diff --git a/.jenkins/check/config/filter_cpplint.txt b/.jenkins/check/config/filter_cpplint.txt index f811161ea4789bfa5e6a6357e760dab7cec4d7c4..09420b5198f640e75374a91b860fda1cd5f3451a 100644 --- a/.jenkins/check/config/filter_cpplint.txt +++ b/.jenkins/check/config/filter_cpplint.txt @@ -45,3 +45,6 @@ "models/official/cv/squeezenet/infer/mxbase/src/squeezenetResidual.h" "runtime/references" "models/official/cv/squeezenet/infer/mxbase/src/main.cpp" "runtime/references" +"models/official/cv/posenet/infer/mxbase/src/Posenet.h" "runtime/references" +"models/official/cv/posenet/infer/mxbase/src/Posenet.cpp" "runtime/references" +"models/official/cv/posenet/infer/mxbase/src/main.cpp" "runtime/references" \ No newline at end of file diff --git a/official/cv/posenet/infer/README.md b/official/cv/posenet/infer/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a8d1dbccc0b686461932343270e37e921c18b223 --- /dev/null +++ b/official/cv/posenet/infer/README.md @@ -0,0 +1,117 @@ +# 鎺ㄧ悊 + +## 妯″瀷杞崲 + +1. 鍑嗗妯″瀷鏂囦欢銆� + + AIR妯″瀷涓哄湪鏄囪吘910鏈嶅姟鍣ㄤ笂瀵煎嚭鐨勬ā鍨嬶紝瀵煎嚭AIR妯″瀷鐨勮缁嗘楠よ鍙傝鈥滄ā鍨嬭缁冣€濄€� + +2. 鎵ц浠ヤ笅鍛戒护锛岃繘琛屾ā鍨嬭浆鎹€€� + + 杞崲璇︾粏淇℃伅鍙煡鐪嬭浆鎹㈣剼鏈拰瀵瑰簲鐨凙IPP閰嶇疆鏂囦欢锛岃浆鎹㈠懡浠ゅ涓嬨€� + + **bash convert/convert_om.sh** *air_path* *aipp_cfg_path* *om_path* + + | 鍙傛暟 | 璇存槑 | + | ------------- | ------------------------------------------------- | + | air_path | 杞崲鑴氭湰AIR鏂囦欢璺緞銆� | + | aipp_cfg_path | AIPP閰嶇疆鏂囦欢璺緞銆� | + | om_path | 鐢熸垚鐨凮M鏂囦欢鍚嶏紝杞崲鑴氭湰浼氬湪姝ゅ熀纭€涓婃坊鍔�.om鍚庣紑銆� | + + 杞崲绀轰緥濡備笅鎵€绀恒€� + + ```bash + + # 杞崲妯″瀷 + bash convert/convert_om.sh xxx/posenet.air convert/aipp.cfg posenet + + ``` + +3. 灏嗚浆鎹㈠ソ鐨勬ā鍨嬬Щ鍔ㄥ埌瀛樻斁妯″瀷鐨勭洰褰曚笅銆� + + ```bash + + # 绉诲姩妯″瀷 + mv posenet.om data/model/ + + ``` + +## mxBase鎺ㄧ悊 + +1. 缂栬瘧宸ョ▼銆� + + 鐩墠mxBase鎺ㄧ悊浠呭疄鐜颁簡鍩轰簬DVPP鏂瑰紡鎺ㄧ悊銆� + + ```bash + + cd xxx/infer/mxbase + bash build.sh + + ``` + +2. 锛堝彲閫夛級淇敼閰嶇疆鏂囦欢銆� + + 鍙牴鎹疄闄呮儏鍐典慨鏀癸紝閰嶇疆鏂囦欢浣嶄簬鈥渕xbase/src/main.cpp鈥濅腑锛屽彲淇敼鍙傛暟濡備笅銆� + +```c++ + +namespace { +const uint32_t DEVICE_ID = 0; // 鎸囧畾璁惧ID锛岄粯璁や负0,鍙牴鎹疄闄呮儏鍐佃皟鏁� +std::string RESULT_PATH = "../data/mx_result/"; // 鎺ㄧ悊缁撴灉淇濆瓨璺緞 +} // namespace +... + +``` + +3. 杩愯鎺ㄧ悊鏈嶅姟銆� + + 杩愯鎺ㄧ悊鏈嶅姟锛堢‘淇濅綘鐨勮緭鍑鸿矾寰勫瓨鍦紝鍚﹀垯浼氭姤閿欙級銆� + **./build/midas_mindspore** *om_path* *img_path* *dataset_name* + | 鍙傛暟 | 璇存槑 | + | ---------- | ------------------------------ | + | om_path | om瀛樻斁璺緞銆傚锛氣€�../data/model/posenet.om鈥濄€� | + | img_path | 鎺ㄧ悊鍥剧墖璺緞銆傚锛氣€�../dataset/KingsCollege/鈥濄€� | + | dataset_name | 鎺ㄧ悊鏁版嵁闆嗗悕绉般€傚锛氣€渟eq2鈥濄€� | + +4. 瑙傚療缁撴灉銆� + 鎺ㄧ悊缁撴灉浠in鏍煎紡淇濆瓨锛岃矾寰勪负鈥�./result_Files/鈥�. + +## MindX SDK鎺ㄧ悊 + +1. 锛堝彲閫夛級淇敼閰嶇疆鏂囦欢銆� + + 1. 鍙牴鎹疄闄呮儏鍐典慨鏀筽ipeline鏂囦欢銆� + + ```python + + 鈹溾攢鈹€ config + 鈹� 鈹溾攢鈹€ config.py + 鈹� 鈹斺攢鈹€ posenet.pipeline # PIPELINE鏂囦欢 + + ``` + +2. 妯″瀷鎺ㄧ悊銆� + + 1. 鎵ц鎺ㄧ悊銆� + + 鍒囨崲鍒皊dk鐩綍涓嬶紝鎵ц鎺ㄧ悊鑴氭湰銆� + **python3.7 main.py** *--img_path* + | 鍙傛暟 | 璇存槑 | + | ----------- | ------------------------------------- | + | img_path | 鎺ㄧ悊鍥剧墖璺緞銆傚锛氣€�../dataset/KingsCollege鈥濄€� | + +3. 鎵ц绮惧害娴嬭瘯銆� + 鎺ㄧ悊绮惧害鑴氭湰瀛樻斁鍦�"sdk/eval"鐩綍涓嬨€備繚瀛樹负acc.log鏂囦欢,鑴氭湰鎺ュ彈1涓弬鏁帮紝渚濇鏄暟鎹泦璺緞銆傝剼鏈ず渚嬪涓嬶細 + + ```python + python eval_by_sdk.py --result_path ../infer_result >acc.log + ``` + +4. 鏌ョ湅鎬ц兘缁撴灉銆� + 鎬ц兘缁撴灉濡備笅锛� + + ```bash + + Median error 1.8816218573685832 m and 4.192690626738049 degrees. + + ``` diff --git a/official/cv/posenet/infer/convert/aipp.cfg b/official/cv/posenet/infer/convert/aipp.cfg new file mode 100644 index 0000000000000000000000000000000000000000..7a64c181d5b82bba102eeecab023a9cff961647a --- /dev/null +++ b/official/cv/posenet/infer/convert/aipp.cfg @@ -0,0 +1,39 @@ +aipp_op { + aipp_mode : static + input_format : RGB888_U8 + related_input_rank : 0 + + src_image_size_w: 224 + src_image_size_h: 456 + + crop: true + load_start_pos_w: 0 + load_start_pos_h: 116 + crop_size_w: 224 + crop_size_h: 224 + + csc_switch : false + rbuv_swap_switch : true + matrix_r0c0 : 256 + matrix_r0c1 : 0 + matrix_r0c2 : 359 + matrix_r1c0 : 256 + matrix_r1c1 : -88 + matrix_r1c2 : -183 + matrix_r2c0 : 256 + matrix_r2c1 : 454 + matrix_r2c2 : 0 + input_bias_0 : 0 + input_bias_1 : 128 + input_bias_2 : 128 + + mean_chn_0 : 0 + mean_chn_1 : 0 + mean_chn_2 : 0 + min_chn_0 : 123.675 + min_chn_1 : 116.28 + min_chn_2 : 103.53 + var_reci_chn_0 : 0.0171247538316637 + var_reci_chn_1 : 0.0175070028011204 + var_reci_chn_2 : 0.0174291938997821 +} diff --git a/official/cv/posenet/infer/convert/convert_om.sh b/official/cv/posenet/infer/convert/convert_om.sh new file mode 100644 index 0000000000000000000000000000000000000000..6848e24222705cedb478e68da58169f080ecfd9a --- /dev/null +++ b/official/cv/posenet/infer/convert/convert_om.sh @@ -0,0 +1,45 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +# The number of parameters must be 3. +if [ $# -ne 3 ] +then + echo "Wrong parameter format." + echo "Usage:" + echo " bash $0 [INPUT_AIR_PATH] [AIPP_PATH] [OUTPUT_OM_PATH_NAME]" + echo "Example: " + echo " bash convert_om.sh xxx.air ./aipp.cfg xx" + + exit 1 +fi + +# The model path to be converted +model_path=$1 +# The Aipp configuration file path +aipp_cfg_file=$2 +# The name of the generated model +output_model_name=$3 + +atc \ +--model=$model_path \ +--framework=1 \ +--output=$output_model_name \ +--input_format=NCHW \ +--input_shape="x:1,3,224,224" \ +--enable_small_channel=1 \ +--log=error \ +--soc_version=Ascend310 \ +--insert_op_conf=$aipp_cfg_file diff --git a/official/cv/posenet/infer/data/config/config.py b/official/cv/posenet/infer/data/config/config.py new file mode 100644 index 0000000000000000000000000000000000000000..e8d5a44bc3b9df2a3f90c6e1ae62c9a3534b8d72 --- /dev/null +++ b/official/cv/posenet/infer/data/config/config.py @@ -0,0 +1,25 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + + +STREAM_NAME = "im_posenet" +MODEL_WIDTH = 224 +MODEL_HEIGHT = 224 + +INFER_TIMEOUT = 100000 + +TENSOR_DTYPE_FLOAT32 = 0 +TENSOR_DTYPE_FLOAT16 = 1 +TENSOR_DTYPE_INT8 = 2 diff --git a/official/cv/posenet/infer/data/config/posenet.pipeline b/official/cv/posenet/infer/data/config/posenet.pipeline new file mode 100644 index 0000000000000000000000000000000000000000..5b6dc8faeb047688ce705f10eae1df972f0976d4 --- /dev/null +++ b/official/cv/posenet/infer/data/config/posenet.pipeline @@ -0,0 +1,44 @@ +{ + "im_posenet": { + "stream_config": { + "deviceId": "0" + }, + "appsrc0": { + "props": { + "blocksize": "409600" + }, + "factory": "appsrc", + "next": "mxpi_imageresize0" + }, + "mxpi_imageresize0": { + "props": { + "dataSource": "appsrc0", + "handleMethod": "opencv", + "resizeType": "Resizer_Stretch", + "resizeHeight": "456", + "resizeWidth": "224" + }, + "factory": "mxpi_imageresize", + "next": "mxpi_modelinfer0" + }, + "mxpi_modelinfer0": { + "props": { + "dataSource": "mxpi_imageresize0", + "modelPath": "../convert/posenet.om", + "outputDeviceId": "-1" + }, + "factory": "mxpi_modelinfer", + "next": "mxpi_dataserialize0" + }, + "mxpi_dataserialize0": { + "props": { + "outputDataKeys": "mxpi_modelinfer0" + }, + "factory": "mxpi_dataserialize", + "next": "appsink0" + }, + "appsink0": { + "factory": "appsink" + } + } +} diff --git a/official/cv/posenet/infer/dataset_test.txt b/official/cv/posenet/infer/dataset_test.txt new file mode 100644 index 0000000000000000000000000000000000000000..37128eb31b5bc1cd30e529737feceb53725b81dd --- /dev/null +++ b/official/cv/posenet/infer/dataset_test.txt @@ -0,0 +1,346 @@ +Visual Landmark Dataset V1 +ImageFile, Camera Position [X Y Z W P Q R] + +seq7/frame00030.png -20.134839 -16.641770 1.735459 0.672315 0.574745 -0.296687 0.360053 +seq7/frame00029.png -20.932895 -16.398778 1.587640 0.649817 0.579078 -0.314630 0.378702 +seq7/frame00032.png -18.625600 -17.393665 1.836093 0.658770 0.575333 -0.314400 0.369009 +seq7/frame00033.png -17.857495 -17.568780 1.790984 0.656993 0.584342 -0.320180 0.352689 +seq7/frame00034.png -17.040426 -17.714711 1.846034 0.657814 0.577350 -0.331544 0.352173 +seq7/frame00035.png -16.414970 -18.002380 1.733040 0.665271 0.590037 -0.314774 0.331945 +seq7/frame00028.png -21.519864 -15.970470 1.733840 0.638432 0.556592 -0.337607 0.410649 +seq7/frame00027.png -22.258832 -15.582319 1.699754 0.630068 0.565083 -0.346911 0.404163 +seq7/frame00031.png -19.509803 -17.016859 1.828394 0.680741 0.591615 -0.263813 0.342030 +seq7/frame00036.png -15.492117 -18.038837 2.012505 0.676508 0.580960 -0.310246 0.329500 +seq7/frame00037.png -14.823916 -18.303939 1.743378 0.685468 0.575526 -0.292651 0.336540 +seq7/frame00038.png -13.902669 -18.223222 1.869704 0.676583 0.571875 -0.308713 0.346252 +seq7/frame00039.png -13.182436 -18.442966 1.724784 0.678307 0.569025 -0.308146 0.348075 +seq7/frame00040.png -12.339218 -18.478848 1.774631 0.677755 0.562410 -0.318602 0.350479 +seq7/frame00041.png -11.531299 -18.548329 1.807577 0.685505 0.565523 -0.301249 0.345710 +seq7/frame00042.png -10.703305 -18.439226 1.876607 0.677126 0.569889 -0.305359 0.351403 +seq7/frame00043.png -9.931183 -18.680199 1.687524 0.690301 0.581122 -0.291632 0.317383 +seq7/frame00044.png -9.085261 -18.609865 1.823413 0.692639 0.575331 -0.284477 0.329117 +seq7/frame00045.png -8.413352 -18.817093 1.798918 0.708845 0.584995 -0.259047 0.297008 +seq7/frame00046.png -7.603774 -18.817994 1.954586 0.717915 0.575522 -0.253223 0.298750 +seq7/frame00047.png -6.843852 -19.194916 1.752180 0.718287 0.580690 -0.242047 0.297111 +seq7/frame00048.png -6.092491 -19.389024 1.980602 0.727145 0.579574 -0.234742 0.283285 +seq7/frame00049.png -5.386179 -19.751707 1.851691 0.723023 0.592302 -0.224914 0.275372 +seq7/frame00050.png -4.598479 -20.011251 1.890012 0.725292 0.578877 -0.241972 0.283376 +seq7/frame00051.png -3.963772 -20.312341 1.893778 0.723698 0.593926 -0.232298 0.263724 +seq7/frame00052.png -3.253335 -20.480189 1.889798 0.724990 0.593836 -0.234774 0.258128 +seq7/frame00053.png -2.470283 -20.774158 1.759759 0.736172 0.593938 -0.214720 0.243276 +seq7/frame00026.png -22.980050 -15.229048 1.661614 0.610755 0.549177 -0.377694 0.427469 +seq7/frame00025.png -23.660958 -14.852443 1.744996 0.627253 0.558269 -0.348565 0.416403 +seq7/frame00054.png -1.910129 -20.862950 1.822718 0.749814 0.593862 -0.189459 0.221839 +seq7/frame00055.png -1.131067 -21.084283 1.874709 0.744780 0.596975 -0.189060 0.230607 +seq7/frame00056.png -0.318291 -21.044916 1.979469 0.742911 0.603992 -0.177733 0.227349 +seq7/frame00057.png 0.442729 -21.277574 1.786215 0.740726 0.599125 -0.202078 0.227020 +seq7/frame00058.png 1.329111 -21.285416 1.849226 0.744088 0.599272 -0.205412 0.212159 +seq7/frame00059.png 2.011176 -21.496994 1.749186 0.742240 0.612652 -0.185565 0.198248 +seq7/frame00060.png 2.763441 -21.570304 1.823128 0.736954 0.620389 -0.188534 0.190975 +seq7/frame00061.png 3.512889 -21.796686 1.668700 0.743539 0.606749 -0.184085 0.212409 +seq7/frame00062.png 4.324028 -21.996924 1.791973 0.735588 0.620108 -0.187697 0.197852 +seq7/frame00063.png 5.062083 -22.135850 1.807266 0.732778 0.618931 -0.195359 0.204442 +seq7/frame00064.png 5.871245 -22.145514 1.906262 0.740236 0.618086 -0.170983 0.201954 +seq7/frame00065.png 6.623529 -22.285303 1.907085 0.748097 0.608516 -0.179827 0.194219 +seq7/frame00066.png 7.480523 -22.373368 1.730820 0.765808 0.598968 -0.170964 0.159832 +seq7/frame00067.png 8.198709 -22.460965 1.748254 0.764411 0.608538 -0.152823 0.148331 +seq7/frame00068.png 8.920337 -22.738723 1.834570 0.769459 0.613496 -0.129266 0.121845 +seq7/frame00069.png 9.711602 -22.799802 1.608074 0.781506 0.608808 -0.097772 0.095087 +seq7/frame00070.png 10.233350 -23.024696 1.862208 0.777161 0.624425 -0.064681 0.043936 +seq7/frame00071.png 11.137815 -23.263750 1.980607 0.777863 0.624057 -0.055555 0.048954 +seq7/frame00072.png 11.915640 -23.576071 1.714673 0.776329 0.628560 -0.037820 0.028179 +seq7/frame00073.png 12.608373 -23.747977 1.845003 0.777898 0.627975 -0.021355 0.008143 +seq7/frame00074.png 13.236864 -24.132282 1.828876 0.769271 0.637893 -0.030718 0.019230 +seq7/frame00075.png 13.727763 -24.404897 2.025082 0.777170 0.628241 -0.034767 -0.010528 +seq7/frame00076.png 14.628859 -24.777264 1.881960 0.762735 0.645918 -0.031750 0.004187 +seq7/frame00077.png 15.161935 -25.064914 2.094405 0.769715 0.637865 -0.023526 0.010625 +seq7/frame00078.png 15.885105 -25.527937 1.877668 0.776165 0.630256 0.009150 -0.016152 +seq7/frame00079.png 16.542913 -25.732379 2.042813 0.788732 0.614613 -0.001659 0.012234 +seq7/frame00081.png 17.877780 -26.056916 1.943285 0.772265 0.634455 0.032078 -0.006607 +seq7/frame00080.png 17.202593 -25.964246 1.917686 0.775751 0.629480 0.041409 -0.015838 +seq7/frame00082.png 18.804973 -26.229792 1.945266 0.767357 0.638709 0.054500 -0.015585 +seq7/frame00083.png 19.584452 -26.324690 1.993557 0.766080 0.633166 0.085784 -0.069741 +seq7/frame00085.png 21.019635 -26.439089 1.905365 0.772953 0.624955 0.078520 -0.076218 +seq7/frame00084.png 20.284757 -26.554089 1.704921 0.761300 0.635009 0.103977 -0.079835 +seq2/frame00060.png -12.960270 -17.745061 1.905141 0.665089 0.638548 -0.267225 0.280186 +seq2/frame00059.png -10.964422 -18.003095 1.948263 0.667120 0.654447 -0.240937 0.261915 +seq2/frame00058.png -9.017906 -18.339121 1.861857 0.687444 0.641992 -0.225948 0.253405 +seq2/frame00061.png -14.954063 -17.336136 1.834820 0.660323 0.620394 -0.285394 0.312465 +seq2/frame00057.png -7.087590 -18.692583 2.015063 0.681510 0.634720 -0.246317 0.268332 +seq7/frame00086.png 21.843061 -26.318040 1.971262 0.771946 0.632664 0.041653 -0.045845 +seq7/frame00087.png 22.719980 -26.110785 2.017998 0.776274 0.627766 0.050053 -0.028332 +seq7/frame00089.png 24.010295 -26.440990 2.054388 0.776831 0.626232 0.038133 -0.053971 +seq7/frame00024.png -24.710930 -14.667284 1.646102 0.643159 0.521205 -0.342827 0.444029 +seq7/frame00023.png -25.306145 -14.080827 1.784188 0.672492 0.547897 -0.299737 0.397141 +seq7/frame00022.png -26.069780 -13.883237 1.650105 0.676209 0.538876 -0.295872 0.405973 +seq7/frame00021.png -26.819517 -13.747240 1.462271 0.666445 0.558229 -0.303743 0.389836 +seq7/frame00020.png -27.572461 -13.690306 1.494322 0.653788 0.532517 -0.336450 0.419270 +seq7/frame00019.png -28.463042 -13.666061 1.594805 0.664652 0.545069 -0.315639 0.401883 +seq7/frame00018.png -29.269544 -13.728495 1.594069 0.665765 0.545036 -0.315019 0.400569 +seq7/frame00017.png -29.845609 -13.873187 1.498556 0.658673 0.561319 -0.310940 0.392922 +seq7/frame00016.png -30.613969 -14.003083 1.596305 0.667217 0.535779 -0.325913 0.401924 +seq7/frame00015.png -31.415423 -14.009665 1.546501 0.674922 0.548503 -0.315396 0.379671 +seq7/frame00014.png -32.151277 -14.286741 1.375209 0.655395 0.538127 -0.339799 0.406712 +seq7/frame00013.png -32.903157 -14.548988 1.464914 0.654342 0.541226 -0.338489 0.405383 +seq7/frame00012.png -33.518579 -14.645796 1.648173 0.656966 0.531542 -0.340899 0.411882 +seq7/frame00011.png -34.187139 -14.773166 1.807015 0.652495 0.550711 -0.342289 0.392181 +seq7/frame00010.png -35.026903 -15.278819 1.539848 0.654489 0.543334 -0.342117 0.399234 +seq7/frame00009.png -35.650949 -15.306225 1.702727 0.647379 0.544282 -0.349532 0.403094 +seq7/frame00008.png -36.187556 -15.283162 1.818985 0.644113 0.560526 -0.345990 0.388870 +seq7/frame00007.png -36.910072 -15.679902 1.612457 0.630602 0.533410 -0.371394 0.424125 +seq7/frame00006.png -37.579731 -15.826912 1.658315 0.630280 0.538737 -0.365744 0.422778 +seq7/frame00005.png -38.328727 -16.037059 1.684635 0.633765 0.532060 -0.370847 0.421575 +seq7/frame00004.png -38.754687 -16.184989 1.624090 0.617140 0.546980 -0.380032 0.418959 +seq7/frame00003.png -39.003548 -16.294218 1.547187 0.606914 0.550287 -0.388440 0.421845 +seq7/frame00002.png -38.987651 -16.333623 1.408049 0.607569 0.546396 -0.392806 0.421918 +seq7/frame00001.png -39.114574 -16.434146 1.580481 0.604090 0.547015 -0.394160 0.424839 +seq2/frame00042.png 18.487009 -24.596167 1.877998 0.751006 0.650286 0.085662 -0.076031 +seq2/frame00053.png 0.502577 -20.476069 1.989070 0.715320 0.642978 -0.178216 0.207690 +seq2/frame00052.png 2.331193 -21.026126 1.884274 0.720336 0.646438 -0.167083 0.187930 +seq2/frame00056.png -5.101734 -19.098551 1.921939 0.677377 0.652143 -0.223851 0.256438 +seq2/frame00055.png -3.333103 -19.690758 1.965272 0.704197 0.640179 -0.196215 0.236171 +seq2/frame00041.png 19.716315 -25.093488 1.926848 0.745147 0.651885 0.094133 -0.104601 +seq2/frame00040.png 20.990331 -25.396332 1.917402 0.738011 0.655101 0.094262 -0.131514 +seq2/frame00044.png 15.713788 -23.890760 2.045090 0.742887 0.664975 0.058885 -0.049603 +seq2/frame00051.png 4.074920 -21.531486 2.119677 0.734309 0.659289 -0.118656 0.109769 +seq7/frame00090.png 24.933611 -26.514861 1.558637 0.791625 0.610671 0.011067 -0.016967 +seq7/frame00091.png 25.531671 -26.357883 1.756772 0.794085 0.605601 0.048069 -0.019102 +seq2/frame00054.png -1.345000 -20.110207 1.879715 0.690742 0.655883 -0.194221 0.234460 +seq2/frame00039.png 22.182492 -25.816673 1.921312 0.731982 0.655040 0.125468 -0.139222 +seq2/frame00038.png 23.178462 -26.182215 2.059261 0.729576 0.655586 0.131515 -0.143631 +seq7/frame00094.png 27.816061 -25.713179 1.874889 0.769877 0.630881 0.048542 -0.083193 +seq7/frame00095.png 28.171809 -25.506527 1.822525 0.762428 0.638284 0.061968 -0.086355 +seq7/frame00096.png 28.873539 -25.035019 1.813797 0.770605 0.631039 0.046422 -0.076175 +seq7/frame00097.png 29.519009 -24.795584 1.754097 0.748698 0.639150 0.109502 -0.137651 +seq7/frame00098.png 30.031667 -24.135448 1.739406 0.751185 0.628205 0.110341 -0.170014 +seq7/frame00099.png 30.573838 -23.504232 1.746393 0.724033 0.637074 0.149210 -0.218290 +seq7/frame00101.png 31.396926 -22.666954 1.693398 0.716354 0.646226 0.150562 -0.215780 +seq7/frame00100.png 30.673723 -23.144318 1.590409 0.719554 0.647185 0.142015 -0.207905 +seq7/frame00102.png 31.890466 -22.265945 1.830871 0.721809 0.636428 0.172512 -0.210217 +seq7/frame00103.png 32.248842 -21.921128 1.889033 0.711631 0.644949 0.174206 -0.217429 +seq2/frame00037.png 23.985989 -26.478699 2.105896 0.697299 0.693116 0.122218 -0.135746 +seq2/frame00048.png 9.190721 -22.903337 2.018002 0.750139 0.658323 -0.031548 0.053915 +seq2/frame00046.png 12.615848 -23.444136 1.845602 0.727731 0.685550 -0.002402 -0.020569 +seq2/frame00028.png 29.106021 -28.133399 1.703110 0.731597 0.617472 0.188338 -0.219139 +seq2/frame00049.png 7.578897 -22.303338 2.036418 0.733257 0.672483 -0.066005 0.075784 +seq2/frame00050.png 5.738534 -21.989335 1.923081 0.745687 0.661018 -0.064036 0.053910 +seq2/frame00031.png 26.716803 -28.044949 1.993961 0.686766 0.683765 0.136926 -0.205108 +seq2/frame00030.png 27.428373 -28.176526 1.800162 0.683676 0.674030 0.167450 -0.224121 +seq2/frame00029.png 28.283813 -28.406858 1.991715 0.695298 0.647519 0.199379 -0.239848 +seq2/frame00043.png 16.942498 -24.478378 1.913141 0.733042 0.668439 0.097171 -0.079983 +seq2/frame00035.png 24.885554 -27.146634 1.919669 0.682457 0.701719 0.125510 -0.161525 +seq2/frame00036.png 24.295339 -26.922771 1.820972 0.681526 0.706946 0.109338 -0.154259 +seq2/frame00025.png 31.435086 -27.894023 2.012606 0.707193 0.630567 0.218434 -0.233559 +seq2/frame00024.png 32.798448 -27.809429 1.833719 0.701456 0.658731 0.194652 -0.190116 +seq2/frame00032.png 26.536172 -27.894728 1.986256 0.695666 0.684385 0.127193 -0.177446 +seq2/frame00023.png 34.250713 -28.284919 1.820037 0.691678 0.657593 0.214038 -0.208187 +seq7/frame00088.png 23.251434 -26.479859 1.510365 0.784174 0.620224 0.019787 -0.001316 +seq7/frame00093.png 27.114362 -26.250571 1.914346 0.775687 0.618989 0.083341 -0.090642 +seq2/frame00047.png 10.743074 -23.194569 2.038243 0.730533 0.682398 -0.024878 0.005990 +seq2/frame00022.png 35.823399 -28.637137 1.865744 0.696229 0.641301 0.218161 -0.237495 +seq2/frame00026.png 30.476980 -27.823019 2.097214 0.689695 0.628747 0.222699 -0.281786 +seq2/frame00027.png 29.749933 -28.081827 1.866483 0.668271 0.645213 0.228198 -0.291616 +seq2/frame00045.png 14.066624 -24.012200 1.956258 0.727741 0.674116 0.083287 -0.094996 +seq2/frame00021.png 37.391115 -28.857567 1.904555 0.721933 0.613308 0.207810 -0.243888 +seq2/frame00020.png 39.052885 -29.070675 1.786923 0.707470 0.629460 0.201023 -0.250711 +seq2/frame00019.png 40.835689 -29.964266 1.676046 0.693940 0.631140 0.216140 -0.270910 +seq2/frame00018.png 42.593560 -30.325250 1.653050 0.690112 0.611968 0.246161 -0.297733 +seq2/frame00017.png 44.261717 -30.124020 1.829271 0.681964 0.624273 0.239088 -0.296724 +seq2/frame00016.png 46.077913 -30.988135 1.636236 0.668421 0.617304 0.264881 -0.319353 +seq2/frame00015.png 47.818720 -31.095740 1.865446 0.667864 0.613170 0.285328 -0.310753 +seq2/frame00014.png 49.686010 -31.542042 1.641933 0.669488 0.620352 0.273001 -0.304007 +seq2/frame00013.png 51.236881 -31.814558 1.816354 0.664994 0.610963 0.293628 -0.313511 +seq2/frame00012.png 52.951725 -32.511530 1.649876 0.666808 0.627747 0.280986 -0.286964 +seq2/frame00011.png 54.707905 -32.785491 1.667338 0.665511 0.615534 0.276844 -0.318700 +seq2/frame00010.png 56.376691 -33.555047 1.620395 0.673108 0.600839 0.287531 -0.321317 +seq2/frame00009.png 58.060887 -33.568937 1.935799 0.659991 0.621190 0.260646 -0.332564 +seq2/frame00008.png 59.480640 -34.301409 1.546711 0.677551 0.603757 0.259558 -0.330200 +seq2/frame00007.png 60.937416 -34.769914 1.520846 0.675375 0.600007 0.273871 -0.329931 +seq2/frame00006.png 62.642648 -35.359387 1.506509 0.657930 0.619431 0.283033 -0.321442 +seq7/frame00092.png 26.542868 -26.612129 1.990189 0.790215 0.607124 0.072953 -0.040488 +seq2/frame00001.png 65.420899 -35.664849 1.474799 0.651572 0.620833 0.300240 -0.316032 +seq2/frame00002.png 65.474678 -35.436835 1.599990 0.650746 0.620279 0.302991 -0.316196 +seq2/frame00003.png 65.515111 -35.397531 1.718850 0.648756 0.618917 0.307399 -0.318691 +seq2/frame00004.png 65.156833 -35.632574 1.626711 0.647665 0.608819 0.321294 -0.326557 +seq2/frame00005.png 64.053425 -35.684471 1.511922 0.648736 0.608755 0.311236 -0.334201 +seq2/frame00033.png 25.822611 -27.923541 1.942434 0.708153 0.657330 0.146490 -0.212081 +seq2/frame00034.png 25.270767 -27.590831 1.964343 0.693240 0.680907 0.134926 -0.193853 +seq3/frame00035.png -10.880652 -19.515416 1.592769 0.699763 0.614805 -0.249096 0.265139 +seq3/frame00036.png -10.013308 -19.465902 1.787279 0.685823 0.620507 -0.260538 0.277014 +seq3/frame00037.png -9.307181 -19.779749 1.694278 0.675973 0.620264 -0.275882 0.286744 +seq3/frame00034.png -11.624243 -19.338281 1.814680 0.693521 0.622262 -0.240803 0.271722 +seq3/frame00038.png -8.519983 -19.774672 1.733770 0.676746 0.617637 -0.286078 0.280533 +seq3/frame00040.png -6.954472 -20.083193 1.722779 0.683017 0.619273 -0.274006 0.273695 +seq3/frame00039.png -7.707132 -20.059667 1.770922 0.675097 0.617984 -0.293334 0.276213 +seq3/frame00032.png -13.057288 -19.030974 1.810387 0.681456 0.624408 -0.273558 0.266266 +seq3/frame00033.png -12.431570 -19.402619 1.431984 0.704001 0.610005 -0.241154 0.272250 +seq3/frame00031.png -13.953789 -19.207257 1.497858 0.692379 0.603898 -0.280314 0.278104 +seq3/frame00030.png -14.674403 -18.851122 1.782683 0.682258 0.610179 -0.277146 0.292226 +seq3/frame00029.png -15.446940 -18.719218 1.735135 0.678796 0.599680 -0.296549 0.302785 +seq3/frame00041.png -6.066286 -20.419237 1.716882 0.680475 0.622691 -0.280335 0.265749 +seq3/frame00042.png -5.262388 -20.345740 1.692534 0.691343 0.622567 -0.265085 0.253348 +seq3/frame00043.png -4.416381 -20.568274 1.631511 0.694964 0.621020 -0.264645 0.247632 +seq3/frame00044.png -3.555698 -20.520995 1.779623 0.684884 0.642896 -0.243675 0.241333 +seq3/frame00045.png -2.805892 -21.072321 1.714146 0.705244 0.618915 -0.258309 0.229897 +seq3/frame00046.png -1.987490 -20.890493 1.861636 0.694691 0.638185 -0.237463 0.231810 +seq3/frame00047.png -1.179256 -21.335031 1.667385 0.705685 0.632248 -0.232591 0.219484 +seq3/frame00048.png -0.370476 -21.255275 1.828279 0.703252 0.637310 -0.224496 0.221077 +seq3/frame00049.png 0.379013 -21.669740 1.625053 0.711608 0.623632 -0.230885 0.226693 +seq3/frame00050.png 1.083506 -21.726651 1.746660 0.713601 0.626231 -0.214601 0.229249 +seq3/frame00051.png 1.947420 -21.995034 1.539901 0.709856 0.640837 -0.207730 0.205622 +seq3/frame00052.png 2.661493 -21.929875 1.822724 0.694840 0.670043 -0.184019 0.185410 +seq3/frame00028.png -16.171541 -18.488807 1.798854 0.664583 0.616472 -0.318130 0.277643 +seq3/frame00053.png 3.411407 -22.252066 1.669250 0.715452 0.662323 -0.166462 0.147471 +seq3/frame00054.png 4.161118 -22.404130 2.041327 0.725252 0.656901 -0.154964 0.135932 +seq3/frame00055.png 4.971774 -22.487978 1.735610 0.745584 0.631868 -0.152950 0.146471 +seq3/frame00056.png 5.595621 -22.657830 1.909707 0.754562 0.635282 -0.117628 0.114962 +seq3/frame00057.png 6.523833 -22.996992 1.849588 0.762913 0.626378 -0.116315 0.109933 +seq3/frame00058.png 7.166671 -23.053888 2.065909 0.753807 0.633072 -0.127897 0.120982 +seq3/frame00059.png 7.944351 -23.319791 1.512887 0.767716 0.617736 -0.119398 0.121484 +seq3/frame00060.png 8.768098 -23.637179 1.859119 0.762030 0.629329 -0.110383 0.105218 +seq3/frame00061.png 9.475024 -23.799671 1.902305 0.760152 0.628127 -0.114325 0.120644 +seq3/frame00062.png 10.242060 -23.992528 1.948129 0.764317 0.624009 -0.124907 0.104068 +seq3/frame00063.png 11.049388 -24.292776 1.633273 0.773540 0.616034 -0.109236 0.101024 +seq3/frame00064.png 11.757283 -24.567696 1.973605 0.767476 0.629284 -0.084032 0.089005 +seq3/frame00065.png 12.529689 -24.816962 1.796000 0.770357 0.631764 -0.051220 0.069288 +seq3/frame00068.png 15.018277 -25.450999 1.829682 0.766824 0.641828 0.003867 -0.004720 +seq3/frame00067.png 14.282715 -25.299586 1.769999 0.765807 0.639588 -0.032936 0.058154 +seq3/frame00027.png -17.040541 -18.506951 1.386512 0.672125 0.603369 -0.322315 0.283384 +seq3/frame00026.png -17.773808 -18.247233 1.645731 0.662295 0.610257 -0.314908 0.299642 +seq3/frame00025.png -18.482603 -18.064309 1.507602 0.665905 0.594171 -0.320936 0.317066 +seq3/frame00024.png -19.225750 -17.828047 1.781465 0.655381 0.604295 -0.321686 0.319094 +seq3/frame00023.png -20.131545 -17.893094 1.482647 0.667977 0.591507 -0.314736 0.323831 +seq3/frame00022.png -20.764098 -17.588699 1.747531 0.662049 0.597011 -0.330988 0.309381 +seq3/frame00021.png -21.643557 -17.674844 1.581228 0.664310 0.594005 -0.326603 0.314929 +seq3/frame00020.png -22.332044 -17.311181 1.835565 0.668366 0.593467 -0.326872 0.306984 +seq3/frame00019.png -23.205457 -17.488494 1.697514 0.670892 0.588442 -0.323281 0.314847 +seq3/frame00016.png -25.592521 -16.986552 1.710339 0.655356 0.576794 -0.339628 0.349955 +seq3/frame00017.png -24.743103 -17.156521 1.632756 0.658250 0.592121 -0.318290 0.338809 +seq3/frame00015.png -26.281513 -16.776485 1.504828 0.653812 0.577656 -0.344138 0.347005 +seq3/frame00018.png -23.908076 -17.137860 1.732057 0.657148 0.601142 -0.318628 0.324441 +seq3/frame00013.png -27.759170 -16.342396 1.650983 0.641803 0.578980 -0.345176 0.365685 +seq3/frame00014.png -26.943203 -16.386902 1.818913 0.640231 0.581352 -0.349245 0.360780 +seq3/frame00012.png -28.451110 -16.099443 1.906413 0.637721 0.584300 -0.346335 0.363259 +seq3/frame00011.png -29.326462 -15.998757 1.653885 0.648566 0.581708 -0.333527 0.360191 +seq3/frame00010.png -29.975050 -15.670871 1.755439 0.636890 0.577201 -0.348815 0.373548 +seq3/frame00009.png -30.799877 -15.707292 1.592149 0.635620 0.577703 -0.349490 0.374305 +seq3/frame00008.png -31.381890 -15.441220 1.758762 0.624146 0.554662 -0.372114 0.405368 +seq3/frame00007.png -32.386951 -15.475078 1.550142 0.618131 0.546673 -0.378733 0.419075 +seq3/frame00006.png -32.922984 -15.252195 1.780605 0.614299 0.534984 -0.403627 0.416550 +seq3/frame00005.png -33.660942 -15.079173 1.792348 0.613662 0.555255 -0.377123 0.415799 +seq3/frame00004.png -34.598300 -15.145560 1.659762 0.624355 0.549608 -0.362906 0.420013 +seq3/frame00003.png -34.900801 -15.358878 1.563386 0.625286 0.545911 -0.353293 0.431489 +seq3/frame00002.png -34.989102 -15.526462 1.403498 0.629925 0.540327 -0.350186 0.434294 +seq3/frame00001.png -35.197725 -15.532348 1.576306 0.628037 0.538772 -0.344815 0.443167 +seq3/frame00069.png 15.888016 -25.675248 1.825791 0.774158 0.627282 0.061298 -0.058652 +seq3/frame00070.png 16.426830 -25.769647 1.637296 0.778673 0.624387 0.014879 -0.059895 +seq3/frame00071.png 17.305088 -25.981876 1.514049 0.793274 0.608049 -0.003072 -0.031360 +seq3/frame00072.png 18.297650 -26.072098 1.845428 0.774844 0.630791 0.007748 -0.040749 +seq3/frame00073.png 19.114576 -26.259264 1.755660 0.774135 0.632433 0.016429 -0.021778 +seq3/frame00074.png 19.626718 -26.414757 1.781599 0.778750 0.626236 0.022439 -0.029557 +seq3/frame00075.png 20.474994 -26.581537 1.715441 0.770176 0.636402 0.025889 -0.033941 +seq3/frame00076.png 21.092053 -26.727456 1.713237 0.771927 0.633801 0.017929 -0.045863 +seq3/frame00077.png 21.916758 -26.857009 1.819166 0.781069 0.621953 0.050066 -0.024458 +seq3/frame00079.png 23.688416 -27.216405 1.695531 0.773800 0.624942 0.072365 -0.073780 +seq3/frame00081.png 25.146194 -27.572525 1.399887 0.786723 0.602585 0.062049 -0.118778 +seq3/frame00082.png 26.000104 -27.543227 1.692289 0.774889 0.615584 0.075424 -0.122128 +seq3/frame00080.png 24.217606 -27.321169 1.673850 0.767494 0.621492 0.102499 -0.119143 +seq3/frame00078.png 22.657182 -26.913615 1.823798 0.780550 0.621870 0.047454 -0.042033 +seq3/frame00083.png 26.968623 -27.897530 1.960345 0.780266 0.605864 0.082360 -0.131645 +seq3/frame00084.png 27.726686 -27.917309 1.852859 0.775465 0.606874 0.095605 -0.145664 +seq3/frame00089.png 32.021251 -28.557701 1.767918 0.729756 0.622890 0.159885 -0.232165 +seq3/frame00090.png 32.374559 -28.803774 1.688052 0.715501 0.638917 0.169104 -0.226379 +seq3/frame00091.png 33.619752 -29.127399 1.744170 0.734385 0.613951 0.176648 -0.229212 +seq3/frame00093.png 35.317838 -29.518294 1.652304 0.714380 0.627302 0.185701 -0.248331 +seq3/frame00092.png 34.433395 -29.220641 1.894530 0.720023 0.626016 0.175725 -0.242469 +seq3/frame00086.png 29.470839 -28.381274 1.747847 0.771991 0.601384 0.102950 -0.178235 +seq3/frame00087.png 30.449776 -28.756481 1.853763 0.760884 0.610587 0.110309 -0.189924 +seq3/frame00088.png 31.032342 -28.702253 1.814845 0.739466 0.621923 0.146619 -0.211908 +seq3/frame00097.png 38.072191 -29.983433 2.023823 0.695218 0.655710 0.193652 -0.221844 +seq3/frame00098.png 38.699098 -30.202205 1.606922 0.694258 0.662791 0.170909 -0.222495 +seq3/frame00096.png 37.226719 -29.931789 1.602856 0.703900 0.651743 0.167136 -0.227644 +seq3/frame00095.png 36.629541 -29.605544 1.954797 0.686506 0.670103 0.169653 -0.225585 +seq3/frame00094.png 35.764334 -29.382775 1.579626 0.700654 0.654293 0.161529 -0.234294 +seq3/frame00085.png 28.560854 -28.243059 1.656036 0.783922 0.605803 0.072652 -0.114851 +seq3/frame00100.png 40.294779 -30.262045 1.925529 0.707280 0.670030 0.146065 -0.171696 +seq3/frame00101.png 41.045486 -30.682359 1.837153 0.713186 0.657622 0.164026 -0.178871 +seq3/frame00099.png 39.311314 -30.590434 1.631193 0.715271 0.664481 0.131422 -0.171989 +seq3/frame00102.png 41.507186 -30.772561 1.543219 0.711113 0.673233 0.130697 -0.154899 +seq3/frame00104.png 43.612879 -31.131640 2.058776 0.696580 0.677056 0.157951 -0.177265 +seq3/frame00103.png 42.583733 -31.148673 2.000705 0.709004 0.678202 0.122767 -0.149276 +seq3/frame00107.png 45.685916 -31.674662 2.452373 0.681911 0.655975 0.190647 -0.261433 +seq3/frame00106.png 44.846326 -32.140513 2.048338 0.674181 0.659217 0.205685 -0.261927 +seq3/frame00105.png 44.124544 -31.759509 2.025405 0.704503 0.641374 0.174683 -0.248597 +seq3/frame00110.png 47.458483 -32.517983 1.865825 0.689380 0.665199 0.195653 -0.209726 +seq3/frame00112.png 49.077779 -32.592975 1.924935 0.702605 0.663098 0.171594 -0.192881 +seq3/frame00111.png 48.614774 -32.497446 1.632638 0.704627 0.664601 0.160221 -0.190093 +seq3/frame00108.png 46.158340 -32.040366 1.576983 0.682121 0.671640 0.160728 -0.240369 +seq3/frame00109.png 47.012622 -32.123869 2.034306 0.689956 0.654990 0.184732 -0.246622 +seq3/frame00113.png 50.148641 -33.060285 1.776467 0.691631 0.658619 0.180512 -0.235125 +seq3/frame00114.png 50.509511 -33.299200 1.738528 0.679654 0.665079 0.196882 -0.238701 +seq3/frame00115.png 51.410409 -34.035272 1.605123 0.686212 0.631095 0.221818 -0.285708 +seq3/frame00116.png 52.284159 -33.759050 1.628129 0.678108 0.640302 0.230999 -0.277170 +seq3/frame00117.png 52.651438 -33.927015 1.739615 0.694545 0.651188 0.207732 -0.224518 +seq3/frame00066.png 13.162847 -24.937541 1.803064 0.761377 0.645142 -0.040283 0.049737 +seq3/frame00118.png 53.337671 -34.528124 1.470150 0.688330 0.660307 0.188544 -0.233767 +seq3/frame00119.png 54.345687 -34.236350 1.618328 0.692081 0.666151 0.185048 -0.207419 +seq3/frame00121.png 55.697766 -34.839988 1.563339 0.688117 0.657981 0.213514 -0.219016 +seq3/frame00120.png 54.950246 -34.587114 1.648702 0.684112 0.662738 0.207742 -0.222740 +seq3/frame00122.png 56.480214 -35.043024 1.723075 0.664446 0.660418 0.237014 -0.257264 +seq3/frame00123.png 57.232421 -35.025240 1.502953 0.680043 0.654926 0.219559 -0.245780 +seq3/frame00125.png 58.873408 -35.081007 1.832640 0.668702 0.679099 0.190964 -0.234936 +seq3/frame00124.png 57.959330 -35.412237 1.441297 0.675309 0.672245 0.201697 -0.226632 +seq3/frame00126.png 59.209627 -35.713040 1.419191 0.669415 0.685185 0.183600 -0.220671 +seq3/frame00128.png 60.767351 -36.188643 1.539174 0.685343 0.662610 0.206066 -0.220884 +seq3/frame00130.png 62.425359 -36.550846 1.541783 0.674776 0.638823 0.252554 -0.269812 +seq3/frame00131.png 62.974726 -36.408518 1.393487 0.656638 0.652980 0.250476 -0.282321 +seq3/frame00132.png 64.055363 -36.696005 1.747080 0.641752 0.647807 0.263862 -0.314446 +seq3/frame00133.png 64.519984 -36.781989 1.693645 0.658275 0.655277 0.235458 -0.286085 +seq3/frame00127.png 59.790336 -36.289884 1.609196 0.699969 0.671412 0.160549 -0.182958 +seq3/frame00134.png 65.383349 -37.558214 1.522220 0.611285 0.675501 0.263291 -0.317342 +seq3/frame00129.png 61.670009 -35.964148 1.547626 0.690417 0.646561 0.228059 -0.230807 +seq3/frame00143.png 72.045994 -38.677635 1.293038 0.660811 0.637939 0.264897 -0.293586 +seq3/frame00144.png 72.886854 -38.971542 1.659427 0.653224 0.642983 0.272808 -0.292314 +seq3/frame00145.png 73.409006 -38.787894 1.269161 0.678825 0.645491 0.249053 -0.245990 +seq3/frame00146.png 74.180663 -39.272692 1.671056 0.654822 0.664981 0.241992 -0.265420 +seq3/frame00167.png 88.802838 -44.740111 0.961261 0.652982 0.598089 0.294915 -0.359068 +seq3/frame00168.png 89.253569 -44.210593 2.259424 0.643529 0.596224 0.272824 -0.394909 +seq3/frame00166.png 87.970942 -44.118364 1.850851 0.670784 0.617777 0.253218 -0.322924 +seq3/frame00165.png 87.462170 -44.932490 1.905784 0.668909 0.624730 0.243889 -0.320612 +seq3/frame00170.png 90.441380 -44.519198 0.690766 0.625766 0.607560 0.289923 -0.393995 +seq3/frame00162.png 84.697138 -44.484970 1.193427 0.671273 0.604462 0.292785 -0.313520 +seq3/frame00163.png 85.514718 -44.623726 0.306098 0.675549 0.616140 0.276191 -0.296182 +seq3/frame00161.png 84.653721 -43.924327 0.791126 0.662139 0.609144 0.300114 -0.316934 +seq3/frame00169.png 89.980703 -44.458769 1.404199 0.609342 0.582649 0.321567 -0.431064 +seq3/frame00173.png 92.770472 -44.095908 1.243756 0.596852 0.592237 0.309447 -0.444145 +seq3/frame00175.png 93.915472 -43.794138 1.360823 0.605417 0.575723 0.326223 -0.442257 +seq3/frame00174.png 92.948139 -44.026004 1.200078 0.607405 0.574774 0.335821 -0.433496 +seq3/frame00176.png 94.110339 -43.603872 1.170585 0.609486 0.582856 0.348919 -0.408731 +seq3/frame00177.png 94.716140 -43.570409 1.219343 0.613926 0.578791 0.329899 -0.423393 +seq3/frame00178.png 95.315960 -43.556121 0.429182 0.623430 0.587391 0.313390 -0.409992 +seq3/frame00150.png 77.184021 -40.998864 1.983617 0.677711 0.655229 0.217043 -0.253525 +seq3/frame00149.png 76.134862 -40.366852 1.425800 0.681157 0.658662 0.205549 -0.244824 +seq3/frame00148.png 75.339367 -39.897548 0.899923 0.686556 0.660359 0.187043 -0.239961 +seq3/frame00147.png 74.961959 -39.105738 1.113821 0.675798 0.677447 0.184573 -0.224266 +seq3/frame00151.png 77.227309 -40.466798 0.638578 0.708220 0.658545 0.161296 -0.196792 +seq3/frame00137.png 67.543072 -37.853361 1.375500 0.654435 0.661645 0.234021 -0.281380 +seq3/frame00136.png 66.903182 -37.597024 1.761870 0.624651 0.674013 0.263700 -0.293225 +seq3/frame00138.png 68.349158 -37.823584 1.412371 0.648281 0.669854 0.221980 -0.285925 +seq3/frame00139.png 69.090633 -38.295722 1.446950 0.656101 0.670104 0.212684 -0.274333 +seq3/frame00140.png 69.877793 -38.258068 1.688589 0.631561 0.664449 0.255163 -0.307457 +seq3/frame00141.png 70.653635 -38.472841 1.673464 0.636145 0.638867 0.292725 -0.318561 +seq3/frame00142.png 71.342006 -38.586870 1.596849 0.650201 0.622815 0.301334 -0.313908 +seq3/frame00135.png 66.022410 -37.009684 1.501345 0.641561 0.678695 0.229120 -0.274367 +seq3/frame00172.png 91.623901 -44.407272 1.458999 0.621521 0.647720 0.241379 -0.368655 +seq3/frame00171.png 91.538858 -44.493985 1.588877 0.635543 0.646733 0.206157 -0.367860 +seq3/frame00159.png 82.437181 -43.567202 1.683157 0.689340 0.656925 0.213970 -0.217891 +seq3/frame00160.png 83.869820 -44.269240 1.467334 0.677481 0.631864 0.247762 -0.283515 +seq3/frame00164.png 86.305969 -43.937875 1.077479 0.694409 0.643863 0.190304 -0.258884 +seq3/frame00152.png 78.055110 -41.757196 1.772416 0.723136 0.664041 0.127417 -0.141026 +seq3/frame00153.png 78.497264 -41.642593 1.749448 0.699013 0.683039 0.122620 -0.172636 +seq3/frame00179.png 94.045424 -42.706223 -2.738007 0.701154 0.613271 0.189196 -0.310623 +seq3/frame00155.png 80.107396 -41.269057 1.301610 0.687216 0.688730 0.134844 -0.187620 +seq3/frame00154.png 79.293232 -42.179272 1.537174 0.693231 0.687452 0.152108 -0.153959 +seq3/frame00156.png 80.679576 -42.981171 1.690933 0.676255 0.691514 0.183557 -0.175483 +seq3/frame00157.png 81.296046 -43.514991 2.048095 0.666162 0.693679 0.193293 -0.194100 +seq3/frame00158.png 81.688880 -43.725473 1.541449 0.701129 0.671537 0.167976 -0.170999 diff --git a/official/cv/posenet/infer/docker_start_infer.sh b/official/cv/posenet/infer/docker_start_infer.sh new file mode 100644 index 0000000000000000000000000000000000000000..2fb4b47bb87b0e7b306034bcf2b8b25f384309aa --- /dev/null +++ b/official/cv/posenet/infer/docker_start_infer.sh @@ -0,0 +1,42 @@ +#!/bin/bash + +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +docker_image=$1 +share_dir=$2 +echo "$1" +echo "$2" +if [ -z "${docker_image}" ]; then + echo "please input docker_image" + exit 1 +fi + +if [ ! -d "${share_dir}" ]; then + echo "please input share directory that contains dataset, models and codes" + exit 1 +fi + + +docker run -it \ + --device=/dev/davinci0 \ + --device=/dev/davinci_manager \ + --device=/dev/devmm_svm \ + --device=/dev/hisi_hdc \ + --privileged \ + -v //usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ + -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ + -v ${share_dir}:${share_dir} \ + ${docker_image} \ + /bin/bash \ No newline at end of file diff --git a/official/cv/posenet/infer/mxbase/CMakeLists.txt b/official/cv/posenet/infer/mxbase/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..821d9dd79fbb4281e16761a607c8084cd2c54594 --- /dev/null +++ b/official/cv/posenet/infer/mxbase/CMakeLists.txt @@ -0,0 +1,42 @@ +cmake_minimum_required(VERSION 3.5.2) +project(posenet) +add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) + +#set(PLUGIN_NAME "midas_mindspore_post") + +set(TARGET_MAIN posenet_mindspore) + +set(ACL_LIB_PATH $ENV{ASCEND_HOME}/nnrt/latest/acllib) + +include_directories(${CMAKE_CURRENT_BINARY_DIR}) + +include_directories($ENV{MX_SDK_HOME}/include) +include_directories($ENV{MX_SDK_HOME}/opensource/include) +include_directories($ENV{MX_SDK_HOME}/opensource/include/opencv4) +include_directories($ENV{MX_SDK_HOME}/opensource/include/gstreamer-1.0) +include_directories($ENV{MX_SDK_HOME}/opensource/include/glib-2.0) +include_directories($ENV{MX_SDK_HOME}/opensource/lib/glib-2.0/include) + +link_directories($ENV{MX_SDK_HOME}/lib) +link_directories($ENV{MX_SDK_HOME}/opensource/lib/) + + +add_compile_options(-std=c++11 -fPIC -fstack-protector-all -pie -Wno-deprecated-declarations) +add_compile_options("-DPLUGIN_NAME=${PLUGIN_NAME}") +add_compile_options("-Dgoogle=mindxsdk_private") + +add_definitions(-DENABLE_DVPP_INTERFACE) + +#message("ACL_LIB_PATH:${ACL_LIB_PATH}/lib64/.") +#include_directories(${CMAKE_CURRENT_BINARY_DIR}) +include_directories(${ACL_LIB_PATH}/include) +link_directories(${ACL_LIB_PATH}/lib64/) + + + + +add_executable(${TARGET_MAIN} src/main.cpp src/Posenet.cpp) +target_link_libraries(${TARGET_MAIN} glib-2.0 gstreamer-1.0 gobject-2.0 gstbase-1.0 gmodule-2.0) +target_link_libraries(${TARGET_MAIN} plugintoolkit mxpidatatype mxbase) +target_link_libraries(${TARGET_MAIN} -Wl,-z,relro,-z,now,-z,noexecstack -s) +target_link_libraries(${TARGET_MAIN} glog cpprest mxbase libascendcl.so opencv_world) diff --git a/official/cv/posenet/infer/mxbase/build.sh b/official/cv/posenet/infer/mxbase/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..76812328b8ff08340fcd476644b0f87cfad562e2 --- /dev/null +++ b/official/cv/posenet/infer/mxbase/build.sh @@ -0,0 +1,47 @@ +#!