diff --git a/official/recommend/deepfm/README.md b/official/recommend/deepfm/README.md index 33d68b30cd17021a1dc94077aac373342e14239e..3f40b8c362dd20471fe2cc9251ddfb0750c6b3f5 100644 --- a/official/recommend/deepfm/README.md +++ b/official/recommend/deepfm/README.md @@ -99,8 +99,6 @@ After installing MindSpore via the official website, you can start training and - running on GPU - For running on GPU, please change `device_target` from `Ascend` to `GPU` in configuration file src/config.py - ```shell # run training example python train.py \ @@ -112,7 +110,7 @@ After installing MindSpore via the official website, you can start training and --do_eval=True > ms_log/output.log 2>&1 & # run distributed training example - bash scripts/run_distribute_train.sh 8 /dataset_path + bash scripts/run_distribute_train_gpu.sh 8 /dataset_path # run evaluation example python eval.py \ @@ -260,11 +258,17 @@ After installing MindSpore via the official website, you can start training and ├─run_distribute_train_gpu.sh # launch distributed training(8p) in GPU └─run_eval.sh # launch evaluating in Ascend or GPU ├─src + ├─model_utils + ├─__init__.py + ├─config.py + ├─device_target.py + ├─local_adapter.py + └─moxing_adapter.py ├─__init__.py # python init file - ├─config.py # parameter configuration ├─callback.py # define callback function ├─deepfm.py # deepfm network ├─dataset.py # create dataset for deepfm + └─preprocess_data.py # data preprocess ├─eval.py # eval net └─train.py # train net ``` diff --git a/official/recommend/deepfm/README_CN.md b/official/recommend/deepfm/README_CN.md index 3980342c0ac4889295d1568a18d2d01c8a2f9280..93588857d6fbbd72e26d7684ce296d6a7747f89c 100644 --- a/official/recommend/deepfm/README_CN.md +++ b/official/recommend/deepfm/README_CN.md @@ -102,8 +102,6 @@ FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从 - 在GPU上运行 - 如在GPU上运行,请配置文件src/config.py中的`device_target`从 `Ascend`改为`GPU`。 - ```训练示例 # 运行训练示例 python train.py \ @@ -115,7 +113,7 @@ FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从 --do_eval=True > ms_log/output.log 2>&1 & # 运行分布式训练示例 - bash scripts/run_distribute_train.sh 8 /dataset_path + bash scripts/run_distribute_train_gpu.sh 8 /dataset_path # 运行评估示例 python eval.py \ @@ -244,11 +242,17 @@ FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从 ├─run_distribute_train_gpu.sh # 在GPU上进行分布式训练(8卡) └─run_eval.sh # 在Ascend处理器或GPU上进行评估 ├─src + ├─model_utils + ├─__init__.py + ├─config.py + ├─device_target.py + ├─local_adapter.py + └─moxing_adapter.py ├─__init__.py # python init文件 - ├─config.py # 参数配置 ├─callback.py # 定义回调功能 ├─deepfm.py # DeepFM网络 ├─dataset.py # 创建DeepFM数据集 + └─preprocess_data.py # 数据预处理 ├─eval.py # 评估网络 └─train.py # 训练网络 ``` @@ -295,7 +299,7 @@ FM和深度学习部分拥有相同的输入原样特征向量,让DeepFM能从 - Ascend处理器上运行 ```运行命令 - python trin.py \ + python train.py \ --dataset_path='dataset/train' \ --ckpt_path='./checkpoint' \ --eval_file_name='auc.log' \