.data(), realPathMem); + + if (realPathRet == nullptr) { + std::cout << "File: " << path << " is not exist."; + return ""; + } + + std::string realPath(realPathMem); + std::cout << path << " realpath is: " << realPath << std::endl; + return realPath; +} diff --git a/research/cvtmodel/resnest/export.py b/research/cvtmodel/resnest/export.py new file mode 100644 index 0000000000000000000000000000000000000000..3f2db5ef22b2c9f3eb4bf403497ce88d8f9137bb --- /dev/null +++ b/research/cvtmodel/resnest/export.py @@ -0,0 +1,63 @@ +# Copyright 2020-2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""export checkpoint file into air, onnx, mindir models + Suggest run as python export.py --backbone [backbone] --ckpt_path [ckpt_path] + --file_name [file_name] --file_format [file format] +""" +import argparse +import numpy as np +import mindspore as ms +from mindspore import context, Tensor +from mindspore.train.serialization import export, load_checkpoint, load_param_into_net + +parser = argparse.ArgumentParser(description='post process for 310 inference') +parser.add_argument("--backbone", type=str, required=True, default="resnest50", help="model backbone") +parser.add_argument("--ckpt_path", type=str, required=True, help="checkpoint file path") +parser.add_argument("--file_name", type=str, default="resnest50", help="file name") +parser.add_argument("--file_format", type=str, default="MINDIR", choices=["MINDIR", "AIR"], help="file format") +parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], help="device target") +parser.add_argument("--device_id", type=int, default=0, help="device target") +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) + +def model_export(): + '''export main function''' + if args.device_target == "Ascend": + context.set_context(device_id=args.device_id) + if args.backbone == "resnest50": + from src.resnest50 import MainModel + image_size = 224 + elif args.backbone == "resnest101": + from src.resnest101 import MainModel + image_size = 256 + elif args.backbone == "resnest200": + from src.resnest200 import MainModel + image_size = 320 + elif args.backbone == "resnest269": + from src.resnest269 import MainModel + image_size = 416 + + net = MainModel() + + param_dict = load_checkpoint(args.ckpt_path) + load_param_into_net(net, param_dict) + + input_arr = Tensor(np.zeros([1, 3, image_size, image_size]), ms.float32) + export(net, input_arr, file_name=args.file_name, file_format=args.file_format) + +if __name__ == '__main__': + model_export() diff --git a/research/cvtmodel/resnest/postprocess.py b/research/cvtmodel/resnest/postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..f80c10276201bd29e53a1efbd2e2a96b3884c3dd --- /dev/null +++ b/research/cvtmodel/resnest/postprocess.py @@ -0,0 +1,82 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +'''post process for 310 inference''' +import os +import argparse +import numpy as np + +parser = argparse.ArgumentParser(description='post process for resnest 310 inference') +parser.add_argument("--dataset", type=str, default="imagenet", help="result file path") +parser.add_argument("--result_path", type=str, required=True, help="result file path") +parser.add_argument("--label_file", type=str, required=True, help="label file") +args = parser.parse_args() + +def get_top5_acc(top5_arg, gt_class): + sub_count = 0 + for top5, gt in zip(top5_arg, gt_class): + if gt in top5: + sub_count += 1 + return sub_count + +def read_label(label_file): + '''read lebel file''' + f = open(label_file, "r") + lines = f.readlines() + + img_label = {} + for line in lines: + img_id = line.split(":")[0] + label = line.split(":")[1] + img_label[img_id] = label + + return img_label + +def cal_acc(dataset, result_path, label_file): + '''acc cal main function''' + img_label = read_label(label_file) + + img_tot = 0 + top1_correct = 0 + top5_correct = 0 + + files = os.listdir(result_path) + for file in files: + full_file_path = os.path.join(result_path, file) + if os.path.isfile(full_file_path): + result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000) + gt_classes = int(img_label[file[:-6]]) + + top1_output = np.argmax(result, (-1)) + top5_output = np.argsort(result)[:, -5:] + + t1_correct = np.equal(top1_output, gt_classes).sum() + top1_correct += t1_correct + top5_correct += get_top5_acc(top5_output, [gt_classes]) + img_tot += 1 + + results = [[top1_correct], [top5_correct], [img_tot]] + + results = np.array(results) + top1_correct = results[0, 0] + top5_correct = results[1, 0] + img_tot = results[2, 0] + acc1 = 100.0 * top1_correct / img_tot + acc5 = 100.0 * top5_correct / img_tot + print('after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'.format(top1_correct, img_tot, acc1)) + if dataset == 'imagenet': + print('after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'.format(top5_correct, img_tot, acc5)) + +if __name__ == "__main__": + cal_acc(args.dataset, args.result_path, args.label_file) diff --git a/research/cvtmodel/resnest/scripts/run_infer_310.sh b/research/cvtmodel/resnest/scripts/run_infer_310.sh new file mode 100644 index 0000000000000000000000000000000000000000..8eb1ec3c64e406e00229f0983c9b2e148078f94e --- /dev/null +++ b/research/cvtmodel/resnest/scripts/run_infer_310.sh @@ -0,0 +1,121 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [[ $# -lt 5 || $# -gt 6 ]]; then + echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [BACKBONE] [DATASET] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] + DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" +exit 1 +fi + +get_real_path(){ + if [ "${1:0:1}" == "/" ]; then + echo "$1" + else + echo "$(realpath -m $PWD/$1)" + fi +} + +model=$(get_real_path $1) +backbone=$2 +dataset=$3 +data_path=$(get_real_path $4) +label_file=$(get_real_path $5) + +device_id=0 + +if [ $# == 6 ]; then + device_id=$6 +fi + +echo $model +echo $dataset +echo $data_path +echo $label_file +echo $device_id + +export ASCEND_HOME=/usr/local/Ascend/ +if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then + export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH + export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH + export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe + export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp +else + export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH + export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH + export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=$ASCEND_HOME/opp +fi + +if [ "$backbone" == "resnest50" ]; then + resize=256 + crop=224 +elif [ "$backbone" == "resnest101" ]; then + resize=256 + crop=256 +elif [ "$backbone" == "resnest200" ]; then + resize=320 + crop=320 +elif [ "$backbone" == "resnest269" ]; then + resize=416 + crop=416 +fi + +function compile_app() +{ + cd ../ascend310_infer || exit + if [ -f "Makefile" ]; then + make clean + fi + sh build.sh &> build.log + + if [ $? -ne 0 ]; then + echo "compile app code failed" + exit 1 + fi + cd - || exit +} + +function infer() +{ + if [ -d result_Files ]; then + rm -rf ./result_Files + fi + if [ -d time_Result ]; then + rm -rf ./time_Result + fi + mkdir result_Files + mkdir time_Result + ../ascend310_infer/out/main --model_path=$model --resize=$resize --crop=$crop --dataset=$dataset --dataset_path=$data_path --device_id=$device_id &> infer.log + + if [ $? -ne 0 ]; then + echo "execute inference failed" + exit 1 + fi +} + +function cal_acc() +{ + python ../postprocess.py --dataset=$dataset --label_file=$label_file --result_path=result_Files &> acc.log + if [ $? -ne 0 ]; then + echo "calculate accuracy failed" + exit 1 + fi +} + +compile_app +infer +cal_acc diff --git a/research/cvtmodel/resnest/src/resnest101.py b/research/cvtmodel/resnest/src/resnest101.py new file mode 100644 index 0000000000000000000000000000000000000000..12b0583ca190ccadc787de653462b57d6bde8007 --- /dev/null +++ b/research/cvtmodel/resnest/src/resnest101.py @@ -0,0 +1,1847 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module5(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, conv2d_0_kernel_size, conv2d_0_padding, + conv2d_0_pad_mode, conv2d_0_group): + super(Module5, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=conv2d_0_kernel_size, + stride=(1, 1), + padding=conv2d_0_padding, + pad_mode=conv2d_0_pad_mode, + dilation=(1, 1), + group=conv2d_0_group, + has_bias=True) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_conv2d_0 = self.conv2d_0(x) + opt_relu_1 = self.relu_1(opt_conv2d_0) + return opt_relu_1 + + +class Module22(nn.Cell): + def __init__(self, module5_0_conv2d_0_in_channels, module5_0_conv2d_0_out_channels, module5_0_conv2d_0_kernel_size, + module5_0_conv2d_0_padding, module5_0_conv2d_0_pad_mode, module5_0_conv2d_0_group, + module5_1_conv2d_0_in_channels, module5_1_conv2d_0_out_channels, module5_1_conv2d_0_kernel_size, + module5_1_conv2d_0_padding, module5_1_conv2d_0_pad_mode, module5_1_conv2d_0_group): + super(Module22, self).__init__() + self.module5_0 = Module5(conv2d_0_in_channels=module5_0_conv2d_0_in_channels, + conv2d_0_out_channels=module5_0_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_0_conv2d_0_kernel_size, + conv2d_0_padding=module5_0_conv2d_0_padding, + conv2d_0_pad_mode=module5_0_conv2d_0_pad_mode, + conv2d_0_group=module5_0_conv2d_0_group) + self.module5_1 = Module5(conv2d_0_in_channels=module5_1_conv2d_0_in_channels, + conv2d_0_out_channels=module5_1_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_1_conv2d_0_kernel_size, + conv2d_0_padding=module5_1_conv2d_0_padding, + conv2d_0_pad_mode=module5_1_conv2d_0_pad_mode, + conv2d_0_group=module5_1_conv2d_0_group) + + def construct(self, x): + module5_0_opt = self.module5_0(x) + module5_1_opt = self.module5_1(module5_0_opt) + return module5_1_opt + + +class Module0(nn.Cell): + def __init__(self, avgpool2d_0_kernel_size, conv2d_1_in_channels, conv2d_1_out_channels, conv2d_3_in_channels, + conv2d_3_out_channels, reshape_4_shape): + super(Module0, self).__init__() + self.avgpool2d_0 = nn.AvgPool2d(kernel_size=avgpool2d_0_kernel_size) + self.conv2d_1 = nn.Conv2d(in_channels=conv2d_1_in_channels, + out_channels=conv2d_1_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=conv2d_3_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.reshape_4 = P.Reshape() + self.reshape_4_shape = tuple(reshape_4_shape) + self.transpose_5 = P.Transpose() + + def construct(self, x): + opt_avgpool2d_0 = self.avgpool2d_0(x) + opt_conv2d_1 = self.conv2d_1(opt_avgpool2d_0) + opt_relu_2 = self.relu_2(opt_conv2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_reshape_4 = self.reshape_4(opt_conv2d_3, self.reshape_4_shape) + opt_transpose_5 = self.transpose_5(opt_reshape_4, (0, 3, 1, 2)) + return opt_transpose_5 + + +class Module20(nn.Cell): + def __init__(self, reshape_2_shape, module0_0_avgpool2d_0_kernel_size, module0_0_conv2d_1_in_channels, + module0_0_conv2d_1_out_channels, module0_0_conv2d_3_in_channels, module0_0_conv2d_3_out_channels, + module0_0_reshape_4_shape): + super(Module20, self).__init__() + self.module0_0 = Module0(avgpool2d_0_kernel_size=module0_0_avgpool2d_0_kernel_size, + conv2d_1_in_channels=module0_0_conv2d_1_in_channels, + conv2d_1_out_channels=module0_0_conv2d_1_out_channels, + conv2d_3_in_channels=module0_0_conv2d_3_in_channels, + conv2d_3_out_channels=module0_0_conv2d_3_out_channels, + reshape_4_shape=module0_0_reshape_4_shape) + self.softmax_0 = nn.Softmax(axis=3) + self.transpose_1 = P.Transpose() + self.reshape_2 = P.Reshape() + self.reshape_2_shape = tuple(reshape_2_shape) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + opt_softmax_0 = self.softmax_0(module0_0_opt) + opt_transpose_1 = self.transpose_1(opt_softmax_0, (0, 3, 2, 1)) + opt_reshape_2 = self.reshape_2(opt_transpose_1, self.reshape_2_shape) + return opt_reshape_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(3, 3), + stride=(2, 2), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.module22_0 = Module22(module5_0_conv2d_0_in_channels=64, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(3, 3), + module5_0_conv2d_0_padding=(1, 1, 1, 1), + module5_0_conv2d_0_pad_mode="pad", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=1) + self.pad_maxpool2d_6 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_6 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module22_1 = Module22(module5_0_conv2d_0_in_channels=128, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_13 = P.Split(axis=1, output_num=2) + self.add_14_bias = 0.0 + self.module20_0 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(64, 64), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_25 = P.Reshape() + self.reshape_25_shape = tuple([1, 128, 1, 1]) + self.split_26 = P.Split(axis=1, output_num=2) + self.add_29_bias = 0.0 + self.conv2d_31 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_8 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_8 = nn.AvgPool2d(kernel_size=(1, 1), stride=(1, 1)) + self.conv2d_10 = nn.Conv2d(in_channels=128, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_33 = nn.ReLU() + self.module22_2 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_38 = P.Split(axis=1, output_num=2) + self.add_39_bias = 0.0 + self.module20_1 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(64, 64), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_50 = P.Reshape() + self.reshape_50_shape = tuple([1, 128, 1, 1]) + self.split_51 = P.Split(axis=1, output_num=2) + self.add_54_bias = 0.0 + self.conv2d_56 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_58 = nn.ReLU() + self.module22_3 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_63 = P.Split(axis=1, output_num=2) + self.add_64_bias = 0.0 + self.module20_2 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(64, 64), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_75 = P.Reshape() + self.reshape_75_shape = tuple([1, 128, 1, 1]) + self.split_76 = P.Split(axis=1, output_num=2) + self.add_79_bias = 0.0 + self.conv2d_81 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_83 = nn.ReLU() + self.module22_4 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_90 = P.Split(axis=1, output_num=2) + self.add_91_bias = 0.0 + self.module20_3 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(64, 64), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_102 = P.Reshape() + self.reshape_102_shape = tuple([1, 256, 1, 1]) + self.split_103 = P.Split(axis=1, output_num=2) + self.add_106_bias = 0.0 + self.pad_108 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_109 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_109 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_110 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_85 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_85 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_87 = nn.Conv2d(in_channels=256, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_112 = nn.ReLU() + self.module22_5 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_117 = P.Split(axis=1, output_num=2) + self.add_118_bias = 0.0 + self.module20_4 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(32, 32), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_129 = P.Reshape() + self.reshape_129_shape = tuple([1, 256, 1, 1]) + self.split_130 = P.Split(axis=1, output_num=2) + self.add_133_bias = 0.0 + self.conv2d_135 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_137 = nn.ReLU() + self.module22_6 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_142 = P.Split(axis=1, output_num=2) + self.add_143_bias = 0.0 + self.module20_5 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(32, 32), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_154 = P.Reshape() + self.reshape_154_shape = tuple([1, 256, 1, 1]) + self.split_155 = P.Split(axis=1, output_num=2) + self.add_158_bias = 0.0 + self.conv2d_160 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_162 = nn.ReLU() + self.module22_7 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_167 = P.Split(axis=1, output_num=2) + self.add_168_bias = 0.0 + self.module20_6 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(32, 32), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_179 = P.Reshape() + self.reshape_179_shape = tuple([1, 256, 1, 1]) + self.split_180 = P.Split(axis=1, output_num=2) + self.add_183_bias = 0.0 + self.conv2d_185 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_187 = nn.ReLU() + self.module22_8 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_194 = P.Split(axis=1, output_num=2) + self.add_195_bias = 0.0 + self.module20_7 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(32, 32), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_206 = P.Reshape() + self.reshape_206_shape = tuple([1, 512, 1, 1]) + self.split_207 = P.Split(axis=1, output_num=2) + self.add_210_bias = 0.0 + self.pad_212 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_213 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_213 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_214 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_189 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_189 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_191 = nn.Conv2d(in_channels=512, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_216 = nn.ReLU() + self.module22_9 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_221 = P.Split(axis=1, output_num=2) + self.add_222_bias = 0.0 + self.module20_8 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_233 = P.Reshape() + self.reshape_233_shape = tuple([1, 512, 1, 1]) + self.split_234 = P.Split(axis=1, output_num=2) + self.add_237_bias = 0.0 + self.conv2d_239 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_241 = nn.ReLU() + self.module22_10 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_246 = P.Split(axis=1, output_num=2) + self.add_247_bias = 0.0 + self.module20_9 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_258 = P.Reshape() + self.reshape_258_shape = tuple([1, 512, 1, 1]) + self.split_259 = P.Split(axis=1, output_num=2) + self.add_262_bias = 0.0 + self.conv2d_264 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_266 = nn.ReLU() + self.module22_11 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_271 = P.Split(axis=1, output_num=2) + self.add_272_bias = 0.0 + self.module20_10 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_283 = P.Reshape() + self.reshape_283_shape = tuple([1, 512, 1, 1]) + self.split_284 = P.Split(axis=1, output_num=2) + self.add_287_bias = 0.0 + self.conv2d_289 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_291 = nn.ReLU() + self.module22_12 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_296 = P.Split(axis=1, output_num=2) + self.add_297_bias = 0.0 + self.module20_11 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_308 = P.Reshape() + self.reshape_308_shape = tuple([1, 512, 1, 1]) + self.split_309 = P.Split(axis=1, output_num=2) + self.add_312_bias = 0.0 + self.conv2d_314 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_316 = nn.ReLU() + self.module22_13 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_321 = P.Split(axis=1, output_num=2) + self.add_322_bias = 0.0 + self.module20_12 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_333 = P.Reshape() + self.reshape_333_shape = tuple([1, 512, 1, 1]) + self.split_334 = P.Split(axis=1, output_num=2) + self.add_337_bias = 0.0 + self.conv2d_339 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_341 = nn.ReLU() + self.module22_14 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_346 = P.Split(axis=1, output_num=2) + self.add_347_bias = 0.0 + self.module20_13 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_358 = P.Reshape() + self.reshape_358_shape = tuple([1, 512, 1, 1]) + self.split_359 = P.Split(axis=1, output_num=2) + self.add_362_bias = 0.0 + self.conv2d_364 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_366 = nn.ReLU() + self.module22_15 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_371 = P.Split(axis=1, output_num=2) + self.add_372_bias = 0.0 + self.module20_14 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_383 = P.Reshape() + self.reshape_383_shape = tuple([1, 512, 1, 1]) + self.split_384 = P.Split(axis=1, output_num=2) + self.add_387_bias = 0.0 + self.conv2d_389 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_391 = nn.ReLU() + self.module22_16 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_396 = P.Split(axis=1, output_num=2) + self.add_397_bias = 0.0 + self.module20_15 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_408 = P.Reshape() + self.reshape_408_shape = tuple([1, 512, 1, 1]) + self.split_409 = P.Split(axis=1, output_num=2) + self.add_412_bias = 0.0 + self.conv2d_414 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_416 = nn.ReLU() + self.module22_17 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_421 = P.Split(axis=1, output_num=2) + self.add_422_bias = 0.0 + self.module20_16 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_433 = P.Reshape() + self.reshape_433_shape = tuple([1, 512, 1, 1]) + self.split_434 = P.Split(axis=1, output_num=2) + self.add_437_bias = 0.0 + self.conv2d_439 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_441 = nn.ReLU() + self.module22_18 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_446 = P.Split(axis=1, output_num=2) + self.add_447_bias = 0.0 + self.module20_17 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_458 = P.Reshape() + self.reshape_458_shape = tuple([1, 512, 1, 1]) + self.split_459 = P.Split(axis=1, output_num=2) + self.add_462_bias = 0.0 + self.conv2d_464 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_466 = nn.ReLU() + self.module22_19 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_471 = P.Split(axis=1, output_num=2) + self.add_472_bias = 0.0 + self.module20_18 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_483 = P.Reshape() + self.reshape_483_shape = tuple([1, 512, 1, 1]) + self.split_484 = P.Split(axis=1, output_num=2) + self.add_487_bias = 0.0 + self.conv2d_489 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_491 = nn.ReLU() + self.module22_20 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_496 = P.Split(axis=1, output_num=2) + self.add_497_bias = 0.0 + self.module20_19 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_508 = P.Reshape() + self.reshape_508_shape = tuple([1, 512, 1, 1]) + self.split_509 = P.Split(axis=1, output_num=2) + self.add_512_bias = 0.0 + self.conv2d_514 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_516 = nn.ReLU() + self.module22_21 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_521 = P.Split(axis=1, output_num=2) + self.add_522_bias = 0.0 + self.module20_20 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_533 = P.Reshape() + self.reshape_533_shape = tuple([1, 512, 1, 1]) + self.split_534 = P.Split(axis=1, output_num=2) + self.add_537_bias = 0.0 + self.conv2d_539 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_541 = nn.ReLU() + self.module22_22 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_546 = P.Split(axis=1, output_num=2) + self.add_547_bias = 0.0 + self.module20_21 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_558 = P.Reshape() + self.reshape_558_shape = tuple([1, 512, 1, 1]) + self.split_559 = P.Split(axis=1, output_num=2) + self.add_562_bias = 0.0 + self.conv2d_564 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_566 = nn.ReLU() + self.module22_23 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_571 = P.Split(axis=1, output_num=2) + self.add_572_bias = 0.0 + self.module20_22 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_583 = P.Reshape() + self.reshape_583_shape = tuple([1, 512, 1, 1]) + self.split_584 = P.Split(axis=1, output_num=2) + self.add_587_bias = 0.0 + self.conv2d_589 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_591 = nn.ReLU() + self.module22_24 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_596 = P.Split(axis=1, output_num=2) + self.add_597_bias = 0.0 + self.module20_23 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_608 = P.Reshape() + self.reshape_608_shape = tuple([1, 512, 1, 1]) + self.split_609 = P.Split(axis=1, output_num=2) + self.add_612_bias = 0.0 + self.conv2d_614 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_616 = nn.ReLU() + self.module22_25 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_621 = P.Split(axis=1, output_num=2) + self.add_622_bias = 0.0 + self.module20_24 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_633 = P.Reshape() + self.reshape_633_shape = tuple([1, 512, 1, 1]) + self.split_634 = P.Split(axis=1, output_num=2) + self.add_637_bias = 0.0 + self.conv2d_639 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_641 = nn.ReLU() + self.module22_26 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_646 = P.Split(axis=1, output_num=2) + self.add_647_bias = 0.0 + self.module20_25 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_658 = P.Reshape() + self.reshape_658_shape = tuple([1, 512, 1, 1]) + self.split_659 = P.Split(axis=1, output_num=2) + self.add_662_bias = 0.0 + self.conv2d_664 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_666 = nn.ReLU() + self.module22_27 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_671 = P.Split(axis=1, output_num=2) + self.add_672_bias = 0.0 + self.module20_26 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_683 = P.Reshape() + self.reshape_683_shape = tuple([1, 512, 1, 1]) + self.split_684 = P.Split(axis=1, output_num=2) + self.add_687_bias = 0.0 + self.conv2d_689 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_691 = nn.ReLU() + self.module22_28 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_696 = P.Split(axis=1, output_num=2) + self.add_697_bias = 0.0 + self.module20_27 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_708 = P.Reshape() + self.reshape_708_shape = tuple([1, 512, 1, 1]) + self.split_709 = P.Split(axis=1, output_num=2) + self.add_712_bias = 0.0 + self.conv2d_714 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_716 = nn.ReLU() + self.module22_29 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_721 = P.Split(axis=1, output_num=2) + self.add_722_bias = 0.0 + self.module20_28 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_733 = P.Reshape() + self.reshape_733_shape = tuple([1, 512, 1, 1]) + self.split_734 = P.Split(axis=1, output_num=2) + self.add_737_bias = 0.0 + self.conv2d_739 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_741 = nn.ReLU() + self.module22_30 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_746 = P.Split(axis=1, output_num=2) + self.add_747_bias = 0.0 + self.module20_29 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_758 = P.Reshape() + self.reshape_758_shape = tuple([1, 512, 1, 1]) + self.split_759 = P.Split(axis=1, output_num=2) + self.add_762_bias = 0.0 + self.conv2d_764 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_766 = nn.ReLU() + self.module22_31 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_773 = P.Split(axis=1, output_num=2) + self.add_774_bias = 0.0 + self.module20_30 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(16, 16), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_785 = P.Reshape() + self.reshape_785_shape = tuple([1, 1024, 1, 1]) + self.split_786 = P.Split(axis=1, output_num=2) + self.add_789_bias = 0.0 + self.pad_791 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_792 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_792 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_793 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_768 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_768 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_770 = nn.Conv2d(in_channels=1024, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_795 = nn.ReLU() + self.module22_32 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_800 = P.Split(axis=1, output_num=2) + self.add_801_bias = 0.0 + self.module20_31 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(8, 8), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_812 = P.Reshape() + self.reshape_812_shape = tuple([1, 1024, 1, 1]) + self.split_813 = P.Split(axis=1, output_num=2) + self.add_816_bias = 0.0 + self.conv2d_818 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_820 = nn.ReLU() + self.module22_33 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_825 = P.Split(axis=1, output_num=2) + self.add_826_bias = 0.0 + self.module20_32 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(8, 8), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_837 = P.Reshape() + self.reshape_837_shape = tuple([1, 1024, 1, 1]) + self.split_838 = P.Split(axis=1, output_num=2) + self.add_841_bias = 0.0 + self.conv2d_843 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_845 = nn.ReLU() + self.avgpool2d_846 = nn.AvgPool2d(kernel_size=(8, 8)) + self.reshape_847 = P.Reshape() + self.reshape_847_shape = tuple([1, 2048]) + self.flatten_848 = nn.Flatten() + self.dense_849 = nn.Dense(in_channels=2048, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + module22_0_opt = self.module22_0(opt_relu_1) + opt_maxpool2d_6 = self.pad_maxpool2d_6(module22_0_opt) + opt_maxpool2d_6 = self.maxpool2d_6(opt_maxpool2d_6) + module22_1_opt = self.module22_1(opt_maxpool2d_6) + opt_split_13, opt_split_13_1 = self.split_13(module22_1_opt) + opt_add_14 = opt_split_13 + self.add_14_bias + opt_add_15 = P.Add()(opt_add_14, opt_split_13_1) + module20_0_opt = self.module20_0(opt_add_15) + opt_reshape_25 = self.reshape_25(module20_0_opt, self.reshape_25_shape) + opt_split_26, opt_split_26_1 = self.split_26(opt_reshape_25) + opt_mul_27 = P.Mul()(opt_split_26, opt_split_13) + opt_mul_28 = P.Mul()(opt_split_26_1, opt_split_13_1) + opt_add_29 = opt_mul_27 + self.add_29_bias + opt_add_30 = P.Add()(opt_add_29, opt_mul_28) + opt_conv2d_31 = self.conv2d_31(opt_add_30) + opt_avgpool2d_8 = self.pad_avgpool2d_8(opt_maxpool2d_6) + opt_avgpool2d_8 = self.avgpool2d_8(opt_avgpool2d_8) + opt_conv2d_10 = self.conv2d_10(opt_avgpool2d_8) + opt_add_32 = P.Add()(opt_conv2d_31, opt_conv2d_10) + opt_relu_33 = self.relu_33(opt_add_32) + module22_2_opt = self.module22_2(opt_relu_33) + opt_split_38, opt_split_38_1 = self.split_38(module22_2_opt) + opt_add_39 = opt_split_38 + self.add_39_bias + opt_add_40 = P.Add()(opt_add_39, opt_split_38_1) + module20_1_opt = self.module20_1(opt_add_40) + opt_reshape_50 = self.reshape_50(module20_1_opt, self.reshape_50_shape) + opt_split_51, opt_split_51_1 = self.split_51(opt_reshape_50) + opt_mul_52 = P.Mul()(opt_split_51, opt_split_38) + opt_mul_53 = P.Mul()(opt_split_51_1, opt_split_38_1) + opt_add_54 = opt_mul_52 + self.add_54_bias + opt_add_55 = P.Add()(opt_add_54, opt_mul_53) + opt_conv2d_56 = self.conv2d_56(opt_add_55) + opt_add_57 = P.Add()(opt_conv2d_56, opt_relu_33) + opt_relu_58 = self.relu_58(opt_add_57) + module22_3_opt = self.module22_3(opt_relu_58) + opt_split_63, opt_split_63_1 = self.split_63(module22_3_opt) + opt_add_64 = opt_split_63 + self.add_64_bias + opt_add_65 = P.Add()(opt_add_64, opt_split_63_1) + module20_2_opt = self.module20_2(opt_add_65) + opt_reshape_75 = self.reshape_75(module20_2_opt, self.reshape_75_shape) + opt_split_76, opt_split_76_1 = self.split_76(opt_reshape_75) + opt_mul_77 = P.Mul()(opt_split_76, opt_split_63) + opt_mul_78 = P.Mul()(opt_split_76_1, opt_split_63_1) + opt_add_79 = opt_mul_77 + self.add_79_bias + opt_add_80 = P.Add()(opt_add_79, opt_mul_78) + opt_conv2d_81 = self.conv2d_81(opt_add_80) + opt_add_82 = P.Add()(opt_conv2d_81, opt_relu_58) + opt_relu_83 = self.relu_83(opt_add_82) + module22_4_opt = self.module22_4(opt_relu_83) + opt_split_90, opt_split_90_1 = self.split_90(module22_4_opt) + opt_add_91 = opt_split_90 + self.add_91_bias + opt_add_92 = P.Add()(opt_add_91, opt_split_90_1) + module20_3_opt = self.module20_3(opt_add_92) + opt_reshape_102 = self.reshape_102(module20_3_opt, self.reshape_102_shape) + opt_split_103, opt_split_103_1 = self.split_103(opt_reshape_102) + opt_mul_104 = P.Mul()(opt_split_103, opt_split_90) + opt_mul_105 = P.Mul()(opt_split_103_1, opt_split_90_1) + opt_add_106 = opt_mul_104 + self.add_106_bias + opt_add_107 = P.Add()(opt_add_106, opt_mul_105) + opt_pad_108 = self.pad_108(opt_add_107) + opt_avgpool2d_109 = self.pad_avgpool2d_109(opt_pad_108) + opt_avgpool2d_109 = self.avgpool2d_109(opt_avgpool2d_109) + opt_conv2d_110 = self.conv2d_110(opt_avgpool2d_109) + opt_avgpool2d_85 = self.pad_avgpool2d_85(opt_relu_83) + opt_avgpool2d_85 = self.avgpool2d_85(opt_avgpool2d_85) + opt_conv2d_87 = self.conv2d_87(opt_avgpool2d_85) + opt_add_111 = P.Add()(opt_conv2d_110, opt_conv2d_87) + opt_relu_112 = self.relu_112(opt_add_111) + module22_5_opt = self.module22_5(opt_relu_112) + opt_split_117, opt_split_117_1 = self.split_117(module22_5_opt) + opt_add_118 = opt_split_117 + self.add_118_bias + opt_add_119 = P.Add()(opt_add_118, opt_split_117_1) + module20_4_opt = self.module20_4(opt_add_119) + opt_reshape_129 = self.reshape_129(module20_4_opt, self.reshape_129_shape) + opt_split_130, opt_split_130_1 = self.split_130(opt_reshape_129) + opt_mul_131 = P.Mul()(opt_split_130, opt_split_117) + opt_mul_132 = P.Mul()(opt_split_130_1, opt_split_117_1) + opt_add_133 = opt_mul_131 + self.add_133_bias + opt_add_134 = P.Add()(opt_add_133, opt_mul_132) + opt_conv2d_135 = self.conv2d_135(opt_add_134) + opt_add_136 = P.Add()(opt_conv2d_135, opt_relu_112) + opt_relu_137 = self.relu_137(opt_add_136) + module22_6_opt = self.module22_6(opt_relu_137) + opt_split_142, opt_split_142_1 = self.split_142(module22_6_opt) + opt_add_143 = opt_split_142 + self.add_143_bias + opt_add_144 = P.Add()(opt_add_143, opt_split_142_1) + module20_5_opt = self.module20_5(opt_add_144) + opt_reshape_154 = self.reshape_154(module20_5_opt, self.reshape_154_shape) + opt_split_155, opt_split_155_1 = self.split_155(opt_reshape_154) + opt_mul_156 = P.Mul()(opt_split_155, opt_split_142) + opt_mul_157 = P.Mul()(opt_split_155_1, opt_split_142_1) + opt_add_158 = opt_mul_156 + self.add_158_bias + opt_add_159 = P.Add()(opt_add_158, opt_mul_157) + opt_conv2d_160 = self.conv2d_160(opt_add_159) + opt_add_161 = P.Add()(opt_conv2d_160, opt_relu_137) + opt_relu_162 = self.relu_162(opt_add_161) + module22_7_opt = self.module22_7(opt_relu_162) + opt_split_167, opt_split_167_1 = self.split_167(module22_7_opt) + opt_add_168 = opt_split_167 + self.add_168_bias + opt_add_169 = P.Add()(opt_add_168, opt_split_167_1) + module20_6_opt = self.module20_6(opt_add_169) + opt_reshape_179 = self.reshape_179(module20_6_opt, self.reshape_179_shape) + opt_split_180, opt_split_180_1 = self.split_180(opt_reshape_179) + opt_mul_181 = P.Mul()(opt_split_180, opt_split_167) + opt_mul_182 = P.Mul()(opt_split_180_1, opt_split_167_1) + opt_add_183 = opt_mul_181 + self.add_183_bias + opt_add_184 = P.Add()(opt_add_183, opt_mul_182) + opt_conv2d_185 = self.conv2d_185(opt_add_184) + opt_add_186 = P.Add()(opt_conv2d_185, opt_relu_162) + opt_relu_187 = self.relu_187(opt_add_186) + module22_8_opt = self.module22_8(opt_relu_187) + opt_split_194, opt_split_194_1 = self.split_194(module22_8_opt) + opt_add_195 = opt_split_194 + self.add_195_bias + opt_add_196 = P.Add()(opt_add_195, opt_split_194_1) + module20_7_opt = self.module20_7(opt_add_196) + opt_reshape_206 = self.reshape_206(module20_7_opt, self.reshape_206_shape) + opt_split_207, opt_split_207_1 = self.split_207(opt_reshape_206) + opt_mul_208 = P.Mul()(opt_split_207, opt_split_194) + opt_mul_209 = P.Mul()(opt_split_207_1, opt_split_194_1) + opt_add_210 = opt_mul_208 + self.add_210_bias + opt_add_211 = P.Add()(opt_add_210, opt_mul_209) + opt_pad_212 = self.pad_212(opt_add_211) + opt_avgpool2d_213 = self.pad_avgpool2d_213(opt_pad_212) + opt_avgpool2d_213 = self.avgpool2d_213(opt_avgpool2d_213) + opt_conv2d_214 = self.conv2d_214(opt_avgpool2d_213) + opt_avgpool2d_189 = self.pad_avgpool2d_189(opt_relu_187) + opt_avgpool2d_189 = self.avgpool2d_189(opt_avgpool2d_189) + opt_conv2d_191 = self.conv2d_191(opt_avgpool2d_189) + opt_add_215 = P.Add()(opt_conv2d_214, opt_conv2d_191) + opt_relu_216 = self.relu_216(opt_add_215) + module22_9_opt = self.module22_9(opt_relu_216) + opt_split_221, opt_split_221_1 = self.split_221(module22_9_opt) + opt_add_222 = opt_split_221 + self.add_222_bias + opt_add_223 = P.Add()(opt_add_222, opt_split_221_1) + module20_8_opt = self.module20_8(opt_add_223) + opt_reshape_233 = self.reshape_233(module20_8_opt, self.reshape_233_shape) + opt_split_234, opt_split_234_1 = self.split_234(opt_reshape_233) + opt_mul_235 = P.Mul()(opt_split_234, opt_split_221) + opt_mul_236 = P.Mul()(opt_split_234_1, opt_split_221_1) + opt_add_237 = opt_mul_235 + self.add_237_bias + opt_add_238 = P.Add()(opt_add_237, opt_mul_236) + opt_conv2d_239 = self.conv2d_239(opt_add_238) + opt_add_240 = P.Add()(opt_conv2d_239, opt_relu_216) + opt_relu_241 = self.relu_241(opt_add_240) + module22_10_opt = self.module22_10(opt_relu_241) + opt_split_246, opt_split_246_1 = self.split_246(module22_10_opt) + opt_add_247 = opt_split_246 + self.add_247_bias + opt_add_248 = P.Add()(opt_add_247, opt_split_246_1) + module20_9_opt = self.module20_9(opt_add_248) + opt_reshape_258 = self.reshape_258(module20_9_opt, self.reshape_258_shape) + opt_split_259, opt_split_259_1 = self.split_259(opt_reshape_258) + opt_mul_260 = P.Mul()(opt_split_259, opt_split_246) + opt_mul_261 = P.Mul()(opt_split_259_1, opt_split_246_1) + opt_add_262 = opt_mul_260 + self.add_262_bias + opt_add_263 = P.Add()(opt_add_262, opt_mul_261) + opt_conv2d_264 = self.conv2d_264(opt_add_263) + opt_add_265 = P.Add()(opt_conv2d_264, opt_relu_241) + opt_relu_266 = self.relu_266(opt_add_265) + module22_11_opt = self.module22_11(opt_relu_266) + opt_split_271, opt_split_271_1 = self.split_271(module22_11_opt) + opt_add_272 = opt_split_271 + self.add_272_bias + opt_add_273 = P.Add()(opt_add_272, opt_split_271_1) + module20_10_opt = self.module20_10(opt_add_273) + opt_reshape_283 = self.reshape_283(module20_10_opt, self.reshape_283_shape) + opt_split_284, opt_split_284_1 = self.split_284(opt_reshape_283) + opt_mul_285 = P.Mul()(opt_split_284, opt_split_271) + opt_mul_286 = P.Mul()(opt_split_284_1, opt_split_271_1) + opt_add_287 = opt_mul_285 + self.add_287_bias + opt_add_288 = P.Add()(opt_add_287, opt_mul_286) + opt_conv2d_289 = self.conv2d_289(opt_add_288) + opt_add_290 = P.Add()(opt_conv2d_289, opt_relu_266) + opt_relu_291 = self.relu_291(opt_add_290) + module22_12_opt = self.module22_12(opt_relu_291) + opt_split_296, opt_split_296_1 = self.split_296(module22_12_opt) + opt_add_297 = opt_split_296 + self.add_297_bias + opt_add_298 = P.Add()(opt_add_297, opt_split_296_1) + module20_11_opt = self.module20_11(opt_add_298) + opt_reshape_308 = self.reshape_308(module20_11_opt, self.reshape_308_shape) + opt_split_309, opt_split_309_1 = self.split_309(opt_reshape_308) + opt_mul_310 = P.Mul()(opt_split_309, opt_split_296) + opt_mul_311 = P.Mul()(opt_split_309_1, opt_split_296_1) + opt_add_312 = opt_mul_310 + self.add_312_bias + opt_add_313 = P.Add()(opt_add_312, opt_mul_311) + opt_conv2d_314 = self.conv2d_314(opt_add_313) + opt_add_315 = P.Add()(opt_conv2d_314, opt_relu_291) + opt_relu_316 = self.relu_316(opt_add_315) + module22_13_opt = self.module22_13(opt_relu_316) + opt_split_321, opt_split_321_1 = self.split_321(module22_13_opt) + opt_add_322 = opt_split_321 + self.add_322_bias + opt_add_323 = P.Add()(opt_add_322, opt_split_321_1) + module20_12_opt = self.module20_12(opt_add_323) + opt_reshape_333 = self.reshape_333(module20_12_opt, self.reshape_333_shape) + opt_split_334, opt_split_334_1 = self.split_334(opt_reshape_333) + opt_mul_335 = P.Mul()(opt_split_334, opt_split_321) + opt_mul_336 = P.Mul()(opt_split_334_1, opt_split_321_1) + opt_add_337 = opt_mul_335 + self.add_337_bias + opt_add_338 = P.Add()(opt_add_337, opt_mul_336) + opt_conv2d_339 = self.conv2d_339(opt_add_338) + opt_add_340 = P.Add()(opt_conv2d_339, opt_relu_316) + opt_relu_341 = self.relu_341(opt_add_340) + module22_14_opt = self.module22_14(opt_relu_341) + opt_split_346, opt_split_346_1 = self.split_346(module22_14_opt) + opt_add_347 = opt_split_346 + self.add_347_bias + opt_add_348 = P.Add()(opt_add_347, opt_split_346_1) + module20_13_opt = self.module20_13(opt_add_348) + opt_reshape_358 = self.reshape_358(module20_13_opt, self.reshape_358_shape) + opt_split_359, opt_split_359_1 = self.split_359(opt_reshape_358) + opt_mul_360 = P.Mul()(opt_split_359, opt_split_346) + opt_mul_361 = P.Mul()(opt_split_359_1, opt_split_346_1) + opt_add_362 = opt_mul_360 + self.add_362_bias + opt_add_363 = P.Add()(opt_add_362, opt_mul_361) + opt_conv2d_364 = self.conv2d_364(opt_add_363) + opt_add_365 = P.Add()(opt_conv2d_364, opt_relu_341) + opt_relu_366 = self.relu_366(opt_add_365) + module22_15_opt = self.module22_15(opt_relu_366) + opt_split_371, opt_split_371_1 = self.split_371(module22_15_opt) + opt_add_372 = opt_split_371 + self.add_372_bias + opt_add_373 = P.Add()(opt_add_372, opt_split_371_1) + module20_14_opt = self.module20_14(opt_add_373) + opt_reshape_383 = self.reshape_383(module20_14_opt, self.reshape_383_shape) + opt_split_384, opt_split_384_1 = self.split_384(opt_reshape_383) + opt_mul_385 = P.Mul()(opt_split_384, opt_split_371) + opt_mul_386 = P.Mul()(opt_split_384_1, opt_split_371_1) + opt_add_387 = opt_mul_385 + self.add_387_bias + opt_add_388 = P.Add()(opt_add_387, opt_mul_386) + opt_conv2d_389 = self.conv2d_389(opt_add_388) + opt_add_390 = P.Add()(opt_conv2d_389, opt_relu_366) + opt_relu_391 = self.relu_391(opt_add_390) + module22_16_opt = self.module22_16(opt_relu_391) + opt_split_396, opt_split_396_1 = self.split_396(module22_16_opt) + opt_add_397 = opt_split_396 + self.add_397_bias + opt_add_398 = P.Add()(opt_add_397, opt_split_396_1) + module20_15_opt = self.module20_15(opt_add_398) + opt_reshape_408 = self.reshape_408(module20_15_opt, self.reshape_408_shape) + opt_split_409, opt_split_409_1 = self.split_409(opt_reshape_408) + opt_mul_410 = P.Mul()(opt_split_409, opt_split_396) + opt_mul_411 = P.Mul()(opt_split_409_1, opt_split_396_1) + opt_add_412 = opt_mul_410 + self.add_412_bias + opt_add_413 = P.Add()(opt_add_412, opt_mul_411) + opt_conv2d_414 = self.conv2d_414(opt_add_413) + opt_add_415 = P.Add()(opt_conv2d_414, opt_relu_391) + opt_relu_416 = self.relu_416(opt_add_415) + module22_17_opt = self.module22_17(opt_relu_416) + opt_split_421, opt_split_421_1 = self.split_421(module22_17_opt) + opt_add_422 = opt_split_421 + self.add_422_bias + opt_add_423 = P.Add()(opt_add_422, opt_split_421_1) + module20_16_opt = self.module20_16(opt_add_423) + opt_reshape_433 = self.reshape_433(module20_16_opt, self.reshape_433_shape) + opt_split_434, opt_split_434_1 = self.split_434(opt_reshape_433) + opt_mul_435 = P.Mul()(opt_split_434, opt_split_421) + opt_mul_436 = P.Mul()(opt_split_434_1, opt_split_421_1) + opt_add_437 = opt_mul_435 + self.add_437_bias + opt_add_438 = P.Add()(opt_add_437, opt_mul_436) + opt_conv2d_439 = self.conv2d_439(opt_add_438) + opt_add_440 = P.Add()(opt_conv2d_439, opt_relu_416) + opt_relu_441 = self.relu_441(opt_add_440) + module22_18_opt = self.module22_18(opt_relu_441) + opt_split_446, opt_split_446_1 = self.split_446(module22_18_opt) + opt_add_447 = opt_split_446 + self.add_447_bias + opt_add_448 = P.Add()(opt_add_447, opt_split_446_1) + module20_17_opt = self.module20_17(opt_add_448) + opt_reshape_458 = self.reshape_458(module20_17_opt, self.reshape_458_shape) + opt_split_459, opt_split_459_1 = self.split_459(opt_reshape_458) + opt_mul_460 = P.Mul()(opt_split_459, opt_split_446) + opt_mul_461 = P.Mul()(opt_split_459_1, opt_split_446_1) + opt_add_462 = opt_mul_460 + self.add_462_bias + opt_add_463 = P.Add()(opt_add_462, opt_mul_461) + opt_conv2d_464 = self.conv2d_464(opt_add_463) + opt_add_465 = P.Add()(opt_conv2d_464, opt_relu_441) + opt_relu_466 = self.relu_466(opt_add_465) + module22_19_opt = self.module22_19(opt_relu_466) + opt_split_471, opt_split_471_1 = self.split_471(module22_19_opt) + opt_add_472 = opt_split_471 + self.add_472_bias + opt_add_473 = P.Add()(opt_add_472, opt_split_471_1) + module20_18_opt = self.module20_18(opt_add_473) + opt_reshape_483 = self.reshape_483(module20_18_opt, self.reshape_483_shape) + opt_split_484, opt_split_484_1 = self.split_484(opt_reshape_483) + opt_mul_485 = P.Mul()(opt_split_484, opt_split_471) + opt_mul_486 = P.Mul()(opt_split_484_1, opt_split_471_1) + opt_add_487 = opt_mul_485 + self.add_487_bias + opt_add_488 = P.Add()(opt_add_487, opt_mul_486) + opt_conv2d_489 = self.conv2d_489(opt_add_488) + opt_add_490 = P.Add()(opt_conv2d_489, opt_relu_466) + opt_relu_491 = self.relu_491(opt_add_490) + module22_20_opt = self.module22_20(opt_relu_491) + opt_split_496, opt_split_496_1 = self.split_496(module22_20_opt) + opt_add_497 = opt_split_496 + self.add_497_bias + opt_add_498 = P.Add()(opt_add_497, opt_split_496_1) + module20_19_opt = self.module20_19(opt_add_498) + opt_reshape_508 = self.reshape_508(module20_19_opt, self.reshape_508_shape) + opt_split_509, opt_split_509_1 = self.split_509(opt_reshape_508) + opt_mul_510 = P.Mul()(opt_split_509, opt_split_496) + opt_mul_511 = P.Mul()(opt_split_509_1, opt_split_496_1) + opt_add_512 = opt_mul_510 + self.add_512_bias + opt_add_513 = P.Add()(opt_add_512, opt_mul_511) + opt_conv2d_514 = self.conv2d_514(opt_add_513) + opt_add_515 = P.Add()(opt_conv2d_514, opt_relu_491) + opt_relu_516 = self.relu_516(opt_add_515) + module22_21_opt = self.module22_21(opt_relu_516) + opt_split_521, opt_split_521_1 = self.split_521(module22_21_opt) + opt_add_522 = opt_split_521 + self.add_522_bias + opt_add_523 = P.Add()(opt_add_522, opt_split_521_1) + module20_20_opt = self.module20_20(opt_add_523) + opt_reshape_533 = self.reshape_533(module20_20_opt, self.reshape_533_shape) + opt_split_534, opt_split_534_1 = self.split_534(opt_reshape_533) + opt_mul_535 = P.Mul()(opt_split_534, opt_split_521) + opt_mul_536 = P.Mul()(opt_split_534_1, opt_split_521_1) + opt_add_537 = opt_mul_535 + self.add_537_bias + opt_add_538 = P.Add()(opt_add_537, opt_mul_536) + opt_conv2d_539 = self.conv2d_539(opt_add_538) + opt_add_540 = P.Add()(opt_conv2d_539, opt_relu_516) + opt_relu_541 = self.relu_541(opt_add_540) + module22_22_opt = self.module22_22(opt_relu_541) + opt_split_546, opt_split_546_1 = self.split_546(module22_22_opt) + opt_add_547 = opt_split_546 + self.add_547_bias + opt_add_548 = P.Add()(opt_add_547, opt_split_546_1) + module20_21_opt = self.module20_21(opt_add_548) + opt_reshape_558 = self.reshape_558(module20_21_opt, self.reshape_558_shape) + opt_split_559, opt_split_559_1 = self.split_559(opt_reshape_558) + opt_mul_560 = P.Mul()(opt_split_559, opt_split_546) + opt_mul_561 = P.Mul()(opt_split_559_1, opt_split_546_1) + opt_add_562 = opt_mul_560 + self.add_562_bias + opt_add_563 = P.Add()(opt_add_562, opt_mul_561) + opt_conv2d_564 = self.conv2d_564(opt_add_563) + opt_add_565 = P.Add()(opt_conv2d_564, opt_relu_541) + opt_relu_566 = self.relu_566(opt_add_565) + module22_23_opt = self.module22_23(opt_relu_566) + opt_split_571, opt_split_571_1 = self.split_571(module22_23_opt) + opt_add_572 = opt_split_571 + self.add_572_bias + opt_add_573 = P.Add()(opt_add_572, opt_split_571_1) + module20_22_opt = self.module20_22(opt_add_573) + opt_reshape_583 = self.reshape_583(module20_22_opt, self.reshape_583_shape) + opt_split_584, opt_split_584_1 = self.split_584(opt_reshape_583) + opt_mul_585 = P.Mul()(opt_split_584, opt_split_571) + opt_mul_586 = P.Mul()(opt_split_584_1, opt_split_571_1) + opt_add_587 = opt_mul_585 + self.add_587_bias + opt_add_588 = P.Add()(opt_add_587, opt_mul_586) + opt_conv2d_589 = self.conv2d_589(opt_add_588) + opt_add_590 = P.Add()(opt_conv2d_589, opt_relu_566) + opt_relu_591 = self.relu_591(opt_add_590) + module22_24_opt = self.module22_24(opt_relu_591) + opt_split_596, opt_split_596_1 = self.split_596(module22_24_opt) + opt_add_597 = opt_split_596 + self.add_597_bias + opt_add_598 = P.Add()(opt_add_597, opt_split_596_1) + module20_23_opt = self.module20_23(opt_add_598) + opt_reshape_608 = self.reshape_608(module20_23_opt, self.reshape_608_shape) + opt_split_609, opt_split_609_1 = self.split_609(opt_reshape_608) + opt_mul_610 = P.Mul()(opt_split_609, opt_split_596) + opt_mul_611 = P.Mul()(opt_split_609_1, opt_split_596_1) + opt_add_612 = opt_mul_610 + self.add_612_bias + opt_add_613 = P.Add()(opt_add_612, opt_mul_611) + opt_conv2d_614 = self.conv2d_614(opt_add_613) + opt_add_615 = P.Add()(opt_conv2d_614, opt_relu_591) + opt_relu_616 = self.relu_616(opt_add_615) + module22_25_opt = self.module22_25(opt_relu_616) + opt_split_621, opt_split_621_1 = self.split_621(module22_25_opt) + opt_add_622 = opt_split_621 + self.add_622_bias + opt_add_623 = P.Add()(opt_add_622, opt_split_621_1) + module20_24_opt = self.module20_24(opt_add_623) + opt_reshape_633 = self.reshape_633(module20_24_opt, self.reshape_633_shape) + opt_split_634, opt_split_634_1 = self.split_634(opt_reshape_633) + opt_mul_635 = P.Mul()(opt_split_634, opt_split_621) + opt_mul_636 = P.Mul()(opt_split_634_1, opt_split_621_1) + opt_add_637 = opt_mul_635 + self.add_637_bias + opt_add_638 = P.Add()(opt_add_637, opt_mul_636) + opt_conv2d_639 = self.conv2d_639(opt_add_638) + opt_add_640 = P.Add()(opt_conv2d_639, opt_relu_616) + opt_relu_641 = self.relu_641(opt_add_640) + module22_26_opt = self.module22_26(opt_relu_641) + opt_split_646, opt_split_646_1 = self.split_646(module22_26_opt) + opt_add_647 = opt_split_646 + self.add_647_bias + opt_add_648 = P.Add()(opt_add_647, opt_split_646_1) + module20_25_opt = self.module20_25(opt_add_648) + opt_reshape_658 = self.reshape_658(module20_25_opt, self.reshape_658_shape) + opt_split_659, opt_split_659_1 = self.split_659(opt_reshape_658) + opt_mul_660 = P.Mul()(opt_split_659, opt_split_646) + opt_mul_661 = P.Mul()(opt_split_659_1, opt_split_646_1) + opt_add_662 = opt_mul_660 + self.add_662_bias + opt_add_663 = P.Add()(opt_add_662, opt_mul_661) + opt_conv2d_664 = self.conv2d_664(opt_add_663) + opt_add_665 = P.Add()(opt_conv2d_664, opt_relu_641) + opt_relu_666 = self.relu_666(opt_add_665) + module22_27_opt = self.module22_27(opt_relu_666) + opt_split_671, opt_split_671_1 = self.split_671(module22_27_opt) + opt_add_672 = opt_split_671 + self.add_672_bias + opt_add_673 = P.Add()(opt_add_672, opt_split_671_1) + module20_26_opt = self.module20_26(opt_add_673) + opt_reshape_683 = self.reshape_683(module20_26_opt, self.reshape_683_shape) + opt_split_684, opt_split_684_1 = self.split_684(opt_reshape_683) + opt_mul_685 = P.Mul()(opt_split_684, opt_split_671) + opt_mul_686 = P.Mul()(opt_split_684_1, opt_split_671_1) + opt_add_687 = opt_mul_685 + self.add_687_bias + opt_add_688 = P.Add()(opt_add_687, opt_mul_686) + opt_conv2d_689 = self.conv2d_689(opt_add_688) + opt_add_690 = P.Add()(opt_conv2d_689, opt_relu_666) + opt_relu_691 = self.relu_691(opt_add_690) + module22_28_opt = self.module22_28(opt_relu_691) + opt_split_696, opt_split_696_1 = self.split_696(module22_28_opt) + opt_add_697 = opt_split_696 + self.add_697_bias + opt_add_698 = P.Add()(opt_add_697, opt_split_696_1) + module20_27_opt = self.module20_27(opt_add_698) + opt_reshape_708 = self.reshape_708(module20_27_opt, self.reshape_708_shape) + opt_split_709, opt_split_709_1 = self.split_709(opt_reshape_708) + opt_mul_710 = P.Mul()(opt_split_709, opt_split_696) + opt_mul_711 = P.Mul()(opt_split_709_1, opt_split_696_1) + opt_add_712 = opt_mul_710 + self.add_712_bias + opt_add_713 = P.Add()(opt_add_712, opt_mul_711) + opt_conv2d_714 = self.conv2d_714(opt_add_713) + opt_add_715 = P.Add()(opt_conv2d_714, opt_relu_691) + opt_relu_716 = self.relu_716(opt_add_715) + module22_29_opt = self.module22_29(opt_relu_716) + opt_split_721, opt_split_721_1 = self.split_721(module22_29_opt) + opt_add_722 = opt_split_721 + self.add_722_bias + opt_add_723 = P.Add()(opt_add_722, opt_split_721_1) + module20_28_opt = self.module20_28(opt_add_723) + opt_reshape_733 = self.reshape_733(module20_28_opt, self.reshape_733_shape) + opt_split_734, opt_split_734_1 = self.split_734(opt_reshape_733) + opt_mul_735 = P.Mul()(opt_split_734, opt_split_721) + opt_mul_736 = P.Mul()(opt_split_734_1, opt_split_721_1) + opt_add_737 = opt_mul_735 + self.add_737_bias + opt_add_738 = P.Add()(opt_add_737, opt_mul_736) + opt_conv2d_739 = self.conv2d_739(opt_add_738) + opt_add_740 = P.Add()(opt_conv2d_739, opt_relu_716) + opt_relu_741 = self.relu_741(opt_add_740) + module22_30_opt = self.module22_30(opt_relu_741) + opt_split_746, opt_split_746_1 = self.split_746(module22_30_opt) + opt_add_747 = opt_split_746 + self.add_747_bias + opt_add_748 = P.Add()(opt_add_747, opt_split_746_1) + module20_29_opt = self.module20_29(opt_add_748) + opt_reshape_758 = self.reshape_758(module20_29_opt, self.reshape_758_shape) + opt_split_759, opt_split_759_1 = self.split_759(opt_reshape_758) + opt_mul_760 = P.Mul()(opt_split_759, opt_split_746) + opt_mul_761 = P.Mul()(opt_split_759_1, opt_split_746_1) + opt_add_762 = opt_mul_760 + self.add_762_bias + opt_add_763 = P.Add()(opt_add_762, opt_mul_761) + opt_conv2d_764 = self.conv2d_764(opt_add_763) + opt_add_765 = P.Add()(opt_conv2d_764, opt_relu_741) + opt_relu_766 = self.relu_766(opt_add_765) + module22_31_opt = self.module22_31(opt_relu_766) + opt_split_773, opt_split_773_1 = self.split_773(module22_31_opt) + opt_add_774 = opt_split_773 + self.add_774_bias + opt_add_775 = P.Add()(opt_add_774, opt_split_773_1) + module20_30_opt = self.module20_30(opt_add_775) + opt_reshape_785 = self.reshape_785(module20_30_opt, self.reshape_785_shape) + opt_split_786, opt_split_786_1 = self.split_786(opt_reshape_785) + opt_mul_787 = P.Mul()(opt_split_786, opt_split_773) + opt_mul_788 = P.Mul()(opt_split_786_1, opt_split_773_1) + opt_add_789 = opt_mul_787 + self.add_789_bias + opt_add_790 = P.Add()(opt_add_789, opt_mul_788) + opt_pad_791 = self.pad_791(opt_add_790) + opt_avgpool2d_792 = self.pad_avgpool2d_792(opt_pad_791) + opt_avgpool2d_792 = self.avgpool2d_792(opt_avgpool2d_792) + opt_conv2d_793 = self.conv2d_793(opt_avgpool2d_792) + opt_avgpool2d_768 = self.pad_avgpool2d_768(opt_relu_766) + opt_avgpool2d_768 = self.avgpool2d_768(opt_avgpool2d_768) + opt_conv2d_770 = self.conv2d_770(opt_avgpool2d_768) + opt_add_794 = P.Add()(opt_conv2d_793, opt_conv2d_770) + opt_relu_795 = self.relu_795(opt_add_794) + module22_32_opt = self.module22_32(opt_relu_795) + opt_split_800, opt_split_800_1 = self.split_800(module22_32_opt) + opt_add_801 = opt_split_800 + self.add_801_bias + opt_add_802 = P.Add()(opt_add_801, opt_split_800_1) + module20_31_opt = self.module20_31(opt_add_802) + opt_reshape_812 = self.reshape_812(module20_31_opt, self.reshape_812_shape) + opt_split_813, opt_split_813_1 = self.split_813(opt_reshape_812) + opt_mul_814 = P.Mul()(opt_split_813, opt_split_800) + opt_mul_815 = P.Mul()(opt_split_813_1, opt_split_800_1) + opt_add_816 = opt_mul_814 + self.add_816_bias + opt_add_817 = P.Add()(opt_add_816, opt_mul_815) + opt_conv2d_818 = self.conv2d_818(opt_add_817) + opt_add_819 = P.Add()(opt_conv2d_818, opt_relu_795) + opt_relu_820 = self.relu_820(opt_add_819) + module22_33_opt = self.module22_33(opt_relu_820) + opt_split_825, opt_split_825_1 = self.split_825(module22_33_opt) + opt_add_826 = opt_split_825 + self.add_826_bias + opt_add_827 = P.Add()(opt_add_826, opt_split_825_1) + module20_32_opt = self.module20_32(opt_add_827) + opt_reshape_837 = self.reshape_837(module20_32_opt, self.reshape_837_shape) + opt_split_838, opt_split_838_1 = self.split_838(opt_reshape_837) + opt_mul_839 = P.Mul()(opt_split_838, opt_split_825) + opt_mul_840 = P.Mul()(opt_split_838_1, opt_split_825_1) + opt_add_841 = opt_mul_839 + self.add_841_bias + opt_add_842 = P.Add()(opt_add_841, opt_mul_840) + opt_conv2d_843 = self.conv2d_843(opt_add_842) + opt_add_844 = P.Add()(opt_conv2d_843, opt_relu_820) + opt_relu_845 = self.relu_845(opt_add_844) + opt_avgpool2d_846 = self.avgpool2d_846(opt_relu_845) + opt_reshape_847 = self.reshape_847(opt_avgpool2d_846, self.reshape_847_shape) + opt_flatten_848 = self.flatten_848(opt_reshape_847) + opt_dense_849 = self.dense_849(opt_flatten_848) + return opt_dense_849 diff --git a/research/cvtmodel/resnest/src/resnest200.py b/research/cvtmodel/resnest/src/resnest200.py new file mode 100644 index 0000000000000000000000000000000000000000..75aba8c4c4cb304d2fcfafa371be4cdcd22c9d0b --- /dev/null +++ b/research/cvtmodel/resnest/src/resnest200.py @@ -0,0 +1,3464 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module5(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, conv2d_0_kernel_size, conv2d_0_padding, + conv2d_0_pad_mode, conv2d_0_group): + super(Module5, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=conv2d_0_kernel_size, + stride=(1, 1), + padding=conv2d_0_padding, + pad_mode=conv2d_0_pad_mode, + dilation=(1, 1), + group=conv2d_0_group, + has_bias=True) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_conv2d_0 = self.conv2d_0(x) + opt_relu_1 = self.relu_1(opt_conv2d_0) + return opt_relu_1 + + +class Module22(nn.Cell): + def __init__(self, module5_0_conv2d_0_in_channels, module5_0_conv2d_0_out_channels, module5_0_conv2d_0_kernel_size, + module5_0_conv2d_0_padding, module5_0_conv2d_0_pad_mode, module5_0_conv2d_0_group, + module5_1_conv2d_0_in_channels, module5_1_conv2d_0_out_channels, module5_1_conv2d_0_kernel_size, + module5_1_conv2d_0_padding, module5_1_conv2d_0_pad_mode, module5_1_conv2d_0_group): + super(Module22, self).__init__() + self.module5_0 = Module5(conv2d_0_in_channels=module5_0_conv2d_0_in_channels, + conv2d_0_out_channels=module5_0_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_0_conv2d_0_kernel_size, + conv2d_0_padding=module5_0_conv2d_0_padding, + conv2d_0_pad_mode=module5_0_conv2d_0_pad_mode, + conv2d_0_group=module5_0_conv2d_0_group) + self.module5_1 = Module5(conv2d_0_in_channels=module5_1_conv2d_0_in_channels, + conv2d_0_out_channels=module5_1_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_1_conv2d_0_kernel_size, + conv2d_0_padding=module5_1_conv2d_0_padding, + conv2d_0_pad_mode=module5_1_conv2d_0_pad_mode, + conv2d_0_group=module5_1_conv2d_0_group) + + def construct(self, x): + module5_0_opt = self.module5_0(x) + module5_1_opt = self.module5_1(module5_0_opt) + return module5_1_opt + + +class Module0(nn.Cell): + def __init__(self, avgpool2d_0_kernel_size, conv2d_1_in_channels, conv2d_1_out_channels, conv2d_3_in_channels, + conv2d_3_out_channels, reshape_4_shape): + super(Module0, self).__init__() + self.avgpool2d_0 = nn.AvgPool2d(kernel_size=avgpool2d_0_kernel_size) + self.conv2d_1 = nn.Conv2d(in_channels=conv2d_1_in_channels, + out_channels=conv2d_1_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=conv2d_3_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.reshape_4 = P.Reshape() + self.reshape_4_shape = tuple(reshape_4_shape) + self.transpose_5 = P.Transpose() + + def construct(self, x): + opt_avgpool2d_0 = self.avgpool2d_0(x) + opt_conv2d_1 = self.conv2d_1(opt_avgpool2d_0) + opt_relu_2 = self.relu_2(opt_conv2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_reshape_4 = self.reshape_4(opt_conv2d_3, self.reshape_4_shape) + opt_transpose_5 = self.transpose_5(opt_reshape_4, (0, 3, 1, 2)) + return opt_transpose_5 + + +class Module20(nn.Cell): + def __init__(self, reshape_2_shape, module0_0_avgpool2d_0_kernel_size, module0_0_conv2d_1_in_channels, + module0_0_conv2d_1_out_channels, module0_0_conv2d_3_in_channels, module0_0_conv2d_3_out_channels, + module0_0_reshape_4_shape): + super(Module20, self).__init__() + self.module0_0 = Module0(avgpool2d_0_kernel_size=module0_0_avgpool2d_0_kernel_size, + conv2d_1_in_channels=module0_0_conv2d_1_in_channels, + conv2d_1_out_channels=module0_0_conv2d_1_out_channels, + conv2d_3_in_channels=module0_0_conv2d_3_in_channels, + conv2d_3_out_channels=module0_0_conv2d_3_out_channels, + reshape_4_shape=module0_0_reshape_4_shape) + self.softmax_0 = nn.Softmax(axis=3) + self.transpose_1 = P.Transpose() + self.reshape_2 = P.Reshape() + self.reshape_2_shape = tuple(reshape_2_shape) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + opt_softmax_0 = self.softmax_0(module0_0_opt) + opt_transpose_1 = self.transpose_1(opt_softmax_0, (0, 3, 2, 1)) + opt_reshape_2 = self.reshape_2(opt_transpose_1, self.reshape_2_shape) + return opt_reshape_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(3, 3), + stride=(2, 2), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.module22_0 = Module22(module5_0_conv2d_0_in_channels=64, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(3, 3), + module5_0_conv2d_0_padding=(1, 1, 1, 1), + module5_0_conv2d_0_pad_mode="pad", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=1) + self.pad_maxpool2d_6 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_6 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module22_1 = Module22(module5_0_conv2d_0_in_channels=128, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_13 = P.Split(axis=1, output_num=2) + self.add_14_bias = 0.0 + self.module20_0 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(80, 80), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_25 = P.Reshape() + self.reshape_25_shape = tuple([1, 128, 1, 1]) + self.split_26 = P.Split(axis=1, output_num=2) + self.add_29_bias = 0.0 + self.conv2d_31 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_8 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_8 = nn.AvgPool2d(kernel_size=(1, 1), stride=(1, 1)) + self.conv2d_10 = nn.Conv2d(in_channels=128, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_33 = nn.ReLU() + self.module22_2 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_38 = P.Split(axis=1, output_num=2) + self.add_39_bias = 0.0 + self.module20_1 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(80, 80), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_50 = P.Reshape() + self.reshape_50_shape = tuple([1, 128, 1, 1]) + self.split_51 = P.Split(axis=1, output_num=2) + self.add_54_bias = 0.0 + self.conv2d_56 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_58 = nn.ReLU() + self.module22_3 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_63 = P.Split(axis=1, output_num=2) + self.add_64_bias = 0.0 + self.module20_2 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(80, 80), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_75 = P.Reshape() + self.reshape_75_shape = tuple([1, 128, 1, 1]) + self.split_76 = P.Split(axis=1, output_num=2) + self.add_79_bias = 0.0 + self.conv2d_81 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_83 = nn.ReLU() + self.module22_4 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_90 = P.Split(axis=1, output_num=2) + self.add_91_bias = 0.0 + self.module20_3 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(80, 80), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_102 = P.Reshape() + self.reshape_102_shape = tuple([1, 256, 1, 1]) + self.split_103 = P.Split(axis=1, output_num=2) + self.add_106_bias = 0.0 + self.pad_108 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_109 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_109 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_110 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_85 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_85 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_87 = nn.Conv2d(in_channels=256, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_112 = nn.ReLU() + self.module22_5 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_117 = P.Split(axis=1, output_num=2) + self.add_118_bias = 0.0 + self.module20_4 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_129 = P.Reshape() + self.reshape_129_shape = tuple([1, 256, 1, 1]) + self.split_130 = P.Split(axis=1, output_num=2) + self.add_133_bias = 0.0 + self.conv2d_135 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_137 = nn.ReLU() + self.module22_6 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_142 = P.Split(axis=1, output_num=2) + self.add_143_bias = 0.0 + self.module20_5 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_154 = P.Reshape() + self.reshape_154_shape = tuple([1, 256, 1, 1]) + self.split_155 = P.Split(axis=1, output_num=2) + self.add_158_bias = 0.0 + self.conv2d_160 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_162 = nn.ReLU() + self.module22_7 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_167 = P.Split(axis=1, output_num=2) + self.add_168_bias = 0.0 + self.module20_6 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_179 = P.Reshape() + self.reshape_179_shape = tuple([1, 256, 1, 1]) + self.split_180 = P.Split(axis=1, output_num=2) + self.add_183_bias = 0.0 + self.conv2d_185 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_187 = nn.ReLU() + self.module22_8 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_192 = P.Split(axis=1, output_num=2) + self.add_193_bias = 0.0 + self.module20_7 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_204 = P.Reshape() + self.reshape_204_shape = tuple([1, 256, 1, 1]) + self.split_205 = P.Split(axis=1, output_num=2) + self.add_208_bias = 0.0 + self.conv2d_210 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_212 = nn.ReLU() + self.module22_9 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_217 = P.Split(axis=1, output_num=2) + self.add_218_bias = 0.0 + self.module20_8 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_229 = P.Reshape() + self.reshape_229_shape = tuple([1, 256, 1, 1]) + self.split_230 = P.Split(axis=1, output_num=2) + self.add_233_bias = 0.0 + self.conv2d_235 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_237 = nn.ReLU() + self.module22_10 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_242 = P.Split(axis=1, output_num=2) + self.add_243_bias = 0.0 + self.module20_9 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_254 = P.Reshape() + self.reshape_254_shape = tuple([1, 256, 1, 1]) + self.split_255 = P.Split(axis=1, output_num=2) + self.add_258_bias = 0.0 + self.conv2d_260 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_262 = nn.ReLU() + self.module22_11 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_267 = P.Split(axis=1, output_num=2) + self.add_268_bias = 0.0 + self.module20_10 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_279 = P.Reshape() + self.reshape_279_shape = tuple([1, 256, 1, 1]) + self.split_280 = P.Split(axis=1, output_num=2) + self.add_283_bias = 0.0 + self.conv2d_285 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_287 = nn.ReLU() + self.module22_12 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_292 = P.Split(axis=1, output_num=2) + self.add_293_bias = 0.0 + self.module20_11 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_304 = P.Reshape() + self.reshape_304_shape = tuple([1, 256, 1, 1]) + self.split_305 = P.Split(axis=1, output_num=2) + self.add_308_bias = 0.0 + self.conv2d_310 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_312 = nn.ReLU() + self.module22_13 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_317 = P.Split(axis=1, output_num=2) + self.add_318_bias = 0.0 + self.module20_12 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_329 = P.Reshape() + self.reshape_329_shape = tuple([1, 256, 1, 1]) + self.split_330 = P.Split(axis=1, output_num=2) + self.add_333_bias = 0.0 + self.conv2d_335 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_337 = nn.ReLU() + self.module22_14 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_342 = P.Split(axis=1, output_num=2) + self.add_343_bias = 0.0 + self.module20_13 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_354 = P.Reshape() + self.reshape_354_shape = tuple([1, 256, 1, 1]) + self.split_355 = P.Split(axis=1, output_num=2) + self.add_358_bias = 0.0 + self.conv2d_360 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_362 = nn.ReLU() + self.module22_15 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_367 = P.Split(axis=1, output_num=2) + self.add_368_bias = 0.0 + self.module20_14 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_379 = P.Reshape() + self.reshape_379_shape = tuple([1, 256, 1, 1]) + self.split_380 = P.Split(axis=1, output_num=2) + self.add_383_bias = 0.0 + self.conv2d_385 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_387 = nn.ReLU() + self.module22_16 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_392 = P.Split(axis=1, output_num=2) + self.add_393_bias = 0.0 + self.module20_15 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_404 = P.Reshape() + self.reshape_404_shape = tuple([1, 256, 1, 1]) + self.split_405 = P.Split(axis=1, output_num=2) + self.add_408_bias = 0.0 + self.conv2d_410 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_412 = nn.ReLU() + self.module22_17 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_417 = P.Split(axis=1, output_num=2) + self.add_418_bias = 0.0 + self.module20_16 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_429 = P.Reshape() + self.reshape_429_shape = tuple([1, 256, 1, 1]) + self.split_430 = P.Split(axis=1, output_num=2) + self.add_433_bias = 0.0 + self.conv2d_435 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_437 = nn.ReLU() + self.module22_18 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_442 = P.Split(axis=1, output_num=2) + self.add_443_bias = 0.0 + self.module20_17 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_454 = P.Reshape() + self.reshape_454_shape = tuple([1, 256, 1, 1]) + self.split_455 = P.Split(axis=1, output_num=2) + self.add_458_bias = 0.0 + self.conv2d_460 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_462 = nn.ReLU() + self.module22_19 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_467 = P.Split(axis=1, output_num=2) + self.add_468_bias = 0.0 + self.module20_18 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_479 = P.Reshape() + self.reshape_479_shape = tuple([1, 256, 1, 1]) + self.split_480 = P.Split(axis=1, output_num=2) + self.add_483_bias = 0.0 + self.conv2d_485 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_487 = nn.ReLU() + self.module22_20 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_492 = P.Split(axis=1, output_num=2) + self.add_493_bias = 0.0 + self.module20_19 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_504 = P.Reshape() + self.reshape_504_shape = tuple([1, 256, 1, 1]) + self.split_505 = P.Split(axis=1, output_num=2) + self.add_508_bias = 0.0 + self.conv2d_510 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_512 = nn.ReLU() + self.module22_21 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_517 = P.Split(axis=1, output_num=2) + self.add_518_bias = 0.0 + self.module20_20 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_529 = P.Reshape() + self.reshape_529_shape = tuple([1, 256, 1, 1]) + self.split_530 = P.Split(axis=1, output_num=2) + self.add_533_bias = 0.0 + self.conv2d_535 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_537 = nn.ReLU() + self.module22_22 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_542 = P.Split(axis=1, output_num=2) + self.add_543_bias = 0.0 + self.module20_21 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_554 = P.Reshape() + self.reshape_554_shape = tuple([1, 256, 1, 1]) + self.split_555 = P.Split(axis=1, output_num=2) + self.add_558_bias = 0.0 + self.conv2d_560 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_562 = nn.ReLU() + self.module22_23 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_567 = P.Split(axis=1, output_num=2) + self.add_568_bias = 0.0 + self.module20_22 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_579 = P.Reshape() + self.reshape_579_shape = tuple([1, 256, 1, 1]) + self.split_580 = P.Split(axis=1, output_num=2) + self.add_583_bias = 0.0 + self.conv2d_585 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_587 = nn.ReLU() + self.module22_24 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_592 = P.Split(axis=1, output_num=2) + self.add_593_bias = 0.0 + self.module20_23 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_604 = P.Reshape() + self.reshape_604_shape = tuple([1, 256, 1, 1]) + self.split_605 = P.Split(axis=1, output_num=2) + self.add_608_bias = 0.0 + self.conv2d_610 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_612 = nn.ReLU() + self.module22_25 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_617 = P.Split(axis=1, output_num=2) + self.add_618_bias = 0.0 + self.module20_24 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_629 = P.Reshape() + self.reshape_629_shape = tuple([1, 256, 1, 1]) + self.split_630 = P.Split(axis=1, output_num=2) + self.add_633_bias = 0.0 + self.conv2d_635 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_637 = nn.ReLU() + self.module22_26 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_642 = P.Split(axis=1, output_num=2) + self.add_643_bias = 0.0 + self.module20_25 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_654 = P.Reshape() + self.reshape_654_shape = tuple([1, 256, 1, 1]) + self.split_655 = P.Split(axis=1, output_num=2) + self.add_658_bias = 0.0 + self.conv2d_660 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_662 = nn.ReLU() + self.module22_27 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_667 = P.Split(axis=1, output_num=2) + self.add_668_bias = 0.0 + self.module20_26 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_679 = P.Reshape() + self.reshape_679_shape = tuple([1, 256, 1, 1]) + self.split_680 = P.Split(axis=1, output_num=2) + self.add_683_bias = 0.0 + self.conv2d_685 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_687 = nn.ReLU() + self.module22_28 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_694 = P.Split(axis=1, output_num=2) + self.add_695_bias = 0.0 + self.module20_27 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(40, 40), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_706 = P.Reshape() + self.reshape_706_shape = tuple([1, 512, 1, 1]) + self.split_707 = P.Split(axis=1, output_num=2) + self.add_710_bias = 0.0 + self.pad_712 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_713 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_713 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_714 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_689 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_689 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_691 = nn.Conv2d(in_channels=512, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_716 = nn.ReLU() + self.module22_29 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_721 = P.Split(axis=1, output_num=2) + self.add_722_bias = 0.0 + self.module20_28 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_733 = P.Reshape() + self.reshape_733_shape = tuple([1, 512, 1, 1]) + self.split_734 = P.Split(axis=1, output_num=2) + self.add_737_bias = 0.0 + self.conv2d_739 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_741 = nn.ReLU() + self.module22_30 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_746 = P.Split(axis=1, output_num=2) + self.add_747_bias = 0.0 + self.module20_29 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_758 = P.Reshape() + self.reshape_758_shape = tuple([1, 512, 1, 1]) + self.split_759 = P.Split(axis=1, output_num=2) + self.add_762_bias = 0.0 + self.conv2d_764 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_766 = nn.ReLU() + self.module22_31 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_771 = P.Split(axis=1, output_num=2) + self.add_772_bias = 0.0 + self.module20_30 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_783 = P.Reshape() + self.reshape_783_shape = tuple([1, 512, 1, 1]) + self.split_784 = P.Split(axis=1, output_num=2) + self.add_787_bias = 0.0 + self.conv2d_789 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_791 = nn.ReLU() + self.module22_32 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_796 = P.Split(axis=1, output_num=2) + self.add_797_bias = 0.0 + self.module20_31 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_808 = P.Reshape() + self.reshape_808_shape = tuple([1, 512, 1, 1]) + self.split_809 = P.Split(axis=1, output_num=2) + self.add_812_bias = 0.0 + self.conv2d_814 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_816 = nn.ReLU() + self.module22_33 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_821 = P.Split(axis=1, output_num=2) + self.add_822_bias = 0.0 + self.module20_32 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_833 = P.Reshape() + self.reshape_833_shape = tuple([1, 512, 1, 1]) + self.split_834 = P.Split(axis=1, output_num=2) + self.add_837_bias = 0.0 + self.conv2d_839 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_841 = nn.ReLU() + self.module22_34 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_846 = P.Split(axis=1, output_num=2) + self.add_847_bias = 0.0 + self.module20_33 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_858 = P.Reshape() + self.reshape_858_shape = tuple([1, 512, 1, 1]) + self.split_859 = P.Split(axis=1, output_num=2) + self.add_862_bias = 0.0 + self.conv2d_864 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_866 = nn.ReLU() + self.module22_35 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_871 = P.Split(axis=1, output_num=2) + self.add_872_bias = 0.0 + self.module20_34 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_883 = P.Reshape() + self.reshape_883_shape = tuple([1, 512, 1, 1]) + self.split_884 = P.Split(axis=1, output_num=2) + self.add_887_bias = 0.0 + self.conv2d_889 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_891 = nn.ReLU() + self.module22_36 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_896 = P.Split(axis=1, output_num=2) + self.add_897_bias = 0.0 + self.module20_35 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_908 = P.Reshape() + self.reshape_908_shape = tuple([1, 512, 1, 1]) + self.split_909 = P.Split(axis=1, output_num=2) + self.add_912_bias = 0.0 + self.conv2d_914 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_916 = nn.ReLU() + self.module22_37 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_921 = P.Split(axis=1, output_num=2) + self.add_922_bias = 0.0 + self.module20_36 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_933 = P.Reshape() + self.reshape_933_shape = tuple([1, 512, 1, 1]) + self.split_934 = P.Split(axis=1, output_num=2) + self.add_937_bias = 0.0 + self.conv2d_939 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_941 = nn.ReLU() + self.module22_38 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_946 = P.Split(axis=1, output_num=2) + self.add_947_bias = 0.0 + self.module20_37 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_958 = P.Reshape() + self.reshape_958_shape = tuple([1, 512, 1, 1]) + self.split_959 = P.Split(axis=1, output_num=2) + self.add_962_bias = 0.0 + self.conv2d_964 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_966 = nn.ReLU() + self.module22_39 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_971 = P.Split(axis=1, output_num=2) + self.add_972_bias = 0.0 + self.module20_38 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_983 = P.Reshape() + self.reshape_983_shape = tuple([1, 512, 1, 1]) + self.split_984 = P.Split(axis=1, output_num=2) + self.add_987_bias = 0.0 + self.conv2d_989 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_991 = nn.ReLU() + self.module22_40 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_996 = P.Split(axis=1, output_num=2) + self.add_997_bias = 0.0 + self.module20_39 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1008 = P.Reshape() + self.reshape_1008_shape = tuple([1, 512, 1, 1]) + self.split_1009 = P.Split(axis=1, output_num=2) + self.add_1012_bias = 0.0 + self.conv2d_1014 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1016 = nn.ReLU() + self.module22_41 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1021 = P.Split(axis=1, output_num=2) + self.add_1022_bias = 0.0 + self.module20_40 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1033 = P.Reshape() + self.reshape_1033_shape = tuple([1, 512, 1, 1]) + self.split_1034 = P.Split(axis=1, output_num=2) + self.add_1037_bias = 0.0 + self.conv2d_1039 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1041 = nn.ReLU() + self.module22_42 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1046 = P.Split(axis=1, output_num=2) + self.add_1047_bias = 0.0 + self.module20_41 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1058 = P.Reshape() + self.reshape_1058_shape = tuple([1, 512, 1, 1]) + self.split_1059 = P.Split(axis=1, output_num=2) + self.add_1062_bias = 0.0 + self.conv2d_1064 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1066 = nn.ReLU() + self.module22_43 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1071 = P.Split(axis=1, output_num=2) + self.add_1072_bias = 0.0 + self.module20_42 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1083 = P.Reshape() + self.reshape_1083_shape = tuple([1, 512, 1, 1]) + self.split_1084 = P.Split(axis=1, output_num=2) + self.add_1087_bias = 0.0 + self.conv2d_1089 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1091 = nn.ReLU() + self.module22_44 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1096 = P.Split(axis=1, output_num=2) + self.add_1097_bias = 0.0 + self.module20_43 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1108 = P.Reshape() + self.reshape_1108_shape = tuple([1, 512, 1, 1]) + self.split_1109 = P.Split(axis=1, output_num=2) + self.add_1112_bias = 0.0 + self.conv2d_1114 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1116 = nn.ReLU() + self.module22_45 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1121 = P.Split(axis=1, output_num=2) + self.add_1122_bias = 0.0 + self.module20_44 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1133 = P.Reshape() + self.reshape_1133_shape = tuple([1, 512, 1, 1]) + self.split_1134 = P.Split(axis=1, output_num=2) + self.add_1137_bias = 0.0 + self.conv2d_1139 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1141 = nn.ReLU() + self.module22_46 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1146 = P.Split(axis=1, output_num=2) + self.add_1147_bias = 0.0 + self.module20_45 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1158 = P.Reshape() + self.reshape_1158_shape = tuple([1, 512, 1, 1]) + self.split_1159 = P.Split(axis=1, output_num=2) + self.add_1162_bias = 0.0 + self.conv2d_1164 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1166 = nn.ReLU() + self.module22_47 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1171 = P.Split(axis=1, output_num=2) + self.add_1172_bias = 0.0 + self.module20_46 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1183 = P.Reshape() + self.reshape_1183_shape = tuple([1, 512, 1, 1]) + self.split_1184 = P.Split(axis=1, output_num=2) + self.add_1187_bias = 0.0 + self.conv2d_1189 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1191 = nn.ReLU() + self.module22_48 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1196 = P.Split(axis=1, output_num=2) + self.add_1197_bias = 0.0 + self.module20_47 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1208 = P.Reshape() + self.reshape_1208_shape = tuple([1, 512, 1, 1]) + self.split_1209 = P.Split(axis=1, output_num=2) + self.add_1212_bias = 0.0 + self.conv2d_1214 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1216 = nn.ReLU() + self.module22_49 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1221 = P.Split(axis=1, output_num=2) + self.add_1222_bias = 0.0 + self.module20_48 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1233 = P.Reshape() + self.reshape_1233_shape = tuple([1, 512, 1, 1]) + self.split_1234 = P.Split(axis=1, output_num=2) + self.add_1237_bias = 0.0 + self.conv2d_1239 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1241 = nn.ReLU() + self.module22_50 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1246 = P.Split(axis=1, output_num=2) + self.add_1247_bias = 0.0 + self.module20_49 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1258 = P.Reshape() + self.reshape_1258_shape = tuple([1, 512, 1, 1]) + self.split_1259 = P.Split(axis=1, output_num=2) + self.add_1262_bias = 0.0 + self.conv2d_1264 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1266 = nn.ReLU() + self.module22_51 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1271 = P.Split(axis=1, output_num=2) + self.add_1272_bias = 0.0 + self.module20_50 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1283 = P.Reshape() + self.reshape_1283_shape = tuple([1, 512, 1, 1]) + self.split_1284 = P.Split(axis=1, output_num=2) + self.add_1287_bias = 0.0 + self.conv2d_1289 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1291 = nn.ReLU() + self.module22_52 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1296 = P.Split(axis=1, output_num=2) + self.add_1297_bias = 0.0 + self.module20_51 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1308 = P.Reshape() + self.reshape_1308_shape = tuple([1, 512, 1, 1]) + self.split_1309 = P.Split(axis=1, output_num=2) + self.add_1312_bias = 0.0 + self.conv2d_1314 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1316 = nn.ReLU() + self.module22_53 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1321 = P.Split(axis=1, output_num=2) + self.add_1322_bias = 0.0 + self.module20_52 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1333 = P.Reshape() + self.reshape_1333_shape = tuple([1, 512, 1, 1]) + self.split_1334 = P.Split(axis=1, output_num=2) + self.add_1337_bias = 0.0 + self.conv2d_1339 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1341 = nn.ReLU() + self.module22_54 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1346 = P.Split(axis=1, output_num=2) + self.add_1347_bias = 0.0 + self.module20_53 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1358 = P.Reshape() + self.reshape_1358_shape = tuple([1, 512, 1, 1]) + self.split_1359 = P.Split(axis=1, output_num=2) + self.add_1362_bias = 0.0 + self.conv2d_1364 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1366 = nn.ReLU() + self.module22_55 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1371 = P.Split(axis=1, output_num=2) + self.add_1372_bias = 0.0 + self.module20_54 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1383 = P.Reshape() + self.reshape_1383_shape = tuple([1, 512, 1, 1]) + self.split_1384 = P.Split(axis=1, output_num=2) + self.add_1387_bias = 0.0 + self.conv2d_1389 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1391 = nn.ReLU() + self.module22_56 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1396 = P.Split(axis=1, output_num=2) + self.add_1397_bias = 0.0 + self.module20_55 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1408 = P.Reshape() + self.reshape_1408_shape = tuple([1, 512, 1, 1]) + self.split_1409 = P.Split(axis=1, output_num=2) + self.add_1412_bias = 0.0 + self.conv2d_1414 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1416 = nn.ReLU() + self.module22_57 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1421 = P.Split(axis=1, output_num=2) + self.add_1422_bias = 0.0 + self.module20_56 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1433 = P.Reshape() + self.reshape_1433_shape = tuple([1, 512, 1, 1]) + self.split_1434 = P.Split(axis=1, output_num=2) + self.add_1437_bias = 0.0 + self.conv2d_1439 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1441 = nn.ReLU() + self.module22_58 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1446 = P.Split(axis=1, output_num=2) + self.add_1447_bias = 0.0 + self.module20_57 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1458 = P.Reshape() + self.reshape_1458_shape = tuple([1, 512, 1, 1]) + self.split_1459 = P.Split(axis=1, output_num=2) + self.add_1462_bias = 0.0 + self.conv2d_1464 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1466 = nn.ReLU() + self.module22_59 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1471 = P.Split(axis=1, output_num=2) + self.add_1472_bias = 0.0 + self.module20_58 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1483 = P.Reshape() + self.reshape_1483_shape = tuple([1, 512, 1, 1]) + self.split_1484 = P.Split(axis=1, output_num=2) + self.add_1487_bias = 0.0 + self.conv2d_1489 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1491 = nn.ReLU() + self.module22_60 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1496 = P.Split(axis=1, output_num=2) + self.add_1497_bias = 0.0 + self.module20_59 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1508 = P.Reshape() + self.reshape_1508_shape = tuple([1, 512, 1, 1]) + self.split_1509 = P.Split(axis=1, output_num=2) + self.add_1512_bias = 0.0 + self.conv2d_1514 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1516 = nn.ReLU() + self.module22_61 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1521 = P.Split(axis=1, output_num=2) + self.add_1522_bias = 0.0 + self.module20_60 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1533 = P.Reshape() + self.reshape_1533_shape = tuple([1, 512, 1, 1]) + self.split_1534 = P.Split(axis=1, output_num=2) + self.add_1537_bias = 0.0 + self.conv2d_1539 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1541 = nn.ReLU() + self.module22_62 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1546 = P.Split(axis=1, output_num=2) + self.add_1547_bias = 0.0 + self.module20_61 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1558 = P.Reshape() + self.reshape_1558_shape = tuple([1, 512, 1, 1]) + self.split_1559 = P.Split(axis=1, output_num=2) + self.add_1562_bias = 0.0 + self.conv2d_1564 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1566 = nn.ReLU() + self.module22_63 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1571 = P.Split(axis=1, output_num=2) + self.add_1572_bias = 0.0 + self.module20_62 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1583 = P.Reshape() + self.reshape_1583_shape = tuple([1, 512, 1, 1]) + self.split_1584 = P.Split(axis=1, output_num=2) + self.add_1587_bias = 0.0 + self.conv2d_1589 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1591 = nn.ReLU() + self.module22_64 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1598 = P.Split(axis=1, output_num=2) + self.add_1599_bias = 0.0 + self.module20_63 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(20, 20), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_1610 = P.Reshape() + self.reshape_1610_shape = tuple([1, 1024, 1, 1]) + self.split_1611 = P.Split(axis=1, output_num=2) + self.add_1614_bias = 0.0 + self.pad_1616 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_1617 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_1617 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_1618 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_1593 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_1593 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_1595 = nn.Conv2d(in_channels=1024, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1620 = nn.ReLU() + self.module22_65 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1625 = P.Split(axis=1, output_num=2) + self.add_1626_bias = 0.0 + self.module20_64 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(10, 10), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_1637 = P.Reshape() + self.reshape_1637_shape = tuple([1, 1024, 1, 1]) + self.split_1638 = P.Split(axis=1, output_num=2) + self.add_1641_bias = 0.0 + self.conv2d_1643 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1645 = nn.ReLU() + self.module22_66 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1650 = P.Split(axis=1, output_num=2) + self.add_1651_bias = 0.0 + self.module20_65 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(10, 10), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_1662 = P.Reshape() + self.reshape_1662_shape = tuple([1, 1024, 1, 1]) + self.split_1663 = P.Split(axis=1, output_num=2) + self.add_1666_bias = 0.0 + self.conv2d_1668 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1670 = nn.ReLU() + self.avgpool2d_1671 = nn.AvgPool2d(kernel_size=(10, 10)) + self.reshape_1672 = P.Reshape() + self.reshape_1672_shape = tuple([1, 2048]) + self.flatten_1673 = nn.Flatten() + self.dense_1674 = nn.Dense(in_channels=2048, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + module22_0_opt = self.module22_0(opt_relu_1) + opt_maxpool2d_6 = self.pad_maxpool2d_6(module22_0_opt) + opt_maxpool2d_6 = self.maxpool2d_6(opt_maxpool2d_6) + module22_1_opt = self.module22_1(opt_maxpool2d_6) + opt_split_13, opt_split_13_1 = self.split_13(module22_1_opt) + opt_add_14 = opt_split_13 + self.add_14_bias + opt_add_15 = P.Add()(opt_add_14, opt_split_13_1) + module20_0_opt = self.module20_0(opt_add_15) + opt_reshape_25 = self.reshape_25(module20_0_opt, self.reshape_25_shape) + opt_split_26, opt_split_26_1 = self.split_26(opt_reshape_25) + opt_mul_27 = P.Mul()(opt_split_26, opt_split_13) + opt_mul_28 = P.Mul()(opt_split_26_1, opt_split_13_1) + opt_add_29 = opt_mul_27 + self.add_29_bias + opt_add_30 = P.Add()(opt_add_29, opt_mul_28) + opt_conv2d_31 = self.conv2d_31(opt_add_30) + opt_avgpool2d_8 = self.pad_avgpool2d_8(opt_maxpool2d_6) + opt_avgpool2d_8 = self.avgpool2d_8(opt_avgpool2d_8) + opt_conv2d_10 = self.conv2d_10(opt_avgpool2d_8) + opt_add_32 = P.Add()(opt_conv2d_31, opt_conv2d_10) + opt_relu_33 = self.relu_33(opt_add_32) + module22_2_opt = self.module22_2(opt_relu_33) + opt_split_38, opt_split_38_1 = self.split_38(module22_2_opt) + opt_add_39 = opt_split_38 + self.add_39_bias + opt_add_40 = P.Add()(opt_add_39, opt_split_38_1) + module20_1_opt = self.module20_1(opt_add_40) + opt_reshape_50 = self.reshape_50(module20_1_opt, self.reshape_50_shape) + opt_split_51, opt_split_51_1 = self.split_51(opt_reshape_50) + opt_mul_52 = P.Mul()(opt_split_51, opt_split_38) + opt_mul_53 = P.Mul()(opt_split_51_1, opt_split_38_1) + opt_add_54 = opt_mul_52 + self.add_54_bias + opt_add_55 = P.Add()(opt_add_54, opt_mul_53) + opt_conv2d_56 = self.conv2d_56(opt_add_55) + opt_add_57 = P.Add()(opt_conv2d_56, opt_relu_33) + opt_relu_58 = self.relu_58(opt_add_57) + module22_3_opt = self.module22_3(opt_relu_58) + opt_split_63, opt_split_63_1 = self.split_63(module22_3_opt) + opt_add_64 = opt_split_63 + self.add_64_bias + opt_add_65 = P.Add()(opt_add_64, opt_split_63_1) + module20_2_opt = self.module20_2(opt_add_65) + opt_reshape_75 = self.reshape_75(module20_2_opt, self.reshape_75_shape) + opt_split_76, opt_split_76_1 = self.split_76(opt_reshape_75) + opt_mul_77 = P.Mul()(opt_split_76, opt_split_63) + opt_mul_78 = P.Mul()(opt_split_76_1, opt_split_63_1) + opt_add_79 = opt_mul_77 + self.add_79_bias + opt_add_80 = P.Add()(opt_add_79, opt_mul_78) + opt_conv2d_81 = self.conv2d_81(opt_add_80) + opt_add_82 = P.Add()(opt_conv2d_81, opt_relu_58) + opt_relu_83 = self.relu_83(opt_add_82) + module22_4_opt = self.module22_4(opt_relu_83) + opt_split_90, opt_split_90_1 = self.split_90(module22_4_opt) + opt_add_91 = opt_split_90 + self.add_91_bias + opt_add_92 = P.Add()(opt_add_91, opt_split_90_1) + module20_3_opt = self.module20_3(opt_add_92) + opt_reshape_102 = self.reshape_102(module20_3_opt, self.reshape_102_shape) + opt_split_103, opt_split_103_1 = self.split_103(opt_reshape_102) + opt_mul_104 = P.Mul()(opt_split_103, opt_split_90) + opt_mul_105 = P.Mul()(opt_split_103_1, opt_split_90_1) + opt_add_106 = opt_mul_104 + self.add_106_bias + opt_add_107 = P.Add()(opt_add_106, opt_mul_105) + opt_pad_108 = self.pad_108(opt_add_107) + opt_avgpool2d_109 = self.pad_avgpool2d_109(opt_pad_108) + opt_avgpool2d_109 = self.avgpool2d_109(opt_avgpool2d_109) + opt_conv2d_110 = self.conv2d_110(opt_avgpool2d_109) + opt_avgpool2d_85 = self.pad_avgpool2d_85(opt_relu_83) + opt_avgpool2d_85 = self.avgpool2d_85(opt_avgpool2d_85) + opt_conv2d_87 = self.conv2d_87(opt_avgpool2d_85) + opt_add_111 = P.Add()(opt_conv2d_110, opt_conv2d_87) + opt_relu_112 = self.relu_112(opt_add_111) + module22_5_opt = self.module22_5(opt_relu_112) + opt_split_117, opt_split_117_1 = self.split_117(module22_5_opt) + opt_add_118 = opt_split_117 + self.add_118_bias + opt_add_119 = P.Add()(opt_add_118, opt_split_117_1) + module20_4_opt = self.module20_4(opt_add_119) + opt_reshape_129 = self.reshape_129(module20_4_opt, self.reshape_129_shape) + opt_split_130, opt_split_130_1 = self.split_130(opt_reshape_129) + opt_mul_131 = P.Mul()(opt_split_130, opt_split_117) + opt_mul_132 = P.Mul()(opt_split_130_1, opt_split_117_1) + opt_add_133 = opt_mul_131 + self.add_133_bias + opt_add_134 = P.Add()(opt_add_133, opt_mul_132) + opt_conv2d_135 = self.conv2d_135(opt_add_134) + opt_add_136 = P.Add()(opt_conv2d_135, opt_relu_112) + opt_relu_137 = self.relu_137(opt_add_136) + module22_6_opt = self.module22_6(opt_relu_137) + opt_split_142, opt_split_142_1 = self.split_142(module22_6_opt) + opt_add_143 = opt_split_142 + self.add_143_bias + opt_add_144 = P.Add()(opt_add_143, opt_split_142_1) + module20_5_opt = self.module20_5(opt_add_144) + opt_reshape_154 = self.reshape_154(module20_5_opt, self.reshape_154_shape) + opt_split_155, opt_split_155_1 = self.split_155(opt_reshape_154) + opt_mul_156 = P.Mul()(opt_split_155, opt_split_142) + opt_mul_157 = P.Mul()(opt_split_155_1, opt_split_142_1) + opt_add_158 = opt_mul_156 + self.add_158_bias + opt_add_159 = P.Add()(opt_add_158, opt_mul_157) + opt_conv2d_160 = self.conv2d_160(opt_add_159) + opt_add_161 = P.Add()(opt_conv2d_160, opt_relu_137) + opt_relu_162 = self.relu_162(opt_add_161) + module22_7_opt = self.module22_7(opt_relu_162) + opt_split_167, opt_split_167_1 = self.split_167(module22_7_opt) + opt_add_168 = opt_split_167 + self.add_168_bias + opt_add_169 = P.Add()(opt_add_168, opt_split_167_1) + module20_6_opt = self.module20_6(opt_add_169) + opt_reshape_179 = self.reshape_179(module20_6_opt, self.reshape_179_shape) + opt_split_180, opt_split_180_1 = self.split_180(opt_reshape_179) + opt_mul_181 = P.Mul()(opt_split_180, opt_split_167) + opt_mul_182 = P.Mul()(opt_split_180_1, opt_split_167_1) + opt_add_183 = opt_mul_181 + self.add_183_bias + opt_add_184 = P.Add()(opt_add_183, opt_mul_182) + opt_conv2d_185 = self.conv2d_185(opt_add_184) + opt_add_186 = P.Add()(opt_conv2d_185, opt_relu_162) + opt_relu_187 = self.relu_187(opt_add_186) + module22_8_opt = self.module22_8(opt_relu_187) + opt_split_192, opt_split_192_1 = self.split_192(module22_8_opt) + opt_add_193 = opt_split_192 + self.add_193_bias + opt_add_194 = P.Add()(opt_add_193, opt_split_192_1) + module20_7_opt = self.module20_7(opt_add_194) + opt_reshape_204 = self.reshape_204(module20_7_opt, self.reshape_204_shape) + opt_split_205, opt_split_205_1 = self.split_205(opt_reshape_204) + opt_mul_206 = P.Mul()(opt_split_205, opt_split_192) + opt_mul_207 = P.Mul()(opt_split_205_1, opt_split_192_1) + opt_add_208 = opt_mul_206 + self.add_208_bias + opt_add_209 = P.Add()(opt_add_208, opt_mul_207) + opt_conv2d_210 = self.conv2d_210(opt_add_209) + opt_add_211 = P.Add()(opt_conv2d_210, opt_relu_187) + opt_relu_212 = self.relu_212(opt_add_211) + module22_9_opt = self.module22_9(opt_relu_212) + opt_split_217, opt_split_217_1 = self.split_217(module22_9_opt) + opt_add_218 = opt_split_217 + self.add_218_bias + opt_add_219 = P.Add()(opt_add_218, opt_split_217_1) + module20_8_opt = self.module20_8(opt_add_219) + opt_reshape_229 = self.reshape_229(module20_8_opt, self.reshape_229_shape) + opt_split_230, opt_split_230_1 = self.split_230(opt_reshape_229) + opt_mul_231 = P.Mul()(opt_split_230, opt_split_217) + opt_mul_232 = P.Mul()(opt_split_230_1, opt_split_217_1) + opt_add_233 = opt_mul_231 + self.add_233_bias + opt_add_234 = P.Add()(opt_add_233, opt_mul_232) + opt_conv2d_235 = self.conv2d_235(opt_add_234) + opt_add_236 = P.Add()(opt_conv2d_235, opt_relu_212) + opt_relu_237 = self.relu_237(opt_add_236) + module22_10_opt = self.module22_10(opt_relu_237) + opt_split_242, opt_split_242_1 = self.split_242(module22_10_opt) + opt_add_243 = opt_split_242 + self.add_243_bias + opt_add_244 = P.Add()(opt_add_243, opt_split_242_1) + module20_9_opt = self.module20_9(opt_add_244) + opt_reshape_254 = self.reshape_254(module20_9_opt, self.reshape_254_shape) + opt_split_255, opt_split_255_1 = self.split_255(opt_reshape_254) + opt_mul_256 = P.Mul()(opt_split_255, opt_split_242) + opt_mul_257 = P.Mul()(opt_split_255_1, opt_split_242_1) + opt_add_258 = opt_mul_256 + self.add_258_bias + opt_add_259 = P.Add()(opt_add_258, opt_mul_257) + opt_conv2d_260 = self.conv2d_260(opt_add_259) + opt_add_261 = P.Add()(opt_conv2d_260, opt_relu_237) + opt_relu_262 = self.relu_262(opt_add_261) + module22_11_opt = self.module22_11(opt_relu_262) + opt_split_267, opt_split_267_1 = self.split_267(module22_11_opt) + opt_add_268 = opt_split_267 + self.add_268_bias + opt_add_269 = P.Add()(opt_add_268, opt_split_267_1) + module20_10_opt = self.module20_10(opt_add_269) + opt_reshape_279 = self.reshape_279(module20_10_opt, self.reshape_279_shape) + opt_split_280, opt_split_280_1 = self.split_280(opt_reshape_279) + opt_mul_281 = P.Mul()(opt_split_280, opt_split_267) + opt_mul_282 = P.Mul()(opt_split_280_1, opt_split_267_1) + opt_add_283 = opt_mul_281 + self.add_283_bias + opt_add_284 = P.Add()(opt_add_283, opt_mul_282) + opt_conv2d_285 = self.conv2d_285(opt_add_284) + opt_add_286 = P.Add()(opt_conv2d_285, opt_relu_262) + opt_relu_287 = self.relu_287(opt_add_286) + module22_12_opt = self.module22_12(opt_relu_287) + opt_split_292, opt_split_292_1 = self.split_292(module22_12_opt) + opt_add_293 = opt_split_292 + self.add_293_bias + opt_add_294 = P.Add()(opt_add_293, opt_split_292_1) + module20_11_opt = self.module20_11(opt_add_294) + opt_reshape_304 = self.reshape_304(module20_11_opt, self.reshape_304_shape) + opt_split_305, opt_split_305_1 = self.split_305(opt_reshape_304) + opt_mul_306 = P.Mul()(opt_split_305, opt_split_292) + opt_mul_307 = P.Mul()(opt_split_305_1, opt_split_292_1) + opt_add_308 = opt_mul_306 + self.add_308_bias + opt_add_309 = P.Add()(opt_add_308, opt_mul_307) + opt_conv2d_310 = self.conv2d_310(opt_add_309) + opt_add_311 = P.Add()(opt_conv2d_310, opt_relu_287) + opt_relu_312 = self.relu_312(opt_add_311) + module22_13_opt = self.module22_13(opt_relu_312) + opt_split_317, opt_split_317_1 = self.split_317(module22_13_opt) + opt_add_318 = opt_split_317 + self.add_318_bias + opt_add_319 = P.Add()(opt_add_318, opt_split_317_1) + module20_12_opt = self.module20_12(opt_add_319) + opt_reshape_329 = self.reshape_329(module20_12_opt, self.reshape_329_shape) + opt_split_330, opt_split_330_1 = self.split_330(opt_reshape_329) + opt_mul_331 = P.Mul()(opt_split_330, opt_split_317) + opt_mul_332 = P.Mul()(opt_split_330_1, opt_split_317_1) + opt_add_333 = opt_mul_331 + self.add_333_bias + opt_add_334 = P.Add()(opt_add_333, opt_mul_332) + opt_conv2d_335 = self.conv2d_335(opt_add_334) + opt_add_336 = P.Add()(opt_conv2d_335, opt_relu_312) + opt_relu_337 = self.relu_337(opt_add_336) + module22_14_opt = self.module22_14(opt_relu_337) + opt_split_342, opt_split_342_1 = self.split_342(module22_14_opt) + opt_add_343 = opt_split_342 + self.add_343_bias + opt_add_344 = P.Add()(opt_add_343, opt_split_342_1) + module20_13_opt = self.module20_13(opt_add_344) + opt_reshape_354 = self.reshape_354(module20_13_opt, self.reshape_354_shape) + opt_split_355, opt_split_355_1 = self.split_355(opt_reshape_354) + opt_mul_356 = P.Mul()(opt_split_355, opt_split_342) + opt_mul_357 = P.Mul()(opt_split_355_1, opt_split_342_1) + opt_add_358 = opt_mul_356 + self.add_358_bias + opt_add_359 = P.Add()(opt_add_358, opt_mul_357) + opt_conv2d_360 = self.conv2d_360(opt_add_359) + opt_add_361 = P.Add()(opt_conv2d_360, opt_relu_337) + opt_relu_362 = self.relu_362(opt_add_361) + module22_15_opt = self.module22_15(opt_relu_362) + opt_split_367, opt_split_367_1 = self.split_367(module22_15_opt) + opt_add_368 = opt_split_367 + self.add_368_bias + opt_add_369 = P.Add()(opt_add_368, opt_split_367_1) + module20_14_opt = self.module20_14(opt_add_369) + opt_reshape_379 = self.reshape_379(module20_14_opt, self.reshape_379_shape) + opt_split_380, opt_split_380_1 = self.split_380(opt_reshape_379) + opt_mul_381 = P.Mul()(opt_split_380, opt_split_367) + opt_mul_382 = P.Mul()(opt_split_380_1, opt_split_367_1) + opt_add_383 = opt_mul_381 + self.add_383_bias + opt_add_384 = P.Add()(opt_add_383, opt_mul_382) + opt_conv2d_385 = self.conv2d_385(opt_add_384) + opt_add_386 = P.Add()(opt_conv2d_385, opt_relu_362) + opt_relu_387 = self.relu_387(opt_add_386) + module22_16_opt = self.module22_16(opt_relu_387) + opt_split_392, opt_split_392_1 = self.split_392(module22_16_opt) + opt_add_393 = opt_split_392 + self.add_393_bias + opt_add_394 = P.Add()(opt_add_393, opt_split_392_1) + module20_15_opt = self.module20_15(opt_add_394) + opt_reshape_404 = self.reshape_404(module20_15_opt, self.reshape_404_shape) + opt_split_405, opt_split_405_1 = self.split_405(opt_reshape_404) + opt_mul_406 = P.Mul()(opt_split_405, opt_split_392) + opt_mul_407 = P.Mul()(opt_split_405_1, opt_split_392_1) + opt_add_408 = opt_mul_406 + self.add_408_bias + opt_add_409 = P.Add()(opt_add_408, opt_mul_407) + opt_conv2d_410 = self.conv2d_410(opt_add_409) + opt_add_411 = P.Add()(opt_conv2d_410, opt_relu_387) + opt_relu_412 = self.relu_412(opt_add_411) + module22_17_opt = self.module22_17(opt_relu_412) + opt_split_417, opt_split_417_1 = self.split_417(module22_17_opt) + opt_add_418 = opt_split_417 + self.add_418_bias + opt_add_419 = P.Add()(opt_add_418, opt_split_417_1) + module20_16_opt = self.module20_16(opt_add_419) + opt_reshape_429 = self.reshape_429(module20_16_opt, self.reshape_429_shape) + opt_split_430, opt_split_430_1 = self.split_430(opt_reshape_429) + opt_mul_431 = P.Mul()(opt_split_430, opt_split_417) + opt_mul_432 = P.Mul()(opt_split_430_1, opt_split_417_1) + opt_add_433 = opt_mul_431 + self.add_433_bias + opt_add_434 = P.Add()(opt_add_433, opt_mul_432) + opt_conv2d_435 = self.conv2d_435(opt_add_434) + opt_add_436 = P.Add()(opt_conv2d_435, opt_relu_412) + opt_relu_437 = self.relu_437(opt_add_436) + module22_18_opt = self.module22_18(opt_relu_437) + opt_split_442, opt_split_442_1 = self.split_442(module22_18_opt) + opt_add_443 = opt_split_442 + self.add_443_bias + opt_add_444 = P.Add()(opt_add_443, opt_split_442_1) + module20_17_opt = self.module20_17(opt_add_444) + opt_reshape_454 = self.reshape_454(module20_17_opt, self.reshape_454_shape) + opt_split_455, opt_split_455_1 = self.split_455(opt_reshape_454) + opt_mul_456 = P.Mul()(opt_split_455, opt_split_442) + opt_mul_457 = P.Mul()(opt_split_455_1, opt_split_442_1) + opt_add_458 = opt_mul_456 + self.add_458_bias + opt_add_459 = P.Add()(opt_add_458, opt_mul_457) + opt_conv2d_460 = self.conv2d_460(opt_add_459) + opt_add_461 = P.Add()(opt_conv2d_460, opt_relu_437) + opt_relu_462 = self.relu_462(opt_add_461) + module22_19_opt = self.module22_19(opt_relu_462) + opt_split_467, opt_split_467_1 = self.split_467(module22_19_opt) + opt_add_468 = opt_split_467 + self.add_468_bias + opt_add_469 = P.Add()(opt_add_468, opt_split_467_1) + module20_18_opt = self.module20_18(opt_add_469) + opt_reshape_479 = self.reshape_479(module20_18_opt, self.reshape_479_shape) + opt_split_480, opt_split_480_1 = self.split_480(opt_reshape_479) + opt_mul_481 = P.Mul()(opt_split_480, opt_split_467) + opt_mul_482 = P.Mul()(opt_split_480_1, opt_split_467_1) + opt_add_483 = opt_mul_481 + self.add_483_bias + opt_add_484 = P.Add()(opt_add_483, opt_mul_482) + opt_conv2d_485 = self.conv2d_485(opt_add_484) + opt_add_486 = P.Add()(opt_conv2d_485, opt_relu_462) + opt_relu_487 = self.relu_487(opt_add_486) + module22_20_opt = self.module22_20(opt_relu_487) + opt_split_492, opt_split_492_1 = self.split_492(module22_20_opt) + opt_add_493 = opt_split_492 + self.add_493_bias + opt_add_494 = P.Add()(opt_add_493, opt_split_492_1) + module20_19_opt = self.module20_19(opt_add_494) + opt_reshape_504 = self.reshape_504(module20_19_opt, self.reshape_504_shape) + opt_split_505, opt_split_505_1 = self.split_505(opt_reshape_504) + opt_mul_506 = P.Mul()(opt_split_505, opt_split_492) + opt_mul_507 = P.Mul()(opt_split_505_1, opt_split_492_1) + opt_add_508 = opt_mul_506 + self.add_508_bias + opt_add_509 = P.Add()(opt_add_508, opt_mul_507) + opt_conv2d_510 = self.conv2d_510(opt_add_509) + opt_add_511 = P.Add()(opt_conv2d_510, opt_relu_487) + opt_relu_512 = self.relu_512(opt_add_511) + module22_21_opt = self.module22_21(opt_relu_512) + opt_split_517, opt_split_517_1 = self.split_517(module22_21_opt) + opt_add_518 = opt_split_517 + self.add_518_bias + opt_add_519 = P.Add()(opt_add_518, opt_split_517_1) + module20_20_opt = self.module20_20(opt_add_519) + opt_reshape_529 = self.reshape_529(module20_20_opt, self.reshape_529_shape) + opt_split_530, opt_split_530_1 = self.split_530(opt_reshape_529) + opt_mul_531 = P.Mul()(opt_split_530, opt_split_517) + opt_mul_532 = P.Mul()(opt_split_530_1, opt_split_517_1) + opt_add_533 = opt_mul_531 + self.add_533_bias + opt_add_534 = P.Add()(opt_add_533, opt_mul_532) + opt_conv2d_535 = self.conv2d_535(opt_add_534) + opt_add_536 = P.Add()(opt_conv2d_535, opt_relu_512) + opt_relu_537 = self.relu_537(opt_add_536) + module22_22_opt = self.module22_22(opt_relu_537) + opt_split_542, opt_split_542_1 = self.split_542(module22_22_opt) + opt_add_543 = opt_split_542 + self.add_543_bias + opt_add_544 = P.Add()(opt_add_543, opt_split_542_1) + module20_21_opt = self.module20_21(opt_add_544) + opt_reshape_554 = self.reshape_554(module20_21_opt, self.reshape_554_shape) + opt_split_555, opt_split_555_1 = self.split_555(opt_reshape_554) + opt_mul_556 = P.Mul()(opt_split_555, opt_split_542) + opt_mul_557 = P.Mul()(opt_split_555_1, opt_split_542_1) + opt_add_558 = opt_mul_556 + self.add_558_bias + opt_add_559 = P.Add()(opt_add_558, opt_mul_557) + opt_conv2d_560 = self.conv2d_560(opt_add_559) + opt_add_561 = P.Add()(opt_conv2d_560, opt_relu_537) + opt_relu_562 = self.relu_562(opt_add_561) + module22_23_opt = self.module22_23(opt_relu_562) + opt_split_567, opt_split_567_1 = self.split_567(module22_23_opt) + opt_add_568 = opt_split_567 + self.add_568_bias + opt_add_569 = P.Add()(opt_add_568, opt_split_567_1) + module20_22_opt = self.module20_22(opt_add_569) + opt_reshape_579 = self.reshape_579(module20_22_opt, self.reshape_579_shape) + opt_split_580, opt_split_580_1 = self.split_580(opt_reshape_579) + opt_mul_581 = P.Mul()(opt_split_580, opt_split_567) + opt_mul_582 = P.Mul()(opt_split_580_1, opt_split_567_1) + opt_add_583 = opt_mul_581 + self.add_583_bias + opt_add_584 = P.Add()(opt_add_583, opt_mul_582) + opt_conv2d_585 = self.conv2d_585(opt_add_584) + opt_add_586 = P.Add()(opt_conv2d_585, opt_relu_562) + opt_relu_587 = self.relu_587(opt_add_586) + module22_24_opt = self.module22_24(opt_relu_587) + opt_split_592, opt_split_592_1 = self.split_592(module22_24_opt) + opt_add_593 = opt_split_592 + self.add_593_bias + opt_add_594 = P.Add()(opt_add_593, opt_split_592_1) + module20_23_opt = self.module20_23(opt_add_594) + opt_reshape_604 = self.reshape_604(module20_23_opt, self.reshape_604_shape) + opt_split_605, opt_split_605_1 = self.split_605(opt_reshape_604) + opt_mul_606 = P.Mul()(opt_split_605, opt_split_592) + opt_mul_607 = P.Mul()(opt_split_605_1, opt_split_592_1) + opt_add_608 = opt_mul_606 + self.add_608_bias + opt_add_609 = P.Add()(opt_add_608, opt_mul_607) + opt_conv2d_610 = self.conv2d_610(opt_add_609) + opt_add_611 = P.Add()(opt_conv2d_610, opt_relu_587) + opt_relu_612 = self.relu_612(opt_add_611) + module22_25_opt = self.module22_25(opt_relu_612) + opt_split_617, opt_split_617_1 = self.split_617(module22_25_opt) + opt_add_618 = opt_split_617 + self.add_618_bias + opt_add_619 = P.Add()(opt_add_618, opt_split_617_1) + module20_24_opt = self.module20_24(opt_add_619) + opt_reshape_629 = self.reshape_629(module20_24_opt, self.reshape_629_shape) + opt_split_630, opt_split_630_1 = self.split_630(opt_reshape_629) + opt_mul_631 = P.Mul()(opt_split_630, opt_split_617) + opt_mul_632 = P.Mul()(opt_split_630_1, opt_split_617_1) + opt_add_633 = opt_mul_631 + self.add_633_bias + opt_add_634 = P.Add()(opt_add_633, opt_mul_632) + opt_conv2d_635 = self.conv2d_635(opt_add_634) + opt_add_636 = P.Add()(opt_conv2d_635, opt_relu_612) + opt_relu_637 = self.relu_637(opt_add_636) + module22_26_opt = self.module22_26(opt_relu_637) + opt_split_642, opt_split_642_1 = self.split_642(module22_26_opt) + opt_add_643 = opt_split_642 + self.add_643_bias + opt_add_644 = P.Add()(opt_add_643, opt_split_642_1) + module20_25_opt = self.module20_25(opt_add_644) + opt_reshape_654 = self.reshape_654(module20_25_opt, self.reshape_654_shape) + opt_split_655, opt_split_655_1 = self.split_655(opt_reshape_654) + opt_mul_656 = P.Mul()(opt_split_655, opt_split_642) + opt_mul_657 = P.Mul()(opt_split_655_1, opt_split_642_1) + opt_add_658 = opt_mul_656 + self.add_658_bias + opt_add_659 = P.Add()(opt_add_658, opt_mul_657) + opt_conv2d_660 = self.conv2d_660(opt_add_659) + opt_add_661 = P.Add()(opt_conv2d_660, opt_relu_637) + opt_relu_662 = self.relu_662(opt_add_661) + module22_27_opt = self.module22_27(opt_relu_662) + opt_split_667, opt_split_667_1 = self.split_667(module22_27_opt) + opt_add_668 = opt_split_667 + self.add_668_bias + opt_add_669 = P.Add()(opt_add_668, opt_split_667_1) + module20_26_opt = self.module20_26(opt_add_669) + opt_reshape_679 = self.reshape_679(module20_26_opt, self.reshape_679_shape) + opt_split_680, opt_split_680_1 = self.split_680(opt_reshape_679) + opt_mul_681 = P.Mul()(opt_split_680, opt_split_667) + opt_mul_682 = P.Mul()(opt_split_680_1, opt_split_667_1) + opt_add_683 = opt_mul_681 + self.add_683_bias + opt_add_684 = P.Add()(opt_add_683, opt_mul_682) + opt_conv2d_685 = self.conv2d_685(opt_add_684) + opt_add_686 = P.Add()(opt_conv2d_685, opt_relu_662) + opt_relu_687 = self.relu_687(opt_add_686) + module22_28_opt = self.module22_28(opt_relu_687) + opt_split_694, opt_split_694_1 = self.split_694(module22_28_opt) + opt_add_695 = opt_split_694 + self.add_695_bias + opt_add_696 = P.Add()(opt_add_695, opt_split_694_1) + module20_27_opt = self.module20_27(opt_add_696) + opt_reshape_706 = self.reshape_706(module20_27_opt, self.reshape_706_shape) + opt_split_707, opt_split_707_1 = self.split_707(opt_reshape_706) + opt_mul_708 = P.Mul()(opt_split_707, opt_split_694) + opt_mul_709 = P.Mul()(opt_split_707_1, opt_split_694_1) + opt_add_710 = opt_mul_708 + self.add_710_bias + opt_add_711 = P.Add()(opt_add_710, opt_mul_709) + opt_pad_712 = self.pad_712(opt_add_711) + opt_avgpool2d_713 = self.pad_avgpool2d_713(opt_pad_712) + opt_avgpool2d_713 = self.avgpool2d_713(opt_avgpool2d_713) + opt_conv2d_714 = self.conv2d_714(opt_avgpool2d_713) + opt_avgpool2d_689 = self.pad_avgpool2d_689(opt_relu_687) + opt_avgpool2d_689 = self.avgpool2d_689(opt_avgpool2d_689) + opt_conv2d_691 = self.conv2d_691(opt_avgpool2d_689) + opt_add_715 = P.Add()(opt_conv2d_714, opt_conv2d_691) + opt_relu_716 = self.relu_716(opt_add_715) + module22_29_opt = self.module22_29(opt_relu_716) + opt_split_721, opt_split_721_1 = self.split_721(module22_29_opt) + opt_add_722 = opt_split_721 + self.add_722_bias + opt_add_723 = P.Add()(opt_add_722, opt_split_721_1) + module20_28_opt = self.module20_28(opt_add_723) + opt_reshape_733 = self.reshape_733(module20_28_opt, self.reshape_733_shape) + opt_split_734, opt_split_734_1 = self.split_734(opt_reshape_733) + opt_mul_735 = P.Mul()(opt_split_734, opt_split_721) + opt_mul_736 = P.Mul()(opt_split_734_1, opt_split_721_1) + opt_add_737 = opt_mul_735 + self.add_737_bias + opt_add_738 = P.Add()(opt_add_737, opt_mul_736) + opt_conv2d_739 = self.conv2d_739(opt_add_738) + opt_add_740 = P.Add()(opt_conv2d_739, opt_relu_716) + opt_relu_741 = self.relu_741(opt_add_740) + module22_30_opt = self.module22_30(opt_relu_741) + opt_split_746, opt_split_746_1 = self.split_746(module22_30_opt) + opt_add_747 = opt_split_746 + self.add_747_bias + opt_add_748 = P.Add()(opt_add_747, opt_split_746_1) + module20_29_opt = self.module20_29(opt_add_748) + opt_reshape_758 = self.reshape_758(module20_29_opt, self.reshape_758_shape) + opt_split_759, opt_split_759_1 = self.split_759(opt_reshape_758) + opt_mul_760 = P.Mul()(opt_split_759, opt_split_746) + opt_mul_761 = P.Mul()(opt_split_759_1, opt_split_746_1) + opt_add_762 = opt_mul_760 + self.add_762_bias + opt_add_763 = P.Add()(opt_add_762, opt_mul_761) + opt_conv2d_764 = self.conv2d_764(opt_add_763) + opt_add_765 = P.Add()(opt_conv2d_764, opt_relu_741) + opt_relu_766 = self.relu_766(opt_add_765) + module22_31_opt = self.module22_31(opt_relu_766) + opt_split_771, opt_split_771_1 = self.split_771(module22_31_opt) + opt_add_772 = opt_split_771 + self.add_772_bias + opt_add_773 = P.Add()(opt_add_772, opt_split_771_1) + module20_30_opt = self.module20_30(opt_add_773) + opt_reshape_783 = self.reshape_783(module20_30_opt, self.reshape_783_shape) + opt_split_784, opt_split_784_1 = self.split_784(opt_reshape_783) + opt_mul_785 = P.Mul()(opt_split_784, opt_split_771) + opt_mul_786 = P.Mul()(opt_split_784_1, opt_split_771_1) + opt_add_787 = opt_mul_785 + self.add_787_bias + opt_add_788 = P.Add()(opt_add_787, opt_mul_786) + opt_conv2d_789 = self.conv2d_789(opt_add_788) + opt_add_790 = P.Add()(opt_conv2d_789, opt_relu_766) + opt_relu_791 = self.relu_791(opt_add_790) + module22_32_opt = self.module22_32(opt_relu_791) + opt_split_796, opt_split_796_1 = self.split_796(module22_32_opt) + opt_add_797 = opt_split_796 + self.add_797_bias + opt_add_798 = P.Add()(opt_add_797, opt_split_796_1) + module20_31_opt = self.module20_31(opt_add_798) + opt_reshape_808 = self.reshape_808(module20_31_opt, self.reshape_808_shape) + opt_split_809, opt_split_809_1 = self.split_809(opt_reshape_808) + opt_mul_810 = P.Mul()(opt_split_809, opt_split_796) + opt_mul_811 = P.Mul()(opt_split_809_1, opt_split_796_1) + opt_add_812 = opt_mul_810 + self.add_812_bias + opt_add_813 = P.Add()(opt_add_812, opt_mul_811) + opt_conv2d_814 = self.conv2d_814(opt_add_813) + opt_add_815 = P.Add()(opt_conv2d_814, opt_relu_791) + opt_relu_816 = self.relu_816(opt_add_815) + module22_33_opt = self.module22_33(opt_relu_816) + opt_split_821, opt_split_821_1 = self.split_821(module22_33_opt) + opt_add_822 = opt_split_821 + self.add_822_bias + opt_add_823 = P.Add()(opt_add_822, opt_split_821_1) + module20_32_opt = self.module20_32(opt_add_823) + opt_reshape_833 = self.reshape_833(module20_32_opt, self.reshape_833_shape) + opt_split_834, opt_split_834_1 = self.split_834(opt_reshape_833) + opt_mul_835 = P.Mul()(opt_split_834, opt_split_821) + opt_mul_836 = P.Mul()(opt_split_834_1, opt_split_821_1) + opt_add_837 = opt_mul_835 + self.add_837_bias + opt_add_838 = P.Add()(opt_add_837, opt_mul_836) + opt_conv2d_839 = self.conv2d_839(opt_add_838) + opt_add_840 = P.Add()(opt_conv2d_839, opt_relu_816) + opt_relu_841 = self.relu_841(opt_add_840) + module22_34_opt = self.module22_34(opt_relu_841) + opt_split_846, opt_split_846_1 = self.split_846(module22_34_opt) + opt_add_847 = opt_split_846 + self.add_847_bias + opt_add_848 = P.Add()(opt_add_847, opt_split_846_1) + module20_33_opt = self.module20_33(opt_add_848) + opt_reshape_858 = self.reshape_858(module20_33_opt, self.reshape_858_shape) + opt_split_859, opt_split_859_1 = self.split_859(opt_reshape_858) + opt_mul_860 = P.Mul()(opt_split_859, opt_split_846) + opt_mul_861 = P.Mul()(opt_split_859_1, opt_split_846_1) + opt_add_862 = opt_mul_860 + self.add_862_bias + opt_add_863 = P.Add()(opt_add_862, opt_mul_861) + opt_conv2d_864 = self.conv2d_864(opt_add_863) + opt_add_865 = P.Add()(opt_conv2d_864, opt_relu_841) + opt_relu_866 = self.relu_866(opt_add_865) + module22_35_opt = self.module22_35(opt_relu_866) + opt_split_871, opt_split_871_1 = self.split_871(module22_35_opt) + opt_add_872 = opt_split_871 + self.add_872_bias + opt_add_873 = P.Add()(opt_add_872, opt_split_871_1) + module20_34_opt = self.module20_34(opt_add_873) + opt_reshape_883 = self.reshape_883(module20_34_opt, self.reshape_883_shape) + opt_split_884, opt_split_884_1 = self.split_884(opt_reshape_883) + opt_mul_885 = P.Mul()(opt_split_884, opt_split_871) + opt_mul_886 = P.Mul()(opt_split_884_1, opt_split_871_1) + opt_add_887 = opt_mul_885 + self.add_887_bias + opt_add_888 = P.Add()(opt_add_887, opt_mul_886) + opt_conv2d_889 = self.conv2d_889(opt_add_888) + opt_add_890 = P.Add()(opt_conv2d_889, opt_relu_866) + opt_relu_891 = self.relu_891(opt_add_890) + module22_36_opt = self.module22_36(opt_relu_891) + opt_split_896, opt_split_896_1 = self.split_896(module22_36_opt) + opt_add_897 = opt_split_896 + self.add_897_bias + opt_add_898 = P.Add()(opt_add_897, opt_split_896_1) + module20_35_opt = self.module20_35(opt_add_898) + opt_reshape_908 = self.reshape_908(module20_35_opt, self.reshape_908_shape) + opt_split_909, opt_split_909_1 = self.split_909(opt_reshape_908) + opt_mul_910 = P.Mul()(opt_split_909, opt_split_896) + opt_mul_911 = P.Mul()(opt_split_909_1, opt_split_896_1) + opt_add_912 = opt_mul_910 + self.add_912_bias + opt_add_913 = P.Add()(opt_add_912, opt_mul_911) + opt_conv2d_914 = self.conv2d_914(opt_add_913) + opt_add_915 = P.Add()(opt_conv2d_914, opt_relu_891) + opt_relu_916 = self.relu_916(opt_add_915) + module22_37_opt = self.module22_37(opt_relu_916) + opt_split_921, opt_split_921_1 = self.split_921(module22_37_opt) + opt_add_922 = opt_split_921 + self.add_922_bias + opt_add_923 = P.Add()(opt_add_922, opt_split_921_1) + module20_36_opt = self.module20_36(opt_add_923) + opt_reshape_933 = self.reshape_933(module20_36_opt, self.reshape_933_shape) + opt_split_934, opt_split_934_1 = self.split_934(opt_reshape_933) + opt_mul_935 = P.Mul()(opt_split_934, opt_split_921) + opt_mul_936 = P.Mul()(opt_split_934_1, opt_split_921_1) + opt_add_937 = opt_mul_935 + self.add_937_bias + opt_add_938 = P.Add()(opt_add_937, opt_mul_936) + opt_conv2d_939 = self.conv2d_939(opt_add_938) + opt_add_940 = P.Add()(opt_conv2d_939, opt_relu_916) + opt_relu_941 = self.relu_941(opt_add_940) + module22_38_opt = self.module22_38(opt_relu_941) + opt_split_946, opt_split_946_1 = self.split_946(module22_38_opt) + opt_add_947 = opt_split_946 + self.add_947_bias + opt_add_948 = P.Add()(opt_add_947, opt_split_946_1) + module20_37_opt = self.module20_37(opt_add_948) + opt_reshape_958 = self.reshape_958(module20_37_opt, self.reshape_958_shape) + opt_split_959, opt_split_959_1 = self.split_959(opt_reshape_958) + opt_mul_960 = P.Mul()(opt_split_959, opt_split_946) + opt_mul_961 = P.Mul()(opt_split_959_1, opt_split_946_1) + opt_add_962 = opt_mul_960 + self.add_962_bias + opt_add_963 = P.Add()(opt_add_962, opt_mul_961) + opt_conv2d_964 = self.conv2d_964(opt_add_963) + opt_add_965 = P.Add()(opt_conv2d_964, opt_relu_941) + opt_relu_966 = self.relu_966(opt_add_965) + module22_39_opt = self.module22_39(opt_relu_966) + opt_split_971, opt_split_971_1 = self.split_971(module22_39_opt) + opt_add_972 = opt_split_971 + self.add_972_bias + opt_add_973 = P.Add()(opt_add_972, opt_split_971_1) + module20_38_opt = self.module20_38(opt_add_973) + opt_reshape_983 = self.reshape_983(module20_38_opt, self.reshape_983_shape) + opt_split_984, opt_split_984_1 = self.split_984(opt_reshape_983) + opt_mul_985 = P.Mul()(opt_split_984, opt_split_971) + opt_mul_986 = P.Mul()(opt_split_984_1, opt_split_971_1) + opt_add_987 = opt_mul_985 + self.add_987_bias + opt_add_988 = P.Add()(opt_add_987, opt_mul_986) + opt_conv2d_989 = self.conv2d_989(opt_add_988) + opt_add_990 = P.Add()(opt_conv2d_989, opt_relu_966) + opt_relu_991 = self.relu_991(opt_add_990) + module22_40_opt = self.module22_40(opt_relu_991) + opt_split_996, opt_split_996_1 = self.split_996(module22_40_opt) + opt_add_997 = opt_split_996 + self.add_997_bias + opt_add_998 = P.Add()(opt_add_997, opt_split_996_1) + module20_39_opt = self.module20_39(opt_add_998) + opt_reshape_1008 = self.reshape_1008(module20_39_opt, self.reshape_1008_shape) + opt_split_1009, opt_split_1009_1 = self.split_1009(opt_reshape_1008) + opt_mul_1010 = P.Mul()(opt_split_1009, opt_split_996) + opt_mul_1011 = P.Mul()(opt_split_1009_1, opt_split_996_1) + opt_add_1012 = opt_mul_1010 + self.add_1012_bias + opt_add_1013 = P.Add()(opt_add_1012, opt_mul_1011) + opt_conv2d_1014 = self.conv2d_1014(opt_add_1013) + opt_add_1015 = P.Add()(opt_conv2d_1014, opt_relu_991) + opt_relu_1016 = self.relu_1016(opt_add_1015) + module22_41_opt = self.module22_41(opt_relu_1016) + opt_split_1021, opt_split_1021_1 = self.split_1021(module22_41_opt) + opt_add_1022 = opt_split_1021 + self.add_1022_bias + opt_add_1023 = P.Add()(opt_add_1022, opt_split_1021_1) + module20_40_opt = self.module20_40(opt_add_1023) + opt_reshape_1033 = self.reshape_1033(module20_40_opt, self.reshape_1033_shape) + opt_split_1034, opt_split_1034_1 = self.split_1034(opt_reshape_1033) + opt_mul_1035 = P.Mul()(opt_split_1034, opt_split_1021) + opt_mul_1036 = P.Mul()(opt_split_1034_1, opt_split_1021_1) + opt_add_1037 = opt_mul_1035 + self.add_1037_bias + opt_add_1038 = P.Add()(opt_add_1037, opt_mul_1036) + opt_conv2d_1039 = self.conv2d_1039(opt_add_1038) + opt_add_1040 = P.Add()(opt_conv2d_1039, opt_relu_1016) + opt_relu_1041 = self.relu_1041(opt_add_1040) + module22_42_opt = self.module22_42(opt_relu_1041) + opt_split_1046, opt_split_1046_1 = self.split_1046(module22_42_opt) + opt_add_1047 = opt_split_1046 + self.add_1047_bias + opt_add_1048 = P.Add()(opt_add_1047, opt_split_1046_1) + module20_41_opt = self.module20_41(opt_add_1048) + opt_reshape_1058 = self.reshape_1058(module20_41_opt, self.reshape_1058_shape) + opt_split_1059, opt_split_1059_1 = self.split_1059(opt_reshape_1058) + opt_mul_1060 = P.Mul()(opt_split_1059, opt_split_1046) + opt_mul_1061 = P.Mul()(opt_split_1059_1, opt_split_1046_1) + opt_add_1062 = opt_mul_1060 + self.add_1062_bias + opt_add_1063 = P.Add()(opt_add_1062, opt_mul_1061) + opt_conv2d_1064 = self.conv2d_1064(opt_add_1063) + opt_add_1065 = P.Add()(opt_conv2d_1064, opt_relu_1041) + opt_relu_1066 = self.relu_1066(opt_add_1065) + module22_43_opt = self.module22_43(opt_relu_1066) + opt_split_1071, opt_split_1071_1 = self.split_1071(module22_43_opt) + opt_add_1072 = opt_split_1071 + self.add_1072_bias + opt_add_1073 = P.Add()(opt_add_1072, opt_split_1071_1) + module20_42_opt = self.module20_42(opt_add_1073) + opt_reshape_1083 = self.reshape_1083(module20_42_opt, self.reshape_1083_shape) + opt_split_1084, opt_split_1084_1 = self.split_1084(opt_reshape_1083) + opt_mul_1085 = P.Mul()(opt_split_1084, opt_split_1071) + opt_mul_1086 = P.Mul()(opt_split_1084_1, opt_split_1071_1) + opt_add_1087 = opt_mul_1085 + self.add_1087_bias + opt_add_1088 = P.Add()(opt_add_1087, opt_mul_1086) + opt_conv2d_1089 = self.conv2d_1089(opt_add_1088) + opt_add_1090 = P.Add()(opt_conv2d_1089, opt_relu_1066) + opt_relu_1091 = self.relu_1091(opt_add_1090) + module22_44_opt = self.module22_44(opt_relu_1091) + opt_split_1096, opt_split_1096_1 = self.split_1096(module22_44_opt) + opt_add_1097 = opt_split_1096 + self.add_1097_bias + opt_add_1098 = P.Add()(opt_add_1097, opt_split_1096_1) + module20_43_opt = self.module20_43(opt_add_1098) + opt_reshape_1108 = self.reshape_1108(module20_43_opt, self.reshape_1108_shape) + opt_split_1109, opt_split_1109_1 = self.split_1109(opt_reshape_1108) + opt_mul_1110 = P.Mul()(opt_split_1109, opt_split_1096) + opt_mul_1111 = P.Mul()(opt_split_1109_1, opt_split_1096_1) + opt_add_1112 = opt_mul_1110 + self.add_1112_bias + opt_add_1113 = P.Add()(opt_add_1112, opt_mul_1111) + opt_conv2d_1114 = self.conv2d_1114(opt_add_1113) + opt_add_1115 = P.Add()(opt_conv2d_1114, opt_relu_1091) + opt_relu_1116 = self.relu_1116(opt_add_1115) + module22_45_opt = self.module22_45(opt_relu_1116) + opt_split_1121, opt_split_1121_1 = self.split_1121(module22_45_opt) + opt_add_1122 = opt_split_1121 + self.add_1122_bias + opt_add_1123 = P.Add()(opt_add_1122, opt_split_1121_1) + module20_44_opt = self.module20_44(opt_add_1123) + opt_reshape_1133 = self.reshape_1133(module20_44_opt, self.reshape_1133_shape) + opt_split_1134, opt_split_1134_1 = self.split_1134(opt_reshape_1133) + opt_mul_1135 = P.Mul()(opt_split_1134, opt_split_1121) + opt_mul_1136 = P.Mul()(opt_split_1134_1, opt_split_1121_1) + opt_add_1137 = opt_mul_1135 + self.add_1137_bias + opt_add_1138 = P.Add()(opt_add_1137, opt_mul_1136) + opt_conv2d_1139 = self.conv2d_1139(opt_add_1138) + opt_add_1140 = P.Add()(opt_conv2d_1139, opt_relu_1116) + opt_relu_1141 = self.relu_1141(opt_add_1140) + module22_46_opt = self.module22_46(opt_relu_1141) + opt_split_1146, opt_split_1146_1 = self.split_1146(module22_46_opt) + opt_add_1147 = opt_split_1146 + self.add_1147_bias + opt_add_1148 = P.Add()(opt_add_1147, opt_split_1146_1) + module20_45_opt = self.module20_45(opt_add_1148) + opt_reshape_1158 = self.reshape_1158(module20_45_opt, self.reshape_1158_shape) + opt_split_1159, opt_split_1159_1 = self.split_1159(opt_reshape_1158) + opt_mul_1160 = P.Mul()(opt_split_1159, opt_split_1146) + opt_mul_1161 = P.Mul()(opt_split_1159_1, opt_split_1146_1) + opt_add_1162 = opt_mul_1160 + self.add_1162_bias + opt_add_1163 = P.Add()(opt_add_1162, opt_mul_1161) + opt_conv2d_1164 = self.conv2d_1164(opt_add_1163) + opt_add_1165 = P.Add()(opt_conv2d_1164, opt_relu_1141) + opt_relu_1166 = self.relu_1166(opt_add_1165) + module22_47_opt = self.module22_47(opt_relu_1166) + opt_split_1171, opt_split_1171_1 = self.split_1171(module22_47_opt) + opt_add_1172 = opt_split_1171 + self.add_1172_bias + opt_add_1173 = P.Add()(opt_add_1172, opt_split_1171_1) + module20_46_opt = self.module20_46(opt_add_1173) + opt_reshape_1183 = self.reshape_1183(module20_46_opt, self.reshape_1183_shape) + opt_split_1184, opt_split_1184_1 = self.split_1184(opt_reshape_1183) + opt_mul_1185 = P.Mul()(opt_split_1184, opt_split_1171) + opt_mul_1186 = P.Mul()(opt_split_1184_1, opt_split_1171_1) + opt_add_1187 = opt_mul_1185 + self.add_1187_bias + opt_add_1188 = P.Add()(opt_add_1187, opt_mul_1186) + opt_conv2d_1189 = self.conv2d_1189(opt_add_1188) + opt_add_1190 = P.Add()(opt_conv2d_1189, opt_relu_1166) + opt_relu_1191 = self.relu_1191(opt_add_1190) + module22_48_opt = self.module22_48(opt_relu_1191) + opt_split_1196, opt_split_1196_1 = self.split_1196(module22_48_opt) + opt_add_1197 = opt_split_1196 + self.add_1197_bias + opt_add_1198 = P.Add()(opt_add_1197, opt_split_1196_1) + module20_47_opt = self.module20_47(opt_add_1198) + opt_reshape_1208 = self.reshape_1208(module20_47_opt, self.reshape_1208_shape) + opt_split_1209, opt_split_1209_1 = self.split_1209(opt_reshape_1208) + opt_mul_1210 = P.Mul()(opt_split_1209, opt_split_1196) + opt_mul_1211 = P.Mul()(opt_split_1209_1, opt_split_1196_1) + opt_add_1212 = opt_mul_1210 + self.add_1212_bias + opt_add_1213 = P.Add()(opt_add_1212, opt_mul_1211) + opt_conv2d_1214 = self.conv2d_1214(opt_add_1213) + opt_add_1215 = P.Add()(opt_conv2d_1214, opt_relu_1191) + opt_relu_1216 = self.relu_1216(opt_add_1215) + module22_49_opt = self.module22_49(opt_relu_1216) + opt_split_1221, opt_split_1221_1 = self.split_1221(module22_49_opt) + opt_add_1222 = opt_split_1221 + self.add_1222_bias + opt_add_1223 = P.Add()(opt_add_1222, opt_split_1221_1) + module20_48_opt = self.module20_48(opt_add_1223) + opt_reshape_1233 = self.reshape_1233(module20_48_opt, self.reshape_1233_shape) + opt_split_1234, opt_split_1234_1 = self.split_1234(opt_reshape_1233) + opt_mul_1235 = P.Mul()(opt_split_1234, opt_split_1221) + opt_mul_1236 = P.Mul()(opt_split_1234_1, opt_split_1221_1) + opt_add_1237 = opt_mul_1235 + self.add_1237_bias + opt_add_1238 = P.Add()(opt_add_1237, opt_mul_1236) + opt_conv2d_1239 = self.conv2d_1239(opt_add_1238) + opt_add_1240 = P.Add()(opt_conv2d_1239, opt_relu_1216) + opt_relu_1241 = self.relu_1241(opt_add_1240) + module22_50_opt = self.module22_50(opt_relu_1241) + opt_split_1246, opt_split_1246_1 = self.split_1246(module22_50_opt) + opt_add_1247 = opt_split_1246 + self.add_1247_bias + opt_add_1248 = P.Add()(opt_add_1247, opt_split_1246_1) + module20_49_opt = self.module20_49(opt_add_1248) + opt_reshape_1258 = self.reshape_1258(module20_49_opt, self.reshape_1258_shape) + opt_split_1259, opt_split_1259_1 = self.split_1259(opt_reshape_1258) + opt_mul_1260 = P.Mul()(opt_split_1259, opt_split_1246) + opt_mul_1261 = P.Mul()(opt_split_1259_1, opt_split_1246_1) + opt_add_1262 = opt_mul_1260 + self.add_1262_bias + opt_add_1263 = P.Add()(opt_add_1262, opt_mul_1261) + opt_conv2d_1264 = self.conv2d_1264(opt_add_1263) + opt_add_1265 = P.Add()(opt_conv2d_1264, opt_relu_1241) + opt_relu_1266 = self.relu_1266(opt_add_1265) + module22_51_opt = self.module22_51(opt_relu_1266) + opt_split_1271, opt_split_1271_1 = self.split_1271(module22_51_opt) + opt_add_1272 = opt_split_1271 + self.add_1272_bias + opt_add_1273 = P.Add()(opt_add_1272, opt_split_1271_1) + module20_50_opt = self.module20_50(opt_add_1273) + opt_reshape_1283 = self.reshape_1283(module20_50_opt, self.reshape_1283_shape) + opt_split_1284, opt_split_1284_1 = self.split_1284(opt_reshape_1283) + opt_mul_1285 = P.Mul()(opt_split_1284, opt_split_1271) + opt_mul_1286 = P.Mul()(opt_split_1284_1, opt_split_1271_1) + opt_add_1287 = opt_mul_1285 + self.add_1287_bias + opt_add_1288 = P.Add()(opt_add_1287, opt_mul_1286) + opt_conv2d_1289 = self.conv2d_1289(opt_add_1288) + opt_add_1290 = P.Add()(opt_conv2d_1289, opt_relu_1266) + opt_relu_1291 = self.relu_1291(opt_add_1290) + module22_52_opt = self.module22_52(opt_relu_1291) + opt_split_1296, opt_split_1296_1 = self.split_1296(module22_52_opt) + opt_add_1297 = opt_split_1296 + self.add_1297_bias + opt_add_1298 = P.Add()(opt_add_1297, opt_split_1296_1) + module20_51_opt = self.module20_51(opt_add_1298) + opt_reshape_1308 = self.reshape_1308(module20_51_opt, self.reshape_1308_shape) + opt_split_1309, opt_split_1309_1 = self.split_1309(opt_reshape_1308) + opt_mul_1310 = P.Mul()(opt_split_1309, opt_split_1296) + opt_mul_1311 = P.Mul()(opt_split_1309_1, opt_split_1296_1) + opt_add_1312 = opt_mul_1310 + self.add_1312_bias + opt_add_1313 = P.Add()(opt_add_1312, opt_mul_1311) + opt_conv2d_1314 = self.conv2d_1314(opt_add_1313) + opt_add_1315 = P.Add()(opt_conv2d_1314, opt_relu_1291) + opt_relu_1316 = self.relu_1316(opt_add_1315) + module22_53_opt = self.module22_53(opt_relu_1316) + opt_split_1321, opt_split_1321_1 = self.split_1321(module22_53_opt) + opt_add_1322 = opt_split_1321 + self.add_1322_bias + opt_add_1323 = P.Add()(opt_add_1322, opt_split_1321_1) + module20_52_opt = self.module20_52(opt_add_1323) + opt_reshape_1333 = self.reshape_1333(module20_52_opt, self.reshape_1333_shape) + opt_split_1334, opt_split_1334_1 = self.split_1334(opt_reshape_1333) + opt_mul_1335 = P.Mul()(opt_split_1334, opt_split_1321) + opt_mul_1336 = P.Mul()(opt_split_1334_1, opt_split_1321_1) + opt_add_1337 = opt_mul_1335 + self.add_1337_bias + opt_add_1338 = P.Add()(opt_add_1337, opt_mul_1336) + opt_conv2d_1339 = self.conv2d_1339(opt_add_1338) + opt_add_1340 = P.Add()(opt_conv2d_1339, opt_relu_1316) + opt_relu_1341 = self.relu_1341(opt_add_1340) + module22_54_opt = self.module22_54(opt_relu_1341) + opt_split_1346, opt_split_1346_1 = self.split_1346(module22_54_opt) + opt_add_1347 = opt_split_1346 + self.add_1347_bias + opt_add_1348 = P.Add()(opt_add_1347, opt_split_1346_1) + module20_53_opt = self.module20_53(opt_add_1348) + opt_reshape_1358 = self.reshape_1358(module20_53_opt, self.reshape_1358_shape) + opt_split_1359, opt_split_1359_1 = self.split_1359(opt_reshape_1358) + opt_mul_1360 = P.Mul()(opt_split_1359, opt_split_1346) + opt_mul_1361 = P.Mul()(opt_split_1359_1, opt_split_1346_1) + opt_add_1362 = opt_mul_1360 + self.add_1362_bias + opt_add_1363 = P.Add()(opt_add_1362, opt_mul_1361) + opt_conv2d_1364 = self.conv2d_1364(opt_add_1363) + opt_add_1365 = P.Add()(opt_conv2d_1364, opt_relu_1341) + opt_relu_1366 = self.relu_1366(opt_add_1365) + module22_55_opt = self.module22_55(opt_relu_1366) + opt_split_1371, opt_split_1371_1 = self.split_1371(module22_55_opt) + opt_add_1372 = opt_split_1371 + self.add_1372_bias + opt_add_1373 = P.Add()(opt_add_1372, opt_split_1371_1) + module20_54_opt = self.module20_54(opt_add_1373) + opt_reshape_1383 = self.reshape_1383(module20_54_opt, self.reshape_1383_shape) + opt_split_1384, opt_split_1384_1 = self.split_1384(opt_reshape_1383) + opt_mul_1385 = P.Mul()(opt_split_1384, opt_split_1371) + opt_mul_1386 = P.Mul()(opt_split_1384_1, opt_split_1371_1) + opt_add_1387 = opt_mul_1385 + self.add_1387_bias + opt_add_1388 = P.Add()(opt_add_1387, opt_mul_1386) + opt_conv2d_1389 = self.conv2d_1389(opt_add_1388) + opt_add_1390 = P.Add()(opt_conv2d_1389, opt_relu_1366) + opt_relu_1391 = self.relu_1391(opt_add_1390) + module22_56_opt = self.module22_56(opt_relu_1391) + opt_split_1396, opt_split_1396_1 = self.split_1396(module22_56_opt) + opt_add_1397 = opt_split_1396 + self.add_1397_bias + opt_add_1398 = P.Add()(opt_add_1397, opt_split_1396_1) + module20_55_opt = self.module20_55(opt_add_1398) + opt_reshape_1408 = self.reshape_1408(module20_55_opt, self.reshape_1408_shape) + opt_split_1409, opt_split_1409_1 = self.split_1409(opt_reshape_1408) + opt_mul_1410 = P.Mul()(opt_split_1409, opt_split_1396) + opt_mul_1411 = P.Mul()(opt_split_1409_1, opt_split_1396_1) + opt_add_1412 = opt_mul_1410 + self.add_1412_bias + opt_add_1413 = P.Add()(opt_add_1412, opt_mul_1411) + opt_conv2d_1414 = self.conv2d_1414(opt_add_1413) + opt_add_1415 = P.Add()(opt_conv2d_1414, opt_relu_1391) + opt_relu_1416 = self.relu_1416(opt_add_1415) + module22_57_opt = self.module22_57(opt_relu_1416) + opt_split_1421, opt_split_1421_1 = self.split_1421(module22_57_opt) + opt_add_1422 = opt_split_1421 + self.add_1422_bias + opt_add_1423 = P.Add()(opt_add_1422, opt_split_1421_1) + module20_56_opt = self.module20_56(opt_add_1423) + opt_reshape_1433 = self.reshape_1433(module20_56_opt, self.reshape_1433_shape) + opt_split_1434, opt_split_1434_1 = self.split_1434(opt_reshape_1433) + opt_mul_1435 = P.Mul()(opt_split_1434, opt_split_1421) + opt_mul_1436 = P.Mul()(opt_split_1434_1, opt_split_1421_1) + opt_add_1437 = opt_mul_1435 + self.add_1437_bias + opt_add_1438 = P.Add()(opt_add_1437, opt_mul_1436) + opt_conv2d_1439 = self.conv2d_1439(opt_add_1438) + opt_add_1440 = P.Add()(opt_conv2d_1439, opt_relu_1416) + opt_relu_1441 = self.relu_1441(opt_add_1440) + module22_58_opt = self.module22_58(opt_relu_1441) + opt_split_1446, opt_split_1446_1 = self.split_1446(module22_58_opt) + opt_add_1447 = opt_split_1446 + self.add_1447_bias + opt_add_1448 = P.Add()(opt_add_1447, opt_split_1446_1) + module20_57_opt = self.module20_57(opt_add_1448) + opt_reshape_1458 = self.reshape_1458(module20_57_opt, self.reshape_1458_shape) + opt_split_1459, opt_split_1459_1 = self.split_1459(opt_reshape_1458) + opt_mul_1460 = P.Mul()(opt_split_1459, opt_split_1446) + opt_mul_1461 = P.Mul()(opt_split_1459_1, opt_split_1446_1) + opt_add_1462 = opt_mul_1460 + self.add_1462_bias + opt_add_1463 = P.Add()(opt_add_1462, opt_mul_1461) + opt_conv2d_1464 = self.conv2d_1464(opt_add_1463) + opt_add_1465 = P.Add()(opt_conv2d_1464, opt_relu_1441) + opt_relu_1466 = self.relu_1466(opt_add_1465) + module22_59_opt = self.module22_59(opt_relu_1466) + opt_split_1471, opt_split_1471_1 = self.split_1471(module22_59_opt) + opt_add_1472 = opt_split_1471 + self.add_1472_bias + opt_add_1473 = P.Add()(opt_add_1472, opt_split_1471_1) + module20_58_opt = self.module20_58(opt_add_1473) + opt_reshape_1483 = self.reshape_1483(module20_58_opt, self.reshape_1483_shape) + opt_split_1484, opt_split_1484_1 = self.split_1484(opt_reshape_1483) + opt_mul_1485 = P.Mul()(opt_split_1484, opt_split_1471) + opt_mul_1486 = P.Mul()(opt_split_1484_1, opt_split_1471_1) + opt_add_1487 = opt_mul_1485 + self.add_1487_bias + opt_add_1488 = P.Add()(opt_add_1487, opt_mul_1486) + opt_conv2d_1489 = self.conv2d_1489(opt_add_1488) + opt_add_1490 = P.Add()(opt_conv2d_1489, opt_relu_1466) + opt_relu_1491 = self.relu_1491(opt_add_1490) + module22_60_opt = self.module22_60(opt_relu_1491) + opt_split_1496, opt_split_1496_1 = self.split_1496(module22_60_opt) + opt_add_1497 = opt_split_1496 + self.add_1497_bias + opt_add_1498 = P.Add()(opt_add_1497, opt_split_1496_1) + module20_59_opt = self.module20_59(opt_add_1498) + opt_reshape_1508 = self.reshape_1508(module20_59_opt, self.reshape_1508_shape) + opt_split_1509, opt_split_1509_1 = self.split_1509(opt_reshape_1508) + opt_mul_1510 = P.Mul()(opt_split_1509, opt_split_1496) + opt_mul_1511 = P.Mul()(opt_split_1509_1, opt_split_1496_1) + opt_add_1512 = opt_mul_1510 + self.add_1512_bias + opt_add_1513 = P.Add()(opt_add_1512, opt_mul_1511) + opt_conv2d_1514 = self.conv2d_1514(opt_add_1513) + opt_add_1515 = P.Add()(opt_conv2d_1514, opt_relu_1491) + opt_relu_1516 = self.relu_1516(opt_add_1515) + module22_61_opt = self.module22_61(opt_relu_1516) + opt_split_1521, opt_split_1521_1 = self.split_1521(module22_61_opt) + opt_add_1522 = opt_split_1521 + self.add_1522_bias + opt_add_1523 = P.Add()(opt_add_1522, opt_split_1521_1) + module20_60_opt = self.module20_60(opt_add_1523) + opt_reshape_1533 = self.reshape_1533(module20_60_opt, self.reshape_1533_shape) + opt_split_1534, opt_split_1534_1 = self.split_1534(opt_reshape_1533) + opt_mul_1535 = P.Mul()(opt_split_1534, opt_split_1521) + opt_mul_1536 = P.Mul()(opt_split_1534_1, opt_split_1521_1) + opt_add_1537 = opt_mul_1535 + self.add_1537_bias + opt_add_1538 = P.Add()(opt_add_1537, opt_mul_1536) + opt_conv2d_1539 = self.conv2d_1539(opt_add_1538) + opt_add_1540 = P.Add()(opt_conv2d_1539, opt_relu_1516) + opt_relu_1541 = self.relu_1541(opt_add_1540) + module22_62_opt = self.module22_62(opt_relu_1541) + opt_split_1546, opt_split_1546_1 = self.split_1546(module22_62_opt) + opt_add_1547 = opt_split_1546 + self.add_1547_bias + opt_add_1548 = P.Add()(opt_add_1547, opt_split_1546_1) + module20_61_opt = self.module20_61(opt_add_1548) + opt_reshape_1558 = self.reshape_1558(module20_61_opt, self.reshape_1558_shape) + opt_split_1559, opt_split_1559_1 = self.split_1559(opt_reshape_1558) + opt_mul_1560 = P.Mul()(opt_split_1559, opt_split_1546) + opt_mul_1561 = P.Mul()(opt_split_1559_1, opt_split_1546_1) + opt_add_1562 = opt_mul_1560 + self.add_1562_bias + opt_add_1563 = P.Add()(opt_add_1562, opt_mul_1561) + opt_conv2d_1564 = self.conv2d_1564(opt_add_1563) + opt_add_1565 = P.Add()(opt_conv2d_1564, opt_relu_1541) + opt_relu_1566 = self.relu_1566(opt_add_1565) + module22_63_opt = self.module22_63(opt_relu_1566) + opt_split_1571, opt_split_1571_1 = self.split_1571(module22_63_opt) + opt_add_1572 = opt_split_1571 + self.add_1572_bias + opt_add_1573 = P.Add()(opt_add_1572, opt_split_1571_1) + module20_62_opt = self.module20_62(opt_add_1573) + opt_reshape_1583 = self.reshape_1583(module20_62_opt, self.reshape_1583_shape) + opt_split_1584, opt_split_1584_1 = self.split_1584(opt_reshape_1583) + opt_mul_1585 = P.Mul()(opt_split_1584, opt_split_1571) + opt_mul_1586 = P.Mul()(opt_split_1584_1, opt_split_1571_1) + opt_add_1587 = opt_mul_1585 + self.add_1587_bias + opt_add_1588 = P.Add()(opt_add_1587, opt_mul_1586) + opt_conv2d_1589 = self.conv2d_1589(opt_add_1588) + opt_add_1590 = P.Add()(opt_conv2d_1589, opt_relu_1566) + opt_relu_1591 = self.relu_1591(opt_add_1590) + module22_64_opt = self.module22_64(opt_relu_1591) + opt_split_1598, opt_split_1598_1 = self.split_1598(module22_64_opt) + opt_add_1599 = opt_split_1598 + self.add_1599_bias + opt_add_1600 = P.Add()(opt_add_1599, opt_split_1598_1) + module20_63_opt = self.module20_63(opt_add_1600) + opt_reshape_1610 = self.reshape_1610(module20_63_opt, self.reshape_1610_shape) + opt_split_1611, opt_split_1611_1 = self.split_1611(opt_reshape_1610) + opt_mul_1612 = P.Mul()(opt_split_1611, opt_split_1598) + opt_mul_1613 = P.Mul()(opt_split_1611_1, opt_split_1598_1) + opt_add_1614 = opt_mul_1612 + self.add_1614_bias + opt_add_1615 = P.Add()(opt_add_1614, opt_mul_1613) + opt_pad_1616 = self.pad_1616(opt_add_1615) + opt_avgpool2d_1617 = self.pad_avgpool2d_1617(opt_pad_1616) + opt_avgpool2d_1617 = self.avgpool2d_1617(opt_avgpool2d_1617) + opt_conv2d_1618 = self.conv2d_1618(opt_avgpool2d_1617) + opt_avgpool2d_1593 = self.pad_avgpool2d_1593(opt_relu_1591) + opt_avgpool2d_1593 = self.avgpool2d_1593(opt_avgpool2d_1593) + opt_conv2d_1595 = self.conv2d_1595(opt_avgpool2d_1593) + opt_add_1619 = P.Add()(opt_conv2d_1618, opt_conv2d_1595) + opt_relu_1620 = self.relu_1620(opt_add_1619) + module22_65_opt = self.module22_65(opt_relu_1620) + opt_split_1625, opt_split_1625_1 = self.split_1625(module22_65_opt) + opt_add_1626 = opt_split_1625 + self.add_1626_bias + opt_add_1627 = P.Add()(opt_add_1626, opt_split_1625_1) + module20_64_opt = self.module20_64(opt_add_1627) + opt_reshape_1637 = self.reshape_1637(module20_64_opt, self.reshape_1637_shape) + opt_split_1638, opt_split_1638_1 = self.split_1638(opt_reshape_1637) + opt_mul_1639 = P.Mul()(opt_split_1638, opt_split_1625) + opt_mul_1640 = P.Mul()(opt_split_1638_1, opt_split_1625_1) + opt_add_1641 = opt_mul_1639 + self.add_1641_bias + opt_add_1642 = P.Add()(opt_add_1641, opt_mul_1640) + opt_conv2d_1643 = self.conv2d_1643(opt_add_1642) + opt_add_1644 = P.Add()(opt_conv2d_1643, opt_relu_1620) + opt_relu_1645 = self.relu_1645(opt_add_1644) + module22_66_opt = self.module22_66(opt_relu_1645) + opt_split_1650, opt_split_1650_1 = self.split_1650(module22_66_opt) + opt_add_1651 = opt_split_1650 + self.add_1651_bias + opt_add_1652 = P.Add()(opt_add_1651, opt_split_1650_1) + module20_65_opt = self.module20_65(opt_add_1652) + opt_reshape_1662 = self.reshape_1662(module20_65_opt, self.reshape_1662_shape) + opt_split_1663, opt_split_1663_1 = self.split_1663(opt_reshape_1662) + opt_mul_1664 = P.Mul()(opt_split_1663, opt_split_1650) + opt_mul_1665 = P.Mul()(opt_split_1663_1, opt_split_1650_1) + opt_add_1666 = opt_mul_1664 + self.add_1666_bias + opt_add_1667 = P.Add()(opt_add_1666, opt_mul_1665) + opt_conv2d_1668 = self.conv2d_1668(opt_add_1667) + opt_add_1669 = P.Add()(opt_conv2d_1668, opt_relu_1645) + opt_relu_1670 = self.relu_1670(opt_add_1669) + opt_avgpool2d_1671 = self.avgpool2d_1671(opt_relu_1670) + opt_reshape_1672 = self.reshape_1672(opt_avgpool2d_1671, self.reshape_1672_shape) + opt_flatten_1673 = self.flatten_1673(opt_reshape_1672) + opt_dense_1674 = self.dense_1674(opt_flatten_1673) + return opt_dense_1674 diff --git a/research/cvtmodel/resnest/src/resnest269.py b/research/cvtmodel/resnest/src/resnest269.py new file mode 100644 index 0000000000000000000000000000000000000000..977564fc2a2764bb0f7d4137b3d400c17f9aa0b7 --- /dev/null +++ b/research/cvtmodel/resnest/src/resnest269.py @@ -0,0 +1,4591 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module5(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, conv2d_0_kernel_size, conv2d_0_padding, + conv2d_0_pad_mode, conv2d_0_group): + super(Module5, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=conv2d_0_kernel_size, + stride=(1, 1), + padding=conv2d_0_padding, + pad_mode=conv2d_0_pad_mode, + dilation=(1, 1), + group=conv2d_0_group, + has_bias=True) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_conv2d_0 = self.conv2d_0(x) + opt_relu_1 = self.relu_1(opt_conv2d_0) + return opt_relu_1 + + +class Module22(nn.Cell): + def __init__(self, module5_0_conv2d_0_in_channels, module5_0_conv2d_0_out_channels, module5_0_conv2d_0_kernel_size, + module5_0_conv2d_0_padding, module5_0_conv2d_0_pad_mode, module5_0_conv2d_0_group, + module5_1_conv2d_0_in_channels, module5_1_conv2d_0_out_channels, module5_1_conv2d_0_kernel_size, + module5_1_conv2d_0_padding, module5_1_conv2d_0_pad_mode, module5_1_conv2d_0_group): + super(Module22, self).__init__() + self.module5_0 = Module5(conv2d_0_in_channels=module5_0_conv2d_0_in_channels, + conv2d_0_out_channels=module5_0_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_0_conv2d_0_kernel_size, + conv2d_0_padding=module5_0_conv2d_0_padding, + conv2d_0_pad_mode=module5_0_conv2d_0_pad_mode, + conv2d_0_group=module5_0_conv2d_0_group) + self.module5_1 = Module5(conv2d_0_in_channels=module5_1_conv2d_0_in_channels, + conv2d_0_out_channels=module5_1_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_1_conv2d_0_kernel_size, + conv2d_0_padding=module5_1_conv2d_0_padding, + conv2d_0_pad_mode=module5_1_conv2d_0_pad_mode, + conv2d_0_group=module5_1_conv2d_0_group) + + def construct(self, x): + module5_0_opt = self.module5_0(x) + module5_1_opt = self.module5_1(module5_0_opt) + return module5_1_opt + + +class Module0(nn.Cell): + def __init__(self, avgpool2d_0_kernel_size, conv2d_1_in_channels, conv2d_1_out_channels, conv2d_3_in_channels, + conv2d_3_out_channels, reshape_4_shape): + super(Module0, self).__init__() + self.avgpool2d_0 = nn.AvgPool2d(kernel_size=avgpool2d_0_kernel_size) + self.conv2d_1 = nn.Conv2d(in_channels=conv2d_1_in_channels, + out_channels=conv2d_1_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=conv2d_3_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.reshape_4 = P.Reshape() + self.reshape_4_shape = tuple(reshape_4_shape) + self.transpose_5 = P.Transpose() + + def construct(self, x): + opt_avgpool2d_0 = self.avgpool2d_0(x) + opt_conv2d_1 = self.conv2d_1(opt_avgpool2d_0) + opt_relu_2 = self.relu_2(opt_conv2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_reshape_4 = self.reshape_4(opt_conv2d_3, self.reshape_4_shape) + opt_transpose_5 = self.transpose_5(opt_reshape_4, (0, 3, 1, 2)) + return opt_transpose_5 + + +class Module20(nn.Cell): + def __init__(self, reshape_2_shape, module0_0_avgpool2d_0_kernel_size, module0_0_conv2d_1_in_channels, + module0_0_conv2d_1_out_channels, module0_0_conv2d_3_in_channels, module0_0_conv2d_3_out_channels, + module0_0_reshape_4_shape): + super(Module20, self).__init__() + self.module0_0 = Module0(avgpool2d_0_kernel_size=module0_0_avgpool2d_0_kernel_size, + conv2d_1_in_channels=module0_0_conv2d_1_in_channels, + conv2d_1_out_channels=module0_0_conv2d_1_out_channels, + conv2d_3_in_channels=module0_0_conv2d_3_in_channels, + conv2d_3_out_channels=module0_0_conv2d_3_out_channels, + reshape_4_shape=module0_0_reshape_4_shape) + self.softmax_0 = nn.Softmax(axis=3) + self.transpose_1 = P.Transpose() + self.reshape_2 = P.Reshape() + self.reshape_2_shape = tuple(reshape_2_shape) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + opt_softmax_0 = self.softmax_0(module0_0_opt) + opt_transpose_1 = self.transpose_1(opt_softmax_0, (0, 3, 2, 1)) + opt_reshape_2 = self.reshape_2(opt_transpose_1, self.reshape_2_shape) + return opt_reshape_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(3, 3), + stride=(2, 2), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.module22_0 = Module22(module5_0_conv2d_0_in_channels=64, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(3, 3), + module5_0_conv2d_0_padding=(1, 1, 1, 1), + module5_0_conv2d_0_pad_mode="pad", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=1) + self.pad_maxpool2d_6 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_6 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module22_1 = Module22(module5_0_conv2d_0_in_channels=128, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_13 = P.Split(axis=1, output_num=2) + self.add_14_bias = 0.0 + self.module20_0 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(104, 104), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_25 = P.Reshape() + self.reshape_25_shape = tuple([1, 128, 1, 1]) + self.split_26 = P.Split(axis=1, output_num=2) + self.add_29_bias = 0.0 + self.conv2d_31 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_8 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_8 = nn.AvgPool2d(kernel_size=(1, 1), stride=(1, 1)) + self.conv2d_10 = nn.Conv2d(in_channels=128, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_33 = nn.ReLU() + self.module22_2 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_38 = P.Split(axis=1, output_num=2) + self.add_39_bias = 0.0 + self.module20_1 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(104, 104), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_50 = P.Reshape() + self.reshape_50_shape = tuple([1, 128, 1, 1]) + self.split_51 = P.Split(axis=1, output_num=2) + self.add_54_bias = 0.0 + self.conv2d_56 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_58 = nn.ReLU() + self.module22_3 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_63 = P.Split(axis=1, output_num=2) + self.add_64_bias = 0.0 + self.module20_2 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(104, 104), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_75 = P.Reshape() + self.reshape_75_shape = tuple([1, 128, 1, 1]) + self.split_76 = P.Split(axis=1, output_num=2) + self.add_79_bias = 0.0 + self.conv2d_81 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_83 = nn.ReLU() + self.module22_4 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_90 = P.Split(axis=1, output_num=2) + self.add_91_bias = 0.0 + self.module20_3 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(104, 104), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_102 = P.Reshape() + self.reshape_102_shape = tuple([1, 256, 1, 1]) + self.split_103 = P.Split(axis=1, output_num=2) + self.add_106_bias = 0.0 + self.pad_108 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_109 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_109 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_110 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_85 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_85 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_87 = nn.Conv2d(in_channels=256, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_112 = nn.ReLU() + self.module22_5 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_117 = P.Split(axis=1, output_num=2) + self.add_118_bias = 0.0 + self.module20_4 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_129 = P.Reshape() + self.reshape_129_shape = tuple([1, 256, 1, 1]) + self.split_130 = P.Split(axis=1, output_num=2) + self.add_133_bias = 0.0 + self.conv2d_135 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_137 = nn.ReLU() + self.module22_6 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_142 = P.Split(axis=1, output_num=2) + self.add_143_bias = 0.0 + self.module20_5 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_154 = P.Reshape() + self.reshape_154_shape = tuple([1, 256, 1, 1]) + self.split_155 = P.Split(axis=1, output_num=2) + self.add_158_bias = 0.0 + self.conv2d_160 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_162 = nn.ReLU() + self.module22_7 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_167 = P.Split(axis=1, output_num=2) + self.add_168_bias = 0.0 + self.module20_6 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_179 = P.Reshape() + self.reshape_179_shape = tuple([1, 256, 1, 1]) + self.split_180 = P.Split(axis=1, output_num=2) + self.add_183_bias = 0.0 + self.conv2d_185 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_187 = nn.ReLU() + self.module22_8 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_192 = P.Split(axis=1, output_num=2) + self.add_193_bias = 0.0 + self.module20_7 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_204 = P.Reshape() + self.reshape_204_shape = tuple([1, 256, 1, 1]) + self.split_205 = P.Split(axis=1, output_num=2) + self.add_208_bias = 0.0 + self.conv2d_210 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_212 = nn.ReLU() + self.module22_9 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_217 = P.Split(axis=1, output_num=2) + self.add_218_bias = 0.0 + self.module20_8 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_229 = P.Reshape() + self.reshape_229_shape = tuple([1, 256, 1, 1]) + self.split_230 = P.Split(axis=1, output_num=2) + self.add_233_bias = 0.0 + self.conv2d_235 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_237 = nn.ReLU() + self.module22_10 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_242 = P.Split(axis=1, output_num=2) + self.add_243_bias = 0.0 + self.module20_9 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_254 = P.Reshape() + self.reshape_254_shape = tuple([1, 256, 1, 1]) + self.split_255 = P.Split(axis=1, output_num=2) + self.add_258_bias = 0.0 + self.conv2d_260 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_262 = nn.ReLU() + self.module22_11 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_267 = P.Split(axis=1, output_num=2) + self.add_268_bias = 0.0 + self.module20_10 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_279 = P.Reshape() + self.reshape_279_shape = tuple([1, 256, 1, 1]) + self.split_280 = P.Split(axis=1, output_num=2) + self.add_283_bias = 0.0 + self.conv2d_285 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_287 = nn.ReLU() + self.module22_12 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_292 = P.Split(axis=1, output_num=2) + self.add_293_bias = 0.0 + self.module20_11 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_304 = P.Reshape() + self.reshape_304_shape = tuple([1, 256, 1, 1]) + self.split_305 = P.Split(axis=1, output_num=2) + self.add_308_bias = 0.0 + self.conv2d_310 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_312 = nn.ReLU() + self.module22_13 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_317 = P.Split(axis=1, output_num=2) + self.add_318_bias = 0.0 + self.module20_12 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_329 = P.Reshape() + self.reshape_329_shape = tuple([1, 256, 1, 1]) + self.split_330 = P.Split(axis=1, output_num=2) + self.add_333_bias = 0.0 + self.conv2d_335 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_337 = nn.ReLU() + self.module22_14 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_342 = P.Split(axis=1, output_num=2) + self.add_343_bias = 0.0 + self.module20_13 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_354 = P.Reshape() + self.reshape_354_shape = tuple([1, 256, 1, 1]) + self.split_355 = P.Split(axis=1, output_num=2) + self.add_358_bias = 0.0 + self.conv2d_360 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_362 = nn.ReLU() + self.module22_15 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_367 = P.Split(axis=1, output_num=2) + self.add_368_bias = 0.0 + self.module20_14 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_379 = P.Reshape() + self.reshape_379_shape = tuple([1, 256, 1, 1]) + self.split_380 = P.Split(axis=1, output_num=2) + self.add_383_bias = 0.0 + self.conv2d_385 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_387 = nn.ReLU() + self.module22_16 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_392 = P.Split(axis=1, output_num=2) + self.add_393_bias = 0.0 + self.module20_15 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_404 = P.Reshape() + self.reshape_404_shape = tuple([1, 256, 1, 1]) + self.split_405 = P.Split(axis=1, output_num=2) + self.add_408_bias = 0.0 + self.conv2d_410 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_412 = nn.ReLU() + self.module22_17 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_417 = P.Split(axis=1, output_num=2) + self.add_418_bias = 0.0 + self.module20_16 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_429 = P.Reshape() + self.reshape_429_shape = tuple([1, 256, 1, 1]) + self.split_430 = P.Split(axis=1, output_num=2) + self.add_433_bias = 0.0 + self.conv2d_435 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_437 = nn.ReLU() + self.module22_18 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_442 = P.Split(axis=1, output_num=2) + self.add_443_bias = 0.0 + self.module20_17 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_454 = P.Reshape() + self.reshape_454_shape = tuple([1, 256, 1, 1]) + self.split_455 = P.Split(axis=1, output_num=2) + self.add_458_bias = 0.0 + self.conv2d_460 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_462 = nn.ReLU() + self.module22_19 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_467 = P.Split(axis=1, output_num=2) + self.add_468_bias = 0.0 + self.module20_18 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_479 = P.Reshape() + self.reshape_479_shape = tuple([1, 256, 1, 1]) + self.split_480 = P.Split(axis=1, output_num=2) + self.add_483_bias = 0.0 + self.conv2d_485 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_487 = nn.ReLU() + self.module22_20 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_492 = P.Split(axis=1, output_num=2) + self.add_493_bias = 0.0 + self.module20_19 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_504 = P.Reshape() + self.reshape_504_shape = tuple([1, 256, 1, 1]) + self.split_505 = P.Split(axis=1, output_num=2) + self.add_508_bias = 0.0 + self.conv2d_510 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_512 = nn.ReLU() + self.module22_21 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_517 = P.Split(axis=1, output_num=2) + self.add_518_bias = 0.0 + self.module20_20 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_529 = P.Reshape() + self.reshape_529_shape = tuple([1, 256, 1, 1]) + self.split_530 = P.Split(axis=1, output_num=2) + self.add_533_bias = 0.0 + self.conv2d_535 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_537 = nn.ReLU() + self.module22_22 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_542 = P.Split(axis=1, output_num=2) + self.add_543_bias = 0.0 + self.module20_21 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_554 = P.Reshape() + self.reshape_554_shape = tuple([1, 256, 1, 1]) + self.split_555 = P.Split(axis=1, output_num=2) + self.add_558_bias = 0.0 + self.conv2d_560 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_562 = nn.ReLU() + self.module22_23 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_567 = P.Split(axis=1, output_num=2) + self.add_568_bias = 0.0 + self.module20_22 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_579 = P.Reshape() + self.reshape_579_shape = tuple([1, 256, 1, 1]) + self.split_580 = P.Split(axis=1, output_num=2) + self.add_583_bias = 0.0 + self.conv2d_585 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_587 = nn.ReLU() + self.module22_24 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_592 = P.Split(axis=1, output_num=2) + self.add_593_bias = 0.0 + self.module20_23 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_604 = P.Reshape() + self.reshape_604_shape = tuple([1, 256, 1, 1]) + self.split_605 = P.Split(axis=1, output_num=2) + self.add_608_bias = 0.0 + self.conv2d_610 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_612 = nn.ReLU() + self.module22_25 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_617 = P.Split(axis=1, output_num=2) + self.add_618_bias = 0.0 + self.module20_24 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_629 = P.Reshape() + self.reshape_629_shape = tuple([1, 256, 1, 1]) + self.split_630 = P.Split(axis=1, output_num=2) + self.add_633_bias = 0.0 + self.conv2d_635 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_637 = nn.ReLU() + self.module22_26 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_642 = P.Split(axis=1, output_num=2) + self.add_643_bias = 0.0 + self.module20_25 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_654 = P.Reshape() + self.reshape_654_shape = tuple([1, 256, 1, 1]) + self.split_655 = P.Split(axis=1, output_num=2) + self.add_658_bias = 0.0 + self.conv2d_660 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_662 = nn.ReLU() + self.module22_27 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_667 = P.Split(axis=1, output_num=2) + self.add_668_bias = 0.0 + self.module20_26 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_679 = P.Reshape() + self.reshape_679_shape = tuple([1, 256, 1, 1]) + self.split_680 = P.Split(axis=1, output_num=2) + self.add_683_bias = 0.0 + self.conv2d_685 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_687 = nn.ReLU() + self.module22_28 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_692 = P.Split(axis=1, output_num=2) + self.add_693_bias = 0.0 + self.module20_27 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_704 = P.Reshape() + self.reshape_704_shape = tuple([1, 256, 1, 1]) + self.split_705 = P.Split(axis=1, output_num=2) + self.add_708_bias = 0.0 + self.conv2d_710 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_712 = nn.ReLU() + self.module22_29 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_717 = P.Split(axis=1, output_num=2) + self.add_718_bias = 0.0 + self.module20_28 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_729 = P.Reshape() + self.reshape_729_shape = tuple([1, 256, 1, 1]) + self.split_730 = P.Split(axis=1, output_num=2) + self.add_733_bias = 0.0 + self.conv2d_735 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_737 = nn.ReLU() + self.module22_30 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_742 = P.Split(axis=1, output_num=2) + self.add_743_bias = 0.0 + self.module20_29 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_754 = P.Reshape() + self.reshape_754_shape = tuple([1, 256, 1, 1]) + self.split_755 = P.Split(axis=1, output_num=2) + self.add_758_bias = 0.0 + self.conv2d_760 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_762 = nn.ReLU() + self.module22_31 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_767 = P.Split(axis=1, output_num=2) + self.add_768_bias = 0.0 + self.module20_30 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_779 = P.Reshape() + self.reshape_779_shape = tuple([1, 256, 1, 1]) + self.split_780 = P.Split(axis=1, output_num=2) + self.add_783_bias = 0.0 + self.conv2d_785 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_787 = nn.ReLU() + self.module22_32 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_792 = P.Split(axis=1, output_num=2) + self.add_793_bias = 0.0 + self.module20_31 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_804 = P.Reshape() + self.reshape_804_shape = tuple([1, 256, 1, 1]) + self.split_805 = P.Split(axis=1, output_num=2) + self.add_808_bias = 0.0 + self.conv2d_810 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_812 = nn.ReLU() + self.module22_33 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_817 = P.Split(axis=1, output_num=2) + self.add_818_bias = 0.0 + self.module20_32 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_829 = P.Reshape() + self.reshape_829_shape = tuple([1, 256, 1, 1]) + self.split_830 = P.Split(axis=1, output_num=2) + self.add_833_bias = 0.0 + self.conv2d_835 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_837 = nn.ReLU() + self.module22_34 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_844 = P.Split(axis=1, output_num=2) + self.add_845_bias = 0.0 + self.module20_33 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(52, 52), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_856 = P.Reshape() + self.reshape_856_shape = tuple([1, 512, 1, 1]) + self.split_857 = P.Split(axis=1, output_num=2) + self.add_860_bias = 0.0 + self.pad_862 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_863 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_863 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_864 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_839 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_839 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_841 = nn.Conv2d(in_channels=512, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_866 = nn.ReLU() + self.module22_35 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_871 = P.Split(axis=1, output_num=2) + self.add_872_bias = 0.0 + self.module20_34 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_883 = P.Reshape() + self.reshape_883_shape = tuple([1, 512, 1, 1]) + self.split_884 = P.Split(axis=1, output_num=2) + self.add_887_bias = 0.0 + self.conv2d_889 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_891 = nn.ReLU() + self.module22_36 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_896 = P.Split(axis=1, output_num=2) + self.add_897_bias = 0.0 + self.module20_35 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_908 = P.Reshape() + self.reshape_908_shape = tuple([1, 512, 1, 1]) + self.split_909 = P.Split(axis=1, output_num=2) + self.add_912_bias = 0.0 + self.conv2d_914 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_916 = nn.ReLU() + self.module22_37 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_921 = P.Split(axis=1, output_num=2) + self.add_922_bias = 0.0 + self.module20_36 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_933 = P.Reshape() + self.reshape_933_shape = tuple([1, 512, 1, 1]) + self.split_934 = P.Split(axis=1, output_num=2) + self.add_937_bias = 0.0 + self.conv2d_939 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_941 = nn.ReLU() + self.module22_38 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_946 = P.Split(axis=1, output_num=2) + self.add_947_bias = 0.0 + self.module20_37 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_958 = P.Reshape() + self.reshape_958_shape = tuple([1, 512, 1, 1]) + self.split_959 = P.Split(axis=1, output_num=2) + self.add_962_bias = 0.0 + self.conv2d_964 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_966 = nn.ReLU() + self.module22_39 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_971 = P.Split(axis=1, output_num=2) + self.add_972_bias = 0.0 + self.module20_38 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_983 = P.Reshape() + self.reshape_983_shape = tuple([1, 512, 1, 1]) + self.split_984 = P.Split(axis=1, output_num=2) + self.add_987_bias = 0.0 + self.conv2d_989 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_991 = nn.ReLU() + self.module22_40 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_996 = P.Split(axis=1, output_num=2) + self.add_997_bias = 0.0 + self.module20_39 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1008 = P.Reshape() + self.reshape_1008_shape = tuple([1, 512, 1, 1]) + self.split_1009 = P.Split(axis=1, output_num=2) + self.add_1012_bias = 0.0 + self.conv2d_1014 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1016 = nn.ReLU() + self.module22_41 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1021 = P.Split(axis=1, output_num=2) + self.add_1022_bias = 0.0 + self.module20_40 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1033 = P.Reshape() + self.reshape_1033_shape = tuple([1, 512, 1, 1]) + self.split_1034 = P.Split(axis=1, output_num=2) + self.add_1037_bias = 0.0 + self.conv2d_1039 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1041 = nn.ReLU() + self.module22_42 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1046 = P.Split(axis=1, output_num=2) + self.add_1047_bias = 0.0 + self.module20_41 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1058 = P.Reshape() + self.reshape_1058_shape = tuple([1, 512, 1, 1]) + self.split_1059 = P.Split(axis=1, output_num=2) + self.add_1062_bias = 0.0 + self.conv2d_1064 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1066 = nn.ReLU() + self.module22_43 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1071 = P.Split(axis=1, output_num=2) + self.add_1072_bias = 0.0 + self.module20_42 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1083 = P.Reshape() + self.reshape_1083_shape = tuple([1, 512, 1, 1]) + self.split_1084 = P.Split(axis=1, output_num=2) + self.add_1087_bias = 0.0 + self.conv2d_1089 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1091 = nn.ReLU() + self.module22_44 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1096 = P.Split(axis=1, output_num=2) + self.add_1097_bias = 0.0 + self.module20_43 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1108 = P.Reshape() + self.reshape_1108_shape = tuple([1, 512, 1, 1]) + self.split_1109 = P.Split(axis=1, output_num=2) + self.add_1112_bias = 0.0 + self.conv2d_1114 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1116 = nn.ReLU() + self.module22_45 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1121 = P.Split(axis=1, output_num=2) + self.add_1122_bias = 0.0 + self.module20_44 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1133 = P.Reshape() + self.reshape_1133_shape = tuple([1, 512, 1, 1]) + self.split_1134 = P.Split(axis=1, output_num=2) + self.add_1137_bias = 0.0 + self.conv2d_1139 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1141 = nn.ReLU() + self.module22_46 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1146 = P.Split(axis=1, output_num=2) + self.add_1147_bias = 0.0 + self.module20_45 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1158 = P.Reshape() + self.reshape_1158_shape = tuple([1, 512, 1, 1]) + self.split_1159 = P.Split(axis=1, output_num=2) + self.add_1162_bias = 0.0 + self.conv2d_1164 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1166 = nn.ReLU() + self.module22_47 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1171 = P.Split(axis=1, output_num=2) + self.add_1172_bias = 0.0 + self.module20_46 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1183 = P.Reshape() + self.reshape_1183_shape = tuple([1, 512, 1, 1]) + self.split_1184 = P.Split(axis=1, output_num=2) + self.add_1187_bias = 0.0 + self.conv2d_1189 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1191 = nn.ReLU() + self.module22_48 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1196 = P.Split(axis=1, output_num=2) + self.add_1197_bias = 0.0 + self.module20_47 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1208 = P.Reshape() + self.reshape_1208_shape = tuple([1, 512, 1, 1]) + self.split_1209 = P.Split(axis=1, output_num=2) + self.add_1212_bias = 0.0 + self.conv2d_1214 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1216 = nn.ReLU() + self.module22_49 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1221 = P.Split(axis=1, output_num=2) + self.add_1222_bias = 0.0 + self.module20_48 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1233 = P.Reshape() + self.reshape_1233_shape = tuple([1, 512, 1, 1]) + self.split_1234 = P.Split(axis=1, output_num=2) + self.add_1237_bias = 0.0 + self.conv2d_1239 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1241 = nn.ReLU() + self.module22_50 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1246 = P.Split(axis=1, output_num=2) + self.add_1247_bias = 0.0 + self.module20_49 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1258 = P.Reshape() + self.reshape_1258_shape = tuple([1, 512, 1, 1]) + self.split_1259 = P.Split(axis=1, output_num=2) + self.add_1262_bias = 0.0 + self.conv2d_1264 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1266 = nn.ReLU() + self.module22_51 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1271 = P.Split(axis=1, output_num=2) + self.add_1272_bias = 0.0 + self.module20_50 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1283 = P.Reshape() + self.reshape_1283_shape = tuple([1, 512, 1, 1]) + self.split_1284 = P.Split(axis=1, output_num=2) + self.add_1287_bias = 0.0 + self.conv2d_1289 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1291 = nn.ReLU() + self.module22_52 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1296 = P.Split(axis=1, output_num=2) + self.add_1297_bias = 0.0 + self.module20_51 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1308 = P.Reshape() + self.reshape_1308_shape = tuple([1, 512, 1, 1]) + self.split_1309 = P.Split(axis=1, output_num=2) + self.add_1312_bias = 0.0 + self.conv2d_1314 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1316 = nn.ReLU() + self.module22_53 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1321 = P.Split(axis=1, output_num=2) + self.add_1322_bias = 0.0 + self.module20_52 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1333 = P.Reshape() + self.reshape_1333_shape = tuple([1, 512, 1, 1]) + self.split_1334 = P.Split(axis=1, output_num=2) + self.add_1337_bias = 0.0 + self.conv2d_1339 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1341 = nn.ReLU() + self.module22_54 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1346 = P.Split(axis=1, output_num=2) + self.add_1347_bias = 0.0 + self.module20_53 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1358 = P.Reshape() + self.reshape_1358_shape = tuple([1, 512, 1, 1]) + self.split_1359 = P.Split(axis=1, output_num=2) + self.add_1362_bias = 0.0 + self.conv2d_1364 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1366 = nn.ReLU() + self.module22_55 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1371 = P.Split(axis=1, output_num=2) + self.add_1372_bias = 0.0 + self.module20_54 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1383 = P.Reshape() + self.reshape_1383_shape = tuple([1, 512, 1, 1]) + self.split_1384 = P.Split(axis=1, output_num=2) + self.add_1387_bias = 0.0 + self.conv2d_1389 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1391 = nn.ReLU() + self.module22_56 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1396 = P.Split(axis=1, output_num=2) + self.add_1397_bias = 0.0 + self.module20_55 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1408 = P.Reshape() + self.reshape_1408_shape = tuple([1, 512, 1, 1]) + self.split_1409 = P.Split(axis=1, output_num=2) + self.add_1412_bias = 0.0 + self.conv2d_1414 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1416 = nn.ReLU() + self.module22_57 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1421 = P.Split(axis=1, output_num=2) + self.add_1422_bias = 0.0 + self.module20_56 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1433 = P.Reshape() + self.reshape_1433_shape = tuple([1, 512, 1, 1]) + self.split_1434 = P.Split(axis=1, output_num=2) + self.add_1437_bias = 0.0 + self.conv2d_1439 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1441 = nn.ReLU() + self.module22_58 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1446 = P.Split(axis=1, output_num=2) + self.add_1447_bias = 0.0 + self.module20_57 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1458 = P.Reshape() + self.reshape_1458_shape = tuple([1, 512, 1, 1]) + self.split_1459 = P.Split(axis=1, output_num=2) + self.add_1462_bias = 0.0 + self.conv2d_1464 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1466 = nn.ReLU() + self.module22_59 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1471 = P.Split(axis=1, output_num=2) + self.add_1472_bias = 0.0 + self.module20_58 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1483 = P.Reshape() + self.reshape_1483_shape = tuple([1, 512, 1, 1]) + self.split_1484 = P.Split(axis=1, output_num=2) + self.add_1487_bias = 0.0 + self.conv2d_1489 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1491 = nn.ReLU() + self.module22_60 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1496 = P.Split(axis=1, output_num=2) + self.add_1497_bias = 0.0 + self.module20_59 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1508 = P.Reshape() + self.reshape_1508_shape = tuple([1, 512, 1, 1]) + self.split_1509 = P.Split(axis=1, output_num=2) + self.add_1512_bias = 0.0 + self.conv2d_1514 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1516 = nn.ReLU() + self.module22_61 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1521 = P.Split(axis=1, output_num=2) + self.add_1522_bias = 0.0 + self.module20_60 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1533 = P.Reshape() + self.reshape_1533_shape = tuple([1, 512, 1, 1]) + self.split_1534 = P.Split(axis=1, output_num=2) + self.add_1537_bias = 0.0 + self.conv2d_1539 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1541 = nn.ReLU() + self.module22_62 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1546 = P.Split(axis=1, output_num=2) + self.add_1547_bias = 0.0 + self.module20_61 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1558 = P.Reshape() + self.reshape_1558_shape = tuple([1, 512, 1, 1]) + self.split_1559 = P.Split(axis=1, output_num=2) + self.add_1562_bias = 0.0 + self.conv2d_1564 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1566 = nn.ReLU() + self.module22_63 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1571 = P.Split(axis=1, output_num=2) + self.add_1572_bias = 0.0 + self.module20_62 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1583 = P.Reshape() + self.reshape_1583_shape = tuple([1, 512, 1, 1]) + self.split_1584 = P.Split(axis=1, output_num=2) + self.add_1587_bias = 0.0 + self.conv2d_1589 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1591 = nn.ReLU() + self.module22_64 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1596 = P.Split(axis=1, output_num=2) + self.add_1597_bias = 0.0 + self.module20_63 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1608 = P.Reshape() + self.reshape_1608_shape = tuple([1, 512, 1, 1]) + self.split_1609 = P.Split(axis=1, output_num=2) + self.add_1612_bias = 0.0 + self.conv2d_1614 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1616 = nn.ReLU() + self.module22_65 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1621 = P.Split(axis=1, output_num=2) + self.add_1622_bias = 0.0 + self.module20_64 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1633 = P.Reshape() + self.reshape_1633_shape = tuple([1, 512, 1, 1]) + self.split_1634 = P.Split(axis=1, output_num=2) + self.add_1637_bias = 0.0 + self.conv2d_1639 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1641 = nn.ReLU() + self.module22_66 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1646 = P.Split(axis=1, output_num=2) + self.add_1647_bias = 0.0 + self.module20_65 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1658 = P.Reshape() + self.reshape_1658_shape = tuple([1, 512, 1, 1]) + self.split_1659 = P.Split(axis=1, output_num=2) + self.add_1662_bias = 0.0 + self.conv2d_1664 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1666 = nn.ReLU() + self.module22_67 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1671 = P.Split(axis=1, output_num=2) + self.add_1672_bias = 0.0 + self.module20_66 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1683 = P.Reshape() + self.reshape_1683_shape = tuple([1, 512, 1, 1]) + self.split_1684 = P.Split(axis=1, output_num=2) + self.add_1687_bias = 0.0 + self.conv2d_1689 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1691 = nn.ReLU() + self.module22_68 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1696 = P.Split(axis=1, output_num=2) + self.add_1697_bias = 0.0 + self.module20_67 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1708 = P.Reshape() + self.reshape_1708_shape = tuple([1, 512, 1, 1]) + self.split_1709 = P.Split(axis=1, output_num=2) + self.add_1712_bias = 0.0 + self.conv2d_1714 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1716 = nn.ReLU() + self.module22_69 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1721 = P.Split(axis=1, output_num=2) + self.add_1722_bias = 0.0 + self.module20_68 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1733 = P.Reshape() + self.reshape_1733_shape = tuple([1, 512, 1, 1]) + self.split_1734 = P.Split(axis=1, output_num=2) + self.add_1737_bias = 0.0 + self.conv2d_1739 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1741 = nn.ReLU() + self.module22_70 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1746 = P.Split(axis=1, output_num=2) + self.add_1747_bias = 0.0 + self.module20_69 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1758 = P.Reshape() + self.reshape_1758_shape = tuple([1, 512, 1, 1]) + self.split_1759 = P.Split(axis=1, output_num=2) + self.add_1762_bias = 0.0 + self.conv2d_1764 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1766 = nn.ReLU() + self.module22_71 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1771 = P.Split(axis=1, output_num=2) + self.add_1772_bias = 0.0 + self.module20_70 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1783 = P.Reshape() + self.reshape_1783_shape = tuple([1, 512, 1, 1]) + self.split_1784 = P.Split(axis=1, output_num=2) + self.add_1787_bias = 0.0 + self.conv2d_1789 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1791 = nn.ReLU() + self.module22_72 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1796 = P.Split(axis=1, output_num=2) + self.add_1797_bias = 0.0 + self.module20_71 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1808 = P.Reshape() + self.reshape_1808_shape = tuple([1, 512, 1, 1]) + self.split_1809 = P.Split(axis=1, output_num=2) + self.add_1812_bias = 0.0 + self.conv2d_1814 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1816 = nn.ReLU() + self.module22_73 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1821 = P.Split(axis=1, output_num=2) + self.add_1822_bias = 0.0 + self.module20_72 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1833 = P.Reshape() + self.reshape_1833_shape = tuple([1, 512, 1, 1]) + self.split_1834 = P.Split(axis=1, output_num=2) + self.add_1837_bias = 0.0 + self.conv2d_1839 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1841 = nn.ReLU() + self.module22_74 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1846 = P.Split(axis=1, output_num=2) + self.add_1847_bias = 0.0 + self.module20_73 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1858 = P.Reshape() + self.reshape_1858_shape = tuple([1, 512, 1, 1]) + self.split_1859 = P.Split(axis=1, output_num=2) + self.add_1862_bias = 0.0 + self.conv2d_1864 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1866 = nn.ReLU() + self.module22_75 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1871 = P.Split(axis=1, output_num=2) + self.add_1872_bias = 0.0 + self.module20_74 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1883 = P.Reshape() + self.reshape_1883_shape = tuple([1, 512, 1, 1]) + self.split_1884 = P.Split(axis=1, output_num=2) + self.add_1887_bias = 0.0 + self.conv2d_1889 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1891 = nn.ReLU() + self.module22_76 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1896 = P.Split(axis=1, output_num=2) + self.add_1897_bias = 0.0 + self.module20_75 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1908 = P.Reshape() + self.reshape_1908_shape = tuple([1, 512, 1, 1]) + self.split_1909 = P.Split(axis=1, output_num=2) + self.add_1912_bias = 0.0 + self.conv2d_1914 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1916 = nn.ReLU() + self.module22_77 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1921 = P.Split(axis=1, output_num=2) + self.add_1922_bias = 0.0 + self.module20_76 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1933 = P.Reshape() + self.reshape_1933_shape = tuple([1, 512, 1, 1]) + self.split_1934 = P.Split(axis=1, output_num=2) + self.add_1937_bias = 0.0 + self.conv2d_1939 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1941 = nn.ReLU() + self.module22_78 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1946 = P.Split(axis=1, output_num=2) + self.add_1947_bias = 0.0 + self.module20_77 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1958 = P.Reshape() + self.reshape_1958_shape = tuple([1, 512, 1, 1]) + self.split_1959 = P.Split(axis=1, output_num=2) + self.add_1962_bias = 0.0 + self.conv2d_1964 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1966 = nn.ReLU() + self.module22_79 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1971 = P.Split(axis=1, output_num=2) + self.add_1972_bias = 0.0 + self.module20_78 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_1983 = P.Reshape() + self.reshape_1983_shape = tuple([1, 512, 1, 1]) + self.split_1984 = P.Split(axis=1, output_num=2) + self.add_1987_bias = 0.0 + self.conv2d_1989 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1991 = nn.ReLU() + self.module22_80 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_1996 = P.Split(axis=1, output_num=2) + self.add_1997_bias = 0.0 + self.module20_79 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_2008 = P.Reshape() + self.reshape_2008_shape = tuple([1, 512, 1, 1]) + self.split_2009 = P.Split(axis=1, output_num=2) + self.add_2012_bias = 0.0 + self.conv2d_2014 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2016 = nn.ReLU() + self.module22_81 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2021 = P.Split(axis=1, output_num=2) + self.add_2022_bias = 0.0 + self.module20_80 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_2033 = P.Reshape() + self.reshape_2033_shape = tuple([1, 512, 1, 1]) + self.split_2034 = P.Split(axis=1, output_num=2) + self.add_2037_bias = 0.0 + self.conv2d_2039 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2041 = nn.ReLU() + self.module22_82 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2048 = P.Split(axis=1, output_num=2) + self.add_2049_bias = 0.0 + self.module20_81 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(26, 26), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2060 = P.Reshape() + self.reshape_2060_shape = tuple([1, 1024, 1, 1]) + self.split_2061 = P.Split(axis=1, output_num=2) + self.add_2064_bias = 0.0 + self.pad_2066 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_2067 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_2067 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_2068 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_2043 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_2043 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_2045 = nn.Conv2d(in_channels=1024, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2070 = nn.ReLU() + self.module22_83 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2075 = P.Split(axis=1, output_num=2) + self.add_2076_bias = 0.0 + self.module20_82 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2087 = P.Reshape() + self.reshape_2087_shape = tuple([1, 1024, 1, 1]) + self.split_2088 = P.Split(axis=1, output_num=2) + self.add_2091_bias = 0.0 + self.conv2d_2093 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2095 = nn.ReLU() + self.module22_84 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2100 = P.Split(axis=1, output_num=2) + self.add_2101_bias = 0.0 + self.module20_83 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2112 = P.Reshape() + self.reshape_2112_shape = tuple([1, 1024, 1, 1]) + self.split_2113 = P.Split(axis=1, output_num=2) + self.add_2116_bias = 0.0 + self.conv2d_2118 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2120 = nn.ReLU() + self.module22_85 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2125 = P.Split(axis=1, output_num=2) + self.add_2126_bias = 0.0 + self.module20_84 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2137 = P.Reshape() + self.reshape_2137_shape = tuple([1, 1024, 1, 1]) + self.split_2138 = P.Split(axis=1, output_num=2) + self.add_2141_bias = 0.0 + self.conv2d_2143 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2145 = nn.ReLU() + self.module22_86 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2150 = P.Split(axis=1, output_num=2) + self.add_2151_bias = 0.0 + self.module20_85 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2162 = P.Reshape() + self.reshape_2162_shape = tuple([1, 1024, 1, 1]) + self.split_2163 = P.Split(axis=1, output_num=2) + self.add_2166_bias = 0.0 + self.conv2d_2168 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2170 = nn.ReLU() + self.module22_87 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2175 = P.Split(axis=1, output_num=2) + self.add_2176_bias = 0.0 + self.module20_86 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2187 = P.Reshape() + self.reshape_2187_shape = tuple([1, 1024, 1, 1]) + self.split_2188 = P.Split(axis=1, output_num=2) + self.add_2191_bias = 0.0 + self.conv2d_2193 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2195 = nn.ReLU() + self.module22_88 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2200 = P.Split(axis=1, output_num=2) + self.add_2201_bias = 0.0 + self.module20_87 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2212 = P.Reshape() + self.reshape_2212_shape = tuple([1, 1024, 1, 1]) + self.split_2213 = P.Split(axis=1, output_num=2) + self.add_2216_bias = 0.0 + self.conv2d_2218 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2220 = nn.ReLU() + self.module22_89 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_2225 = P.Split(axis=1, output_num=2) + self.add_2226_bias = 0.0 + self.module20_88 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(13, 13), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_2237 = P.Reshape() + self.reshape_2237_shape = tuple([1, 1024, 1, 1]) + self.split_2238 = P.Split(axis=1, output_num=2) + self.add_2241_bias = 0.0 + self.conv2d_2243 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2245 = nn.ReLU() + self.avgpool2d_2246 = nn.AvgPool2d(kernel_size=(13, 13)) + self.reshape_2247 = P.Reshape() + self.reshape_2247_shape = tuple([1, 2048]) + self.flatten_2248 = nn.Flatten() + self.dense_2249 = nn.Dense(in_channels=2048, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + module22_0_opt = self.module22_0(opt_relu_1) + opt_maxpool2d_6 = self.pad_maxpool2d_6(module22_0_opt) + opt_maxpool2d_6 = self.maxpool2d_6(opt_maxpool2d_6) + module22_1_opt = self.module22_1(opt_maxpool2d_6) + opt_split_13, opt_split_13_1 = self.split_13(module22_1_opt) + opt_add_14 = opt_split_13 + self.add_14_bias + opt_add_15 = P.Add()(opt_add_14, opt_split_13_1) + module20_0_opt = self.module20_0(opt_add_15) + opt_reshape_25 = self.reshape_25(module20_0_opt, self.reshape_25_shape) + opt_split_26, opt_split_26_1 = self.split_26(opt_reshape_25) + opt_mul_27 = P.Mul()(opt_split_26, opt_split_13) + opt_mul_28 = P.Mul()(opt_split_26_1, opt_split_13_1) + opt_add_29 = opt_mul_27 + self.add_29_bias + opt_add_30 = P.Add()(opt_add_29, opt_mul_28) + opt_conv2d_31 = self.conv2d_31(opt_add_30) + opt_avgpool2d_8 = self.pad_avgpool2d_8(opt_maxpool2d_6) + opt_avgpool2d_8 = self.avgpool2d_8(opt_avgpool2d_8) + opt_conv2d_10 = self.conv2d_10(opt_avgpool2d_8) + opt_add_32 = P.Add()(opt_conv2d_31, opt_conv2d_10) + opt_relu_33 = self.relu_33(opt_add_32) + module22_2_opt = self.module22_2(opt_relu_33) + opt_split_38, opt_split_38_1 = self.split_38(module22_2_opt) + opt_add_39 = opt_split_38 + self.add_39_bias + opt_add_40 = P.Add()(opt_add_39, opt_split_38_1) + module20_1_opt = self.module20_1(opt_add_40) + opt_reshape_50 = self.reshape_50(module20_1_opt, self.reshape_50_shape) + opt_split_51, opt_split_51_1 = self.split_51(opt_reshape_50) + opt_mul_52 = P.Mul()(opt_split_51, opt_split_38) + opt_mul_53 = P.Mul()(opt_split_51_1, opt_split_38_1) + opt_add_54 = opt_mul_52 + self.add_54_bias + opt_add_55 = P.Add()(opt_add_54, opt_mul_53) + opt_conv2d_56 = self.conv2d_56(opt_add_55) + opt_add_57 = P.Add()(opt_conv2d_56, opt_relu_33) + opt_relu_58 = self.relu_58(opt_add_57) + module22_3_opt = self.module22_3(opt_relu_58) + opt_split_63, opt_split_63_1 = self.split_63(module22_3_opt) + opt_add_64 = opt_split_63 + self.add_64_bias + opt_add_65 = P.Add()(opt_add_64, opt_split_63_1) + module20_2_opt = self.module20_2(opt_add_65) + opt_reshape_75 = self.reshape_75(module20_2_opt, self.reshape_75_shape) + opt_split_76, opt_split_76_1 = self.split_76(opt_reshape_75) + opt_mul_77 = P.Mul()(opt_split_76, opt_split_63) + opt_mul_78 = P.Mul()(opt_split_76_1, opt_split_63_1) + opt_add_79 = opt_mul_77 + self.add_79_bias + opt_add_80 = P.Add()(opt_add_79, opt_mul_78) + opt_conv2d_81 = self.conv2d_81(opt_add_80) + opt_add_82 = P.Add()(opt_conv2d_81, opt_relu_58) + opt_relu_83 = self.relu_83(opt_add_82) + module22_4_opt = self.module22_4(opt_relu_83) + opt_split_90, opt_split_90_1 = self.split_90(module22_4_opt) + opt_add_91 = opt_split_90 + self.add_91_bias + opt_add_92 = P.Add()(opt_add_91, opt_split_90_1) + module20_3_opt = self.module20_3(opt_add_92) + opt_reshape_102 = self.reshape_102(module20_3_opt, self.reshape_102_shape) + opt_split_103, opt_split_103_1 = self.split_103(opt_reshape_102) + opt_mul_104 = P.Mul()(opt_split_103, opt_split_90) + opt_mul_105 = P.Mul()(opt_split_103_1, opt_split_90_1) + opt_add_106 = opt_mul_104 + self.add_106_bias + opt_add_107 = P.Add()(opt_add_106, opt_mul_105) + opt_pad_108 = self.pad_108(opt_add_107) + opt_avgpool2d_109 = self.pad_avgpool2d_109(opt_pad_108) + opt_avgpool2d_109 = self.avgpool2d_109(opt_avgpool2d_109) + opt_conv2d_110 = self.conv2d_110(opt_avgpool2d_109) + opt_avgpool2d_85 = self.pad_avgpool2d_85(opt_relu_83) + opt_avgpool2d_85 = self.avgpool2d_85(opt_avgpool2d_85) + opt_conv2d_87 = self.conv2d_87(opt_avgpool2d_85) + opt_add_111 = P.Add()(opt_conv2d_110, opt_conv2d_87) + opt_relu_112 = self.relu_112(opt_add_111) + module22_5_opt = self.module22_5(opt_relu_112) + opt_split_117, opt_split_117_1 = self.split_117(module22_5_opt) + opt_add_118 = opt_split_117 + self.add_118_bias + opt_add_119 = P.Add()(opt_add_118, opt_split_117_1) + module20_4_opt = self.module20_4(opt_add_119) + opt_reshape_129 = self.reshape_129(module20_4_opt, self.reshape_129_shape) + opt_split_130, opt_split_130_1 = self.split_130(opt_reshape_129) + opt_mul_131 = P.Mul()(opt_split_130, opt_split_117) + opt_mul_132 = P.Mul()(opt_split_130_1, opt_split_117_1) + opt_add_133 = opt_mul_131 + self.add_133_bias + opt_add_134 = P.Add()(opt_add_133, opt_mul_132) + opt_conv2d_135 = self.conv2d_135(opt_add_134) + opt_add_136 = P.Add()(opt_conv2d_135, opt_relu_112) + opt_relu_137 = self.relu_137(opt_add_136) + module22_6_opt = self.module22_6(opt_relu_137) + opt_split_142, opt_split_142_1 = self.split_142(module22_6_opt) + opt_add_143 = opt_split_142 + self.add_143_bias + opt_add_144 = P.Add()(opt_add_143, opt_split_142_1) + module20_5_opt = self.module20_5(opt_add_144) + opt_reshape_154 = self.reshape_154(module20_5_opt, self.reshape_154_shape) + opt_split_155, opt_split_155_1 = self.split_155(opt_reshape_154) + opt_mul_156 = P.Mul()(opt_split_155, opt_split_142) + opt_mul_157 = P.Mul()(opt_split_155_1, opt_split_142_1) + opt_add_158 = opt_mul_156 + self.add_158_bias + opt_add_159 = P.Add()(opt_add_158, opt_mul_157) + opt_conv2d_160 = self.conv2d_160(opt_add_159) + opt_add_161 = P.Add()(opt_conv2d_160, opt_relu_137) + opt_relu_162 = self.relu_162(opt_add_161) + module22_7_opt = self.module22_7(opt_relu_162) + opt_split_167, opt_split_167_1 = self.split_167(module22_7_opt) + opt_add_168 = opt_split_167 + self.add_168_bias + opt_add_169 = P.Add()(opt_add_168, opt_split_167_1) + module20_6_opt = self.module20_6(opt_add_169) + opt_reshape_179 = self.reshape_179(module20_6_opt, self.reshape_179_shape) + opt_split_180, opt_split_180_1 = self.split_180(opt_reshape_179) + opt_mul_181 = P.Mul()(opt_split_180, opt_split_167) + opt_mul_182 = P.Mul()(opt_split_180_1, opt_split_167_1) + opt_add_183 = opt_mul_181 + self.add_183_bias + opt_add_184 = P.Add()(opt_add_183, opt_mul_182) + opt_conv2d_185 = self.conv2d_185(opt_add_184) + opt_add_186 = P.Add()(opt_conv2d_185, opt_relu_162) + opt_relu_187 = self.relu_187(opt_add_186) + module22_8_opt = self.module22_8(opt_relu_187) + opt_split_192, opt_split_192_1 = self.split_192(module22_8_opt) + opt_add_193 = opt_split_192 + self.add_193_bias + opt_add_194 = P.Add()(opt_add_193, opt_split_192_1) + module20_7_opt = self.module20_7(opt_add_194) + opt_reshape_204 = self.reshape_204(module20_7_opt, self.reshape_204_shape) + opt_split_205, opt_split_205_1 = self.split_205(opt_reshape_204) + opt_mul_206 = P.Mul()(opt_split_205, opt_split_192) + opt_mul_207 = P.Mul()(opt_split_205_1, opt_split_192_1) + opt_add_208 = opt_mul_206 + self.add_208_bias + opt_add_209 = P.Add()(opt_add_208, opt_mul_207) + opt_conv2d_210 = self.conv2d_210(opt_add_209) + opt_add_211 = P.Add()(opt_conv2d_210, opt_relu_187) + opt_relu_212 = self.relu_212(opt_add_211) + module22_9_opt = self.module22_9(opt_relu_212) + opt_split_217, opt_split_217_1 = self.split_217(module22_9_opt) + opt_add_218 = opt_split_217 + self.add_218_bias + opt_add_219 = P.Add()(opt_add_218, opt_split_217_1) + module20_8_opt = self.module20_8(opt_add_219) + opt_reshape_229 = self.reshape_229(module20_8_opt, self.reshape_229_shape) + opt_split_230, opt_split_230_1 = self.split_230(opt_reshape_229) + opt_mul_231 = P.Mul()(opt_split_230, opt_split_217) + opt_mul_232 = P.Mul()(opt_split_230_1, opt_split_217_1) + opt_add_233 = opt_mul_231 + self.add_233_bias + opt_add_234 = P.Add()(opt_add_233, opt_mul_232) + opt_conv2d_235 = self.conv2d_235(opt_add_234) + opt_add_236 = P.Add()(opt_conv2d_235, opt_relu_212) + opt_relu_237 = self.relu_237(opt_add_236) + module22_10_opt = self.module22_10(opt_relu_237) + opt_split_242, opt_split_242_1 = self.split_242(module22_10_opt) + opt_add_243 = opt_split_242 + self.add_243_bias + opt_add_244 = P.Add()(opt_add_243, opt_split_242_1) + module20_9_opt = self.module20_9(opt_add_244) + opt_reshape_254 = self.reshape_254(module20_9_opt, self.reshape_254_shape) + opt_split_255, opt_split_255_1 = self.split_255(opt_reshape_254) + opt_mul_256 = P.Mul()(opt_split_255, opt_split_242) + opt_mul_257 = P.Mul()(opt_split_255_1, opt_split_242_1) + opt_add_258 = opt_mul_256 + self.add_258_bias + opt_add_259 = P.Add()(opt_add_258, opt_mul_257) + opt_conv2d_260 = self.conv2d_260(opt_add_259) + opt_add_261 = P.Add()(opt_conv2d_260, opt_relu_237) + opt_relu_262 = self.relu_262(opt_add_261) + module22_11_opt = self.module22_11(opt_relu_262) + opt_split_267, opt_split_267_1 = self.split_267(module22_11_opt) + opt_add_268 = opt_split_267 + self.add_268_bias + opt_add_269 = P.Add()(opt_add_268, opt_split_267_1) + module20_10_opt = self.module20_10(opt_add_269) + opt_reshape_279 = self.reshape_279(module20_10_opt, self.reshape_279_shape) + opt_split_280, opt_split_280_1 = self.split_280(opt_reshape_279) + opt_mul_281 = P.Mul()(opt_split_280, opt_split_267) + opt_mul_282 = P.Mul()(opt_split_280_1, opt_split_267_1) + opt_add_283 = opt_mul_281 + self.add_283_bias + opt_add_284 = P.Add()(opt_add_283, opt_mul_282) + opt_conv2d_285 = self.conv2d_285(opt_add_284) + opt_add_286 = P.Add()(opt_conv2d_285, opt_relu_262) + opt_relu_287 = self.relu_287(opt_add_286) + module22_12_opt = self.module22_12(opt_relu_287) + opt_split_292, opt_split_292_1 = self.split_292(module22_12_opt) + opt_add_293 = opt_split_292 + self.add_293_bias + opt_add_294 = P.Add()(opt_add_293, opt_split_292_1) + module20_11_opt = self.module20_11(opt_add_294) + opt_reshape_304 = self.reshape_304(module20_11_opt, self.reshape_304_shape) + opt_split_305, opt_split_305_1 = self.split_305(opt_reshape_304) + opt_mul_306 = P.Mul()(opt_split_305, opt_split_292) + opt_mul_307 = P.Mul()(opt_split_305_1, opt_split_292_1) + opt_add_308 = opt_mul_306 + self.add_308_bias + opt_add_309 = P.Add()(opt_add_308, opt_mul_307) + opt_conv2d_310 = self.conv2d_310(opt_add_309) + opt_add_311 = P.Add()(opt_conv2d_310, opt_relu_287) + opt_relu_312 = self.relu_312(opt_add_311) + module22_13_opt = self.module22_13(opt_relu_312) + opt_split_317, opt_split_317_1 = self.split_317(module22_13_opt) + opt_add_318 = opt_split_317 + self.add_318_bias + opt_add_319 = P.Add()(opt_add_318, opt_split_317_1) + module20_12_opt = self.module20_12(opt_add_319) + opt_reshape_329 = self.reshape_329(module20_12_opt, self.reshape_329_shape) + opt_split_330, opt_split_330_1 = self.split_330(opt_reshape_329) + opt_mul_331 = P.Mul()(opt_split_330, opt_split_317) + opt_mul_332 = P.Mul()(opt_split_330_1, opt_split_317_1) + opt_add_333 = opt_mul_331 + self.add_333_bias + opt_add_334 = P.Add()(opt_add_333, opt_mul_332) + opt_conv2d_335 = self.conv2d_335(opt_add_334) + opt_add_336 = P.Add()(opt_conv2d_335, opt_relu_312) + opt_relu_337 = self.relu_337(opt_add_336) + module22_14_opt = self.module22_14(opt_relu_337) + opt_split_342, opt_split_342_1 = self.split_342(module22_14_opt) + opt_add_343 = opt_split_342 + self.add_343_bias + opt_add_344 = P.Add()(opt_add_343, opt_split_342_1) + module20_13_opt = self.module20_13(opt_add_344) + opt_reshape_354 = self.reshape_354(module20_13_opt, self.reshape_354_shape) + opt_split_355, opt_split_355_1 = self.split_355(opt_reshape_354) + opt_mul_356 = P.Mul()(opt_split_355, opt_split_342) + opt_mul_357 = P.Mul()(opt_split_355_1, opt_split_342_1) + opt_add_358 = opt_mul_356 + self.add_358_bias + opt_add_359 = P.Add()(opt_add_358, opt_mul_357) + opt_conv2d_360 = self.conv2d_360(opt_add_359) + opt_add_361 = P.Add()(opt_conv2d_360, opt_relu_337) + opt_relu_362 = self.relu_362(opt_add_361) + module22_15_opt = self.module22_15(opt_relu_362) + opt_split_367, opt_split_367_1 = self.split_367(module22_15_opt) + opt_add_368 = opt_split_367 + self.add_368_bias + opt_add_369 = P.Add()(opt_add_368, opt_split_367_1) + module20_14_opt = self.module20_14(opt_add_369) + opt_reshape_379 = self.reshape_379(module20_14_opt, self.reshape_379_shape) + opt_split_380, opt_split_380_1 = self.split_380(opt_reshape_379) + opt_mul_381 = P.Mul()(opt_split_380, opt_split_367) + opt_mul_382 = P.Mul()(opt_split_380_1, opt_split_367_1) + opt_add_383 = opt_mul_381 + self.add_383_bias + opt_add_384 = P.Add()(opt_add_383, opt_mul_382) + opt_conv2d_385 = self.conv2d_385(opt_add_384) + opt_add_386 = P.Add()(opt_conv2d_385, opt_relu_362) + opt_relu_387 = self.relu_387(opt_add_386) + module22_16_opt = self.module22_16(opt_relu_387) + opt_split_392, opt_split_392_1 = self.split_392(module22_16_opt) + opt_add_393 = opt_split_392 + self.add_393_bias + opt_add_394 = P.Add()(opt_add_393, opt_split_392_1) + module20_15_opt = self.module20_15(opt_add_394) + opt_reshape_404 = self.reshape_404(module20_15_opt, self.reshape_404_shape) + opt_split_405, opt_split_405_1 = self.split_405(opt_reshape_404) + opt_mul_406 = P.Mul()(opt_split_405, opt_split_392) + opt_mul_407 = P.Mul()(opt_split_405_1, opt_split_392_1) + opt_add_408 = opt_mul_406 + self.add_408_bias + opt_add_409 = P.Add()(opt_add_408, opt_mul_407) + opt_conv2d_410 = self.conv2d_410(opt_add_409) + opt_add_411 = P.Add()(opt_conv2d_410, opt_relu_387) + opt_relu_412 = self.relu_412(opt_add_411) + module22_17_opt = self.module22_17(opt_relu_412) + opt_split_417, opt_split_417_1 = self.split_417(module22_17_opt) + opt_add_418 = opt_split_417 + self.add_418_bias + opt_add_419 = P.Add()(opt_add_418, opt_split_417_1) + module20_16_opt = self.module20_16(opt_add_419) + opt_reshape_429 = self.reshape_429(module20_16_opt, self.reshape_429_shape) + opt_split_430, opt_split_430_1 = self.split_430(opt_reshape_429) + opt_mul_431 = P.Mul()(opt_split_430, opt_split_417) + opt_mul_432 = P.Mul()(opt_split_430_1, opt_split_417_1) + opt_add_433 = opt_mul_431 + self.add_433_bias + opt_add_434 = P.Add()(opt_add_433, opt_mul_432) + opt_conv2d_435 = self.conv2d_435(opt_add_434) + opt_add_436 = P.Add()(opt_conv2d_435, opt_relu_412) + opt_relu_437 = self.relu_437(opt_add_436) + module22_18_opt = self.module22_18(opt_relu_437) + opt_split_442, opt_split_442_1 = self.split_442(module22_18_opt) + opt_add_443 = opt_split_442 + self.add_443_bias + opt_add_444 = P.Add()(opt_add_443, opt_split_442_1) + module20_17_opt = self.module20_17(opt_add_444) + opt_reshape_454 = self.reshape_454(module20_17_opt, self.reshape_454_shape) + opt_split_455, opt_split_455_1 = self.split_455(opt_reshape_454) + opt_mul_456 = P.Mul()(opt_split_455, opt_split_442) + opt_mul_457 = P.Mul()(opt_split_455_1, opt_split_442_1) + opt_add_458 = opt_mul_456 + self.add_458_bias + opt_add_459 = P.Add()(opt_add_458, opt_mul_457) + opt_conv2d_460 = self.conv2d_460(opt_add_459) + opt_add_461 = P.Add()(opt_conv2d_460, opt_relu_437) + opt_relu_462 = self.relu_462(opt_add_461) + module22_19_opt = self.module22_19(opt_relu_462) + opt_split_467, opt_split_467_1 = self.split_467(module22_19_opt) + opt_add_468 = opt_split_467 + self.add_468_bias + opt_add_469 = P.Add()(opt_add_468, opt_split_467_1) + module20_18_opt = self.module20_18(opt_add_469) + opt_reshape_479 = self.reshape_479(module20_18_opt, self.reshape_479_shape) + opt_split_480, opt_split_480_1 = self.split_480(opt_reshape_479) + opt_mul_481 = P.Mul()(opt_split_480, opt_split_467) + opt_mul_482 = P.Mul()(opt_split_480_1, opt_split_467_1) + opt_add_483 = opt_mul_481 + self.add_483_bias + opt_add_484 = P.Add()(opt_add_483, opt_mul_482) + opt_conv2d_485 = self.conv2d_485(opt_add_484) + opt_add_486 = P.Add()(opt_conv2d_485, opt_relu_462) + opt_relu_487 = self.relu_487(opt_add_486) + module22_20_opt = self.module22_20(opt_relu_487) + opt_split_492, opt_split_492_1 = self.split_492(module22_20_opt) + opt_add_493 = opt_split_492 + self.add_493_bias + opt_add_494 = P.Add()(opt_add_493, opt_split_492_1) + module20_19_opt = self.module20_19(opt_add_494) + opt_reshape_504 = self.reshape_504(module20_19_opt, self.reshape_504_shape) + opt_split_505, opt_split_505_1 = self.split_505(opt_reshape_504) + opt_mul_506 = P.Mul()(opt_split_505, opt_split_492) + opt_mul_507 = P.Mul()(opt_split_505_1, opt_split_492_1) + opt_add_508 = opt_mul_506 + self.add_508_bias + opt_add_509 = P.Add()(opt_add_508, opt_mul_507) + opt_conv2d_510 = self.conv2d_510(opt_add_509) + opt_add_511 = P.Add()(opt_conv2d_510, opt_relu_487) + opt_relu_512 = self.relu_512(opt_add_511) + module22_21_opt = self.module22_21(opt_relu_512) + opt_split_517, opt_split_517_1 = self.split_517(module22_21_opt) + opt_add_518 = opt_split_517 + self.add_518_bias + opt_add_519 = P.Add()(opt_add_518, opt_split_517_1) + module20_20_opt = self.module20_20(opt_add_519) + opt_reshape_529 = self.reshape_529(module20_20_opt, self.reshape_529_shape) + opt_split_530, opt_split_530_1 = self.split_530(opt_reshape_529) + opt_mul_531 = P.Mul()(opt_split_530, opt_split_517) + opt_mul_532 = P.Mul()(opt_split_530_1, opt_split_517_1) + opt_add_533 = opt_mul_531 + self.add_533_bias + opt_add_534 = P.Add()(opt_add_533, opt_mul_532) + opt_conv2d_535 = self.conv2d_535(opt_add_534) + opt_add_536 = P.Add()(opt_conv2d_535, opt_relu_512) + opt_relu_537 = self.relu_537(opt_add_536) + module22_22_opt = self.module22_22(opt_relu_537) + opt_split_542, opt_split_542_1 = self.split_542(module22_22_opt) + opt_add_543 = opt_split_542 + self.add_543_bias + opt_add_544 = P.Add()(opt_add_543, opt_split_542_1) + module20_21_opt = self.module20_21(opt_add_544) + opt_reshape_554 = self.reshape_554(module20_21_opt, self.reshape_554_shape) + opt_split_555, opt_split_555_1 = self.split_555(opt_reshape_554) + opt_mul_556 = P.Mul()(opt_split_555, opt_split_542) + opt_mul_557 = P.Mul()(opt_split_555_1, opt_split_542_1) + opt_add_558 = opt_mul_556 + self.add_558_bias + opt_add_559 = P.Add()(opt_add_558, opt_mul_557) + opt_conv2d_560 = self.conv2d_560(opt_add_559) + opt_add_561 = P.Add()(opt_conv2d_560, opt_relu_537) + opt_relu_562 = self.relu_562(opt_add_561) + module22_23_opt = self.module22_23(opt_relu_562) + opt_split_567, opt_split_567_1 = self.split_567(module22_23_opt) + opt_add_568 = opt_split_567 + self.add_568_bias + opt_add_569 = P.Add()(opt_add_568, opt_split_567_1) + module20_22_opt = self.module20_22(opt_add_569) + opt_reshape_579 = self.reshape_579(module20_22_opt, self.reshape_579_shape) + opt_split_580, opt_split_580_1 = self.split_580(opt_reshape_579) + opt_mul_581 = P.Mul()(opt_split_580, opt_split_567) + opt_mul_582 = P.Mul()(opt_split_580_1, opt_split_567_1) + opt_add_583 = opt_mul_581 + self.add_583_bias + opt_add_584 = P.Add()(opt_add_583, opt_mul_582) + opt_conv2d_585 = self.conv2d_585(opt_add_584) + opt_add_586 = P.Add()(opt_conv2d_585, opt_relu_562) + opt_relu_587 = self.relu_587(opt_add_586) + module22_24_opt = self.module22_24(opt_relu_587) + opt_split_592, opt_split_592_1 = self.split_592(module22_24_opt) + opt_add_593 = opt_split_592 + self.add_593_bias + opt_add_594 = P.Add()(opt_add_593, opt_split_592_1) + module20_23_opt = self.module20_23(opt_add_594) + opt_reshape_604 = self.reshape_604(module20_23_opt, self.reshape_604_shape) + opt_split_605, opt_split_605_1 = self.split_605(opt_reshape_604) + opt_mul_606 = P.Mul()(opt_split_605, opt_split_592) + opt_mul_607 = P.Mul()(opt_split_605_1, opt_split_592_1) + opt_add_608 = opt_mul_606 + self.add_608_bias + opt_add_609 = P.Add()(opt_add_608, opt_mul_607) + opt_conv2d_610 = self.conv2d_610(opt_add_609) + opt_add_611 = P.Add()(opt_conv2d_610, opt_relu_587) + opt_relu_612 = self.relu_612(opt_add_611) + module22_25_opt = self.module22_25(opt_relu_612) + opt_split_617, opt_split_617_1 = self.split_617(module22_25_opt) + opt_add_618 = opt_split_617 + self.add_618_bias + opt_add_619 = P.Add()(opt_add_618, opt_split_617_1) + module20_24_opt = self.module20_24(opt_add_619) + opt_reshape_629 = self.reshape_629(module20_24_opt, self.reshape_629_shape) + opt_split_630, opt_split_630_1 = self.split_630(opt_reshape_629) + opt_mul_631 = P.Mul()(opt_split_630, opt_split_617) + opt_mul_632 = P.Mul()(opt_split_630_1, opt_split_617_1) + opt_add_633 = opt_mul_631 + self.add_633_bias + opt_add_634 = P.Add()(opt_add_633, opt_mul_632) + opt_conv2d_635 = self.conv2d_635(opt_add_634) + opt_add_636 = P.Add()(opt_conv2d_635, opt_relu_612) + opt_relu_637 = self.relu_637(opt_add_636) + module22_26_opt = self.module22_26(opt_relu_637) + opt_split_642, opt_split_642_1 = self.split_642(module22_26_opt) + opt_add_643 = opt_split_642 + self.add_643_bias + opt_add_644 = P.Add()(opt_add_643, opt_split_642_1) + module20_25_opt = self.module20_25(opt_add_644) + opt_reshape_654 = self.reshape_654(module20_25_opt, self.reshape_654_shape) + opt_split_655, opt_split_655_1 = self.split_655(opt_reshape_654) + opt_mul_656 = P.Mul()(opt_split_655, opt_split_642) + opt_mul_657 = P.Mul()(opt_split_655_1, opt_split_642_1) + opt_add_658 = opt_mul_656 + self.add_658_bias + opt_add_659 = P.Add()(opt_add_658, opt_mul_657) + opt_conv2d_660 = self.conv2d_660(opt_add_659) + opt_add_661 = P.Add()(opt_conv2d_660, opt_relu_637) + opt_relu_662 = self.relu_662(opt_add_661) + module22_27_opt = self.module22_27(opt_relu_662) + opt_split_667, opt_split_667_1 = self.split_667(module22_27_opt) + opt_add_668 = opt_split_667 + self.add_668_bias + opt_add_669 = P.Add()(opt_add_668, opt_split_667_1) + module20_26_opt = self.module20_26(opt_add_669) + opt_reshape_679 = self.reshape_679(module20_26_opt, self.reshape_679_shape) + opt_split_680, opt_split_680_1 = self.split_680(opt_reshape_679) + opt_mul_681 = P.Mul()(opt_split_680, opt_split_667) + opt_mul_682 = P.Mul()(opt_split_680_1, opt_split_667_1) + opt_add_683 = opt_mul_681 + self.add_683_bias + opt_add_684 = P.Add()(opt_add_683, opt_mul_682) + opt_conv2d_685 = self.conv2d_685(opt_add_684) + opt_add_686 = P.Add()(opt_conv2d_685, opt_relu_662) + opt_relu_687 = self.relu_687(opt_add_686) + module22_28_opt = self.module22_28(opt_relu_687) + opt_split_692, opt_split_692_1 = self.split_692(module22_28_opt) + opt_add_693 = opt_split_692 + self.add_693_bias + opt_add_694 = P.Add()(opt_add_693, opt_split_692_1) + module20_27_opt = self.module20_27(opt_add_694) + opt_reshape_704 = self.reshape_704(module20_27_opt, self.reshape_704_shape) + opt_split_705, opt_split_705_1 = self.split_705(opt_reshape_704) + opt_mul_706 = P.Mul()(opt_split_705, opt_split_692) + opt_mul_707 = P.Mul()(opt_split_705_1, opt_split_692_1) + opt_add_708 = opt_mul_706 + self.add_708_bias + opt_add_709 = P.Add()(opt_add_708, opt_mul_707) + opt_conv2d_710 = self.conv2d_710(opt_add_709) + opt_add_711 = P.Add()(opt_conv2d_710, opt_relu_687) + opt_relu_712 = self.relu_712(opt_add_711) + module22_29_opt = self.module22_29(opt_relu_712) + opt_split_717, opt_split_717_1 = self.split_717(module22_29_opt) + opt_add_718 = opt_split_717 + self.add_718_bias + opt_add_719 = P.Add()(opt_add_718, opt_split_717_1) + module20_28_opt = self.module20_28(opt_add_719) + opt_reshape_729 = self.reshape_729(module20_28_opt, self.reshape_729_shape) + opt_split_730, opt_split_730_1 = self.split_730(opt_reshape_729) + opt_mul_731 = P.Mul()(opt_split_730, opt_split_717) + opt_mul_732 = P.Mul()(opt_split_730_1, opt_split_717_1) + opt_add_733 = opt_mul_731 + self.add_733_bias + opt_add_734 = P.Add()(opt_add_733, opt_mul_732) + opt_conv2d_735 = self.conv2d_735(opt_add_734) + opt_add_736 = P.Add()(opt_conv2d_735, opt_relu_712) + opt_relu_737 = self.relu_737(opt_add_736) + module22_30_opt = self.module22_30(opt_relu_737) + opt_split_742, opt_split_742_1 = self.split_742(module22_30_opt) + opt_add_743 = opt_split_742 + self.add_743_bias + opt_add_744 = P.Add()(opt_add_743, opt_split_742_1) + module20_29_opt = self.module20_29(opt_add_744) + opt_reshape_754 = self.reshape_754(module20_29_opt, self.reshape_754_shape) + opt_split_755, opt_split_755_1 = self.split_755(opt_reshape_754) + opt_mul_756 = P.Mul()(opt_split_755, opt_split_742) + opt_mul_757 = P.Mul()(opt_split_755_1, opt_split_742_1) + opt_add_758 = opt_mul_756 + self.add_758_bias + opt_add_759 = P.Add()(opt_add_758, opt_mul_757) + opt_conv2d_760 = self.conv2d_760(opt_add_759) + opt_add_761 = P.Add()(opt_conv2d_760, opt_relu_737) + opt_relu_762 = self.relu_762(opt_add_761) + module22_31_opt = self.module22_31(opt_relu_762) + opt_split_767, opt_split_767_1 = self.split_767(module22_31_opt) + opt_add_768 = opt_split_767 + self.add_768_bias + opt_add_769 = P.Add()(opt_add_768, opt_split_767_1) + module20_30_opt = self.module20_30(opt_add_769) + opt_reshape_779 = self.reshape_779(module20_30_opt, self.reshape_779_shape) + opt_split_780, opt_split_780_1 = self.split_780(opt_reshape_779) + opt_mul_781 = P.Mul()(opt_split_780, opt_split_767) + opt_mul_782 = P.Mul()(opt_split_780_1, opt_split_767_1) + opt_add_783 = opt_mul_781 + self.add_783_bias + opt_add_784 = P.Add()(opt_add_783, opt_mul_782) + opt_conv2d_785 = self.conv2d_785(opt_add_784) + opt_add_786 = P.Add()(opt_conv2d_785, opt_relu_762) + opt_relu_787 = self.relu_787(opt_add_786) + module22_32_opt = self.module22_32(opt_relu_787) + opt_split_792, opt_split_792_1 = self.split_792(module22_32_opt) + opt_add_793 = opt_split_792 + self.add_793_bias + opt_add_794 = P.Add()(opt_add_793, opt_split_792_1) + module20_31_opt = self.module20_31(opt_add_794) + opt_reshape_804 = self.reshape_804(module20_31_opt, self.reshape_804_shape) + opt_split_805, opt_split_805_1 = self.split_805(opt_reshape_804) + opt_mul_806 = P.Mul()(opt_split_805, opt_split_792) + opt_mul_807 = P.Mul()(opt_split_805_1, opt_split_792_1) + opt_add_808 = opt_mul_806 + self.add_808_bias + opt_add_809 = P.Add()(opt_add_808, opt_mul_807) + opt_conv2d_810 = self.conv2d_810(opt_add_809) + opt_add_811 = P.Add()(opt_conv2d_810, opt_relu_787) + opt_relu_812 = self.relu_812(opt_add_811) + module22_33_opt = self.module22_33(opt_relu_812) + opt_split_817, opt_split_817_1 = self.split_817(module22_33_opt) + opt_add_818 = opt_split_817 + self.add_818_bias + opt_add_819 = P.Add()(opt_add_818, opt_split_817_1) + module20_32_opt = self.module20_32(opt_add_819) + opt_reshape_829 = self.reshape_829(module20_32_opt, self.reshape_829_shape) + opt_split_830, opt_split_830_1 = self.split_830(opt_reshape_829) + opt_mul_831 = P.Mul()(opt_split_830, opt_split_817) + opt_mul_832 = P.Mul()(opt_split_830_1, opt_split_817_1) + opt_add_833 = opt_mul_831 + self.add_833_bias + opt_add_834 = P.Add()(opt_add_833, opt_mul_832) + opt_conv2d_835 = self.conv2d_835(opt_add_834) + opt_add_836 = P.Add()(opt_conv2d_835, opt_relu_812) + opt_relu_837 = self.relu_837(opt_add_836) + module22_34_opt = self.module22_34(opt_relu_837) + opt_split_844, opt_split_844_1 = self.split_844(module22_34_opt) + opt_add_845 = opt_split_844 + self.add_845_bias + opt_add_846 = P.Add()(opt_add_845, opt_split_844_1) + module20_33_opt = self.module20_33(opt_add_846) + opt_reshape_856 = self.reshape_856(module20_33_opt, self.reshape_856_shape) + opt_split_857, opt_split_857_1 = self.split_857(opt_reshape_856) + opt_mul_858 = P.Mul()(opt_split_857, opt_split_844) + opt_mul_859 = P.Mul()(opt_split_857_1, opt_split_844_1) + opt_add_860 = opt_mul_858 + self.add_860_bias + opt_add_861 = P.Add()(opt_add_860, opt_mul_859) + opt_pad_862 = self.pad_862(opt_add_861) + opt_avgpool2d_863 = self.pad_avgpool2d_863(opt_pad_862) + opt_avgpool2d_863 = self.avgpool2d_863(opt_avgpool2d_863) + opt_conv2d_864 = self.conv2d_864(opt_avgpool2d_863) + opt_avgpool2d_839 = self.pad_avgpool2d_839(opt_relu_837) + opt_avgpool2d_839 = self.avgpool2d_839(opt_avgpool2d_839) + opt_conv2d_841 = self.conv2d_841(opt_avgpool2d_839) + opt_add_865 = P.Add()(opt_conv2d_864, opt_conv2d_841) + opt_relu_866 = self.relu_866(opt_add_865) + module22_35_opt = self.module22_35(opt_relu_866) + opt_split_871, opt_split_871_1 = self.split_871(module22_35_opt) + opt_add_872 = opt_split_871 + self.add_872_bias + opt_add_873 = P.Add()(opt_add_872, opt_split_871_1) + module20_34_opt = self.module20_34(opt_add_873) + opt_reshape_883 = self.reshape_883(module20_34_opt, self.reshape_883_shape) + opt_split_884, opt_split_884_1 = self.split_884(opt_reshape_883) + opt_mul_885 = P.Mul()(opt_split_884, opt_split_871) + opt_mul_886 = P.Mul()(opt_split_884_1, opt_split_871_1) + opt_add_887 = opt_mul_885 + self.add_887_bias + opt_add_888 = P.Add()(opt_add_887, opt_mul_886) + opt_conv2d_889 = self.conv2d_889(opt_add_888) + opt_add_890 = P.Add()(opt_conv2d_889, opt_relu_866) + opt_relu_891 = self.relu_891(opt_add_890) + module22_36_opt = self.module22_36(opt_relu_891) + opt_split_896, opt_split_896_1 = self.split_896(module22_36_opt) + opt_add_897 = opt_split_896 + self.add_897_bias + opt_add_898 = P.Add()(opt_add_897, opt_split_896_1) + module20_35_opt = self.module20_35(opt_add_898) + opt_reshape_908 = self.reshape_908(module20_35_opt, self.reshape_908_shape) + opt_split_909, opt_split_909_1 = self.split_909(opt_reshape_908) + opt_mul_910 = P.Mul()(opt_split_909, opt_split_896) + opt_mul_911 = P.Mul()(opt_split_909_1, opt_split_896_1) + opt_add_912 = opt_mul_910 + self.add_912_bias + opt_add_913 = P.Add()(opt_add_912, opt_mul_911) + opt_conv2d_914 = self.conv2d_914(opt_add_913) + opt_add_915 = P.Add()(opt_conv2d_914, opt_relu_891) + opt_relu_916 = self.relu_916(opt_add_915) + module22_37_opt = self.module22_37(opt_relu_916) + opt_split_921, opt_split_921_1 = self.split_921(module22_37_opt) + opt_add_922 = opt_split_921 + self.add_922_bias + opt_add_923 = P.Add()(opt_add_922, opt_split_921_1) + module20_36_opt = self.module20_36(opt_add_923) + opt_reshape_933 = self.reshape_933(module20_36_opt, self.reshape_933_shape) + opt_split_934, opt_split_934_1 = self.split_934(opt_reshape_933) + opt_mul_935 = P.Mul()(opt_split_934, opt_split_921) + opt_mul_936 = P.Mul()(opt_split_934_1, opt_split_921_1) + opt_add_937 = opt_mul_935 + self.add_937_bias + opt_add_938 = P.Add()(opt_add_937, opt_mul_936) + opt_conv2d_939 = self.conv2d_939(opt_add_938) + opt_add_940 = P.Add()(opt_conv2d_939, opt_relu_916) + opt_relu_941 = self.relu_941(opt_add_940) + module22_38_opt = self.module22_38(opt_relu_941) + opt_split_946, opt_split_946_1 = self.split_946(module22_38_opt) + opt_add_947 = opt_split_946 + self.add_947_bias + opt_add_948 = P.Add()(opt_add_947, opt_split_946_1) + module20_37_opt = self.module20_37(opt_add_948) + opt_reshape_958 = self.reshape_958(module20_37_opt, self.reshape_958_shape) + opt_split_959, opt_split_959_1 = self.split_959(opt_reshape_958) + opt_mul_960 = P.Mul()(opt_split_959, opt_split_946) + opt_mul_961 = P.Mul()(opt_split_959_1, opt_split_946_1) + opt_add_962 = opt_mul_960 + self.add_962_bias + opt_add_963 = P.Add()(opt_add_962, opt_mul_961) + opt_conv2d_964 = self.conv2d_964(opt_add_963) + opt_add_965 = P.Add()(opt_conv2d_964, opt_relu_941) + opt_relu_966 = self.relu_966(opt_add_965) + module22_39_opt = self.module22_39(opt_relu_966) + opt_split_971, opt_split_971_1 = self.split_971(module22_39_opt) + opt_add_972 = opt_split_971 + self.add_972_bias + opt_add_973 = P.Add()(opt_add_972, opt_split_971_1) + module20_38_opt = self.module20_38(opt_add_973) + opt_reshape_983 = self.reshape_983(module20_38_opt, self.reshape_983_shape) + opt_split_984, opt_split_984_1 = self.split_984(opt_reshape_983) + opt_mul_985 = P.Mul()(opt_split_984, opt_split_971) + opt_mul_986 = P.Mul()(opt_split_984_1, opt_split_971_1) + opt_add_987 = opt_mul_985 + self.add_987_bias + opt_add_988 = P.Add()(opt_add_987, opt_mul_986) + opt_conv2d_989 = self.conv2d_989(opt_add_988) + opt_add_990 = P.Add()(opt_conv2d_989, opt_relu_966) + opt_relu_991 = self.relu_991(opt_add_990) + module22_40_opt = self.module22_40(opt_relu_991) + opt_split_996, opt_split_996_1 = self.split_996(module22_40_opt) + opt_add_997 = opt_split_996 + self.add_997_bias + opt_add_998 = P.Add()(opt_add_997, opt_split_996_1) + module20_39_opt = self.module20_39(opt_add_998) + opt_reshape_1008 = self.reshape_1008(module20_39_opt, self.reshape_1008_shape) + opt_split_1009, opt_split_1009_1 = self.split_1009(opt_reshape_1008) + opt_mul_1010 = P.Mul()(opt_split_1009, opt_split_996) + opt_mul_1011 = P.Mul()(opt_split_1009_1, opt_split_996_1) + opt_add_1012 = opt_mul_1010 + self.add_1012_bias + opt_add_1013 = P.Add()(opt_add_1012, opt_mul_1011) + opt_conv2d_1014 = self.conv2d_1014(opt_add_1013) + opt_add_1015 = P.Add()(opt_conv2d_1014, opt_relu_991) + opt_relu_1016 = self.relu_1016(opt_add_1015) + module22_41_opt = self.module22_41(opt_relu_1016) + opt_split_1021, opt_split_1021_1 = self.split_1021(module22_41_opt) + opt_add_1022 = opt_split_1021 + self.add_1022_bias + opt_add_1023 = P.Add()(opt_add_1022, opt_split_1021_1) + module20_40_opt = self.module20_40(opt_add_1023) + opt_reshape_1033 = self.reshape_1033(module20_40_opt, self.reshape_1033_shape) + opt_split_1034, opt_split_1034_1 = self.split_1034(opt_reshape_1033) + opt_mul_1035 = P.Mul()(opt_split_1034, opt_split_1021) + opt_mul_1036 = P.Mul()(opt_split_1034_1, opt_split_1021_1) + opt_add_1037 = opt_mul_1035 + self.add_1037_bias + opt_add_1038 = P.Add()(opt_add_1037, opt_mul_1036) + opt_conv2d_1039 = self.conv2d_1039(opt_add_1038) + opt_add_1040 = P.Add()(opt_conv2d_1039, opt_relu_1016) + opt_relu_1041 = self.relu_1041(opt_add_1040) + module22_42_opt = self.module22_42(opt_relu_1041) + opt_split_1046, opt_split_1046_1 = self.split_1046(module22_42_opt) + opt_add_1047 = opt_split_1046 + self.add_1047_bias + opt_add_1048 = P.Add()(opt_add_1047, opt_split_1046_1) + module20_41_opt = self.module20_41(opt_add_1048) + opt_reshape_1058 = self.reshape_1058(module20_41_opt, self.reshape_1058_shape) + opt_split_1059, opt_split_1059_1 = self.split_1059(opt_reshape_1058) + opt_mul_1060 = P.Mul()(opt_split_1059, opt_split_1046) + opt_mul_1061 = P.Mul()(opt_split_1059_1, opt_split_1046_1) + opt_add_1062 = opt_mul_1060 + self.add_1062_bias + opt_add_1063 = P.Add()(opt_add_1062, opt_mul_1061) + opt_conv2d_1064 = self.conv2d_1064(opt_add_1063) + opt_add_1065 = P.Add()(opt_conv2d_1064, opt_relu_1041) + opt_relu_1066 = self.relu_1066(opt_add_1065) + module22_43_opt = self.module22_43(opt_relu_1066) + opt_split_1071, opt_split_1071_1 = self.split_1071(module22_43_opt) + opt_add_1072 = opt_split_1071 + self.add_1072_bias + opt_add_1073 = P.Add()(opt_add_1072, opt_split_1071_1) + module20_42_opt = self.module20_42(opt_add_1073) + opt_reshape_1083 = self.reshape_1083(module20_42_opt, self.reshape_1083_shape) + opt_split_1084, opt_split_1084_1 = self.split_1084(opt_reshape_1083) + opt_mul_1085 = P.Mul()(opt_split_1084, opt_split_1071) + opt_mul_1086 = P.Mul()(opt_split_1084_1, opt_split_1071_1) + opt_add_1087 = opt_mul_1085 + self.add_1087_bias + opt_add_1088 = P.Add()(opt_add_1087, opt_mul_1086) + opt_conv2d_1089 = self.conv2d_1089(opt_add_1088) + opt_add_1090 = P.Add()(opt_conv2d_1089, opt_relu_1066) + opt_relu_1091 = self.relu_1091(opt_add_1090) + module22_44_opt = self.module22_44(opt_relu_1091) + opt_split_1096, opt_split_1096_1 = self.split_1096(module22_44_opt) + opt_add_1097 = opt_split_1096 + self.add_1097_bias + opt_add_1098 = P.Add()(opt_add_1097, opt_split_1096_1) + module20_43_opt = self.module20_43(opt_add_1098) + opt_reshape_1108 = self.reshape_1108(module20_43_opt, self.reshape_1108_shape) + opt_split_1109, opt_split_1109_1 = self.split_1109(opt_reshape_1108) + opt_mul_1110 = P.Mul()(opt_split_1109, opt_split_1096) + opt_mul_1111 = P.Mul()(opt_split_1109_1, opt_split_1096_1) + opt_add_1112 = opt_mul_1110 + self.add_1112_bias + opt_add_1113 = P.Add()(opt_add_1112, opt_mul_1111) + opt_conv2d_1114 = self.conv2d_1114(opt_add_1113) + opt_add_1115 = P.Add()(opt_conv2d_1114, opt_relu_1091) + opt_relu_1116 = self.relu_1116(opt_add_1115) + module22_45_opt = self.module22_45(opt_relu_1116) + opt_split_1121, opt_split_1121_1 = self.split_1121(module22_45_opt) + opt_add_1122 = opt_split_1121 + self.add_1122_bias + opt_add_1123 = P.Add()(opt_add_1122, opt_split_1121_1) + module20_44_opt = self.module20_44(opt_add_1123) + opt_reshape_1133 = self.reshape_1133(module20_44_opt, self.reshape_1133_shape) + opt_split_1134, opt_split_1134_1 = self.split_1134(opt_reshape_1133) + opt_mul_1135 = P.Mul()(opt_split_1134, opt_split_1121) + opt_mul_1136 = P.Mul()(opt_split_1134_1, opt_split_1121_1) + opt_add_1137 = opt_mul_1135 + self.add_1137_bias + opt_add_1138 = P.Add()(opt_add_1137, opt_mul_1136) + opt_conv2d_1139 = self.conv2d_1139(opt_add_1138) + opt_add_1140 = P.Add()(opt_conv2d_1139, opt_relu_1116) + opt_relu_1141 = self.relu_1141(opt_add_1140) + module22_46_opt = self.module22_46(opt_relu_1141) + opt_split_1146, opt_split_1146_1 = self.split_1146(module22_46_opt) + opt_add_1147 = opt_split_1146 + self.add_1147_bias + opt_add_1148 = P.Add()(opt_add_1147, opt_split_1146_1) + module20_45_opt = self.module20_45(opt_add_1148) + opt_reshape_1158 = self.reshape_1158(module20_45_opt, self.reshape_1158_shape) + opt_split_1159, opt_split_1159_1 = self.split_1159(opt_reshape_1158) + opt_mul_1160 = P.Mul()(opt_split_1159, opt_split_1146) + opt_mul_1161 = P.Mul()(opt_split_1159_1, opt_split_1146_1) + opt_add_1162 = opt_mul_1160 + self.add_1162_bias + opt_add_1163 = P.Add()(opt_add_1162, opt_mul_1161) + opt_conv2d_1164 = self.conv2d_1164(opt_add_1163) + opt_add_1165 = P.Add()(opt_conv2d_1164, opt_relu_1141) + opt_relu_1166 = self.relu_1166(opt_add_1165) + module22_47_opt = self.module22_47(opt_relu_1166) + opt_split_1171, opt_split_1171_1 = self.split_1171(module22_47_opt) + opt_add_1172 = opt_split_1171 + self.add_1172_bias + opt_add_1173 = P.Add()(opt_add_1172, opt_split_1171_1) + module20_46_opt = self.module20_46(opt_add_1173) + opt_reshape_1183 = self.reshape_1183(module20_46_opt, self.reshape_1183_shape) + opt_split_1184, opt_split_1184_1 = self.split_1184(opt_reshape_1183) + opt_mul_1185 = P.Mul()(opt_split_1184, opt_split_1171) + opt_mul_1186 = P.Mul()(opt_split_1184_1, opt_split_1171_1) + opt_add_1187 = opt_mul_1185 + self.add_1187_bias + opt_add_1188 = P.Add()(opt_add_1187, opt_mul_1186) + opt_conv2d_1189 = self.conv2d_1189(opt_add_1188) + opt_add_1190 = P.Add()(opt_conv2d_1189, opt_relu_1166) + opt_relu_1191 = self.relu_1191(opt_add_1190) + module22_48_opt = self.module22_48(opt_relu_1191) + opt_split_1196, opt_split_1196_1 = self.split_1196(module22_48_opt) + opt_add_1197 = opt_split_1196 + self.add_1197_bias + opt_add_1198 = P.Add()(opt_add_1197, opt_split_1196_1) + module20_47_opt = self.module20_47(opt_add_1198) + opt_reshape_1208 = self.reshape_1208(module20_47_opt, self.reshape_1208_shape) + opt_split_1209, opt_split_1209_1 = self.split_1209(opt_reshape_1208) + opt_mul_1210 = P.Mul()(opt_split_1209, opt_split_1196) + opt_mul_1211 = P.Mul()(opt_split_1209_1, opt_split_1196_1) + opt_add_1212 = opt_mul_1210 + self.add_1212_bias + opt_add_1213 = P.Add()(opt_add_1212, opt_mul_1211) + opt_conv2d_1214 = self.conv2d_1214(opt_add_1213) + opt_add_1215 = P.Add()(opt_conv2d_1214, opt_relu_1191) + opt_relu_1216 = self.relu_1216(opt_add_1215) + module22_49_opt = self.module22_49(opt_relu_1216) + opt_split_1221, opt_split_1221_1 = self.split_1221(module22_49_opt) + opt_add_1222 = opt_split_1221 + self.add_1222_bias + opt_add_1223 = P.Add()(opt_add_1222, opt_split_1221_1) + module20_48_opt = self.module20_48(opt_add_1223) + opt_reshape_1233 = self.reshape_1233(module20_48_opt, self.reshape_1233_shape) + opt_split_1234, opt_split_1234_1 = self.split_1234(opt_reshape_1233) + opt_mul_1235 = P.Mul()(opt_split_1234, opt_split_1221) + opt_mul_1236 = P.Mul()(opt_split_1234_1, opt_split_1221_1) + opt_add_1237 = opt_mul_1235 + self.add_1237_bias + opt_add_1238 = P.Add()(opt_add_1237, opt_mul_1236) + opt_conv2d_1239 = self.conv2d_1239(opt_add_1238) + opt_add_1240 = P.Add()(opt_conv2d_1239, opt_relu_1216) + opt_relu_1241 = self.relu_1241(opt_add_1240) + module22_50_opt = self.module22_50(opt_relu_1241) + opt_split_1246, opt_split_1246_1 = self.split_1246(module22_50_opt) + opt_add_1247 = opt_split_1246 + self.add_1247_bias + opt_add_1248 = P.Add()(opt_add_1247, opt_split_1246_1) + module20_49_opt = self.module20_49(opt_add_1248) + opt_reshape_1258 = self.reshape_1258(module20_49_opt, self.reshape_1258_shape) + opt_split_1259, opt_split_1259_1 = self.split_1259(opt_reshape_1258) + opt_mul_1260 = P.Mul()(opt_split_1259, opt_split_1246) + opt_mul_1261 = P.Mul()(opt_split_1259_1, opt_split_1246_1) + opt_add_1262 = opt_mul_1260 + self.add_1262_bias + opt_add_1263 = P.Add()(opt_add_1262, opt_mul_1261) + opt_conv2d_1264 = self.conv2d_1264(opt_add_1263) + opt_add_1265 = P.Add()(opt_conv2d_1264, opt_relu_1241) + opt_relu_1266 = self.relu_1266(opt_add_1265) + module22_51_opt = self.module22_51(opt_relu_1266) + opt_split_1271, opt_split_1271_1 = self.split_1271(module22_51_opt) + opt_add_1272 = opt_split_1271 + self.add_1272_bias + opt_add_1273 = P.Add()(opt_add_1272, opt_split_1271_1) + module20_50_opt = self.module20_50(opt_add_1273) + opt_reshape_1283 = self.reshape_1283(module20_50_opt, self.reshape_1283_shape) + opt_split_1284, opt_split_1284_1 = self.split_1284(opt_reshape_1283) + opt_mul_1285 = P.Mul()(opt_split_1284, opt_split_1271) + opt_mul_1286 = P.Mul()(opt_split_1284_1, opt_split_1271_1) + opt_add_1287 = opt_mul_1285 + self.add_1287_bias + opt_add_1288 = P.Add()(opt_add_1287, opt_mul_1286) + opt_conv2d_1289 = self.conv2d_1289(opt_add_1288) + opt_add_1290 = P.Add()(opt_conv2d_1289, opt_relu_1266) + opt_relu_1291 = self.relu_1291(opt_add_1290) + module22_52_opt = self.module22_52(opt_relu_1291) + opt_split_1296, opt_split_1296_1 = self.split_1296(module22_52_opt) + opt_add_1297 = opt_split_1296 + self.add_1297_bias + opt_add_1298 = P.Add()(opt_add_1297, opt_split_1296_1) + module20_51_opt = self.module20_51(opt_add_1298) + opt_reshape_1308 = self.reshape_1308(module20_51_opt, self.reshape_1308_shape) + opt_split_1309, opt_split_1309_1 = self.split_1309(opt_reshape_1308) + opt_mul_1310 = P.Mul()(opt_split_1309, opt_split_1296) + opt_mul_1311 = P.Mul()(opt_split_1309_1, opt_split_1296_1) + opt_add_1312 = opt_mul_1310 + self.add_1312_bias + opt_add_1313 = P.Add()(opt_add_1312, opt_mul_1311) + opt_conv2d_1314 = self.conv2d_1314(opt_add_1313) + opt_add_1315 = P.Add()(opt_conv2d_1314, opt_relu_1291) + opt_relu_1316 = self.relu_1316(opt_add_1315) + module22_53_opt = self.module22_53(opt_relu_1316) + opt_split_1321, opt_split_1321_1 = self.split_1321(module22_53_opt) + opt_add_1322 = opt_split_1321 + self.add_1322_bias + opt_add_1323 = P.Add()(opt_add_1322, opt_split_1321_1) + module20_52_opt = self.module20_52(opt_add_1323) + opt_reshape_1333 = self.reshape_1333(module20_52_opt, self.reshape_1333_shape) + opt_split_1334, opt_split_1334_1 = self.split_1334(opt_reshape_1333) + opt_mul_1335 = P.Mul()(opt_split_1334, opt_split_1321) + opt_mul_1336 = P.Mul()(opt_split_1334_1, opt_split_1321_1) + opt_add_1337 = opt_mul_1335 + self.add_1337_bias + opt_add_1338 = P.Add()(opt_add_1337, opt_mul_1336) + opt_conv2d_1339 = self.conv2d_1339(opt_add_1338) + opt_add_1340 = P.Add()(opt_conv2d_1339, opt_relu_1316) + opt_relu_1341 = self.relu_1341(opt_add_1340) + module22_54_opt = self.module22_54(opt_relu_1341) + opt_split_1346, opt_split_1346_1 = self.split_1346(module22_54_opt) + opt_add_1347 = opt_split_1346 + self.add_1347_bias + opt_add_1348 = P.Add()(opt_add_1347, opt_split_1346_1) + module20_53_opt = self.module20_53(opt_add_1348) + opt_reshape_1358 = self.reshape_1358(module20_53_opt, self.reshape_1358_shape) + opt_split_1359, opt_split_1359_1 = self.split_1359(opt_reshape_1358) + opt_mul_1360 = P.Mul()(opt_split_1359, opt_split_1346) + opt_mul_1361 = P.Mul()(opt_split_1359_1, opt_split_1346_1) + opt_add_1362 = opt_mul_1360 + self.add_1362_bias + opt_add_1363 = P.Add()(opt_add_1362, opt_mul_1361) + opt_conv2d_1364 = self.conv2d_1364(opt_add_1363) + opt_add_1365 = P.Add()(opt_conv2d_1364, opt_relu_1341) + opt_relu_1366 = self.relu_1366(opt_add_1365) + module22_55_opt = self.module22_55(opt_relu_1366) + opt_split_1371, opt_split_1371_1 = self.split_1371(module22_55_opt) + opt_add_1372 = opt_split_1371 + self.add_1372_bias + opt_add_1373 = P.Add()(opt_add_1372, opt_split_1371_1) + module20_54_opt = self.module20_54(opt_add_1373) + opt_reshape_1383 = self.reshape_1383(module20_54_opt, self.reshape_1383_shape) + opt_split_1384, opt_split_1384_1 = self.split_1384(opt_reshape_1383) + opt_mul_1385 = P.Mul()(opt_split_1384, opt_split_1371) + opt_mul_1386 = P.Mul()(opt_split_1384_1, opt_split_1371_1) + opt_add_1387 = opt_mul_1385 + self.add_1387_bias + opt_add_1388 = P.Add()(opt_add_1387, opt_mul_1386) + opt_conv2d_1389 = self.conv2d_1389(opt_add_1388) + opt_add_1390 = P.Add()(opt_conv2d_1389, opt_relu_1366) + opt_relu_1391 = self.relu_1391(opt_add_1390) + module22_56_opt = self.module22_56(opt_relu_1391) + opt_split_1396, opt_split_1396_1 = self.split_1396(module22_56_opt) + opt_add_1397 = opt_split_1396 + self.add_1397_bias + opt_add_1398 = P.Add()(opt_add_1397, opt_split_1396_1) + module20_55_opt = self.module20_55(opt_add_1398) + opt_reshape_1408 = self.reshape_1408(module20_55_opt, self.reshape_1408_shape) + opt_split_1409, opt_split_1409_1 = self.split_1409(opt_reshape_1408) + opt_mul_1410 = P.Mul()(opt_split_1409, opt_split_1396) + opt_mul_1411 = P.Mul()(opt_split_1409_1, opt_split_1396_1) + opt_add_1412 = opt_mul_1410 + self.add_1412_bias + opt_add_1413 = P.Add()(opt_add_1412, opt_mul_1411) + opt_conv2d_1414 = self.conv2d_1414(opt_add_1413) + opt_add_1415 = P.Add()(opt_conv2d_1414, opt_relu_1391) + opt_relu_1416 = self.relu_1416(opt_add_1415) + module22_57_opt = self.module22_57(opt_relu_1416) + opt_split_1421, opt_split_1421_1 = self.split_1421(module22_57_opt) + opt_add_1422 = opt_split_1421 + self.add_1422_bias + opt_add_1423 = P.Add()(opt_add_1422, opt_split_1421_1) + module20_56_opt = self.module20_56(opt_add_1423) + opt_reshape_1433 = self.reshape_1433(module20_56_opt, self.reshape_1433_shape) + opt_split_1434, opt_split_1434_1 = self.split_1434(opt_reshape_1433) + opt_mul_1435 = P.Mul()(opt_split_1434, opt_split_1421) + opt_mul_1436 = P.Mul()(opt_split_1434_1, opt_split_1421_1) + opt_add_1437 = opt_mul_1435 + self.add_1437_bias + opt_add_1438 = P.Add()(opt_add_1437, opt_mul_1436) + opt_conv2d_1439 = self.conv2d_1439(opt_add_1438) + opt_add_1440 = P.Add()(opt_conv2d_1439, opt_relu_1416) + opt_relu_1441 = self.relu_1441(opt_add_1440) + module22_58_opt = self.module22_58(opt_relu_1441) + opt_split_1446, opt_split_1446_1 = self.split_1446(module22_58_opt) + opt_add_1447 = opt_split_1446 + self.add_1447_bias + opt_add_1448 = P.Add()(opt_add_1447, opt_split_1446_1) + module20_57_opt = self.module20_57(opt_add_1448) + opt_reshape_1458 = self.reshape_1458(module20_57_opt, self.reshape_1458_shape) + opt_split_1459, opt_split_1459_1 = self.split_1459(opt_reshape_1458) + opt_mul_1460 = P.Mul()(opt_split_1459, opt_split_1446) + opt_mul_1461 = P.Mul()(opt_split_1459_1, opt_split_1446_1) + opt_add_1462 = opt_mul_1460 + self.add_1462_bias + opt_add_1463 = P.Add()(opt_add_1462, opt_mul_1461) + opt_conv2d_1464 = self.conv2d_1464(opt_add_1463) + opt_add_1465 = P.Add()(opt_conv2d_1464, opt_relu_1441) + opt_relu_1466 = self.relu_1466(opt_add_1465) + module22_59_opt = self.module22_59(opt_relu_1466) + opt_split_1471, opt_split_1471_1 = self.split_1471(module22_59_opt) + opt_add_1472 = opt_split_1471 + self.add_1472_bias + opt_add_1473 = P.Add()(opt_add_1472, opt_split_1471_1) + module20_58_opt = self.module20_58(opt_add_1473) + opt_reshape_1483 = self.reshape_1483(module20_58_opt, self.reshape_1483_shape) + opt_split_1484, opt_split_1484_1 = self.split_1484(opt_reshape_1483) + opt_mul_1485 = P.Mul()(opt_split_1484, opt_split_1471) + opt_mul_1486 = P.Mul()(opt_split_1484_1, opt_split_1471_1) + opt_add_1487 = opt_mul_1485 + self.add_1487_bias + opt_add_1488 = P.Add()(opt_add_1487, opt_mul_1486) + opt_conv2d_1489 = self.conv2d_1489(opt_add_1488) + opt_add_1490 = P.Add()(opt_conv2d_1489, opt_relu_1466) + opt_relu_1491 = self.relu_1491(opt_add_1490) + module22_60_opt = self.module22_60(opt_relu_1491) + opt_split_1496, opt_split_1496_1 = self.split_1496(module22_60_opt) + opt_add_1497 = opt_split_1496 + self.add_1497_bias + opt_add_1498 = P.Add()(opt_add_1497, opt_split_1496_1) + module20_59_opt = self.module20_59(opt_add_1498) + opt_reshape_1508 = self.reshape_1508(module20_59_opt, self.reshape_1508_shape) + opt_split_1509, opt_split_1509_1 = self.split_1509(opt_reshape_1508) + opt_mul_1510 = P.Mul()(opt_split_1509, opt_split_1496) + opt_mul_1511 = P.Mul()(opt_split_1509_1, opt_split_1496_1) + opt_add_1512 = opt_mul_1510 + self.add_1512_bias + opt_add_1513 = P.Add()(opt_add_1512, opt_mul_1511) + opt_conv2d_1514 = self.conv2d_1514(opt_add_1513) + opt_add_1515 = P.Add()(opt_conv2d_1514, opt_relu_1491) + opt_relu_1516 = self.relu_1516(opt_add_1515) + module22_61_opt = self.module22_61(opt_relu_1516) + opt_split_1521, opt_split_1521_1 = self.split_1521(module22_61_opt) + opt_add_1522 = opt_split_1521 + self.add_1522_bias + opt_add_1523 = P.Add()(opt_add_1522, opt_split_1521_1) + module20_60_opt = self.module20_60(opt_add_1523) + opt_reshape_1533 = self.reshape_1533(module20_60_opt, self.reshape_1533_shape) + opt_split_1534, opt_split_1534_1 = self.split_1534(opt_reshape_1533) + opt_mul_1535 = P.Mul()(opt_split_1534, opt_split_1521) + opt_mul_1536 = P.Mul()(opt_split_1534_1, opt_split_1521_1) + opt_add_1537 = opt_mul_1535 + self.add_1537_bias + opt_add_1538 = P.Add()(opt_add_1537, opt_mul_1536) + opt_conv2d_1539 = self.conv2d_1539(opt_add_1538) + opt_add_1540 = P.Add()(opt_conv2d_1539, opt_relu_1516) + opt_relu_1541 = self.relu_1541(opt_add_1540) + module22_62_opt = self.module22_62(opt_relu_1541) + opt_split_1546, opt_split_1546_1 = self.split_1546(module22_62_opt) + opt_add_1547 = opt_split_1546 + self.add_1547_bias + opt_add_1548 = P.Add()(opt_add_1547, opt_split_1546_1) + module20_61_opt = self.module20_61(opt_add_1548) + opt_reshape_1558 = self.reshape_1558(module20_61_opt, self.reshape_1558_shape) + opt_split_1559, opt_split_1559_1 = self.split_1559(opt_reshape_1558) + opt_mul_1560 = P.Mul()(opt_split_1559, opt_split_1546) + opt_mul_1561 = P.Mul()(opt_split_1559_1, opt_split_1546_1) + opt_add_1562 = opt_mul_1560 + self.add_1562_bias + opt_add_1563 = P.Add()(opt_add_1562, opt_mul_1561) + opt_conv2d_1564 = self.conv2d_1564(opt_add_1563) + opt_add_1565 = P.Add()(opt_conv2d_1564, opt_relu_1541) + opt_relu_1566 = self.relu_1566(opt_add_1565) + module22_63_opt = self.module22_63(opt_relu_1566) + opt_split_1571, opt_split_1571_1 = self.split_1571(module22_63_opt) + opt_add_1572 = opt_split_1571 + self.add_1572_bias + opt_add_1573 = P.Add()(opt_add_1572, opt_split_1571_1) + module20_62_opt = self.module20_62(opt_add_1573) + opt_reshape_1583 = self.reshape_1583(module20_62_opt, self.reshape_1583_shape) + opt_split_1584, opt_split_1584_1 = self.split_1584(opt_reshape_1583) + opt_mul_1585 = P.Mul()(opt_split_1584, opt_split_1571) + opt_mul_1586 = P.Mul()(opt_split_1584_1, opt_split_1571_1) + opt_add_1587 = opt_mul_1585 + self.add_1587_bias + opt_add_1588 = P.Add()(opt_add_1587, opt_mul_1586) + opt_conv2d_1589 = self.conv2d_1589(opt_add_1588) + opt_add_1590 = P.Add()(opt_conv2d_1589, opt_relu_1566) + opt_relu_1591 = self.relu_1591(opt_add_1590) + module22_64_opt = self.module22_64(opt_relu_1591) + opt_split_1596, opt_split_1596_1 = self.split_1596(module22_64_opt) + opt_add_1597 = opt_split_1596 + self.add_1597_bias + opt_add_1598 = P.Add()(opt_add_1597, opt_split_1596_1) + module20_63_opt = self.module20_63(opt_add_1598) + opt_reshape_1608 = self.reshape_1608(module20_63_opt, self.reshape_1608_shape) + opt_split_1609, opt_split_1609_1 = self.split_1609(opt_reshape_1608) + opt_mul_1610 = P.Mul()(opt_split_1609, opt_split_1596) + opt_mul_1611 = P.Mul()(opt_split_1609_1, opt_split_1596_1) + opt_add_1612 = opt_mul_1610 + self.add_1612_bias + opt_add_1613 = P.Add()(opt_add_1612, opt_mul_1611) + opt_conv2d_1614 = self.conv2d_1614(opt_add_1613) + opt_add_1615 = P.Add()(opt_conv2d_1614, opt_relu_1591) + opt_relu_1616 = self.relu_1616(opt_add_1615) + module22_65_opt = self.module22_65(opt_relu_1616) + opt_split_1621, opt_split_1621_1 = self.split_1621(module22_65_opt) + opt_add_1622 = opt_split_1621 + self.add_1622_bias + opt_add_1623 = P.Add()(opt_add_1622, opt_split_1621_1) + module20_64_opt = self.module20_64(opt_add_1623) + opt_reshape_1633 = self.reshape_1633(module20_64_opt, self.reshape_1633_shape) + opt_split_1634, opt_split_1634_1 = self.split_1634(opt_reshape_1633) + opt_mul_1635 = P.Mul()(opt_split_1634, opt_split_1621) + opt_mul_1636 = P.Mul()(opt_split_1634_1, opt_split_1621_1) + opt_add_1637 = opt_mul_1635 + self.add_1637_bias + opt_add_1638 = P.Add()(opt_add_1637, opt_mul_1636) + opt_conv2d_1639 = self.conv2d_1639(opt_add_1638) + opt_add_1640 = P.Add()(opt_conv2d_1639, opt_relu_1616) + opt_relu_1641 = self.relu_1641(opt_add_1640) + module22_66_opt = self.module22_66(opt_relu_1641) + opt_split_1646, opt_split_1646_1 = self.split_1646(module22_66_opt) + opt_add_1647 = opt_split_1646 + self.add_1647_bias + opt_add_1648 = P.Add()(opt_add_1647, opt_split_1646_1) + module20_65_opt = self.module20_65(opt_add_1648) + opt_reshape_1658 = self.reshape_1658(module20_65_opt, self.reshape_1658_shape) + opt_split_1659, opt_split_1659_1 = self.split_1659(opt_reshape_1658) + opt_mul_1660 = P.Mul()(opt_split_1659, opt_split_1646) + opt_mul_1661 = P.Mul()(opt_split_1659_1, opt_split_1646_1) + opt_add_1662 = opt_mul_1660 + self.add_1662_bias + opt_add_1663 = P.Add()(opt_add_1662, opt_mul_1661) + opt_conv2d_1664 = self.conv2d_1664(opt_add_1663) + opt_add_1665 = P.Add()(opt_conv2d_1664, opt_relu_1641) + opt_relu_1666 = self.relu_1666(opt_add_1665) + module22_67_opt = self.module22_67(opt_relu_1666) + opt_split_1671, opt_split_1671_1 = self.split_1671(module22_67_opt) + opt_add_1672 = opt_split_1671 + self.add_1672_bias + opt_add_1673 = P.Add()(opt_add_1672, opt_split_1671_1) + module20_66_opt = self.module20_66(opt_add_1673) + opt_reshape_1683 = self.reshape_1683(module20_66_opt, self.reshape_1683_shape) + opt_split_1684, opt_split_1684_1 = self.split_1684(opt_reshape_1683) + opt_mul_1685 = P.Mul()(opt_split_1684, opt_split_1671) + opt_mul_1686 = P.Mul()(opt_split_1684_1, opt_split_1671_1) + opt_add_1687 = opt_mul_1685 + self.add_1687_bias + opt_add_1688 = P.Add()(opt_add_1687, opt_mul_1686) + opt_conv2d_1689 = self.conv2d_1689(opt_add_1688) + opt_add_1690 = P.Add()(opt_conv2d_1689, opt_relu_1666) + opt_relu_1691 = self.relu_1691(opt_add_1690) + module22_68_opt = self.module22_68(opt_relu_1691) + opt_split_1696, opt_split_1696_1 = self.split_1696(module22_68_opt) + opt_add_1697 = opt_split_1696 + self.add_1697_bias + opt_add_1698 = P.Add()(opt_add_1697, opt_split_1696_1) + module20_67_opt = self.module20_67(opt_add_1698) + opt_reshape_1708 = self.reshape_1708(module20_67_opt, self.reshape_1708_shape) + opt_split_1709, opt_split_1709_1 = self.split_1709(opt_reshape_1708) + opt_mul_1710 = P.Mul()(opt_split_1709, opt_split_1696) + opt_mul_1711 = P.Mul()(opt_split_1709_1, opt_split_1696_1) + opt_add_1712 = opt_mul_1710 + self.add_1712_bias + opt_add_1713 = P.Add()(opt_add_1712, opt_mul_1711) + opt_conv2d_1714 = self.conv2d_1714(opt_add_1713) + opt_add_1715 = P.Add()(opt_conv2d_1714, opt_relu_1691) + opt_relu_1716 = self.relu_1716(opt_add_1715) + module22_69_opt = self.module22_69(opt_relu_1716) + opt_split_1721, opt_split_1721_1 = self.split_1721(module22_69_opt) + opt_add_1722 = opt_split_1721 + self.add_1722_bias + opt_add_1723 = P.Add()(opt_add_1722, opt_split_1721_1) + module20_68_opt = self.module20_68(opt_add_1723) + opt_reshape_1733 = self.reshape_1733(module20_68_opt, self.reshape_1733_shape) + opt_split_1734, opt_split_1734_1 = self.split_1734(opt_reshape_1733) + opt_mul_1735 = P.Mul()(opt_split_1734, opt_split_1721) + opt_mul_1736 = P.Mul()(opt_split_1734_1, opt_split_1721_1) + opt_add_1737 = opt_mul_1735 + self.add_1737_bias + opt_add_1738 = P.Add()(opt_add_1737, opt_mul_1736) + opt_conv2d_1739 = self.conv2d_1739(opt_add_1738) + opt_add_1740 = P.Add()(opt_conv2d_1739, opt_relu_1716) + opt_relu_1741 = self.relu_1741(opt_add_1740) + module22_70_opt = self.module22_70(opt_relu_1741) + opt_split_1746, opt_split_1746_1 = self.split_1746(module22_70_opt) + opt_add_1747 = opt_split_1746 + self.add_1747_bias + opt_add_1748 = P.Add()(opt_add_1747, opt_split_1746_1) + module20_69_opt = self.module20_69(opt_add_1748) + opt_reshape_1758 = self.reshape_1758(module20_69_opt, self.reshape_1758_shape) + opt_split_1759, opt_split_1759_1 = self.split_1759(opt_reshape_1758) + opt_mul_1760 = P.Mul()(opt_split_1759, opt_split_1746) + opt_mul_1761 = P.Mul()(opt_split_1759_1, opt_split_1746_1) + opt_add_1762 = opt_mul_1760 + self.add_1762_bias + opt_add_1763 = P.Add()(opt_add_1762, opt_mul_1761) + opt_conv2d_1764 = self.conv2d_1764(opt_add_1763) + opt_add_1765 = P.Add()(opt_conv2d_1764, opt_relu_1741) + opt_relu_1766 = self.relu_1766(opt_add_1765) + module22_71_opt = self.module22_71(opt_relu_1766) + opt_split_1771, opt_split_1771_1 = self.split_1771(module22_71_opt) + opt_add_1772 = opt_split_1771 + self.add_1772_bias + opt_add_1773 = P.Add()(opt_add_1772, opt_split_1771_1) + module20_70_opt = self.module20_70(opt_add_1773) + opt_reshape_1783 = self.reshape_1783(module20_70_opt, self.reshape_1783_shape) + opt_split_1784, opt_split_1784_1 = self.split_1784(opt_reshape_1783) + opt_mul_1785 = P.Mul()(opt_split_1784, opt_split_1771) + opt_mul_1786 = P.Mul()(opt_split_1784_1, opt_split_1771_1) + opt_add_1787 = opt_mul_1785 + self.add_1787_bias + opt_add_1788 = P.Add()(opt_add_1787, opt_mul_1786) + opt_conv2d_1789 = self.conv2d_1789(opt_add_1788) + opt_add_1790 = P.Add()(opt_conv2d_1789, opt_relu_1766) + opt_relu_1791 = self.relu_1791(opt_add_1790) + module22_72_opt = self.module22_72(opt_relu_1791) + opt_split_1796, opt_split_1796_1 = self.split_1796(module22_72_opt) + opt_add_1797 = opt_split_1796 + self.add_1797_bias + opt_add_1798 = P.Add()(opt_add_1797, opt_split_1796_1) + module20_71_opt = self.module20_71(opt_add_1798) + opt_reshape_1808 = self.reshape_1808(module20_71_opt, self.reshape_1808_shape) + opt_split_1809, opt_split_1809_1 = self.split_1809(opt_reshape_1808) + opt_mul_1810 = P.Mul()(opt_split_1809, opt_split_1796) + opt_mul_1811 = P.Mul()(opt_split_1809_1, opt_split_1796_1) + opt_add_1812 = opt_mul_1810 + self.add_1812_bias + opt_add_1813 = P.Add()(opt_add_1812, opt_mul_1811) + opt_conv2d_1814 = self.conv2d_1814(opt_add_1813) + opt_add_1815 = P.Add()(opt_conv2d_1814, opt_relu_1791) + opt_relu_1816 = self.relu_1816(opt_add_1815) + module22_73_opt = self.module22_73(opt_relu_1816) + opt_split_1821, opt_split_1821_1 = self.split_1821(module22_73_opt) + opt_add_1822 = opt_split_1821 + self.add_1822_bias + opt_add_1823 = P.Add()(opt_add_1822, opt_split_1821_1) + module20_72_opt = self.module20_72(opt_add_1823) + opt_reshape_1833 = self.reshape_1833(module20_72_opt, self.reshape_1833_shape) + opt_split_1834, opt_split_1834_1 = self.split_1834(opt_reshape_1833) + opt_mul_1835 = P.Mul()(opt_split_1834, opt_split_1821) + opt_mul_1836 = P.Mul()(opt_split_1834_1, opt_split_1821_1) + opt_add_1837 = opt_mul_1835 + self.add_1837_bias + opt_add_1838 = P.Add()(opt_add_1837, opt_mul_1836) + opt_conv2d_1839 = self.conv2d_1839(opt_add_1838) + opt_add_1840 = P.Add()(opt_conv2d_1839, opt_relu_1816) + opt_relu_1841 = self.relu_1841(opt_add_1840) + module22_74_opt = self.module22_74(opt_relu_1841) + opt_split_1846, opt_split_1846_1 = self.split_1846(module22_74_opt) + opt_add_1847 = opt_split_1846 + self.add_1847_bias + opt_add_1848 = P.Add()(opt_add_1847, opt_split_1846_1) + module20_73_opt = self.module20_73(opt_add_1848) + opt_reshape_1858 = self.reshape_1858(module20_73_opt, self.reshape_1858_shape) + opt_split_1859, opt_split_1859_1 = self.split_1859(opt_reshape_1858) + opt_mul_1860 = P.Mul()(opt_split_1859, opt_split_1846) + opt_mul_1861 = P.Mul()(opt_split_1859_1, opt_split_1846_1) + opt_add_1862 = opt_mul_1860 + self.add_1862_bias + opt_add_1863 = P.Add()(opt_add_1862, opt_mul_1861) + opt_conv2d_1864 = self.conv2d_1864(opt_add_1863) + opt_add_1865 = P.Add()(opt_conv2d_1864, opt_relu_1841) + opt_relu_1866 = self.relu_1866(opt_add_1865) + module22_75_opt = self.module22_75(opt_relu_1866) + opt_split_1871, opt_split_1871_1 = self.split_1871(module22_75_opt) + opt_add_1872 = opt_split_1871 + self.add_1872_bias + opt_add_1873 = P.Add()(opt_add_1872, opt_split_1871_1) + module20_74_opt = self.module20_74(opt_add_1873) + opt_reshape_1883 = self.reshape_1883(module20_74_opt, self.reshape_1883_shape) + opt_split_1884, opt_split_1884_1 = self.split_1884(opt_reshape_1883) + opt_mul_1885 = P.Mul()(opt_split_1884, opt_split_1871) + opt_mul_1886 = P.Mul()(opt_split_1884_1, opt_split_1871_1) + opt_add_1887 = opt_mul_1885 + self.add_1887_bias + opt_add_1888 = P.Add()(opt_add_1887, opt_mul_1886) + opt_conv2d_1889 = self.conv2d_1889(opt_add_1888) + opt_add_1890 = P.Add()(opt_conv2d_1889, opt_relu_1866) + opt_relu_1891 = self.relu_1891(opt_add_1890) + module22_76_opt = self.module22_76(opt_relu_1891) + opt_split_1896, opt_split_1896_1 = self.split_1896(module22_76_opt) + opt_add_1897 = opt_split_1896 + self.add_1897_bias + opt_add_1898 = P.Add()(opt_add_1897, opt_split_1896_1) + module20_75_opt = self.module20_75(opt_add_1898) + opt_reshape_1908 = self.reshape_1908(module20_75_opt, self.reshape_1908_shape) + opt_split_1909, opt_split_1909_1 = self.split_1909(opt_reshape_1908) + opt_mul_1910 = P.Mul()(opt_split_1909, opt_split_1896) + opt_mul_1911 = P.Mul()(opt_split_1909_1, opt_split_1896_1) + opt_add_1912 = opt_mul_1910 + self.add_1912_bias + opt_add_1913 = P.Add()(opt_add_1912, opt_mul_1911) + opt_conv2d_1914 = self.conv2d_1914(opt_add_1913) + opt_add_1915 = P.Add()(opt_conv2d_1914, opt_relu_1891) + opt_relu_1916 = self.relu_1916(opt_add_1915) + module22_77_opt = self.module22_77(opt_relu_1916) + opt_split_1921, opt_split_1921_1 = self.split_1921(module22_77_opt) + opt_add_1922 = opt_split_1921 + self.add_1922_bias + opt_add_1923 = P.Add()(opt_add_1922, opt_split_1921_1) + module20_76_opt = self.module20_76(opt_add_1923) + opt_reshape_1933 = self.reshape_1933(module20_76_opt, self.reshape_1933_shape) + opt_split_1934, opt_split_1934_1 = self.split_1934(opt_reshape_1933) + opt_mul_1935 = P.Mul()(opt_split_1934, opt_split_1921) + opt_mul_1936 = P.Mul()(opt_split_1934_1, opt_split_1921_1) + opt_add_1937 = opt_mul_1935 + self.add_1937_bias + opt_add_1938 = P.Add()(opt_add_1937, opt_mul_1936) + opt_conv2d_1939 = self.conv2d_1939(opt_add_1938) + opt_add_1940 = P.Add()(opt_conv2d_1939, opt_relu_1916) + opt_relu_1941 = self.relu_1941(opt_add_1940) + module22_78_opt = self.module22_78(opt_relu_1941) + opt_split_1946, opt_split_1946_1 = self.split_1946(module22_78_opt) + opt_add_1947 = opt_split_1946 + self.add_1947_bias + opt_add_1948 = P.Add()(opt_add_1947, opt_split_1946_1) + module20_77_opt = self.module20_77(opt_add_1948) + opt_reshape_1958 = self.reshape_1958(module20_77_opt, self.reshape_1958_shape) + opt_split_1959, opt_split_1959_1 = self.split_1959(opt_reshape_1958) + opt_mul_1960 = P.Mul()(opt_split_1959, opt_split_1946) + opt_mul_1961 = P.Mul()(opt_split_1959_1, opt_split_1946_1) + opt_add_1962 = opt_mul_1960 + self.add_1962_bias + opt_add_1963 = P.Add()(opt_add_1962, opt_mul_1961) + opt_conv2d_1964 = self.conv2d_1964(opt_add_1963) + opt_add_1965 = P.Add()(opt_conv2d_1964, opt_relu_1941) + opt_relu_1966 = self.relu_1966(opt_add_1965) + module22_79_opt = self.module22_79(opt_relu_1966) + opt_split_1971, opt_split_1971_1 = self.split_1971(module22_79_opt) + opt_add_1972 = opt_split_1971 + self.add_1972_bias + opt_add_1973 = P.Add()(opt_add_1972, opt_split_1971_1) + module20_78_opt = self.module20_78(opt_add_1973) + opt_reshape_1983 = self.reshape_1983(module20_78_opt, self.reshape_1983_shape) + opt_split_1984, opt_split_1984_1 = self.split_1984(opt_reshape_1983) + opt_mul_1985 = P.Mul()(opt_split_1984, opt_split_1971) + opt_mul_1986 = P.Mul()(opt_split_1984_1, opt_split_1971_1) + opt_add_1987 = opt_mul_1985 + self.add_1987_bias + opt_add_1988 = P.Add()(opt_add_1987, opt_mul_1986) + opt_conv2d_1989 = self.conv2d_1989(opt_add_1988) + opt_add_1990 = P.Add()(opt_conv2d_1989, opt_relu_1966) + opt_relu_1991 = self.relu_1991(opt_add_1990) + module22_80_opt = self.module22_80(opt_relu_1991) + opt_split_1996, opt_split_1996_1 = self.split_1996(module22_80_opt) + opt_add_1997 = opt_split_1996 + self.add_1997_bias + opt_add_1998 = P.Add()(opt_add_1997, opt_split_1996_1) + module20_79_opt = self.module20_79(opt_add_1998) + opt_reshape_2008 = self.reshape_2008(module20_79_opt, self.reshape_2008_shape) + opt_split_2009, opt_split_2009_1 = self.split_2009(opt_reshape_2008) + opt_mul_2010 = P.Mul()(opt_split_2009, opt_split_1996) + opt_mul_2011 = P.Mul()(opt_split_2009_1, opt_split_1996_1) + opt_add_2012 = opt_mul_2010 + self.add_2012_bias + opt_add_2013 = P.Add()(opt_add_2012, opt_mul_2011) + opt_conv2d_2014 = self.conv2d_2014(opt_add_2013) + opt_add_2015 = P.Add()(opt_conv2d_2014, opt_relu_1991) + opt_relu_2016 = self.relu_2016(opt_add_2015) + module22_81_opt = self.module22_81(opt_relu_2016) + opt_split_2021, opt_split_2021_1 = self.split_2021(module22_81_opt) + opt_add_2022 = opt_split_2021 + self.add_2022_bias + opt_add_2023 = P.Add()(opt_add_2022, opt_split_2021_1) + module20_80_opt = self.module20_80(opt_add_2023) + opt_reshape_2033 = self.reshape_2033(module20_80_opt, self.reshape_2033_shape) + opt_split_2034, opt_split_2034_1 = self.split_2034(opt_reshape_2033) + opt_mul_2035 = P.Mul()(opt_split_2034, opt_split_2021) + opt_mul_2036 = P.Mul()(opt_split_2034_1, opt_split_2021_1) + opt_add_2037 = opt_mul_2035 + self.add_2037_bias + opt_add_2038 = P.Add()(opt_add_2037, opt_mul_2036) + opt_conv2d_2039 = self.conv2d_2039(opt_add_2038) + opt_add_2040 = P.Add()(opt_conv2d_2039, opt_relu_2016) + opt_relu_2041 = self.relu_2041(opt_add_2040) + module22_82_opt = self.module22_82(opt_relu_2041) + opt_split_2048, opt_split_2048_1 = self.split_2048(module22_82_opt) + opt_add_2049 = opt_split_2048 + self.add_2049_bias + opt_add_2050 = P.Add()(opt_add_2049, opt_split_2048_1) + module20_81_opt = self.module20_81(opt_add_2050) + opt_reshape_2060 = self.reshape_2060(module20_81_opt, self.reshape_2060_shape) + opt_split_2061, opt_split_2061_1 = self.split_2061(opt_reshape_2060) + opt_mul_2062 = P.Mul()(opt_split_2061, opt_split_2048) + opt_mul_2063 = P.Mul()(opt_split_2061_1, opt_split_2048_1) + opt_add_2064 = opt_mul_2062 + self.add_2064_bias + opt_add_2065 = P.Add()(opt_add_2064, opt_mul_2063) + opt_pad_2066 = self.pad_2066(opt_add_2065) + opt_avgpool2d_2067 = self.pad_avgpool2d_2067(opt_pad_2066) + opt_avgpool2d_2067 = self.avgpool2d_2067(opt_avgpool2d_2067) + opt_conv2d_2068 = self.conv2d_2068(opt_avgpool2d_2067) + opt_avgpool2d_2043 = self.pad_avgpool2d_2043(opt_relu_2041) + opt_avgpool2d_2043 = self.avgpool2d_2043(opt_avgpool2d_2043) + opt_conv2d_2045 = self.conv2d_2045(opt_avgpool2d_2043) + opt_add_2069 = P.Add()(opt_conv2d_2068, opt_conv2d_2045) + opt_relu_2070 = self.relu_2070(opt_add_2069) + module22_83_opt = self.module22_83(opt_relu_2070) + opt_split_2075, opt_split_2075_1 = self.split_2075(module22_83_opt) + opt_add_2076 = opt_split_2075 + self.add_2076_bias + opt_add_2077 = P.Add()(opt_add_2076, opt_split_2075_1) + module20_82_opt = self.module20_82(opt_add_2077) + opt_reshape_2087 = self.reshape_2087(module20_82_opt, self.reshape_2087_shape) + opt_split_2088, opt_split_2088_1 = self.split_2088(opt_reshape_2087) + opt_mul_2089 = P.Mul()(opt_split_2088, opt_split_2075) + opt_mul_2090 = P.Mul()(opt_split_2088_1, opt_split_2075_1) + opt_add_2091 = opt_mul_2089 + self.add_2091_bias + opt_add_2092 = P.Add()(opt_add_2091, opt_mul_2090) + opt_conv2d_2093 = self.conv2d_2093(opt_add_2092) + opt_add_2094 = P.Add()(opt_conv2d_2093, opt_relu_2070) + opt_relu_2095 = self.relu_2095(opt_add_2094) + module22_84_opt = self.module22_84(opt_relu_2095) + opt_split_2100, opt_split_2100_1 = self.split_2100(module22_84_opt) + opt_add_2101 = opt_split_2100 + self.add_2101_bias + opt_add_2102 = P.Add()(opt_add_2101, opt_split_2100_1) + module20_83_opt = self.module20_83(opt_add_2102) + opt_reshape_2112 = self.reshape_2112(module20_83_opt, self.reshape_2112_shape) + opt_split_2113, opt_split_2113_1 = self.split_2113(opt_reshape_2112) + opt_mul_2114 = P.Mul()(opt_split_2113, opt_split_2100) + opt_mul_2115 = P.Mul()(opt_split_2113_1, opt_split_2100_1) + opt_add_2116 = opt_mul_2114 + self.add_2116_bias + opt_add_2117 = P.Add()(opt_add_2116, opt_mul_2115) + opt_conv2d_2118 = self.conv2d_2118(opt_add_2117) + opt_add_2119 = P.Add()(opt_conv2d_2118, opt_relu_2095) + opt_relu_2120 = self.relu_2120(opt_add_2119) + module22_85_opt = self.module22_85(opt_relu_2120) + opt_split_2125, opt_split_2125_1 = self.split_2125(module22_85_opt) + opt_add_2126 = opt_split_2125 + self.add_2126_bias + opt_add_2127 = P.Add()(opt_add_2126, opt_split_2125_1) + module20_84_opt = self.module20_84(opt_add_2127) + opt_reshape_2137 = self.reshape_2137(module20_84_opt, self.reshape_2137_shape) + opt_split_2138, opt_split_2138_1 = self.split_2138(opt_reshape_2137) + opt_mul_2139 = P.Mul()(opt_split_2138, opt_split_2125) + opt_mul_2140 = P.Mul()(opt_split_2138_1, opt_split_2125_1) + opt_add_2141 = opt_mul_2139 + self.add_2141_bias + opt_add_2142 = P.Add()(opt_add_2141, opt_mul_2140) + opt_conv2d_2143 = self.conv2d_2143(opt_add_2142) + opt_add_2144 = P.Add()(opt_conv2d_2143, opt_relu_2120) + opt_relu_2145 = self.relu_2145(opt_add_2144) + module22_86_opt = self.module22_86(opt_relu_2145) + opt_split_2150, opt_split_2150_1 = self.split_2150(module22_86_opt) + opt_add_2151 = opt_split_2150 + self.add_2151_bias + opt_add_2152 = P.Add()(opt_add_2151, opt_split_2150_1) + module20_85_opt = self.module20_85(opt_add_2152) + opt_reshape_2162 = self.reshape_2162(module20_85_opt, self.reshape_2162_shape) + opt_split_2163, opt_split_2163_1 = self.split_2163(opt_reshape_2162) + opt_mul_2164 = P.Mul()(opt_split_2163, opt_split_2150) + opt_mul_2165 = P.Mul()(opt_split_2163_1, opt_split_2150_1) + opt_add_2166 = opt_mul_2164 + self.add_2166_bias + opt_add_2167 = P.Add()(opt_add_2166, opt_mul_2165) + opt_conv2d_2168 = self.conv2d_2168(opt_add_2167) + opt_add_2169 = P.Add()(opt_conv2d_2168, opt_relu_2145) + opt_relu_2170 = self.relu_2170(opt_add_2169) + module22_87_opt = self.module22_87(opt_relu_2170) + opt_split_2175, opt_split_2175_1 = self.split_2175(module22_87_opt) + opt_add_2176 = opt_split_2175 + self.add_2176_bias + opt_add_2177 = P.Add()(opt_add_2176, opt_split_2175_1) + module20_86_opt = self.module20_86(opt_add_2177) + opt_reshape_2187 = self.reshape_2187(module20_86_opt, self.reshape_2187_shape) + opt_split_2188, opt_split_2188_1 = self.split_2188(opt_reshape_2187) + opt_mul_2189 = P.Mul()(opt_split_2188, opt_split_2175) + opt_mul_2190 = P.Mul()(opt_split_2188_1, opt_split_2175_1) + opt_add_2191 = opt_mul_2189 + self.add_2191_bias + opt_add_2192 = P.Add()(opt_add_2191, opt_mul_2190) + opt_conv2d_2193 = self.conv2d_2193(opt_add_2192) + opt_add_2194 = P.Add()(opt_conv2d_2193, opt_relu_2170) + opt_relu_2195 = self.relu_2195(opt_add_2194) + module22_88_opt = self.module22_88(opt_relu_2195) + opt_split_2200, opt_split_2200_1 = self.split_2200(module22_88_opt) + opt_add_2201 = opt_split_2200 + self.add_2201_bias + opt_add_2202 = P.Add()(opt_add_2201, opt_split_2200_1) + module20_87_opt = self.module20_87(opt_add_2202) + opt_reshape_2212 = self.reshape_2212(module20_87_opt, self.reshape_2212_shape) + opt_split_2213, opt_split_2213_1 = self.split_2213(opt_reshape_2212) + opt_mul_2214 = P.Mul()(opt_split_2213, opt_split_2200) + opt_mul_2215 = P.Mul()(opt_split_2213_1, opt_split_2200_1) + opt_add_2216 = opt_mul_2214 + self.add_2216_bias + opt_add_2217 = P.Add()(opt_add_2216, opt_mul_2215) + opt_conv2d_2218 = self.conv2d_2218(opt_add_2217) + opt_add_2219 = P.Add()(opt_conv2d_2218, opt_relu_2195) + opt_relu_2220 = self.relu_2220(opt_add_2219) + module22_89_opt = self.module22_89(opt_relu_2220) + opt_split_2225, opt_split_2225_1 = self.split_2225(module22_89_opt) + opt_add_2226 = opt_split_2225 + self.add_2226_bias + opt_add_2227 = P.Add()(opt_add_2226, opt_split_2225_1) + module20_88_opt = self.module20_88(opt_add_2227) + opt_reshape_2237 = self.reshape_2237(module20_88_opt, self.reshape_2237_shape) + opt_split_2238, opt_split_2238_1 = self.split_2238(opt_reshape_2237) + opt_mul_2239 = P.Mul()(opt_split_2238, opt_split_2225) + opt_mul_2240 = P.Mul()(opt_split_2238_1, opt_split_2225_1) + opt_add_2241 = opt_mul_2239 + self.add_2241_bias + opt_add_2242 = P.Add()(opt_add_2241, opt_mul_2240) + opt_conv2d_2243 = self.conv2d_2243(opt_add_2242) + opt_add_2244 = P.Add()(opt_conv2d_2243, opt_relu_2220) + opt_relu_2245 = self.relu_2245(opt_add_2244) + opt_avgpool2d_2246 = self.avgpool2d_2246(opt_relu_2245) + opt_reshape_2247 = self.reshape_2247(opt_avgpool2d_2246, self.reshape_2247_shape) + opt_flatten_2248 = self.flatten_2248(opt_reshape_2247) + opt_dense_2249 = self.dense_2249(opt_flatten_2248) + return opt_dense_2249 diff --git a/research/cvtmodel/resnest/src/resnest50.py b/research/cvtmodel/resnest/src/resnest50.py new file mode 100644 index 0000000000000000000000000000000000000000..5e09a53bba4793b9e3e2182c01ea9582aeee738c --- /dev/null +++ b/research/cvtmodel/resnest/src/resnest50.py @@ -0,0 +1,1014 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module5(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, conv2d_0_kernel_size, conv2d_0_padding, + conv2d_0_pad_mode, conv2d_0_group): + super(Module5, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=conv2d_0_kernel_size, + stride=(1, 1), + padding=conv2d_0_padding, + pad_mode=conv2d_0_pad_mode, + dilation=(1, 1), + group=conv2d_0_group, + has_bias=True) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_conv2d_0 = self.conv2d_0(x) + opt_relu_1 = self.relu_1(opt_conv2d_0) + return opt_relu_1 + + +class Module22(nn.Cell): + def __init__(self, module5_0_conv2d_0_in_channels, module5_0_conv2d_0_out_channels, module5_0_conv2d_0_kernel_size, + module5_0_conv2d_0_padding, module5_0_conv2d_0_pad_mode, module5_0_conv2d_0_group, + module5_1_conv2d_0_in_channels, module5_1_conv2d_0_out_channels, module5_1_conv2d_0_kernel_size, + module5_1_conv2d_0_padding, module5_1_conv2d_0_pad_mode, module5_1_conv2d_0_group): + super(Module22, self).__init__() + self.module5_0 = Module5(conv2d_0_in_channels=module5_0_conv2d_0_in_channels, + conv2d_0_out_channels=module5_0_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_0_conv2d_0_kernel_size, + conv2d_0_padding=module5_0_conv2d_0_padding, + conv2d_0_pad_mode=module5_0_conv2d_0_pad_mode, + conv2d_0_group=module5_0_conv2d_0_group) + self.module5_1 = Module5(conv2d_0_in_channels=module5_1_conv2d_0_in_channels, + conv2d_0_out_channels=module5_1_conv2d_0_out_channels, + conv2d_0_kernel_size=module5_1_conv2d_0_kernel_size, + conv2d_0_padding=module5_1_conv2d_0_padding, + conv2d_0_pad_mode=module5_1_conv2d_0_pad_mode, + conv2d_0_group=module5_1_conv2d_0_group) + + def construct(self, x): + module5_0_opt = self.module5_0(x) + module5_1_opt = self.module5_1(module5_0_opt) + return module5_1_opt + + +class Module0(nn.Cell): + def __init__(self, avgpool2d_0_kernel_size, conv2d_1_in_channels, conv2d_1_out_channels, conv2d_3_in_channels, + conv2d_3_out_channels, reshape_4_shape): + super(Module0, self).__init__() + self.avgpool2d_0 = nn.AvgPool2d(kernel_size=avgpool2d_0_kernel_size) + self.conv2d_1 = nn.Conv2d(in_channels=conv2d_1_in_channels, + out_channels=conv2d_1_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_2 = nn.ReLU() + self.conv2d_3 = nn.Conv2d(in_channels=conv2d_3_in_channels, + out_channels=conv2d_3_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.reshape_4 = P.Reshape() + self.reshape_4_shape = tuple(reshape_4_shape) + self.transpose_5 = P.Transpose() + + def construct(self, x): + opt_avgpool2d_0 = self.avgpool2d_0(x) + opt_conv2d_1 = self.conv2d_1(opt_avgpool2d_0) + opt_relu_2 = self.relu_2(opt_conv2d_1) + opt_conv2d_3 = self.conv2d_3(opt_relu_2) + opt_reshape_4 = self.reshape_4(opt_conv2d_3, self.reshape_4_shape) + opt_transpose_5 = self.transpose_5(opt_reshape_4, (0, 3, 1, 2)) + return opt_transpose_5 + + +class Module20(nn.Cell): + def __init__(self, reshape_2_shape, module0_0_avgpool2d_0_kernel_size, module0_0_conv2d_1_in_channels, + module0_0_conv2d_1_out_channels, module0_0_conv2d_3_in_channels, module0_0_conv2d_3_out_channels, + module0_0_reshape_4_shape): + super(Module20, self).__init__() + self.module0_0 = Module0(avgpool2d_0_kernel_size=module0_0_avgpool2d_0_kernel_size, + conv2d_1_in_channels=module0_0_conv2d_1_in_channels, + conv2d_1_out_channels=module0_0_conv2d_1_out_channels, + conv2d_3_in_channels=module0_0_conv2d_3_in_channels, + conv2d_3_out_channels=module0_0_conv2d_3_out_channels, + reshape_4_shape=module0_0_reshape_4_shape) + self.softmax_0 = nn.Softmax(axis=3) + self.transpose_1 = P.Transpose() + self.reshape_2 = P.Reshape() + self.reshape_2_shape = tuple(reshape_2_shape) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + opt_softmax_0 = self.softmax_0(module0_0_opt) + opt_transpose_1 = self.transpose_1(opt_softmax_0, (0, 3, 2, 1)) + opt_reshape_2 = self.reshape_2(opt_transpose_1, self.reshape_2_shape) + return opt_reshape_2 + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=32, + kernel_size=(3, 3), + stride=(2, 2), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.module22_0 = Module22(module5_0_conv2d_0_in_channels=32, + module5_0_conv2d_0_out_channels=32, + module5_0_conv2d_0_kernel_size=(3, 3), + module5_0_conv2d_0_padding=(1, 1, 1, 1), + module5_0_conv2d_0_pad_mode="pad", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=32, + module5_1_conv2d_0_out_channels=64, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=1) + self.pad_maxpool2d_6 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_6 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module22_1 = Module22(module5_0_conv2d_0_in_channels=64, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_13 = P.Split(axis=1, output_num=2) + self.add_14_bias = 0.0 + self.module20_0 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(56, 56), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_25 = P.Reshape() + self.reshape_25_shape = tuple([1, 128, 1, 1]) + self.split_26 = P.Split(axis=1, output_num=2) + self.add_29_bias = 0.0 + self.conv2d_31 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_8 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_8 = nn.AvgPool2d(kernel_size=(1, 1), stride=(1, 1)) + self.conv2d_10 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_33 = nn.ReLU() + self.module22_2 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_38 = P.Split(axis=1, output_num=2) + self.add_39_bias = 0.0 + self.module20_1 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(56, 56), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_50 = P.Reshape() + self.reshape_50_shape = tuple([1, 128, 1, 1]) + self.split_51 = P.Split(axis=1, output_num=2) + self.add_54_bias = 0.0 + self.conv2d_56 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_58 = nn.ReLU() + self.module22_3 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=64, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=64, + module5_1_conv2d_0_out_channels=128, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_63 = P.Split(axis=1, output_num=2) + self.add_64_bias = 0.0 + self.module20_2 = Module20(reshape_2_shape=[1, 128], + module0_0_avgpool2d_0_kernel_size=(56, 56), + module0_0_conv2d_1_in_channels=64, + module0_0_conv2d_1_out_channels=32, + module0_0_conv2d_3_in_channels=32, + module0_0_conv2d_3_out_channels=128, + module0_0_reshape_4_shape=[1, 1, 2, 64]) + self.reshape_75 = P.Reshape() + self.reshape_75_shape = tuple([1, 128, 1, 1]) + self.split_76 = P.Split(axis=1, output_num=2) + self.add_79_bias = 0.0 + self.conv2d_81 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_83 = nn.ReLU() + self.module22_4 = Module22(module5_0_conv2d_0_in_channels=256, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_90 = P.Split(axis=1, output_num=2) + self.add_91_bias = 0.0 + self.module20_3 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(56, 56), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_102 = P.Reshape() + self.reshape_102_shape = tuple([1, 256, 1, 1]) + self.split_103 = P.Split(axis=1, output_num=2) + self.add_106_bias = 0.0 + self.pad_108 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_109 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_109 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_110 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_85 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_85 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_87 = nn.Conv2d(in_channels=256, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_112 = nn.ReLU() + self.module22_5 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_117 = P.Split(axis=1, output_num=2) + self.add_118_bias = 0.0 + self.module20_4 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(28, 28), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_129 = P.Reshape() + self.reshape_129_shape = tuple([1, 256, 1, 1]) + self.split_130 = P.Split(axis=1, output_num=2) + self.add_133_bias = 0.0 + self.conv2d_135 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_137 = nn.ReLU() + self.module22_6 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_142 = P.Split(axis=1, output_num=2) + self.add_143_bias = 0.0 + self.module20_5 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(28, 28), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_154 = P.Reshape() + self.reshape_154_shape = tuple([1, 256, 1, 1]) + self.split_155 = P.Split(axis=1, output_num=2) + self.add_158_bias = 0.0 + self.conv2d_160 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_162 = nn.ReLU() + self.module22_7 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=128, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=128, + module5_1_conv2d_0_out_channels=256, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_167 = P.Split(axis=1, output_num=2) + self.add_168_bias = 0.0 + self.module20_6 = Module20(reshape_2_shape=[1, 256], + module0_0_avgpool2d_0_kernel_size=(28, 28), + module0_0_conv2d_1_in_channels=128, + module0_0_conv2d_1_out_channels=64, + module0_0_conv2d_3_in_channels=64, + module0_0_conv2d_3_out_channels=256, + module0_0_reshape_4_shape=[1, 1, 2, 128]) + self.reshape_179 = P.Reshape() + self.reshape_179_shape = tuple([1, 256, 1, 1]) + self.split_180 = P.Split(axis=1, output_num=2) + self.add_183_bias = 0.0 + self.conv2d_185 = nn.Conv2d(in_channels=128, + out_channels=512, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_187 = nn.ReLU() + self.module22_8 = Module22(module5_0_conv2d_0_in_channels=512, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_194 = P.Split(axis=1, output_num=2) + self.add_195_bias = 0.0 + self.module20_7 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(28, 28), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_206 = P.Reshape() + self.reshape_206_shape = tuple([1, 512, 1, 1]) + self.split_207 = P.Split(axis=1, output_num=2) + self.add_210_bias = 0.0 + self.pad_212 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_213 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_213 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_214 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_189 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_189 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_191 = nn.Conv2d(in_channels=512, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_216 = nn.ReLU() + self.module22_9 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_221 = P.Split(axis=1, output_num=2) + self.add_222_bias = 0.0 + self.module20_8 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(14, 14), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_233 = P.Reshape() + self.reshape_233_shape = tuple([1, 512, 1, 1]) + self.split_234 = P.Split(axis=1, output_num=2) + self.add_237_bias = 0.0 + self.conv2d_239 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_241 = nn.ReLU() + self.module22_10 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_246 = P.Split(axis=1, output_num=2) + self.add_247_bias = 0.0 + self.module20_9 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(14, 14), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_258 = P.Reshape() + self.reshape_258_shape = tuple([1, 512, 1, 1]) + self.split_259 = P.Split(axis=1, output_num=2) + self.add_262_bias = 0.0 + self.conv2d_264 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_266 = nn.ReLU() + self.module22_11 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_271 = P.Split(axis=1, output_num=2) + self.add_272_bias = 0.0 + self.module20_10 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(14, 14), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_283 = P.Reshape() + self.reshape_283_shape = tuple([1, 512, 1, 1]) + self.split_284 = P.Split(axis=1, output_num=2) + self.add_287_bias = 0.0 + self.conv2d_289 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_291 = nn.ReLU() + self.module22_12 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_296 = P.Split(axis=1, output_num=2) + self.add_297_bias = 0.0 + self.module20_11 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(14, 14), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_308 = P.Reshape() + self.reshape_308_shape = tuple([1, 512, 1, 1]) + self.split_309 = P.Split(axis=1, output_num=2) + self.add_312_bias = 0.0 + self.conv2d_314 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_316 = nn.ReLU() + self.module22_13 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=256, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=256, + module5_1_conv2d_0_out_channels=512, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_321 = P.Split(axis=1, output_num=2) + self.add_322_bias = 0.0 + self.module20_12 = Module20(reshape_2_shape=[1, 512], + module0_0_avgpool2d_0_kernel_size=(14, 14), + module0_0_conv2d_1_in_channels=256, + module0_0_conv2d_1_out_channels=128, + module0_0_conv2d_3_in_channels=128, + module0_0_conv2d_3_out_channels=512, + module0_0_reshape_4_shape=[1, 1, 2, 256]) + self.reshape_333 = P.Reshape() + self.reshape_333_shape = tuple([1, 512, 1, 1]) + self.split_334 = P.Split(axis=1, output_num=2) + self.add_337_bias = 0.0 + self.conv2d_339 = nn.Conv2d(in_channels=256, + out_channels=1024, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_341 = nn.ReLU() + self.module22_14 = Module22(module5_0_conv2d_0_in_channels=1024, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_348 = P.Split(axis=1, output_num=2) + self.add_349_bias = 0.0 + self.module20_13 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(14, 14), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_360 = P.Reshape() + self.reshape_360_shape = tuple([1, 1024, 1, 1]) + self.split_361 = P.Split(axis=1, output_num=2) + self.add_364_bias = 0.0 + self.pad_366 = nn.Pad(paddings=((0, 0), (0, 0), (1, 1), (1, 1)), mode="CONSTANT") + self.pad_avgpool2d_367 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_367 = nn.AvgPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.conv2d_368 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.pad_avgpool2d_343 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 0))) + self.avgpool2d_343 = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2)) + self.conv2d_345 = nn.Conv2d(in_channels=1024, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_370 = nn.ReLU() + self.module22_15 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_375 = P.Split(axis=1, output_num=2) + self.add_376_bias = 0.0 + self.module20_14 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(7, 7), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_387 = P.Reshape() + self.reshape_387_shape = tuple([1, 1024, 1, 1]) + self.split_388 = P.Split(axis=1, output_num=2) + self.add_391_bias = 0.0 + self.conv2d_393 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_395 = nn.ReLU() + self.module22_16 = Module22(module5_0_conv2d_0_in_channels=2048, + module5_0_conv2d_0_out_channels=512, + module5_0_conv2d_0_kernel_size=(1, 1), + module5_0_conv2d_0_padding=0, + module5_0_conv2d_0_pad_mode="valid", + module5_0_conv2d_0_group=1, + module5_1_conv2d_0_in_channels=512, + module5_1_conv2d_0_out_channels=1024, + module5_1_conv2d_0_kernel_size=(3, 3), + module5_1_conv2d_0_padding=(1, 1, 1, 1), + module5_1_conv2d_0_pad_mode="pad", + module5_1_conv2d_0_group=2) + self.split_400 = P.Split(axis=1, output_num=2) + self.add_401_bias = 0.0 + self.module20_15 = Module20(reshape_2_shape=[1, 1024], + module0_0_avgpool2d_0_kernel_size=(7, 7), + module0_0_conv2d_1_in_channels=512, + module0_0_conv2d_1_out_channels=256, + module0_0_conv2d_3_in_channels=256, + module0_0_conv2d_3_out_channels=1024, + module0_0_reshape_4_shape=[1, 1, 2, 512]) + self.reshape_412 = P.Reshape() + self.reshape_412_shape = tuple([1, 1024, 1, 1]) + self.split_413 = P.Split(axis=1, output_num=2) + self.add_416_bias = 0.0 + self.conv2d_418 = nn.Conv2d(in_channels=512, + out_channels=2048, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_420 = nn.ReLU() + self.avgpool2d_421 = nn.AvgPool2d(kernel_size=(7, 7)) + self.reshape_422 = P.Reshape() + self.reshape_422_shape = tuple([1, 2048]) + self.flatten_423 = nn.Flatten() + self.dense_424 = nn.Dense(in_channels=2048, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + module22_0_opt = self.module22_0(opt_relu_1) + opt_maxpool2d_6 = self.pad_maxpool2d_6(module22_0_opt) + opt_maxpool2d_6 = self.maxpool2d_6(opt_maxpool2d_6) + module22_1_opt = self.module22_1(opt_maxpool2d_6) + opt_split_13, opt_split_13_1 = self.split_13(module22_1_opt) + opt_add_14 = opt_split_13 + self.add_14_bias + opt_add_15 = P.Add()(opt_add_14, opt_split_13_1) + module20_0_opt = self.module20_0(opt_add_15) + opt_reshape_25 = self.reshape_25(module20_0_opt, self.reshape_25_shape) + opt_split_26, opt_split_26_1 = self.split_26(opt_reshape_25) + opt_mul_27 = P.Mul()(opt_split_26, opt_split_13) + opt_mul_28 = P.Mul()(opt_split_26_1, opt_split_13_1) + opt_add_29 = opt_mul_27 + self.add_29_bias + opt_add_30 = P.Add()(opt_add_29, opt_mul_28) + opt_conv2d_31 = self.conv2d_31(opt_add_30) + opt_avgpool2d_8 = self.pad_avgpool2d_8(opt_maxpool2d_6) + opt_avgpool2d_8 = self.avgpool2d_8(opt_avgpool2d_8) + opt_conv2d_10 = self.conv2d_10(opt_avgpool2d_8) + opt_add_32 = P.Add()(opt_conv2d_31, opt_conv2d_10) + opt_relu_33 = self.relu_33(opt_add_32) + module22_2_opt = self.module22_2(opt_relu_33) + opt_split_38, opt_split_38_1 = self.split_38(module22_2_opt) + opt_add_39 = opt_split_38 + self.add_39_bias + opt_add_40 = P.Add()(opt_add_39, opt_split_38_1) + module20_1_opt = self.module20_1(opt_add_40) + opt_reshape_50 = self.reshape_50(module20_1_opt, self.reshape_50_shape) + opt_split_51, opt_split_51_1 = self.split_51(opt_reshape_50) + opt_mul_52 = P.Mul()(opt_split_51, opt_split_38) + opt_mul_53 = P.Mul()(opt_split_51_1, opt_split_38_1) + opt_add_54 = opt_mul_52 + self.add_54_bias + opt_add_55 = P.Add()(opt_add_54, opt_mul_53) + opt_conv2d_56 = self.conv2d_56(opt_add_55) + opt_add_57 = P.Add()(opt_conv2d_56, opt_relu_33) + opt_relu_58 = self.relu_58(opt_add_57) + module22_3_opt = self.module22_3(opt_relu_58) + opt_split_63, opt_split_63_1 = self.split_63(module22_3_opt) + opt_add_64 = opt_split_63 + self.add_64_bias + opt_add_65 = P.Add()(opt_add_64, opt_split_63_1) + module20_2_opt = self.module20_2(opt_add_65) + opt_reshape_75 = self.reshape_75(module20_2_opt, self.reshape_75_shape) + opt_split_76, opt_split_76_1 = self.split_76(opt_reshape_75) + opt_mul_77 = P.Mul()(opt_split_76, opt_split_63) + opt_mul_78 = P.Mul()(opt_split_76_1, opt_split_63_1) + opt_add_79 = opt_mul_77 + self.add_79_bias + opt_add_80 = P.Add()(opt_add_79, opt_mul_78) + opt_conv2d_81 = self.conv2d_81(opt_add_80) + opt_add_82 = P.Add()(opt_conv2d_81, opt_relu_58) + opt_relu_83 = self.relu_83(opt_add_82) + module22_4_opt = self.module22_4(opt_relu_83) + opt_split_90, opt_split_90_1 = self.split_90(module22_4_opt) + opt_add_91 = opt_split_90 + self.add_91_bias + opt_add_92 = P.Add()(opt_add_91, opt_split_90_1) + module20_3_opt = self.module20_3(opt_add_92) + opt_reshape_102 = self.reshape_102(module20_3_opt, self.reshape_102_shape) + opt_split_103, opt_split_103_1 = self.split_103(opt_reshape_102) + opt_mul_104 = P.Mul()(opt_split_103, opt_split_90) + opt_mul_105 = P.Mul()(opt_split_103_1, opt_split_90_1) + opt_add_106 = opt_mul_104 + self.add_106_bias + opt_add_107 = P.Add()(opt_add_106, opt_mul_105) + opt_pad_108 = self.pad_108(opt_add_107) + opt_avgpool2d_109 = self.pad_avgpool2d_109(opt_pad_108) + opt_avgpool2d_109 = self.avgpool2d_109(opt_avgpool2d_109) + opt_conv2d_110 = self.conv2d_110(opt_avgpool2d_109) + opt_avgpool2d_85 = self.pad_avgpool2d_85(opt_relu_83) + opt_avgpool2d_85 = self.avgpool2d_85(opt_avgpool2d_85) + opt_conv2d_87 = self.conv2d_87(opt_avgpool2d_85) + opt_add_111 = P.Add()(opt_conv2d_110, opt_conv2d_87) + opt_relu_112 = self.relu_112(opt_add_111) + module22_5_opt = self.module22_5(opt_relu_112) + opt_split_117, opt_split_117_1 = self.split_117(module22_5_opt) + opt_add_118 = opt_split_117 + self.add_118_bias + opt_add_119 = P.Add()(opt_add_118, opt_split_117_1) + module20_4_opt = self.module20_4(opt_add_119) + opt_reshape_129 = self.reshape_129(module20_4_opt, self.reshape_129_shape) + opt_split_130, opt_split_130_1 = self.split_130(opt_reshape_129) + opt_mul_131 = P.Mul()(opt_split_130, opt_split_117) + opt_mul_132 = P.Mul()(opt_split_130_1, opt_split_117_1) + opt_add_133 = opt_mul_131 + self.add_133_bias + opt_add_134 = P.Add()(opt_add_133, opt_mul_132) + opt_conv2d_135 = self.conv2d_135(opt_add_134) + opt_add_136 = P.Add()(opt_conv2d_135, opt_relu_112) + opt_relu_137 = self.relu_137(opt_add_136) + module22_6_opt = self.module22_6(opt_relu_137) + opt_split_142, opt_split_142_1 = self.split_142(module22_6_opt) + opt_add_143 = opt_split_142 + self.add_143_bias + opt_add_144 = P.Add()(opt_add_143, opt_split_142_1) + module20_5_opt = self.module20_5(opt_add_144) + opt_reshape_154 = self.reshape_154(module20_5_opt, self.reshape_154_shape) + opt_split_155, opt_split_155_1 = self.split_155(opt_reshape_154) + opt_mul_156 = P.Mul()(opt_split_155, opt_split_142) + opt_mul_157 = P.Mul()(opt_split_155_1, opt_split_142_1) + opt_add_158 = opt_mul_156 + self.add_158_bias + opt_add_159 = P.Add()(opt_add_158, opt_mul_157) + opt_conv2d_160 = self.conv2d_160(opt_add_159) + opt_add_161 = P.Add()(opt_conv2d_160, opt_relu_137) + opt_relu_162 = self.relu_162(opt_add_161) + module22_7_opt = self.module22_7(opt_relu_162) + opt_split_167, opt_split_167_1 = self.split_167(module22_7_opt) + opt_add_168 = opt_split_167 + self.add_168_bias + opt_add_169 = P.Add()(opt_add_168, opt_split_167_1) + module20_6_opt = self.module20_6(opt_add_169) + opt_reshape_179 = self.reshape_179(module20_6_opt, self.reshape_179_shape) + opt_split_180, opt_split_180_1 = self.split_180(opt_reshape_179) + opt_mul_181 = P.Mul()(opt_split_180, opt_split_167) + opt_mul_182 = P.Mul()(opt_split_180_1, opt_split_167_1) + opt_add_183 = opt_mul_181 + self.add_183_bias + opt_add_184 = P.Add()(opt_add_183, opt_mul_182) + opt_conv2d_185 = self.conv2d_185(opt_add_184) + opt_add_186 = P.Add()(opt_conv2d_185, opt_relu_162) + opt_relu_187 = self.relu_187(opt_add_186) + module22_8_opt = self.module22_8(opt_relu_187) + opt_split_194, opt_split_194_1 = self.split_194(module22_8_opt) + opt_add_195 = opt_split_194 + self.add_195_bias + opt_add_196 = P.Add()(opt_add_195, opt_split_194_1) + module20_7_opt = self.module20_7(opt_add_196) + opt_reshape_206 = self.reshape_206(module20_7_opt, self.reshape_206_shape) + opt_split_207, opt_split_207_1 = self.split_207(opt_reshape_206) + opt_mul_208 = P.Mul()(opt_split_207, opt_split_194) + opt_mul_209 = P.Mul()(opt_split_207_1, opt_split_194_1) + opt_add_210 = opt_mul_208 + self.add_210_bias + opt_add_211 = P.Add()(opt_add_210, opt_mul_209) + opt_pad_212 = self.pad_212(opt_add_211) + opt_avgpool2d_213 = self.pad_avgpool2d_213(opt_pad_212) + opt_avgpool2d_213 = self.avgpool2d_213(opt_avgpool2d_213) + opt_conv2d_214 = self.conv2d_214(opt_avgpool2d_213) + opt_avgpool2d_189 = self.pad_avgpool2d_189(opt_relu_187) + opt_avgpool2d_189 = self.avgpool2d_189(opt_avgpool2d_189) + opt_conv2d_191 = self.conv2d_191(opt_avgpool2d_189) + opt_add_215 = P.Add()(opt_conv2d_214, opt_conv2d_191) + opt_relu_216 = self.relu_216(opt_add_215) + module22_9_opt = self.module22_9(opt_relu_216) + opt_split_221, opt_split_221_1 = self.split_221(module22_9_opt) + opt_add_222 = opt_split_221 + self.add_222_bias + opt_add_223 = P.Add()(opt_add_222, opt_split_221_1) + module20_8_opt = self.module20_8(opt_add_223) + opt_reshape_233 = self.reshape_233(module20_8_opt, self.reshape_233_shape) + opt_split_234, opt_split_234_1 = self.split_234(opt_reshape_233) + opt_mul_235 = P.Mul()(opt_split_234, opt_split_221) + opt_mul_236 = P.Mul()(opt_split_234_1, opt_split_221_1) + opt_add_237 = opt_mul_235 + self.add_237_bias + opt_add_238 = P.Add()(opt_add_237, opt_mul_236) + opt_conv2d_239 = self.conv2d_239(opt_add_238) + opt_add_240 = P.Add()(opt_conv2d_239, opt_relu_216) + opt_relu_241 = self.relu_241(opt_add_240) + module22_10_opt = self.module22_10(opt_relu_241) + opt_split_246, opt_split_246_1 = self.split_246(module22_10_opt) + opt_add_247 = opt_split_246 + self.add_247_bias + opt_add_248 = P.Add()(opt_add_247, opt_split_246_1) + module20_9_opt = self.module20_9(opt_add_248) + opt_reshape_258 = self.reshape_258(module20_9_opt, self.reshape_258_shape) + opt_split_259, opt_split_259_1 = self.split_259(opt_reshape_258) + opt_mul_260 = P.Mul()(opt_split_259, opt_split_246) + opt_mul_261 = P.Mul()(opt_split_259_1, opt_split_246_1) + opt_add_262 = opt_mul_260 + self.add_262_bias + opt_add_263 = P.Add()(opt_add_262, opt_mul_261) + opt_conv2d_264 = self.conv2d_264(opt_add_263) + opt_add_265 = P.Add()(opt_conv2d_264, opt_relu_241) + opt_relu_266 = self.relu_266(opt_add_265) + module22_11_opt = self.module22_11(opt_relu_266) + opt_split_271, opt_split_271_1 = self.split_271(module22_11_opt) + opt_add_272 = opt_split_271 + self.add_272_bias + opt_add_273 = P.Add()(opt_add_272, opt_split_271_1) + module20_10_opt = self.module20_10(opt_add_273) + opt_reshape_283 = self.reshape_283(module20_10_opt, self.reshape_283_shape) + opt_split_284, opt_split_284_1 = self.split_284(opt_reshape_283) + opt_mul_285 = P.Mul()(opt_split_284, opt_split_271) + opt_mul_286 = P.Mul()(opt_split_284_1, opt_split_271_1) + opt_add_287 = opt_mul_285 + self.add_287_bias + opt_add_288 = P.Add()(opt_add_287, opt_mul_286) + opt_conv2d_289 = self.conv2d_289(opt_add_288) + opt_add_290 = P.Add()(opt_conv2d_289, opt_relu_266) + opt_relu_291 = self.relu_291(opt_add_290) + module22_12_opt = self.module22_12(opt_relu_291) + opt_split_296, opt_split_296_1 = self.split_296(module22_12_opt) + opt_add_297 = opt_split_296 + self.add_297_bias + opt_add_298 = P.Add()(opt_add_297, opt_split_296_1) + module20_11_opt = self.module20_11(opt_add_298) + opt_reshape_308 = self.reshape_308(module20_11_opt, self.reshape_308_shape) + opt_split_309, opt_split_309_1 = self.split_309(opt_reshape_308) + opt_mul_310 = P.Mul()(opt_split_309, opt_split_296) + opt_mul_311 = P.Mul()(opt_split_309_1, opt_split_296_1) + opt_add_312 = opt_mul_310 + self.add_312_bias + opt_add_313 = P.Add()(opt_add_312, opt_mul_311) + opt_conv2d_314 = self.conv2d_314(opt_add_313) + opt_add_315 = P.Add()(opt_conv2d_314, opt_relu_291) + opt_relu_316 = self.relu_316(opt_add_315) + module22_13_opt = self.module22_13(opt_relu_316) + opt_split_321, opt_split_321_1 = self.split_321(module22_13_opt) + opt_add_322 = opt_split_321 + self.add_322_bias + opt_add_323 = P.Add()(opt_add_322, opt_split_321_1) + module20_12_opt = self.module20_12(opt_add_323) + opt_reshape_333 = self.reshape_333(module20_12_opt, self.reshape_333_shape) + opt_split_334, opt_split_334_1 = self.split_334(opt_reshape_333) + opt_mul_335 = P.Mul()(opt_split_334, opt_split_321) + opt_mul_336 = P.Mul()(opt_split_334_1, opt_split_321_1) + opt_add_337 = opt_mul_335 + self.add_337_bias + opt_add_338 = P.Add()(opt_add_337, opt_mul_336) + opt_conv2d_339 = self.conv2d_339(opt_add_338) + opt_add_340 = P.Add()(opt_conv2d_339, opt_relu_316) + opt_relu_341 = self.relu_341(opt_add_340) + module22_14_opt = self.module22_14(opt_relu_341) + opt_split_348, opt_split_348_1 = self.split_348(module22_14_opt) + opt_add_349 = opt_split_348 + self.add_349_bias + opt_add_350 = P.Add()(opt_add_349, opt_split_348_1) + module20_13_opt = self.module20_13(opt_add_350) + opt_reshape_360 = self.reshape_360(module20_13_opt, self.reshape_360_shape) + opt_split_361, opt_split_361_1 = self.split_361(opt_reshape_360) + opt_mul_362 = P.Mul()(opt_split_361, opt_split_348) + opt_mul_363 = P.Mul()(opt_split_361_1, opt_split_348_1) + opt_add_364 = opt_mul_362 + self.add_364_bias + opt_add_365 = P.Add()(opt_add_364, opt_mul_363) + opt_pad_366 = self.pad_366(opt_add_365) + opt_avgpool2d_367 = self.pad_avgpool2d_367(opt_pad_366) + opt_avgpool2d_367 = self.avgpool2d_367(opt_avgpool2d_367) + opt_conv2d_368 = self.conv2d_368(opt_avgpool2d_367) + opt_avgpool2d_343 = self.pad_avgpool2d_343(opt_relu_341) + opt_avgpool2d_343 = self.avgpool2d_343(opt_avgpool2d_343) + opt_conv2d_345 = self.conv2d_345(opt_avgpool2d_343) + opt_add_369 = P.Add()(opt_conv2d_368, opt_conv2d_345) + opt_relu_370 = self.relu_370(opt_add_369) + module22_15_opt = self.module22_15(opt_relu_370) + opt_split_375, opt_split_375_1 = self.split_375(module22_15_opt) + opt_add_376 = opt_split_375 + self.add_376_bias + opt_add_377 = P.Add()(opt_add_376, opt_split_375_1) + module20_14_opt = self.module20_14(opt_add_377) + opt_reshape_387 = self.reshape_387(module20_14_opt, self.reshape_387_shape) + opt_split_388, opt_split_388_1 = self.split_388(opt_reshape_387) + opt_mul_389 = P.Mul()(opt_split_388, opt_split_375) + opt_mul_390 = P.Mul()(opt_split_388_1, opt_split_375_1) + opt_add_391 = opt_mul_389 + self.add_391_bias + opt_add_392 = P.Add()(opt_add_391, opt_mul_390) + opt_conv2d_393 = self.conv2d_393(opt_add_392) + opt_add_394 = P.Add()(opt_conv2d_393, opt_relu_370) + opt_relu_395 = self.relu_395(opt_add_394) + module22_16_opt = self.module22_16(opt_relu_395) + opt_split_400, opt_split_400_1 = self.split_400(module22_16_opt) + opt_add_401 = opt_split_400 + self.add_401_bias + opt_add_402 = P.Add()(opt_add_401, opt_split_400_1) + module20_15_opt = self.module20_15(opt_add_402) + opt_reshape_412 = self.reshape_412(module20_15_opt, self.reshape_412_shape) + opt_split_413, opt_split_413_1 = self.split_413(opt_reshape_412) + opt_mul_414 = P.Mul()(opt_split_413, opt_split_400) + opt_mul_415 = P.Mul()(opt_split_413_1, opt_split_400_1) + opt_add_416 = opt_mul_414 + self.add_416_bias + opt_add_417 = P.Add()(opt_add_416, opt_mul_415) + opt_conv2d_418 = self.conv2d_418(opt_add_417) + opt_add_419 = P.Add()(opt_conv2d_418, opt_relu_395) + opt_relu_420 = self.relu_420(opt_add_419) + opt_avgpool2d_421 = self.avgpool2d_421(opt_relu_420) + opt_reshape_422 = self.reshape_422(opt_avgpool2d_421, self.reshape_422_shape) + opt_flatten_423 = self.flatten_423(opt_reshape_422) + opt_dense_424 = self.dense_424(opt_flatten_423) + return opt_dense_424 diff --git a/research/cvtmodel/wide_resnet/README_CN.md b/research/cvtmodel/wide_resnet/README_CN.md new file mode 100644 index 0000000000000000000000000000000000000000..06d4dbcc6f4247ca8c2222c1707576423e171fe2 --- /dev/null +++ b/research/cvtmodel/wide_resnet/README_CN.md @@ -0,0 +1,101 @@ +# 目录 + +<!-- TOC --> + +- [目录](#目录) +- [Wide Resnet描述](#resnet描述) +- [模型架构](#模型架构) +- [数据集](#数据集) +- [环境要求](#环境要求) +- [脚本说明](#脚本说明) + - [脚本及样例代码](#脚本及样例代码) + - [导出过程](#导出过程) + - [导出](#导出) + - [推理过程](#推理过程) + - [推理](#推理) +- [ModelZoo主页](#modelzoo主页) + +<!-- /TOC --> + +# Wide Resnet描述 + +Wide Resnet是一个基于卷积的神经网络,用于图像分类。有关该模型的描述,可查阅(https://pytorch.org/hub/pytorch_vision_wide_resnet/)。 +本仓库中是基于torch提供的模型文件,使用MindConverter工具转化出来ckpt文件,进行全量推理以验证模型文件精度。 + +# 模型架构 + +Wide Resnet模型支持一种模式:Wide Resnet-101 V2。 + +# 数据集 + +Wide Resnet使用的数据集: ImageNet + +数据集的默认配置如下: + +- 测试数据集预处理: + - 图像的输入尺寸:224\*224(将图像缩放到256\*256,然后在中央区域裁剪图像) + - 根据平均值和标准偏差对输入图像进行归一化 + +# 环境要求 + +- 硬件(Ascend/GPU) +- 准备Ascend或GPU处理器搭建硬件环境。 +- 框架 +- [MindSpore](https://www.mindspore.cn/install) +- 如需查看详情,请参见如下资源: +- [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html) +- [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html) + +# 脚本说明 + +## 脚本及样例代码 + +```shell +├── model_zoo + ├── README.md // 所有模型的说明 + ├── Wide Resnet + ├── README_CN.md // Wide Resnet相关说明 + ├── ascend310_infer // 实现310推理源代码 + ├── scripts + │ ├── run_infer_310.sh // Ascend 310 推理shell脚本 + ├── src + │ ├── wide_resnet101_2.py // Wide Resnet-101 V2模型文件 + ├── export.py // 导出脚本 + ├── postprocess.py // 310 推理后处理脚本 +``` + +## 导出过程 + +### 导出 + +```shell +python export.py --backbone [NET_NAME] --ckpt_path [CKPT_PATH] --device_target [DEVICE_TARGET] --device_id 0 --file_format [EXPORT_FORMAT] --file_name [FILE_NAME] +``` + +`backbone` 可选 ["wideresnet101"] +`EXPORT_FORMAT` 可选 ["AIR", "MINDIR"] + +## 推理过程 + +### 推理 + +在推理之前需要先导出模型,AIR模型只能在昇腾910环境上导出,MINDIR可以在任意环境上导出。 + +```shell +# 昇腾310 推理 +bash run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] +``` + +-注: Wide-Resnet系列网络使用ImageNet数据集,图片的label是将文件夹排序后从0开始编号所得的数字. + +推理的结果保存在当前目录下,在acc.log日志文件中可以找到类似以下的结果。 +Wide Resnet101 V2网络使用ImageNet推理得到的结果如下: + + ```log + after allreduce eval: top1_correct=38848, tot=50000, acc=77.70% + after allreduce eval: top5_correct=46861, tot=50000, acc=93.72% + ``` + +# ModelZoo主页 + + 请浏览官网[主页](https://gitee.com/mindspore/models)。 