/bin/bash + +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + + +# env + +mkdir -p build +cd build || exit + +function make_plugin() { + if ! cmake ..; + then + echo "cmake failed." + return 1 + fi + + if ! (make); + then + echo "make failed." + return 1 + fi + + return 0 +} + +if make_plugin; +then + echo "INFO: Build successfully." +else + echo "ERROR: Build failed." +fi + +cd - || exit diff --git a/official/cv/posenet/infer/mxbase/src/Posenet.cpp b/official/cv/posenet/infer/mxbase/src/Posenet.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ce94d9cc1b64759ff3ce1b4c32689aa0494a9cc5 --- /dev/null +++ b/official/cv/posenet/infer/mxbase/src/Posenet.cpp @@ -0,0 +1,354 @@ +/* + * Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include <sys/stat.h> +#include <dirent.h> +#include <string> +#include <fstream> +#include <memory> +#include <boost/property_tree/json_parser.hpp> +#include <opencv4/opencv2/core.hpp> +#include <opencv4/opencv2/opencv.hpp> +#include "acl/acl.h" +#include "MxBase/DeviceManager/DeviceManager.h" +#include "MxBase/CV/ObjectDetection/Nms/Nms.h" +#include "MxBase/Log/Log.h" +#include "Posenet.h" +namespace { + const uint32_t YUV_BYTE_NU = 3; + const uint32_t YUV_BYTE_DE = 2; + const uint32_t MODEL_HEIGHT = 224; + const uint32_t MODEL_WIDTH = 224; +} // namespace + +void PrintTensorShape(const std::vector<MxBase::TensorDesc> &tensorDescVec, const std::string &tensorName) { + LogInfo << "The shape of " << tensorName << " is as follows:"; + for (size_t i = 0; i < tensorDescVec.size(); ++i) { + LogInfo << " Tensor " << i << ":"; + for (size_t j = 0; j < tensorDescVec[i].tensorDims.size(); ++j) { + LogInfo << " dim: " << j << ": " << tensorDescVec[i].tensorDims[j]; + } + } +} + +APP_ERROR Posenet::Init(const InitParam &initParam) { + deviceId_ = initParam.deviceId; + APP_ERROR ret = MxBase::DeviceManager::GetInstance()->InitDevices(); + if (ret != APP_ERR_OK) { + LogError << "Init devices failed, ret=" << ret << "."; + return ret; + } + ret = MxBase::TensorContext::GetInstance()->SetContext(initParam.deviceId); + if (ret != APP_ERR_OK) { + LogError << "Set context failed, ret=" << ret << "."; + return ret; + } + dvppWrapper_ = std::make_shared<MxBase::DvppWrapper>(); + ret = dvppWrapper_->Init(); + if (ret != APP_ERR_OK) { + LogError << "DvppWrapper init failed, ret=" << ret << "."; + return ret; + } + model_ = std::make_shared<MxBase::ModelInferenceProcessor>(); + ret = model_->Init(initParam.modelPath, modelDesc_); + if (ret != APP_ERR_OK) { + LogError << "ModelInferenceProcessor init failed, ret=" << ret << "."; + return ret; + } + PrintTensorShape(modelDesc_.inputTensors, "Model Input Tensors"); + PrintTensorShape(modelDesc_.outputTensors, "Model Output Tensors"); + return APP_ERR_OK; +} + +APP_ERROR Posenet::DeInit() { + dvppWrapper_->DeInit(); + model_->DeInit(); + MxBase::DeviceManager::GetInstance()->DestroyDevices(); + return APP_ERR_OK; +} + +APP_ERROR Posenet::Inference(const std::vector<MxBase::TensorBase> &inputs, + std::vector<MxBase::TensorBase> &outputs) { + auto dtypes = model_->GetOutputDataType(); + for (size_t i = 0; i < modelDesc_.outputTensors.size(); ++i) { + std::vector<uint32_t> shape = {}; + for (size_t j = 0; j < modelDesc_.outputTensors[i].tensorDims.size(); ++j) { + shape.push_back((uint32_t)modelDesc_.outputTensors[i].tensorDims[j]); + } + MxBase::TensorBase tensor(shape, dtypes[i], MxBase::MemoryData::MemoryType::MEMORY_DEVICE, deviceId_); + APP_ERROR ret = MxBase::TensorBase::TensorBaseMalloc(tensor); + if (ret != APP_ERR_OK) { + LogError << "TensorBaseMalloc failed, ret=" << ret << "."; + return ret; + } + outputs.push_back(tensor); + } + MxBase::DynamicInfo dynamicInfo = {}; + dynamicInfo.dynamicType = MxBase::DynamicType::STATIC_BATCH; + auto startTime = std::chrono::high_resolution_clock::now(); + APP_ERROR ret = model_->ModelInference(inputs, outputs, dynamicInfo); + auto endTime = std::chrono::high_resolution_clock::now(); + double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count(); // save time + inferCostTimeMilliSec += costMs; + if (ret != APP_ERR_OK) { + LogError << "ModelInference failed, ret=" << ret << "."; + return ret; + } + return APP_ERR_OK; +} + +APP_ERROR Posenet::Process(const std::string &imgPath, const std::string &resultPath, const std::string &dataset_name) { + ImageShape imageShape{}; + ImageShape resizedImageShape{}; + std::vector<std::string> dirs; + + std::string data_set = imgPath; + dirs = GetAlldir(data_set, dataset_name); + + for (const auto &dir : dirs) { + std::vector<std::string> images; + if (dataset_name == "TUM") { + images = GetAlldir(data_set, "TUM"); + } else { + images = GetAllFiles(data_set + dir); + } + for (const auto& image_file : images) { + cv::Mat imageMat; + APP_ERROR ret = ReadImageCV(image_file, imageMat, imageShape); + if (ret != APP_ERR_OK) { + LogError << "ReadImage failed, ret=" << ret << "."; + return ret; + } + ret = ResizeImage(imageMat, imageMat, resizedImageShape); + if (ret != APP_ERR_OK) { + LogError << "ResizeImage failed, ret=" << ret << "."; + return ret; + } + MxBase::TensorBase tensorBase; + ret = CVMatToTensorBase(imageMat, tensorBase); + if (ret != APP_ERR_OK) { + LogError << "CVMatToTensorBase failed, ret=" << ret << "."; + return ret; + } + std::vector<MxBase::TensorBase> inputs = {}; + std::vector<MxBase::TensorBase> outputs = {}; + inputs.push_back(tensorBase); + std::cout << "inputsshapeis" << inputs[0].GetShape()[0] << " " + << inputs[0].GetShape()[1] << " " << inputs[0].GetShape()[2] << std::endl; + auto startTime = std::chrono::high_resolution_clock::now(); + ret = Inference(inputs, outputs); + auto endTime = std::chrono::high_resolution_clock::now(); + double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count(); // save time + inferCostTimeMilliSec += costMs; + if (ret != APP_ERR_OK) { + LogError << "Inference failed, ret=" << ret << "."; + return ret; + } + WriteResult(image_file, outputs, dataset_name, dir); + } + } + return APP_ERR_OK; +} + +std::vector<std::string> GetAlldir(const std::string& dir_name, const std::string& data_name) { + std::vector<std::string> res; + if (data_name == "TUM") { + std::string txt_name = dir_name + "/associate.txt"; + std::ifstream infile; + infile.open(txt_name.data()); + std::string s; + while (getline(infile, s)) { + std::stringstream input(s); + std::string result; + input >> result; + res.emplace_back(dir_name + "/" + result); + } + return res; + } + struct dirent *filename; + DIR *dir = OpenDir(dir_name); + if (dir == nullptr) { + return {}; + } + if (data_name == "Kitti") { + while ((filename = readdir(dir)) != nullptr) { + std::string d_name = std::string(filename->d_name); + // get rid of "." and ".." + if (d_name == "." || d_name == ".." || filename->d_type != DT_DIR) + continue; + res.emplace_back(d_name + "/image"); + std::cout << "image_file name is " << d_name << std::endl; + } + } else { + while ((filename = readdir(dir)) != nullptr) { + std::string d_name = std::string(filename->d_name); + // get rid of "." and ".." + if (d_name == "." || d_name == ".." || filename->d_type != DT_DIR) + continue; + res.emplace_back(d_name); + } + } + return res; +} + +APP_ERROR Posenet::GetMetaMap(const ImageShape imgShape, + const ImageShape resizeimgShape, + std::map<std::string, float> &meta) { + int a = 2; + int b = 4; + std::vector<float> c = {static_cast<float>(imgShape.width) / a, static_cast<float>(imgShape.height) / a}; + float s = std::max(static_cast<float>(resizeimgShape.width) / static_cast<float>(resizeimgShape.height) + * static_cast<float>(imgShape.height), static_cast<float>(imgShape.width)) * 1.0; + meta["c1"] = c[0]; + meta["c2"] = c[1]; + meta["s"] = s; + meta["out_height"] = resizeimgShape.height / b; + meta["out_width"] = resizeimgShape.width / b; + return APP_ERR_OK; +} + +APP_ERROR Posenet::CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase) { + const uint32_t dataSize = imageMat.cols * imageMat.rows * imageMat.channels(); + MxBase::MemoryData memoryDataDst(dataSize, MxBase::MemoryData::MEMORY_DEVICE, deviceId_); + MxBase::MemoryData memoryDataSrc(imageMat.data, dataSize, MxBase::MemoryData::MEMORY_HOST_MALLOC); + APP_ERROR ret = MxBase::MemoryHelper::MxbsMallocAndCopy(memoryDataDst, memoryDataSrc); + if (ret != APP_ERR_OK) { + LogError << GetError(ret) << "Memory malloc failed."; + return ret; + } + std::vector<uint32_t> shape = {static_cast<uint32_t>(imageMat.rows), + static_cast<uint32_t>(imageMat.cols), + static_cast<uint32_t>(imageMat.channels())}; + tensorBase = MxBase::TensorBase(memoryDataDst, false, shape, MxBase::TENSOR_DTYPE_UINT8); + return APP_ERR_OK; +} + +APP_ERROR Posenet::ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat, ImageShape &imgShape) { + int height = 456; + int width = 224; + cv::resize(srcImageMat, dstImageMat, cv::Size(width, height), 0, 0); + LogInfo << dstImageMat.cols << dstImageMat.rows; + imgShape.width = dstImageMat.cols; + imgShape.height = dstImageMat.rows; + return APP_ERR_OK; +} + +APP_ERROR Posenet::ReadImageCV(const std::string &imgPath, cv::Mat &imageMat, ImageShape &imgShape) { + imageMat = cv::imread(imgPath, cv::IMREAD_COLOR); + imgShape.width = imageMat.cols; + imgShape.height = imageMat.rows; + return APP_ERR_OK; +} + +std::vector<std::string> GetAllFiles(std::string dirName) { + struct dirent *filename; + DIR *dir = OpenDir(dirName); + std::cout << dirName << std::endl; + if (dir == nullptr) { + return {}; + } + std::vector<std::string> res; + while ((filename = readdir(dir)) != nullptr) { + std::string dName = std::string(filename->d_name); + if (dName == "." || dName == ".." || filename->d_type != DT_REG) { + continue; + } + res.emplace_back(std::string(dirName) + "/" + filename->d_name); + } + std::sort(res.begin(), res.end()); + for (auto &f : res) { + std::cout << "image file: " << f << std::endl; + } + return res; +} + +std::string RealPath(std::string path) { + char realPathMem[PATH_MAX] = {0}; + char *realPathRet = nullptr; + realPathRet = realpath(path.data(), realPathMem); + if (realPathRet == nullptr) { + std::cout << "File: " << path << " is not exist."; + return ""; + } + std::string realPath(realPathMem); + std::cout << path << " realpath is: " << realPath << std::endl; + return realPath; +} + +DIR *OpenDir(std::string dirName) { + if (dirName.empty()) { + std::cout << " dirName is null ! " << std::endl; + return nullptr; + } + std::string realPath = RealPath(dirName); + struct stat s; + lstat(realPath.c_str(), &s); + if (!S_ISDIR(s.st_mode)) { + std::cout << "dirName is not a valid directory !" << std::endl; + return nullptr; + } + DIR *dir = opendir(realPath.c_str()); + if (dir == nullptr) { + std::cout << "Can not open dir " << dirName << std::endl; + return nullptr; + } + std::cout << "Successfully opened the dir " << dirName << std::endl; + return dir; +} + +APP_ERROR Posenet::WriteResult(const std::string& imageFile, std::vector<MxBase::TensorBase> &outputs, + const std::string & dataset_name, const std::string& seq) { + std::string homePath; + if (dataset_name == "Kitti") { + int pos = seq.find('/'); + std::string seq1(seq, 0, pos); + homePath = "./result_Files/"+ dataset_name + "/" + seq1; + std::cout << "1" << std::endl; + } else { + homePath = "./result_Files/"+ dataset_name + "/" + seq; + } + std::string path1 = "mkdir -p " + homePath; + system(path1.c_str()); + std::cout << "homePath is " << homePath << std::endl; + for (size_t i = 0; i < outputs.size(); ++i) { + size_t outputSize; + APP_ERROR ret = outputs[i].ToHost(); + if (ret != APP_ERR_OK) { + LogError << GetError(ret) << "tohost fail."; + return ret; + } + void *netOutput = outputs[i].GetBuffer(); + std::vector<uint32_t> out_shape = outputs[i].GetShape(); + LogDebug << "shape is "<< out_shape[0] << " " << out_shape[1] << " " << out_shape[2]; + outputSize = outputs[i].GetByteSize(); + std::cout << "outputsize is " << outputSize << std::endl; + int pos = imageFile.rfind('/'); + std::string fileName(imageFile, pos + 1); + fileName.replace(fileName.rfind('.'), fileName.size() - fileName.rfind('.'), '_' + std::to_string(i) + ".bin"); + std::string outFileName = homePath + "/" + fileName; + std::cout << "output file is " << outFileName << std::endl; + FILE *outputFile = fopen(outFileName.c_str(), "wb"); + if (outputFile == nullptr) { + std::cout << "read fail" << std::endl; + return ret; + } + auto count1 = fwrite(netOutput, outputSize, sizeof(char), outputFile); + std::cout << "count is " << count1 << " " << sizeof(char) << std::endl; + fclose(outputFile); + outputFile = nullptr; + } + LogDebug << "PosenetMindspore write results success."; + return APP_ERR_OK; +} diff --git a/official/cv/posenet/infer/mxbase/src/Posenet.h b/official/cv/posenet/infer/mxbase/src/Posenet.h new file mode 100644 index 0000000000000000000000000000000000000000..524926f13dff66d3b0cf3e3f05745ca2f689fee4 --- /dev/null +++ b/official/cv/posenet/infer/mxbase/src/Posenet.h @@ -0,0 +1,90 @@ +/* + * Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef POSENET_H +#define POSENET_H + +#include <dirent.h> +#include <sys/stat.h> +#include <map> +#include <vector> +#include <string> +#include <sstream> +#include <algorithm> +#include <memory> +#include <opencv4/opencv2/opencv.hpp> +#include "MxBase/CV/Core/DataType.h" +#include "MxBase/DeviceManager/DeviceManager.h" +#include "MxBase/DvppWrapper/DvppWrapper.h" +#include "MxBase/ErrorCode/ErrorCode.h" +#include "MxBase/ModelInfer/ModelInferenceProcessor.h" +#include "MxBase/PostProcessBases/ObjectPostProcessBase.h" +#include "MxBase/Tensor/TensorContext/TensorContext.h" + +struct InitParam { + uint32_t deviceId; + std::string labelPath; + std::string dataset_name; + bool checkTensor; + std::string modelPath; +}; + +struct ImageShape { + uint32_t width; + uint32_t height; +}; +std::vector<std::string> GetAllFiles(std::string dirName); +std::vector<std::string> GetAlldir(const std::string &dir_name, + const std::string &data_name); +std::string RealPath(std::string path); +DIR *OpenDir(std::string dirName); + +class Posenet { + public: + APP_ERROR Init(const InitParam &initParam); + APP_ERROR DeInit(); + APP_ERROR Inference(const std::vector<MxBase::TensorBase> &inputs, + std::vector<MxBase::TensorBase> &outputs); + APP_ERROR PostProcess(const std::vector<MxBase::TensorBase> &inputs, + const std::map<std::string, float> &meta, + std::string &seq, std::string &image_file); + APP_ERROR Process(const std::string &imgPath, const std::string &resultPath, + const std::string &dataset_name); + APP_ERROR ReadImageCV(const std::string &imgPath, cv::Mat &imageMat, + ImageShape &imgShape); + APP_ERROR ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat, + ImageShape &imgShape); + APP_ERROR CVMatToTensorBase(const cv::Mat &imageMat, + MxBase::TensorBase &tensorBase); + APP_ERROR GetMetaMap(const ImageShape imgShape, + const ImageShape resizeimgShape, + std::map<std::string, float> &meta); + APP_ERROR WriteResult(const std::string &imageFile, + std::vector<MxBase::TensorBase> &outputs, + const std::string &dataset_name, + const std::string &seq); + + private: + APP_ERROR GetImageMeta(const ImageShape &imageShape, + MxBase::TensorBase &imgMetas) const; + std::shared_ptr<MxBase::DvppWrapper> dvppWrapper_; + std::shared_ptr<MxBase::ModelInferenceProcessor> model_; + MxBase::ModelDesc modelDesc_; + uint32_t deviceId_ = 0; + double inferCostTimeMilliSec = 0.0; +}; + +#endif // posenet_H diff --git a/official/cv/posenet/infer/mxbase/src/main.cpp b/official/cv/posenet/infer/mxbase/src/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f84da3f8f8bc04203d30cc28003cde816669c012 --- /dev/null +++ b/official/cv/posenet/infer/mxbase/src/main.cpp @@ -0,0 +1,49 @@ +/* + * Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "MxBase/Log/Log.h" +#include "Posenet.h" + +namespace { + const uint32_t DEVICE_ID = 0; + const std::string RESULT_PATH = "./result"; +} // namespace + +int main(int argc, char *argv[]) { + if (argc <= 3) { + LogWarn << "Please input image path, such as './ [om_file_path] [img_path] [dataset_name]'."; + return APP_ERR_OK; + } + InitParam initParam = {}; + initParam.deviceId = DEVICE_ID; + initParam.checkTensor = true; + initParam.modelPath = argv[1]; + auto inferPosenet = std::make_shared<Posenet>(); + APP_ERROR ret = inferPosenet->Init(initParam); + if (ret != APP_ERR_OK) { + LogError << "Posenet init failed, ret=" << ret << "."; + return ret; + } + std::string imgPath = argv[2]; + std::string dataset_name = argv[3]; + ret = inferPosenet->Process(imgPath, RESULT_PATH, dataset_name); + if (ret != APP_ERR_OK) { + LogError << "Posenet process failed, ret=" << ret << "."; + inferPosenet->DeInit(); + return ret; + } + inferPosenet->DeInit(); + return APP_ERR_OK; +} diff --git a/official/cv/posenet/infer/sdk/api/infer.py b/official/cv/posenet/infer/sdk/api/infer.py new file mode 100644 index 0000000000000000000000000000000000000000..de51d2783aa093903696e3d5e689923dcff12aeb --- /dev/null +++ b/official/cv/posenet/infer/sdk/api/infer.py @@ -0,0 +1,143 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""sdk infer""" +import json +import logging +import MxpiDataType_pb2 as MxpiDataType +from StreamManagerApi import StreamManagerApi, MxDataInput, InProtobufVector, MxProtobufIn, StringVector +from config import config as cfg + +class SdkApi: + """sdk api""" + INFER_TIMEOUT = cfg.INFER_TIMEOUT + STREAM_NAME = cfg.STREAM_NAME + + def __init__(self, pipeline_cfg): + self.pipeline_cfg = pipeline_cfg + self._stream_api = None + self._data_input = None + self._device_id = None + + def init(self): + """sdk init """ + with open(self.pipeline_cfg, 'r') as fp: + self._device_id = int( + json.loads(fp.read())[self.STREAM_NAME]["stream_config"] + ["deviceId"]) + print(f"The device id: {self._device_id}.") + + # create api + self._stream_api = StreamManagerApi() + + # init stream mgr + ret = self._stream_api.InitManager() + if ret != 0: + print(f"Failed to init stream manager, ret={ret}.") + return False + + # create streams + with open(self.pipeline_cfg, 'rb') as fp: + pipe_line = fp.read() + + ret = self._stream_api.CreateMultipleStreams(pipe_line) + if ret != 0: + print(f"Failed to create stream, ret={ret}.") + return False + + self._data_input = MxDataInput() + + return True + + def __del__(self): + """del sdk""" + if not self._stream_api: + return + + self._stream_api.DestroyAllStreams() + + def send_data_input(self, stream_name, plugin_id, input_data): + """input data use SendData""" + data_input = MxDataInput() + data_input.data = input_data + unique_id = self._stream_api.SendData(stream_name, plugin_id, + data_input) + if unique_id < 0: + logging.error("Fail to send data to stream.") + return False + return True + + def _send_protobuf(self, stream_name, plugin_id, element_name, buf_type, + pkg_list): + """input data use SendProtobuf""" + protobuf = MxProtobufIn() + protobuf.key = element_name.encode("utf-8") + protobuf.type = buf_type + protobuf.protobuf = pkg_list.SerializeToString() + protobuf_vec = InProtobufVector() + protobuf_vec.push_back(protobuf) + err_code = self._stream_api.SendProtobuf(stream_name, plugin_id, + protobuf_vec) + if err_code != 0: + logging.error( + "Failed to send data to stream, stream_name(%s), plugin_id(%s), element_name(%s), " + "buf_type(%s), err_code(%s).", stream_name, plugin_id, + element_name, buf_type, err_code) + return False + return True + + def send_img_input(self, stream_name, plugin_id, element_name, input_data, + img_size): + """use cv input to sdk""" + vision_list = MxpiDataType.MxpiVisionList() + vision_vec = vision_list.visionVec.add() + vision_vec.visionInfo.format = 1 + vision_vec.visionInfo.width = img_size[1] + vision_vec.visionInfo.height = img_size[0] + vision_vec.visionInfo.widthAligned = img_size[1] + vision_vec.visionInfo.heightAligned = img_size[0] + vision_vec.visionData.memType = 0 + vision_vec.visionData.dataStr = input_data + vision_vec.visionData.dataSize = len(input_data) + buf_type = b"MxTools.MxpiVisionList" + return self._send_protobuf(stream_name, plugin_id, element_name, + buf_type, vision_list) + + #pylint: disable=R1710 + def get_result(self, stream_name, out_plugin_id=0): + """get_result + """ + key_vec = StringVector() + key_vec.push_back(b'mxpi_modelinfer0') + infer_result = self._stream_api.GetProtobuf( + stream_name, out_plugin_id, key_vec) + if infer_result.size() == 0: + print("inferResult is null") + return + if infer_result[0].errorCode != 0: + print("GetProtobuf error. errorCode=%d" % infer_result[0].errorCode) + return + result = MxpiDataType.MxpiTensorPackageList() + result.ParseFromString(infer_result[0].messageBuf) + + print('datastr', type(result.tensorPackageVec[0].tensorVec[0].dataStr)) + print('datastr', type(result.tensorPackageVec[0].tensorVec[1].dataStr)) + print('datastr', type(result.tensorPackageVec[0].tensorVec[2].dataStr)) + print('datastr', type(result.tensorPackageVec[0].tensorVec[3].dataStr)) + print('datastr', type(result.tensorPackageVec[0].tensorVec[4].dataStr)) + print('datastr', type(result.tensorPackageVec[0].tensorVec[5].dataStr)) + + return result.tensorPackageVec[0].tensorVec[0].dataStr, result.tensorPackageVec[0].tensorVec[1].dataStr, \ + result.tensorPackageVec[0].tensorVec[2].dataStr, result.tensorPackageVec[0].tensorVec[3].dataStr, \ + result.tensorPackageVec[0].tensorVec[4].dataStr, result.tensorPackageVec[0].tensorVec[5].dataStr diff --git a/official/cv/posenet/infer/sdk/config/config.py b/official/cv/posenet/infer/sdk/config/config.py new file mode 100644 index 0000000000000000000000000000000000000000..e8d5a44bc3b9df2a3f90c6e1ae62c9a3534b8d72 --- /dev/null +++ b/official/cv/posenet/infer/sdk/config/config.py @@ -0,0 +1,25 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + + +STREAM_NAME = "im_posenet" +MODEL_WIDTH = 224 +MODEL_HEIGHT = 224 + +INFER_TIMEOUT = 100000 + +TENSOR_DTYPE_FLOAT32 = 0 +TENSOR_DTYPE_FLOAT16 = 1 +TENSOR_DTYPE_INT8 = 2 diff --git a/official/cv/posenet/infer/sdk/config/posenet.pipeline b/official/cv/posenet/infer/sdk/config/posenet.pipeline new file mode 100644 index 0000000000000000000000000000000000000000..5b6dc8faeb047688ce705f10eae1df972f0976d4 --- /dev/null +++ b/official/cv/posenet/infer/sdk/config/posenet.pipeline @@ -0,0 +1,44 @@ +{ + "im_posenet": { + "stream_config": { + "deviceId": "0" + }, + "appsrc0": { + "props": { + "blocksize": "409600" + }, + "factory": "appsrc", + "next": "mxpi_imageresize0" + }, + "mxpi_imageresize0": { + "props": { + "dataSource": "appsrc0", + "handleMethod": "opencv", + "resizeType": "Resizer_Stretch", + "resizeHeight": "456", + "resizeWidth": "224" + }, + "factory": "mxpi_imageresize", + "next": "mxpi_modelinfer0" + }, + "mxpi_modelinfer0": { + "props": { + "dataSource": "mxpi_imageresize0", + "modelPath": "../convert/posenet.om", + "outputDeviceId": "-1" + }, + "factory": "mxpi_modelinfer", + "next": "mxpi_dataserialize0" + }, + "mxpi_dataserialize0": { + "props": { + "outputDataKeys": "mxpi_modelinfer0" + }, + "factory": "mxpi_dataserialize", + "next": "appsink0" + }, + "appsink0": { + "factory": "appsink" + } + } +} diff --git a/official/cv/posenet/infer/sdk/eval/eval_by_sdk.py b/official/cv/posenet/infer/sdk/eval/eval_by_sdk.py new file mode 100644 index 0000000000000000000000000000000000000000..ec8a749a74f33d6a604a2b278bf1d4477f71959c --- /dev/null +++ b/official/cv/posenet/infer/sdk/eval/eval_by_sdk.py @@ -0,0 +1,88 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""post process for 310 inference""" +import os +import argparse +import math +import numpy as np + +parser = argparse.ArgumentParser(description='postprocess for posenet') +parser.add_argument("--result_path", type=str, required=True, help="result file path") + +args = parser.parse_args() + +def get_result(result_path): + results = np.zeros((343, 2)) + txt_file = "../dataset_test.txt" + step = 0 + i = 0 + with open(txt_file, 'r') as f: + next(f) + next(f) + next(f) + for line in f: + fname, p0, p1, p2, p3, p4, p5, p6 = line.split() + fname = str(fname) + p0 = float(p0) + p1 = float(p1) + p2 = float(p2) + p3 = float(p3) + p4 = float(p4) + p5 = float(p5) + p6 = float(p6) + image_poses = [] + image_poses.append((p0, p1, p2, p3, p4, p5, p6)) + poses = np.array(image_poses) + pose_x = np.squeeze(poses[:, 0:3]) + pose_q = np.squeeze(poses[:, 3:]) + file_name = "posenet" + "_" + str(i) + i = i + 1 + result_path_0 = os.path.join(result_path, file_name + "_0.bin") + result_path_1 = os.path.join(result_path, file_name + "_1.bin") + result_path_2 = os.path.join(result_path, file_name + "_2.bin") + result_path_3 = os.path.join(result_path, file_name + "_3.bin") + result_path_4 = os.path.join(result_path, file_name + "_4.bin") + result_path_5 = os.path.join(result_path, file_name + "_5.bin") + p1_x = np.fromfile(result_path_0, dtype=np.float32).reshape(1, 3) + p1_q = np.fromfile(result_path_1, dtype=np.float32).reshape(1, 4) + p2_x = np.fromfile(result_path_2, dtype=np.float32).reshape(1, 3) + p2_q = np.fromfile(result_path_3, dtype=np.float32).reshape(1, 4) + p3_x = np.fromfile(result_path_4, dtype=np.float32).reshape(1, 3) + p3_q = np.fromfile(result_path_5, dtype=np.float32).reshape(1, 4) + print(p1_x) + print(p1_q) + print(p2_x) + print(p2_q) + print(p3_x) + print(p3_q) + predicted_x = p3_x + predicted_q = p3_q + q1 = pose_q / np.linalg.norm(pose_q) + q2 = predicted_q / np.linalg.norm(predicted_q) + d = abs(np.sum(np.multiply(q1, q2))) + + a = 2 + b = 180 + theta = a * np.arccos(d) * b / math.pi + error_x = np.linalg.norm(pose_x - predicted_x) + results[step, :] = [error_x, theta] + step = step + 1 + print('Iteration: ', step, ', Error XYZ (m): ', error_x, ', Error Q (degrees): ', theta) + + median_result = np.median(results, axis=0) + print('Median error ', median_result[0], 'm and ', median_result[1], 'degrees.') + +if __name__ == '__main__': + get_result(args.result_path) diff --git a/official/cv/posenet/infer/sdk/main.py b/official/cv/posenet/infer/sdk/main.py new file mode 100644 index 0000000000000000000000000000000000000000..d54bbc78f40337661995f6210b8d268817a225e3 --- /dev/null +++ b/official/cv/posenet/infer/sdk/main.py @@ -0,0 +1,186 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""main""" + +import argparse +import os +import time +import cv2 +from api.infer import SdkApi +from config import config as cfg + + +def parser_args(): + """parser_args""" + parser = argparse.ArgumentParser(description="fairmot inference") + + parser.add_argument("--img_path", + type=str, + required=False, + help="image directory.") + parser.add_argument( + "--pipeline_path", + type=str, + required=False, + default="/home/data/xd_mindx/rsd/infer/sdk/config/posenet.pipeline", + help="image file path. The default is '/home/data/xd_mindx/czp/fairmot/infer/sdk/config/fairmot.pipeline'. ") + parser.add_argument( + "--model_type", + type=str, + required=False, + default="dvpp", + help= + "rgb: high-precision, dvpp: high performance. The default is 'dvpp'.") + parser.add_argument( + "--infer_mode", + type=str, + required=False, + default="infer", + help= + "infer:only infer, eval: accuracy evaluation. The default is 'infer'.") + parser.add_argument( + "--infer_result_dir", + type=str, + required=False, + default="./infer_result", + help= + "cache dir of inference result. The default is '../data/infer_result'." + ) + arg = parser.parse_args() + return arg + + +def process_img(img_file): + #img2 = Image.open(img_file) + #img1 = img2.resize((224, 455),Image.ANTIALIAS) + img = cv2.imread(img_file) + #pad_img = cv2.resize(img, (224, 455), interpolation=cv2.INTER_AREA) + #img,__, _, _ = letterbox(img0, height=cfg.MODEL_HEIGHT, width=cfg.MODEL_WIDTH) + return img + +def letterbox(img, height=608, width=1088, color=(127.5, 127.5, 127.5)): + """resize a rectangular image to a padded rectangular""" + shape = img.shape[:2] # shape = [height, width] + ratio = min(float(height) / shape[0], float(width) / shape[1]) + new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) # new_shape = [width, height] + dw = (width - new_shape[0]) / 2 # width padding + dh = (height - new_shape[1]) / 2 # height padding + top, bottom = round(dh - 0.1), round(dh + 0.1) + left, right = round(dw - 0.1), round(dw + 0.1) + img = cv2.resize(img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border + img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded rectangular + return img, ratio, dw, dh + + +def image_inference(pipeline_path, stream_name, img_dir, result_dir): + """image_inference""" + sdk_api = SdkApi(pipeline_path) + if not sdk_api.init(): + exit(-1) + print(stream_name) + if not os.path.exists(result_dir): + os.makedirs(result_dir) + img_data_plugin_id = 0 + i = 0 + print(f"\nBegin to inference for {img_dir}.\n") + file_list = os.listdir(img_dir) + txt_file = "../dataset_test.txt" + with open(txt_file, 'r') as f: + next(f) + next(f) + next(f) + for line in f: + fname, _, _, _, _, _, _, _ = line.split() + file_name1 = fname.split('/')[0] # seq + file_name2 = fname.split('/')[1] # frame0009 + for filedirname in os.listdir(img_dir): # bianli file name + if filedirname == file_name1: + files = img_dir + "/" + file_name1 + file_list = os.listdir(files) + for img_id, file_name in enumerate(file_list): + total_len = len(file_list) + if file_name == file_name2: + file_name1 = file_name1 + "/" + file_name + file_path = os.path.join(img_dir, file_name1) + file_binname0 = "posenet" + "_" + str(i) + "_0.bin" + file_binname1 = "posenet" + "_" + str(i) + "_1.bin" + file_binname2 = "posenet" + "_" + str(i) + "_2.bin" + file_binname3 = "posenet" + "_" + str(i) + "_3.bin" + file_binname4 = "posenet" + "_" + str(i) + "_4.bin" + file_binname5 = "posenet" + "_" + str(i) + "_5.bin" + i = i + 1 + save_path = [os.path.join(result_dir, file_binname0), + os.path.join(result_dir, file_binname1), + os.path.join(result_dir, file_binname2), + os.path.join(result_dir, file_binname3), + os.path.join(result_dir, file_binname4), + os.path.join(result_dir, file_binname5)] + img_np = process_img(file_path) + img_shape = img_np.shape + sdk_api.send_img_input(stream_name, + img_data_plugin_id, "appsrc0", + img_np.tobytes(), img_shape) + start_time = time.time() + result = sdk_api.get_result(stream_name) + end_time = time.time() - start_time + with open(save_path[0], "wb") as fp: + fp.write(result[0]) + print( + f"End-2end inference, file_name: {file_path}, " + f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n" + ) + with open(save_path[1], "wb") as fp: + fp.write(result[1]) + print( + f"End-2end inference, file_name: {file_path}, " + f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n" + ) + with open(save_path[2], "wb") as fp: + fp.write(result[2]) + print( + f"End-2end inference, file_name: {file_path}, " + f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n" + ) + with open(save_path[3], "wb") as fp: + fp.write(result[3]) + print( + f"End-2end inference, file_name: {file_path}, " + f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n" + ) + with open(save_path[4], "wb") as fp: + fp.write(result[4]) + print( + f"End-2end inference, file_name: {file_path}, " + f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n" + ) + with open(save_path[5], "wb") as fp: + fp.write(result[5]) + print( + f"End-2end inference, file_name: {file_path}, " + f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n" + ) + + + + +if __name__ == "__main__": + args = parser_args() + seqs_str = '''MOT20-01 + MOT20-02 + MOT20-03 + MOT20-05 + ''' + image_inference(args.pipeline_path, cfg.STREAM_NAME.encode("utf-8"), args.img_path, + args.infer_result_dir) diff --git a/official/cv/posenet/modelarts/train_start.py b/official/cv/posenet/modelarts/train_start.py new file mode 100644 index 0000000000000000000000000000000000000000..421fb309e454892b6d80a271e25dba717d26140d --- /dev/null +++ b/official/cv/posenet/modelarts/train_start.py @@ -0,0 +1,158 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""train posenet""" +import ast +import argparse +import os +import shutil +import numpy as np +from mindspore.common import set_seed +from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context +from mindspore.context import ParallelMode +from mindspore.communication.management import init, get_rank +from mindspore.nn import Adagrad +from mindspore.train.model import Model +from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor +import mindspore.common.dtype as ms +from src.posenet import PoseNet +from src.config import common_config, KingsCollege, StMarysChurch +from src.dataset import create_posenet_dataset +from src.loss import PosenetWithLoss + +set_seed(1) + +parser = argparse.ArgumentParser(description='Posenet train.') +parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default is false.") +parser.add_argument('--dataset', type=str, default='KingsCollege', + choices=['KingsCollege', 'StMarysChurch'], help='Name of dataset.') +parser.add_argument('--device_num', type=int, default=1, help='Number of device.') +# 妯″瀷杈撳嚭鐩綍 +parser.add_argument('--train_url', type=str, default='', help='the path model saved') +# 鏁版嵁闆嗙洰褰� +parser.add_argument('--data_url', type=str, default='', help='the training data') +# 鎶藉彇鍑烘潵鐨勮秴鍙傞厤缃� +parser.add_argument('--pre_trained', type=ast.literal_eval, default=False, help='Pretrained checkpoint path') +parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)') +parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"), + help="Device target, support Ascend, GPU and CPU.") +parser.add_argument('--max_steps', type=int, default=30000, help='max_steps') +parser.add_argument('--save_checkpoint_epochs', type=int, default=5, help='save_checkpoint_epochs') +parser.add_argument('--keep_checkpoint_max', type=int, default=10, help='keep_checkpoint_max') +parser.add_argument('--save_checkpoint', type=ast.literal_eval, default=True, help='save_checkpoint') +parser.add_argument("--file_name", type=str, default="posenet", help="output file name.") +parser.add_argument('--is_modelarts', type=ast.literal_eval, default=True, help='Train in Modelarts.') +args_opt = parser.parse_args() +CACHE_TRAINING_URL = "/cache/training/" +CACHE = "/cache/" +src = "/" +local_data_path = '/cache/data/' +if not os.path.isdir(CACHE_TRAINING_URL): + os.makedirs(CACHE_TRAINING_URL) + +if __name__ == '__main__': + cfg = common_config + if args_opt.dataset == "KingsCollege": + dataset_cfg = KingsCollege + elif args_opt.dataset == "StMarysChurch": + dataset_cfg = StMarysChurch + + device_target = args_opt.device_target + context.set_context(mode=context.GRAPH_MODE, device_target=device_target) + if args_opt.run_distribute: + if device_target == "Ascend": + device_id = int(os.getenv('DEVICE_ID')) + context.set_context(device_id=device_id, enable_auto_mixed_precision=True) + context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, + gradients_mean=True, + auto_parallel_search_mode="recursive_programming") + init() + elif device_target == "GPU": + init() + context.set_auto_parallel_context(device_num=args_opt.device_num, + parallel_mode=ParallelMode.DATA_PARALLEL, + gradients_mean=True, + auto_parallel_search_mode="recursive_programming") + else: + if args_opt.device_id is not None: + context.set_context(device_id=args_opt.device_id) + else: + context.set_context(device_id=cfg.device_id) + + train_dataset_path = dataset_cfg.dataset_path + if args_opt.is_modelarts: + import moxing as mox + mox.file.copy_parallel(args_opt.data_url, CACHE) + if args_opt.dataset == "KingsCollege": + mindrecord_file_name = "KingsCollege_posenet_train.mindrecord" + elif args_opt.dataset == "StMarysChurch": + mindrecord_file_name = "StMarysChurch_posenet_train.mindrecord" + mindrecord_file = os.path.join(CACHE, mindrecord_file_name) + dataset = create_posenet_dataset(mindrecord_file, batch_size=dataset_cfg.batch_size, + device_num=args_opt.device_num, is_training=True) + step_per_epoch = dataset.get_dataset_size() + + net_with_loss = PosenetWithLoss(args_opt.pre_trained) + opt = Adagrad(params=net_with_loss.trainable_params(), + learning_rate=dataset_cfg.lr_init, + weight_decay=dataset_cfg.weight_decay) + model = Model(net_with_loss, optimizer=opt) + + time_cb = TimeMonitor(data_size=step_per_epoch) + loss_cb = LossMonitor() + cb = [time_cb, loss_cb] + if args_opt.save_checkpoint: + config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_epochs * step_per_epoch, + keep_checkpoint_max=args_opt.keep_checkpoint_max) + if args_opt.is_modelarts: + save_checkpoint_path = CACHE_TRAINING_URL + if args_opt.device_num == 1: + ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset, + directory=save_checkpoint_path, + config=config_ck) + cb += [ckpt_cb] + if args_opt.device_num > 1 and get_rank() % 8 == 0: + ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset, + directory=save_checkpoint_path, + config=config_ck) + cb += [ckpt_cb] + else: + save_checkpoint_path = cfg.checkpoint_dir + if not os.path.isdir(save_checkpoint_path): + os.makedirs(save_checkpoint_path) + + if args_opt.device_num == 1: + ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset, + directory=save_checkpoint_path, + config=config_ck) + cb += [ckpt_cb] + if args_opt.device_num > 1 and get_rank() % 8 == 0: + ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset, + directory=save_checkpoint_path, + config=config_ck) + cb += [ckpt_cb] + + epoch_size = args_opt.max_steps // args_opt.device_num // step_per_epoch + model.train(1, dataset, callbacks=cb) + + net = PoseNet() + file_name1 = "train_posenet_KingsCollege-1_16.ckpt" + assert cfg.checkpoint_dir is not None, "cfg.checkpoint_dir is None." + param_dict = load_checkpoint(os.path.join(CACHE_TRAINING_URL, file_name1)) + load_param_into_net(net, param_dict) + input_arr = Tensor(np.ones([1, 3, 224, 224]), ms.float32) + export(net, input_arr, file_name=args_opt.file_name, file_format='AIR') + shutil.copy('posenet.air', CACHE_TRAINING_URL) + if args_opt.is_modelarts: + mox.file.copy_parallel(src_url=CACHE_TRAINING_URL, dst_url=args_opt.train_url) diff --git a/official/cv/posenet/scripts/docker_start.sh b/official/cv/posenet/scripts/docker_start.sh new file mode 100644 index 0000000000000000000000000000000000000000..e39553192b435f70dae6aa6b6adbfd6ffe901b40 --- /dev/null +++ b/official/cv/posenet/scripts/docker_start.sh @@ -0,0 +1,35 @@ +#!/bin/bash +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License.mitations under the License. + +docker_image=$1 +data_dir=$2 +model_dir=$3 + +docker run -it --ipc=host \ + --device=/dev/davinci0 \ + --device=/dev/davinci1 \ + --device=/dev/davinci2 \ + --device=/dev/davinci3 \ + --device=/dev/davinci4 \ + --device=/dev/davinci5 \ + --device=/dev/davinci6 \ + --device=/dev/davinci7 \ + --device=/dev/davinci_manager \ + --device=/dev/devmm_svm --device=/dev/hisi_hdc \ + -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ + -v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons/ \ + -v ${model_dir}:${model_dir} \ + -v ${data_dir}:${data_dir} \ + -v /root/ascend/log:/root/ascend/log ${docker_image} /bin/bash \ No newline at end of file