diff --git a/research/cvtmodel/wide_resnet/ascend310_infer/CMakeLists.txt b/research/cvtmodel/wide_resnet/ascend310_infer/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..ee3c85447340e0449ff2b70ed24f60a17e07b2b6 --- /dev/null +++ b/research/cvtmodel/wide_resnet/ascend310_infer/CMakeLists.txt @@ -0,0 +1,14 @@ +cmake_minimum_required(VERSION 3.14.1) +project(Ascend310Infer) +add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined") +set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/) +option(MINDSPORE_PATH "mindspore install path" "") +include_directories(${MINDSPORE_PATH}) +include_directories(${MINDSPORE_PATH}/include) +include_directories(${PROJECT_SRC_ROOT}) +find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib) +file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*) + +add_executable(main src/main.cc src/utils.cc) +target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags) diff --git a/research/cvtmodel/wide_resnet/ascend310_infer/build.sh b/research/cvtmodel/wide_resnet/ascend310_infer/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..770a8851efade7f352039fc8665d307ae1abbb00 --- /dev/null +++ b/research/cvtmodel/wide_resnet/ascend310_infer/build.sh @@ -0,0 +1,23 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [ ! -d out ]; then + mkdir out +fi +cd out || exit +cmake .. \ + -DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`" +make diff --git a/research/cvtmodel/wide_resnet/ascend310_infer/inc/utils.h b/research/cvtmodel/wide_resnet/ascend310_infer/inc/utils.h new file mode 100644 index 0000000000000000000000000000000000000000..efebe03a8c1179f5a1f9d5f7ee07e0352a9937c6 --- /dev/null +++ b/research/cvtmodel/wide_resnet/ascend310_infer/inc/utils.h @@ -0,0 +1,32 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_INFERENCE_UTILS_H_ +#define MINDSPORE_INFERENCE_UTILS_H_ + +#include <sys/stat.h> +#include <dirent.h> +#include <vector> +#include <string> +#include <memory> +#include "include/api/types.h" + +std::vector<std::string> GetAllFiles(std::string_view dirName); +DIR *OpenDir(std::string_view dirName); +std::string RealPath(std::string_view path); +mindspore::MSTensor ReadFileToTensor(const std::string &file); +int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs); +#endif diff --git a/research/cvtmodel/wide_resnet/ascend310_infer/src/main.cc b/research/cvtmodel/wide_resnet/ascend310_infer/src/main.cc new file mode 100644 index 0000000000000000000000000000000000000000..a3885312e2690acf34137bfd4490dd0401c21de4 --- /dev/null +++ b/research/cvtmodel/wide_resnet/ascend310_infer/src/main.cc @@ -0,0 +1,166 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <sys/time.h> +#include <gflags/gflags.h> +#include <dirent.h> +#include <iostream> +#include <string> +#include <algorithm> +#include <iosfwd> +#include <vector> +#include <fstream> + +#include "../inc/utils.h" +#include "include/dataset/execute.h" +#include "include/dataset/transforms.h" +#include "include/dataset/vision.h" +#include "include/dataset/vision_ascend.h" +#include "include/api/types.h" +#include "include/api/model.h" +#include "include/api/serialization.h" +#include "include/api/context.h" + +using mindspore::Serialization; +using mindspore::Model; +using mindspore::Context; +using mindspore::Status; +using mindspore::ModelType; +using mindspore::Graph; +using mindspore::GraphCell; +using mindspore::kSuccess; +using mindspore::MSTensor; +using mindspore::DataType; +using mindspore::dataset::Execute; +using mindspore::dataset::TensorTransform; +using mindspore::dataset::vision::Decode; +using mindspore::dataset::vision::Resize; +using mindspore::dataset::vision::CenterCrop; +using mindspore::dataset::vision::Normalize; +using mindspore::dataset::vision::HWC2CHW; + +using mindspore::dataset::transforms::TypeCast; + + +DEFINE_string(model_path, "", "model path"); +DEFINE_string(dataset, "ImageNet", "dataset: ImageNet or Cifar10"); +DEFINE_string(dataset_path, ".", "dataset path"); +DEFINE_int32(device_id, 0, "device id"); + +int main(int argc, char **argv) { + gflags::ParseCommandLineFlags(&argc, &argv, true); + if (RealPath(FLAGS_model_path).empty()) { + std::cout << "Invalid model" << std::endl; + return 1; + } + + std::transform(FLAGS_dataset.begin(), FLAGS_dataset.end(), FLAGS_dataset.begin(), ::tolower); + + auto context = std::make_shared<Context>(); + auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>(); + ascend310_info->SetDeviceID(FLAGS_device_id); + context->MutableDeviceInfo().push_back(ascend310_info); + + Graph graph; + Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph); + if (ret != kSuccess) { + std::cout << "Load model failed." << std::endl; + return 1; + } + + Model model; + ret = model.Build(GraphCell(graph), context); + if (ret != kSuccess) { + std::cout << "ERROR: Build failed." << std::endl; + return 1; + } + + std::vector<MSTensor> modelInputs = model.GetInputs(); + + auto all_files = GetAllFiles(FLAGS_dataset_path); + if (all_files.empty()) { + std::cout << "ERROR: no input data." << std::endl; + return 1; + } + + std::shared_ptr<TensorTransform> decode(new Decode()); + std::shared_ptr<TensorTransform> resize(new Resize({256, 256})); + std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({224, 224})); + std::shared_ptr<TensorTransform> normImageNet(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375})); + std::shared_ptr<TensorTransform> normCifar10(new Normalize({127.5, 127.5, 127.5}, {127.5, 127.5, 127.5})); + std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW()); + + mindspore::dataset::Execute transformImageNet({decode, resize, centerCrop, normImageNet, hwc2chw}); + mindspore::dataset::Execute transformCifar10({decode, normCifar10, hwc2chw}); + + std::map<double, double> costTime_map; + + size_t size = all_files.size(); + for (size_t i = 0; i < size; ++i) { + struct timeval start; + struct timeval end; + double startTime_ms; + double endTime_ms; + std::vector<MSTensor> inputs; + std::vector<MSTensor> outputs; + + std::cout << "Start predict input files:" << all_files[i] << std::endl; + mindspore::MSTensor image = ReadFileToTensor(all_files[i]); + + if (FLAGS_dataset.compare("cifar10") == 0) { + transformCifar10(image, &image); + } else if (FLAGS_dataset.compare("imagenet") == 0) { + transformImageNet(image, &image); + } else { + std::cout << "unsupported dataset ..."; + return 1; + } + + inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(), + image.Data().get(), image.DataSize()); + + gettimeofday(&start, NULL); + model.Predict(inputs, &outputs); + gettimeofday(&end, NULL); + + startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000; + endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000; + costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms)); + int rst = WriteResult(all_files[i], outputs); + if (rst != 0) { + std::cout << "write result failed." << std::endl; + return rst; + } + } + double average = 0.0; + int infer_cnt = 0; + char tmpCh[256] = {0}; + for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) { + double diff = 0.0; + diff = iter->second - iter->first; + average += diff; + infer_cnt++; + } + + average = average/infer_cnt; + std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl; + std::string file_name = "./time_Result" + std::string("/test_perform_static.txt"); + std::ofstream file_stream(file_name.c_str(), std::ios::trunc); + file_stream << tmpCh; + file_stream.close(); + costTime_map.clear(); + return 0; +} diff --git a/research/cvtmodel/wide_resnet/ascend310_infer/src/utils.cc b/research/cvtmodel/wide_resnet/ascend310_infer/src/utils.cc new file mode 100644 index 0000000000000000000000000000000000000000..653b1de44962614ac77d44481f8d1a7bde52caaf --- /dev/null +++ b/research/cvtmodel/wide_resnet/ascend310_infer/src/utils.cc @@ -0,0 +1,160 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "inc/utils.h" + +#include <fstream> +#include <algorithm> +#include <iostream> + +using mindspore::MSTensor; +using mindspore::DataType; + +std::vector<std::string> GetAllFiles(std::string_view dirName) { + struct dirent *filename; + DIR *dir = OpenDir(dirName); + if (dir == nullptr) { + return {}; + } + std::vector<std::string> dirs; + std::vector<std::string> files; + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == "..") { + continue; + } else if (filename->d_type == DT_DIR) { + dirs.emplace_back(std::string(dirName) + "/" + filename->d_name); + } else if (filename->d_type == DT_REG) { + files.emplace_back(std::string(dirName) + "/" + filename->d_name); + } else { + continue; + } + } + + for (auto d : dirs) { + dir = OpenDir(d); + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == ".." || filename->d_type != DT_REG) { + continue; + } + files.emplace_back(std::string(d) + "/" + filename->d_name); + } + } + std::sort(files.begin(), files.end()); + for (auto &f : files) { + std::cout << "image file: " << f << std::endl; + } + return files; +} + +int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) { + std::string homePath = "./result_Files"; + const int INVALID_POINTER = -1; + const int ERROR = -2; + for (size_t i = 0; i < outputs.size(); ++i) { + size_t outputSize; + std::shared_ptr<const void> netOutput; + netOutput = outputs[i].Data(); + outputSize = outputs[i].DataSize(); + int pos = imageFile.rfind('/'); + std::string fileName(imageFile, pos + 1); + fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin"); + std::string outFileName = homePath + "/" + fileName; + FILE * outputFile = fopen(outFileName.c_str(), "wb"); + if (outputFile == nullptr) { + std::cout << "open result file " << outFileName << " failed" << std::endl; + return INVALID_POINTER; + } + size_t size = fwrite(netOutput.get(), sizeof(char), outputSize, outputFile); + if (size != outputSize) { + fclose(outputFile); + outputFile = nullptr; + std::cout << "write result file " << outFileName << " failed, write size[" << size << + "] is smaller than output size[" << outputSize << "], maybe the disk is full." << std::endl; + return ERROR; + } + fclose(outputFile); + outputFile = nullptr; + } + return 0; +} + +mindspore::MSTensor ReadFileToTensor(const std::string &file) { + if (file.empty()) { + std::cout << "Pointer file is nullptr" << std::endl; + return mindspore::MSTensor(); + } + + std::ifstream ifs(file); + if (!ifs.good()) { + std::cout << "File: " << file << " is not exist" << std::endl; + return mindspore::MSTensor(); + } + + if (!ifs.is_open()) { + std::cout << "File: " << file << "open failed" << std::endl; + return mindspore::MSTensor(); + } + + ifs.seekg(0, std::ios::end); + size_t size = ifs.tellg(); + mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size); + + ifs.seekg(0, std::ios::beg); + ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size); + ifs.close(); + + return buffer; +} + + +DIR *OpenDir(std::string_view dirName) { + if (dirName.empty()) { + std::cout << " dirName is null ! " << std::endl; + return nullptr; + } + std::string realPath = RealPath(dirName); + struct stat s; + lstat(realPath.c_str(), &s); + if (!S_ISDIR(s.st_mode)) { + std::cout << "dirName is not a valid directory !" << std::endl; + return nullptr; + } + DIR *dir; + dir = opendir(realPath.c_str()); + if (dir == nullptr) { + std::cout << "Can not open dir " << dirName << std::endl; + return nullptr; + } + std::cout << "Successfully opened the dir " << dirName << std::endl; + return dir; +} + +std::string RealPath(std::string_view path) { + char realPathMem[PATH_MAX] = {0}; + char *realPathRet = nullptr; + realPathRet = realpath(path.data(), realPathMem); + + if (realPathRet == nullptr) { + std::cout << "File: " << path << " is not exist."; + return ""; + } + + std::string realPath(realPathMem); + std::cout << path << " realpath is: " << realPath << std::endl; + return realPath; +} diff --git a/research/cvtmodel/wide_resnet/export.py b/research/cvtmodel/wide_resnet/export.py new file mode 100644 index 0000000000000000000000000000000000000000..6d1ce3d38d22261b933615731880c6086242d52c --- /dev/null +++ b/research/cvtmodel/wide_resnet/export.py @@ -0,0 +1,53 @@ +# Copyright 2020-2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""export checkpoint file into air, onnx, mindir models + Suggest run as python export.py --file_name [file_name] --ckpt_files [ckpt path] --file_format [file format] +""" +import argparse +import numpy as np +import mindspore as ms +from mindspore import context, Tensor +from mindspore.train.serialization import export, load_checkpoint, load_param_into_net + +parser = argparse.ArgumentParser(description='post process for 310 inference') +parser.add_argument("--backbone", type=str, required=True, default="wideresnet101V2", help="model backbone") +parser.add_argument("--ckpt_path", type=str, required=True, help="checkpoint file path") +parser.add_argument("--file_name", type=str, default="wideresnet101V2", help="file name") +parser.add_argument("--file_format", type=str, default="MINDIR", choices=["MINDIR", "AIR"], help="file format") +parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"], help="device target") +parser.add_argument("--device_id", type=int, default=0, help="device target") +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) + +def model_export(): + '''main export function''' + if args.device_target == "Ascend": + context.set_context(device_id=args.device_id) + if args.backbone == "wideresnet101": + from src.wide_resnet101_2 import MainModel + image_size = 224 + + net = MainModel() + + param_dict = load_checkpoint(args.ckpt_path) + load_param_into_net(net, param_dict) + + input_arr = Tensor(np.zeros([1, 3, image_size, image_size]), ms.float32) + export(net, input_arr, file_name=args.file_name, file_format=args.file_format) + +if __name__ == '__main__': + model_export() diff --git a/research/cvtmodel/wide_resnet/postprocess.py b/research/cvtmodel/wide_resnet/postprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..0bfa5b4a79ab40025bdb1344cfe30cf625743812 --- /dev/null +++ b/research/cvtmodel/wide_resnet/postprocess.py @@ -0,0 +1,82 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +'''post process for 310 inference''' +import os +import argparse +import numpy as np + +parser = argparse.ArgumentParser(description='post process for resnest 310 inference') +parser.add_argument("--dataset", type=str, default="imagenet", help="result file path") +parser.add_argument("--result_path", type=str, required=True, help="result file path") +parser.add_argument("--label_file", type=str, required=True, help="label file") +args = parser.parse_args() + +def get_top5_acc(top5_arg, gt_class): + sub_count = 0 + for top5, gt in zip(top5_arg, gt_class): + if gt in top5: + sub_count += 1 + return sub_count + +def read_label(label_file): + '''read label file''' + f = open(label_file, "r") + lines = f.readlines() + + img_label = {} + for line in lines: + img_id = line.split(":")[0] + label = line.split(":")[1] + img_label[img_id] = label + + return img_label + +def cal_acc(dataset, result_path, label_file): + '''cal acc function''' + img_label = read_label(label_file) + + img_tot = 0 + top1_correct = 0 + top5_correct = 0 + + files = os.listdir(result_path) + for file in files: + full_file_path = os.path.join(result_path, file) + if os.path.isfile(full_file_path): + result = np.fromfile(full_file_path, dtype=np.float32).reshape(1, 1000) + gt_classes = int(img_label[file[:-6]]) + + top1_output = np.argmax(result, (-1)) + top5_output = np.argsort(result)[:, -5:] + + t1_correct = np.equal(top1_output, gt_classes).sum() + top1_correct += t1_correct + top5_correct += get_top5_acc(top5_output, [gt_classes]) + img_tot += 1 + + results = [[top1_correct], [top5_correct], [img_tot]] + + results = np.array(results) + top1_correct = results[0, 0] + top5_correct = results[1, 0] + img_tot = results[2, 0] + acc1 = 100.0 * top1_correct / img_tot + acc5 = 100.0 * top5_correct / img_tot + print('after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'.format(top1_correct, img_tot, acc1)) + if dataset == 'imagenet': + print('after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'.format(top5_correct, img_tot, acc5)) + +if __name__ == "__main__": + cal_acc(args.dataset, args.result_path, args.label_file) diff --git a/research/cvtmodel/wide_resnet/scripts/run_infer_310.sh b/research/cvtmodel/wide_resnet/scripts/run_infer_310.sh new file mode 100644 index 0000000000000000000000000000000000000000..94595d3663f8f98fc7f0fd280d067c4996289bf5 --- /dev/null +++ b/research/cvtmodel/wide_resnet/scripts/run_infer_310.sh @@ -0,0 +1,106 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +if [[ $# -lt 4 || $# -gt 5 ]]; then + echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [LABEL_FILE] [DEVICE_ID] + DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero" +exit 1 +fi + +get_real_path(){ + if [ "${1:0:1}" == "/" ]; then + echo "$1" + else + echo "$(realpath -m $PWD/$1)" + fi +} + +model=$(get_real_path $1) +dataset=$2 +data_path=$(get_real_path $3) +label_file=$(get_real_path $4) + +device_id=0 + +if [ $# == 5 ]; then + device_id=$5 +fi + +echo $model +echo $dataset +echo $data_path +echo $label_file +echo $device_id + +export ASCEND_HOME=/usr/local/Ascend/ +if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then + export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH + export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH + export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe + export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp +else + export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH + export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH + export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH + export ASCEND_OPP_PATH=$ASCEND_HOME/opp +fi + +function compile_app() +{ + cd ../ascend310_infer || exit + if [ -f "Makefile" ]; then + make clean + fi + sh build.sh &> build.log + + if [ $? -ne 0 ]; then + echo "compile app code failed" + exit 1 + fi + cd - || exit +} + +function infer() +{ + if [ -d result_Files ]; then + rm -rf ./result_Files + fi + if [ -d time_Result ]; then + rm -rf ./time_Result + fi + mkdir result_Files + mkdir time_Result + ../ascend310_infer/out/main --model_path=$model --dataset=$dataset --dataset_path=$data_path --device_id=$device_id &> infer.log + + if [ $? -ne 0 ]; then + echo "execute inference failed" + exit 1 + fi +} + +function cal_acc() +{ + python ../postprocess.py --dataset=$dataset --label_file=$label_file --result_path=result_Files &> acc.log + if [ $? -ne 0 ]; then + echo "calculate accuracy failed" + exit 1 + fi +} + +compile_app +infer +cal_acc diff --git a/research/cvtmodel/wide_resnet/src/wide_resnet101_2.py b/research/cvtmodel/wide_resnet/src/wide_resnet101_2.py new file mode 100644 index 0000000000000000000000000000000000000000..08cbde609b9f8c7d0e76596c2d48d0198369edda --- /dev/null +++ b/research/cvtmodel/wide_resnet/src/wide_resnet101_2.py @@ -0,0 +1,576 @@ +import mindspore.ops as P +from mindspore import nn + + +class Module3(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, conv2d_0_kernel_size, conv2d_0_stride, + conv2d_0_padding, conv2d_0_pad_mode): + super(Module3, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=conv2d_0_kernel_size, + stride=conv2d_0_stride, + padding=conv2d_0_padding, + pad_mode=conv2d_0_pad_mode, + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + + def construct(self, x): + opt_conv2d_0 = self.conv2d_0(x) + opt_relu_1 = self.relu_1(opt_conv2d_0) + return opt_relu_1 + + +class Module8(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, module3_0_conv2d_0_in_channels, + module3_0_conv2d_0_out_channels, module3_0_conv2d_0_kernel_size, module3_0_conv2d_0_stride, + module3_0_conv2d_0_padding, module3_0_conv2d_0_pad_mode, module3_1_conv2d_0_in_channels, + module3_1_conv2d_0_out_channels, module3_1_conv2d_0_kernel_size, module3_1_conv2d_0_stride, + module3_1_conv2d_0_padding, module3_1_conv2d_0_pad_mode): + super(Module8, self).__init__() + self.module3_0 = Module3(conv2d_0_in_channels=module3_0_conv2d_0_in_channels, + conv2d_0_out_channels=module3_0_conv2d_0_out_channels, + conv2d_0_kernel_size=module3_0_conv2d_0_kernel_size, + conv2d_0_stride=module3_0_conv2d_0_stride, + conv2d_0_padding=module3_0_conv2d_0_padding, + conv2d_0_pad_mode=module3_0_conv2d_0_pad_mode) + self.module3_1 = Module3(conv2d_0_in_channels=module3_1_conv2d_0_in_channels, + conv2d_0_out_channels=module3_1_conv2d_0_out_channels, + conv2d_0_kernel_size=module3_1_conv2d_0_kernel_size, + conv2d_0_stride=module3_1_conv2d_0_stride, + conv2d_0_padding=module3_1_conv2d_0_padding, + conv2d_0_pad_mode=module3_1_conv2d_0_pad_mode) + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + + def construct(self, x): + module3_0_opt = self.module3_0(x) + module3_1_opt = self.module3_1(module3_0_opt) + opt_conv2d_0 = self.conv2d_0(module3_1_opt) + return opt_conv2d_0 + + +class Module0(nn.Cell): + def __init__(self, conv2d_0_in_channels, conv2d_0_out_channels, conv2d_2_in_channels, conv2d_2_out_channels, + conv2d_4_in_channels, conv2d_4_out_channels): + super(Module0, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=conv2d_0_in_channels, + out_channels=conv2d_0_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.conv2d_2 = nn.Conv2d(in_channels=conv2d_2_in_channels, + out_channels=conv2d_2_out_channels, + kernel_size=(3, 3), + stride=(1, 1), + padding=(1, 1, 1, 1), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_3 = nn.ReLU() + self.conv2d_4 = nn.Conv2d(in_channels=conv2d_4_in_channels, + out_channels=conv2d_4_out_channels, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_6 = nn.ReLU() + + def construct(self, x): + opt_conv2d_0 = self.conv2d_0(x) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_conv2d_2 = self.conv2d_2(opt_relu_1) + opt_relu_3 = self.relu_3(opt_conv2d_2) + opt_conv2d_4 = self.conv2d_4(opt_relu_3) + opt_add_5 = P.Add()(opt_conv2d_4, x) + opt_relu_6 = self.relu_6(opt_add_5) + return opt_relu_6 + + +class Module9(nn.Cell): + def __init__(self, module0_0_conv2d_0_in_channels, module0_0_conv2d_0_out_channels, module0_0_conv2d_2_in_channels, + module0_0_conv2d_2_out_channels, module0_0_conv2d_4_in_channels, module0_0_conv2d_4_out_channels, + module0_1_conv2d_0_in_channels, module0_1_conv2d_0_out_channels, module0_1_conv2d_2_in_channels, + module0_1_conv2d_2_out_channels, module0_1_conv2d_4_in_channels, module0_1_conv2d_4_out_channels): + super(Module9, self).__init__() + self.module0_0 = Module0(conv2d_0_in_channels=module0_0_conv2d_0_in_channels, + conv2d_0_out_channels=module0_0_conv2d_0_out_channels, + conv2d_2_in_channels=module0_0_conv2d_2_in_channels, + conv2d_2_out_channels=module0_0_conv2d_2_out_channels, + conv2d_4_in_channels=module0_0_conv2d_4_in_channels, + conv2d_4_out_channels=module0_0_conv2d_4_out_channels) + self.module0_1 = Module0(conv2d_0_in_channels=module0_1_conv2d_0_in_channels, + conv2d_0_out_channels=module0_1_conv2d_0_out_channels, + conv2d_2_in_channels=module0_1_conv2d_2_in_channels, + conv2d_2_out_channels=module0_1_conv2d_2_out_channels, + conv2d_4_in_channels=module0_1_conv2d_4_in_channels, + conv2d_4_out_channels=module0_1_conv2d_4_out_channels) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + module0_1_opt = self.module0_1(module0_0_opt) + return module0_1_opt + + +class Module13(nn.Cell): + def __init__(self, module0_0_conv2d_0_in_channels, module0_0_conv2d_0_out_channels, module0_0_conv2d_2_in_channels, + module0_0_conv2d_2_out_channels, module0_0_conv2d_4_in_channels, module0_0_conv2d_4_out_channels, + module0_1_conv2d_0_in_channels, module0_1_conv2d_0_out_channels, module0_1_conv2d_2_in_channels, + module0_1_conv2d_2_out_channels, module0_1_conv2d_4_in_channels, module0_1_conv2d_4_out_channels, + module0_2_conv2d_0_in_channels, module0_2_conv2d_0_out_channels, module0_2_conv2d_2_in_channels, + module0_2_conv2d_2_out_channels, module0_2_conv2d_4_in_channels, module0_2_conv2d_4_out_channels, + module0_3_conv2d_0_in_channels, module0_3_conv2d_0_out_channels, module0_3_conv2d_2_in_channels, + module0_3_conv2d_2_out_channels, module0_3_conv2d_4_in_channels, module0_3_conv2d_4_out_channels, + module0_4_conv2d_0_in_channels, module0_4_conv2d_0_out_channels, module0_4_conv2d_2_in_channels, + module0_4_conv2d_2_out_channels, module0_4_conv2d_4_in_channels, module0_4_conv2d_4_out_channels, + module0_5_conv2d_0_in_channels, module0_5_conv2d_0_out_channels, module0_5_conv2d_2_in_channels, + module0_5_conv2d_2_out_channels, module0_5_conv2d_4_in_channels, module0_5_conv2d_4_out_channels, + module0_6_conv2d_0_in_channels, module0_6_conv2d_0_out_channels, module0_6_conv2d_2_in_channels, + module0_6_conv2d_2_out_channels, module0_6_conv2d_4_in_channels, module0_6_conv2d_4_out_channels, + module0_7_conv2d_0_in_channels, module0_7_conv2d_0_out_channels, module0_7_conv2d_2_in_channels, + module0_7_conv2d_2_out_channels, module0_7_conv2d_4_in_channels, module0_7_conv2d_4_out_channels): + super(Module13, self).__init__() + self.module0_0 = Module0(conv2d_0_in_channels=module0_0_conv2d_0_in_channels, + conv2d_0_out_channels=module0_0_conv2d_0_out_channels, + conv2d_2_in_channels=module0_0_conv2d_2_in_channels, + conv2d_2_out_channels=module0_0_conv2d_2_out_channels, + conv2d_4_in_channels=module0_0_conv2d_4_in_channels, + conv2d_4_out_channels=module0_0_conv2d_4_out_channels) + self.module0_1 = Module0(conv2d_0_in_channels=module0_1_conv2d_0_in_channels, + conv2d_0_out_channels=module0_1_conv2d_0_out_channels, + conv2d_2_in_channels=module0_1_conv2d_2_in_channels, + conv2d_2_out_channels=module0_1_conv2d_2_out_channels, + conv2d_4_in_channels=module0_1_conv2d_4_in_channels, + conv2d_4_out_channels=module0_1_conv2d_4_out_channels) + self.module0_2 = Module0(conv2d_0_in_channels=module0_2_conv2d_0_in_channels, + conv2d_0_out_channels=module0_2_conv2d_0_out_channels, + conv2d_2_in_channels=module0_2_conv2d_2_in_channels, + conv2d_2_out_channels=module0_2_conv2d_2_out_channels, + conv2d_4_in_channels=module0_2_conv2d_4_in_channels, + conv2d_4_out_channels=module0_2_conv2d_4_out_channels) + self.module0_3 = Module0(conv2d_0_in_channels=module0_3_conv2d_0_in_channels, + conv2d_0_out_channels=module0_3_conv2d_0_out_channels, + conv2d_2_in_channels=module0_3_conv2d_2_in_channels, + conv2d_2_out_channels=module0_3_conv2d_2_out_channels, + conv2d_4_in_channels=module0_3_conv2d_4_in_channels, + conv2d_4_out_channels=module0_3_conv2d_4_out_channels) + self.module0_4 = Module0(conv2d_0_in_channels=module0_4_conv2d_0_in_channels, + conv2d_0_out_channels=module0_4_conv2d_0_out_channels, + conv2d_2_in_channels=module0_4_conv2d_2_in_channels, + conv2d_2_out_channels=module0_4_conv2d_2_out_channels, + conv2d_4_in_channels=module0_4_conv2d_4_in_channels, + conv2d_4_out_channels=module0_4_conv2d_4_out_channels) + self.module0_5 = Module0(conv2d_0_in_channels=module0_5_conv2d_0_in_channels, + conv2d_0_out_channels=module0_5_conv2d_0_out_channels, + conv2d_2_in_channels=module0_5_conv2d_2_in_channels, + conv2d_2_out_channels=module0_5_conv2d_2_out_channels, + conv2d_4_in_channels=module0_5_conv2d_4_in_channels, + conv2d_4_out_channels=module0_5_conv2d_4_out_channels) + self.module0_6 = Module0(conv2d_0_in_channels=module0_6_conv2d_0_in_channels, + conv2d_0_out_channels=module0_6_conv2d_0_out_channels, + conv2d_2_in_channels=module0_6_conv2d_2_in_channels, + conv2d_2_out_channels=module0_6_conv2d_2_out_channels, + conv2d_4_in_channels=module0_6_conv2d_4_in_channels, + conv2d_4_out_channels=module0_6_conv2d_4_out_channels) + self.module0_7 = Module0(conv2d_0_in_channels=module0_7_conv2d_0_in_channels, + conv2d_0_out_channels=module0_7_conv2d_0_out_channels, + conv2d_2_in_channels=module0_7_conv2d_2_in_channels, + conv2d_2_out_channels=module0_7_conv2d_2_out_channels, + conv2d_4_in_channels=module0_7_conv2d_4_in_channels, + conv2d_4_out_channels=module0_7_conv2d_4_out_channels) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + module0_1_opt = self.module0_1(module0_0_opt) + module0_2_opt = self.module0_2(module0_1_opt) + module0_3_opt = self.module0_3(module0_2_opt) + module0_4_opt = self.module0_4(module0_3_opt) + module0_5_opt = self.module0_5(module0_4_opt) + module0_6_opt = self.module0_6(module0_5_opt) + module0_7_opt = self.module0_7(module0_6_opt) + return module0_7_opt + + +class Module12(nn.Cell): + def __init__(self, module0_0_conv2d_0_in_channels, module0_0_conv2d_0_out_channels, module0_0_conv2d_2_in_channels, + module0_0_conv2d_2_out_channels, module0_0_conv2d_4_in_channels, module0_0_conv2d_4_out_channels, + module0_1_conv2d_0_in_channels, module0_1_conv2d_0_out_channels, module0_1_conv2d_2_in_channels, + module0_1_conv2d_2_out_channels, module0_1_conv2d_4_in_channels, module0_1_conv2d_4_out_channels, + module0_2_conv2d_0_in_channels, module0_2_conv2d_0_out_channels, module0_2_conv2d_2_in_channels, + module0_2_conv2d_2_out_channels, module0_2_conv2d_4_in_channels, module0_2_conv2d_4_out_channels, + module0_3_conv2d_0_in_channels, module0_3_conv2d_0_out_channels, module0_3_conv2d_2_in_channels, + module0_3_conv2d_2_out_channels, module0_3_conv2d_4_in_channels, module0_3_conv2d_4_out_channels): + super(Module12, self).__init__() + self.module0_0 = Module0(conv2d_0_in_channels=module0_0_conv2d_0_in_channels, + conv2d_0_out_channels=module0_0_conv2d_0_out_channels, + conv2d_2_in_channels=module0_0_conv2d_2_in_channels, + conv2d_2_out_channels=module0_0_conv2d_2_out_channels, + conv2d_4_in_channels=module0_0_conv2d_4_in_channels, + conv2d_4_out_channels=module0_0_conv2d_4_out_channels) + self.module0_1 = Module0(conv2d_0_in_channels=module0_1_conv2d_0_in_channels, + conv2d_0_out_channels=module0_1_conv2d_0_out_channels, + conv2d_2_in_channels=module0_1_conv2d_2_in_channels, + conv2d_2_out_channels=module0_1_conv2d_2_out_channels, + conv2d_4_in_channels=module0_1_conv2d_4_in_channels, + conv2d_4_out_channels=module0_1_conv2d_4_out_channels) + self.module0_2 = Module0(conv2d_0_in_channels=module0_2_conv2d_0_in_channels, + conv2d_0_out_channels=module0_2_conv2d_0_out_channels, + conv2d_2_in_channels=module0_2_conv2d_2_in_channels, + conv2d_2_out_channels=module0_2_conv2d_2_out_channels, + conv2d_4_in_channels=module0_2_conv2d_4_in_channels, + conv2d_4_out_channels=module0_2_conv2d_4_out_channels) + self.module0_3 = Module0(conv2d_0_in_channels=module0_3_conv2d_0_in_channels, + conv2d_0_out_channels=module0_3_conv2d_0_out_channels, + conv2d_2_in_channels=module0_3_conv2d_2_in_channels, + conv2d_2_out_channels=module0_3_conv2d_2_out_channels, + conv2d_4_in_channels=module0_3_conv2d_4_in_channels, + conv2d_4_out_channels=module0_3_conv2d_4_out_channels) + + def construct(self, x): + module0_0_opt = self.module0_0(x) + module0_1_opt = self.module0_1(module0_0_opt) + module0_2_opt = self.module0_2(module0_1_opt) + module0_3_opt = self.module0_3(module0_2_opt) + return module0_3_opt + + +class MainModel(nn.Cell): + def __init__(self): + super(MainModel, self).__init__() + self.conv2d_0 = nn.Conv2d(in_channels=3, + out_channels=64, + kernel_size=(7, 7), + stride=(2, 2), + padding=(3, 3, 3, 3), + pad_mode="pad", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_1 = nn.ReLU() + self.pad_maxpool2d_2 = nn.Pad(paddings=((0, 0), (0, 0), (1, 0), (1, 0))) + self.maxpool2d_2 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.module8_0 = Module8(conv2d_0_in_channels=128, + conv2d_0_out_channels=256, + module3_0_conv2d_0_in_channels=64, + module3_0_conv2d_0_out_channels=128, + module3_0_conv2d_0_kernel_size=(1, 1), + module3_0_conv2d_0_stride=(1, 1), + module3_0_conv2d_0_padding=0, + module3_0_conv2d_0_pad_mode="valid", + module3_1_conv2d_0_in_channels=128, + module3_1_conv2d_0_out_channels=128, + module3_1_conv2d_0_kernel_size=(3, 3), + module3_1_conv2d_0_stride=(1, 1), + module3_1_conv2d_0_padding=(1, 1, 1, 1), + module3_1_conv2d_0_pad_mode="pad") + self.conv2d_4 = nn.Conv2d(in_channels=64, + out_channels=256, + kernel_size=(1, 1), + stride=(1, 1), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_10 = nn.ReLU() + self.module9_0 = Module9(module0_0_conv2d_0_in_channels=256, + module0_0_conv2d_0_out_channels=128, + module0_0_conv2d_2_in_channels=128, + module0_0_conv2d_2_out_channels=128, + module0_0_conv2d_4_in_channels=128, + module0_0_conv2d_4_out_channels=256, + module0_1_conv2d_0_in_channels=256, + module0_1_conv2d_0_out_channels=128, + module0_1_conv2d_2_in_channels=128, + module0_1_conv2d_2_out_channels=128, + module0_1_conv2d_4_in_channels=128, + module0_1_conv2d_4_out_channels=256) + self.module8_1 = Module8(conv2d_0_in_channels=256, + conv2d_0_out_channels=512, + module3_0_conv2d_0_in_channels=256, + module3_0_conv2d_0_out_channels=256, + module3_0_conv2d_0_kernel_size=(1, 1), + module3_0_conv2d_0_stride=(1, 1), + module3_0_conv2d_0_padding=0, + module3_0_conv2d_0_pad_mode="valid", + module3_1_conv2d_0_in_channels=256, + module3_1_conv2d_0_out_channels=256, + module3_1_conv2d_0_kernel_size=(3, 3), + module3_1_conv2d_0_stride=(2, 2), + module3_1_conv2d_0_padding=(1, 1, 1, 1), + module3_1_conv2d_0_pad_mode="pad") + self.conv2d_26 = nn.Conv2d(in_channels=256, + out_channels=512, + kernel_size=(1, 1), + stride=(2, 2), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_32 = nn.ReLU() + self.module9_1 = Module9(module0_0_conv2d_0_in_channels=512, + module0_0_conv2d_0_out_channels=256, + module0_0_conv2d_2_in_channels=256, + module0_0_conv2d_2_out_channels=256, + module0_0_conv2d_4_in_channels=256, + module0_0_conv2d_4_out_channels=512, + module0_1_conv2d_0_in_channels=512, + module0_1_conv2d_0_out_channels=256, + module0_1_conv2d_2_in_channels=256, + module0_1_conv2d_2_out_channels=256, + module0_1_conv2d_4_in_channels=256, + module0_1_conv2d_4_out_channels=512) + self.module0_0 = Module0(conv2d_0_in_channels=512, + conv2d_0_out_channels=256, + conv2d_2_in_channels=256, + conv2d_2_out_channels=256, + conv2d_4_in_channels=256, + conv2d_4_out_channels=512) + self.module8_2 = Module8(conv2d_0_in_channels=512, + conv2d_0_out_channels=1024, + module3_0_conv2d_0_in_channels=512, + module3_0_conv2d_0_out_channels=512, + module3_0_conv2d_0_kernel_size=(1, 1), + module3_0_conv2d_0_stride=(1, 1), + module3_0_conv2d_0_padding=0, + module3_0_conv2d_0_pad_mode="valid", + module3_1_conv2d_0_in_channels=512, + module3_1_conv2d_0_out_channels=512, + module3_1_conv2d_0_kernel_size=(3, 3), + module3_1_conv2d_0_stride=(2, 2), + module3_1_conv2d_0_padding=(1, 1, 1, 1), + module3_1_conv2d_0_pad_mode="pad") + self.conv2d_55 = nn.Conv2d(in_channels=512, + out_channels=1024, + kernel_size=(1, 1), + stride=(2, 2), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_61 = nn.ReLU() + self.module13_0 = Module13(module0_0_conv2d_0_in_channels=1024, + module0_0_conv2d_0_out_channels=512, + module0_0_conv2d_2_in_channels=512, + module0_0_conv2d_2_out_channels=512, + module0_0_conv2d_4_in_channels=512, + module0_0_conv2d_4_out_channels=1024, + module0_1_conv2d_0_in_channels=1024, + module0_1_conv2d_0_out_channels=512, + module0_1_conv2d_2_in_channels=512, + module0_1_conv2d_2_out_channels=512, + module0_1_conv2d_4_in_channels=512, + module0_1_conv2d_4_out_channels=1024, + module0_2_conv2d_0_in_channels=1024, + module0_2_conv2d_0_out_channels=512, + module0_2_conv2d_2_in_channels=512, + module0_2_conv2d_2_out_channels=512, + module0_2_conv2d_4_in_channels=512, + module0_2_conv2d_4_out_channels=1024, + module0_3_conv2d_0_in_channels=1024, + module0_3_conv2d_0_out_channels=512, + module0_3_conv2d_2_in_channels=512, + module0_3_conv2d_2_out_channels=512, + module0_3_conv2d_4_in_channels=512, + module0_3_conv2d_4_out_channels=1024, + module0_4_conv2d_0_in_channels=1024, + module0_4_conv2d_0_out_channels=512, + module0_4_conv2d_2_in_channels=512, + module0_4_conv2d_2_out_channels=512, + module0_4_conv2d_4_in_channels=512, + module0_4_conv2d_4_out_channels=1024, + module0_5_conv2d_0_in_channels=1024, + module0_5_conv2d_0_out_channels=512, + module0_5_conv2d_2_in_channels=512, + module0_5_conv2d_2_out_channels=512, + module0_5_conv2d_4_in_channels=512, + module0_5_conv2d_4_out_channels=1024, + module0_6_conv2d_0_in_channels=1024, + module0_6_conv2d_0_out_channels=512, + module0_6_conv2d_2_in_channels=512, + module0_6_conv2d_2_out_channels=512, + module0_6_conv2d_4_in_channels=512, + module0_6_conv2d_4_out_channels=1024, + module0_7_conv2d_0_in_channels=1024, + module0_7_conv2d_0_out_channels=512, + module0_7_conv2d_2_in_channels=512, + module0_7_conv2d_2_out_channels=512, + module0_7_conv2d_4_in_channels=512, + module0_7_conv2d_4_out_channels=1024) + self.module13_1 = Module13(module0_0_conv2d_0_in_channels=1024, + module0_0_conv2d_0_out_channels=512, + module0_0_conv2d_2_in_channels=512, + module0_0_conv2d_2_out_channels=512, + module0_0_conv2d_4_in_channels=512, + module0_0_conv2d_4_out_channels=1024, + module0_1_conv2d_0_in_channels=1024, + module0_1_conv2d_0_out_channels=512, + module0_1_conv2d_2_in_channels=512, + module0_1_conv2d_2_out_channels=512, + module0_1_conv2d_4_in_channels=512, + module0_1_conv2d_4_out_channels=1024, + module0_2_conv2d_0_in_channels=1024, + module0_2_conv2d_0_out_channels=512, + module0_2_conv2d_2_in_channels=512, + module0_2_conv2d_2_out_channels=512, + module0_2_conv2d_4_in_channels=512, + module0_2_conv2d_4_out_channels=1024, + module0_3_conv2d_0_in_channels=1024, + module0_3_conv2d_0_out_channels=512, + module0_3_conv2d_2_in_channels=512, + module0_3_conv2d_2_out_channels=512, + module0_3_conv2d_4_in_channels=512, + module0_3_conv2d_4_out_channels=1024, + module0_4_conv2d_0_in_channels=1024, + module0_4_conv2d_0_out_channels=512, + module0_4_conv2d_2_in_channels=512, + module0_4_conv2d_2_out_channels=512, + module0_4_conv2d_4_in_channels=512, + module0_4_conv2d_4_out_channels=1024, + module0_5_conv2d_0_in_channels=1024, + module0_5_conv2d_0_out_channels=512, + module0_5_conv2d_2_in_channels=512, + module0_5_conv2d_2_out_channels=512, + module0_5_conv2d_4_in_channels=512, + module0_5_conv2d_4_out_channels=1024, + module0_6_conv2d_0_in_channels=1024, + module0_6_conv2d_0_out_channels=512, + module0_6_conv2d_2_in_channels=512, + module0_6_conv2d_2_out_channels=512, + module0_6_conv2d_4_in_channels=512, + module0_6_conv2d_4_out_channels=1024, + module0_7_conv2d_0_in_channels=1024, + module0_7_conv2d_0_out_channels=512, + module0_7_conv2d_2_in_channels=512, + module0_7_conv2d_2_out_channels=512, + module0_7_conv2d_4_in_channels=512, + module0_7_conv2d_4_out_channels=1024) + self.module12_0 = Module12(module0_0_conv2d_0_in_channels=1024, + module0_0_conv2d_0_out_channels=512, + module0_0_conv2d_2_in_channels=512, + module0_0_conv2d_2_out_channels=512, + module0_0_conv2d_4_in_channels=512, + module0_0_conv2d_4_out_channels=1024, + module0_1_conv2d_0_in_channels=1024, + module0_1_conv2d_0_out_channels=512, + module0_1_conv2d_2_in_channels=512, + module0_1_conv2d_2_out_channels=512, + module0_1_conv2d_4_in_channels=512, + module0_1_conv2d_4_out_channels=1024, + module0_2_conv2d_0_in_channels=1024, + module0_2_conv2d_0_out_channels=512, + module0_2_conv2d_2_in_channels=512, + module0_2_conv2d_2_out_channels=512, + module0_2_conv2d_4_in_channels=512, + module0_2_conv2d_4_out_channels=1024, + module0_3_conv2d_0_in_channels=1024, + module0_3_conv2d_0_out_channels=512, + module0_3_conv2d_2_in_channels=512, + module0_3_conv2d_2_out_channels=512, + module0_3_conv2d_4_in_channels=512, + module0_3_conv2d_4_out_channels=1024) + self.module9_2 = Module9(module0_0_conv2d_0_in_channels=1024, + module0_0_conv2d_0_out_channels=512, + module0_0_conv2d_2_in_channels=512, + module0_0_conv2d_2_out_channels=512, + module0_0_conv2d_4_in_channels=512, + module0_0_conv2d_4_out_channels=1024, + module0_1_conv2d_0_in_channels=1024, + module0_1_conv2d_0_out_channels=512, + module0_1_conv2d_2_in_channels=512, + module0_1_conv2d_2_out_channels=512, + module0_1_conv2d_4_in_channels=512, + module0_1_conv2d_4_out_channels=1024) + self.module8_3 = Module8(conv2d_0_in_channels=1024, + conv2d_0_out_channels=2048, + module3_0_conv2d_0_in_channels=1024, + module3_0_conv2d_0_out_channels=1024, + module3_0_conv2d_0_kernel_size=(1, 1), + module3_0_conv2d_0_stride=(1, 1), + module3_0_conv2d_0_padding=0, + module3_0_conv2d_0_pad_mode="valid", + module3_1_conv2d_0_in_channels=1024, + module3_1_conv2d_0_out_channels=1024, + module3_1_conv2d_0_kernel_size=(3, 3), + module3_1_conv2d_0_stride=(2, 2), + module3_1_conv2d_0_padding=(1, 1, 1, 1), + module3_1_conv2d_0_pad_mode="pad") + self.conv2d_217 = nn.Conv2d(in_channels=1024, + out_channels=2048, + kernel_size=(1, 1), + stride=(2, 2), + padding=0, + pad_mode="valid", + dilation=(1, 1), + group=1, + has_bias=True) + self.relu_223 = nn.ReLU() + self.module9_3 = Module9(module0_0_conv2d_0_in_channels=2048, + module0_0_conv2d_0_out_channels=1024, + module0_0_conv2d_2_in_channels=1024, + module0_0_conv2d_2_out_channels=1024, + module0_0_conv2d_4_in_channels=1024, + module0_0_conv2d_4_out_channels=2048, + module0_1_conv2d_0_in_channels=2048, + module0_1_conv2d_0_out_channels=1024, + module0_1_conv2d_2_in_channels=1024, + module0_1_conv2d_2_out_channels=1024, + module0_1_conv2d_4_in_channels=1024, + module0_1_conv2d_4_out_channels=2048) + self.avgpool2d_238 = nn.AvgPool2d(kernel_size=(7, 7)) + self.flatten_239 = nn.Flatten() + self.dense_240 = nn.Dense(in_channels=2048, out_channels=1000, has_bias=True) + + def construct(self, input_1): + opt_conv2d_0 = self.conv2d_0(input_1) + opt_relu_1 = self.relu_1(opt_conv2d_0) + opt_maxpool2d_2 = self.pad_maxpool2d_2(opt_relu_1) + opt_maxpool2d_2 = self.maxpool2d_2(opt_maxpool2d_2) + module8_0_opt = self.module8_0(opt_maxpool2d_2) + opt_conv2d_4 = self.conv2d_4(opt_maxpool2d_2) + opt_add_9 = P.Add()(module8_0_opt, opt_conv2d_4) + opt_relu_10 = self.relu_10(opt_add_9) + module9_0_opt = self.module9_0(opt_relu_10) + module8_1_opt = self.module8_1(module9_0_opt) + opt_conv2d_26 = self.conv2d_26(module9_0_opt) + opt_add_31 = P.Add()(module8_1_opt, opt_conv2d_26) + opt_relu_32 = self.relu_32(opt_add_31) + module9_1_opt = self.module9_1(opt_relu_32) + module0_0_opt = self.module0_0(module9_1_opt) + module8_2_opt = self.module8_2(module0_0_opt) + opt_conv2d_55 = self.conv2d_55(module0_0_opt) + opt_add_60 = P.Add()(module8_2_opt, opt_conv2d_55) + opt_relu_61 = self.relu_61(opt_add_60) + module13_0_opt = self.module13_0(opt_relu_61) + module13_1_opt = self.module13_1(module13_0_opt) + module12_0_opt = self.module12_0(module13_1_opt) + module9_2_opt = self.module9_2(module12_0_opt) + module8_3_opt = self.module8_3(module9_2_opt) + opt_conv2d_217 = self.conv2d_217(module9_2_opt) + opt_add_222 = P.Add()(module8_3_opt, opt_conv2d_217) + opt_relu_223 = self.relu_223(opt_add_222) + module9_3_opt = self.module9_3(opt_relu_223) + opt_avgpool2d_238 = self.avgpool2d_238(module9_3_opt) + opt_flatten_239 = self.flatten_239(opt_avgpool2d_238) + opt_dense_240 = self.dense_240(opt_flatten_239) + return opt_dense_240