diff --git a/.jenkins/check/config/filter_cpplint.txt b/.jenkins/check/config/filter_cpplint.txt
index f811161ea4789bfa5e6a6357e760dab7cec4d7c4..09420b5198f640e75374a91b860fda1cd5f3451a 100644
--- a/.jenkins/check/config/filter_cpplint.txt
+++ b/.jenkins/check/config/filter_cpplint.txt
@@ -45,3 +45,6 @@
 "models/official/cv/squeezenet/infer/mxbase/src/squeezenetResidual.h"  "runtime/references"
 "models/official/cv/squeezenet/infer/mxbase/src/main.cpp"    "runtime/references"
 
+"models/official/cv/posenet/infer/mxbase/src/Posenet.h" "runtime/references"
+"models/official/cv/posenet/infer/mxbase/src/Posenet.cpp" "runtime/references"
+"models/official/cv/posenet/infer/mxbase/src/main.cpp" "runtime/references"
\ No newline at end of file
diff --git a/official/cv/posenet/infer/README.md b/official/cv/posenet/infer/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a8d1dbccc0b686461932343270e37e921c18b223
--- /dev/null
+++ b/official/cv/posenet/infer/README.md
@@ -0,0 +1,117 @@
+# 鎺ㄧ悊
+
+## 妯″瀷杞崲
+
+1. 鍑嗗妯″瀷鏂囦欢銆�
+
+   AIR妯″瀷涓哄湪鏄囪吘910鏈嶅姟鍣ㄤ笂瀵煎嚭鐨勬ā鍨嬶紝瀵煎嚭AIR妯″瀷鐨勮缁嗘楠よ鍙傝鈥滄ā鍨嬭缁冣€濄€�
+
+2. 鎵ц浠ヤ笅鍛戒护锛岃繘琛屾ā鍨嬭浆鎹€€�
+
+   杞崲璇︾粏淇℃伅鍙煡鐪嬭浆鎹㈣剼鏈拰瀵瑰簲鐨凙IPP閰嶇疆鏂囦欢锛岃浆鎹㈠懡浠ゅ涓嬨€�
+
+   **bash convert/convert_om.sh** *air_path* *aipp_cfg_path* *om_path*
+
+   | 鍙傛暟          | 璇存槑                                              |
+   | ------------- | ------------------------------------------------- |
+   | air_path      | 杞崲鑴氭湰AIR鏂囦欢璺緞銆�                             |
+   | aipp_cfg_path | AIPP閰嶇疆鏂囦欢璺緞銆�                                |
+   | om_path       | 鐢熸垚鐨凮M鏂囦欢鍚嶏紝杞崲鑴氭湰浼氬湪姝ゅ熀纭€涓婃坊鍔�.om鍚庣紑銆� |
+
+   杞崲绀轰緥濡備笅鎵€绀恒€�
+
+   ```bash
+
+   # 杞崲妯″瀷
+   bash convert/convert_om.sh xxx/posenet.air convert/aipp.cfg posenet
+
+   ```
+
+3. 灏嗚浆鎹㈠ソ鐨勬ā鍨嬬Щ鍔ㄥ埌瀛樻斁妯″瀷鐨勭洰褰曚笅銆�
+
+   ```bash
+
+   # 绉诲姩妯″瀷
+   mv posenet.om data/model/
+
+   ```
+
+## mxBase鎺ㄧ悊
+
+1. 缂栬瘧宸ョ▼銆�
+
+   鐩墠mxBase鎺ㄧ悊浠呭疄鐜颁簡鍩轰簬DVPP鏂瑰紡鎺ㄧ悊銆�
+
+   ```bash
+
+   cd xxx/infer/mxbase
+   bash build.sh
+
+   ```
+
+2. 锛堝彲閫夛級淇敼閰嶇疆鏂囦欢銆�
+
+   鍙牴鎹疄闄呮儏鍐典慨鏀癸紝閰嶇疆鏂囦欢浣嶄簬鈥渕xbase/src/main.cpp鈥濅腑锛屽彲淇敼鍙傛暟濡備笅銆�
+
+```c++
+
+namespace {
+const uint32_t DEVICE_ID = 0;  // 鎸囧畾璁惧ID锛岄粯璁や负0,鍙牴鎹疄闄呮儏鍐佃皟鏁�
+std::string RESULT_PATH = "../data/mx_result/";  // 鎺ㄧ悊缁撴灉淇濆瓨璺緞
+} // namespace
+...
+
+```
+
+3. 杩愯鎺ㄧ悊鏈嶅姟銆�
+
+   杩愯鎺ㄧ悊鏈嶅姟锛堢‘淇濅綘鐨勮緭鍑鸿矾寰勫瓨鍦紝鍚﹀垯浼氭姤閿欙級銆�
+   **./build/midas_mindspore**  *om_path* *img_path* *dataset_name*
+   | 鍙傛暟       | 璇存槑                           |
+   | ---------- | ------------------------------ |
+   | om_path | om瀛樻斁璺緞銆傚锛氣€�../data/model/posenet.om鈥濄€� |
+   | img_path | 鎺ㄧ悊鍥剧墖璺緞銆傚锛氣€�../dataset/KingsCollege/鈥濄€� |
+   | dataset_name | 鎺ㄧ悊鏁版嵁闆嗗悕绉般€傚锛氣€渟eq2鈥濄€� |
+
+4. 瑙傚療缁撴灉銆�
+   鎺ㄧ悊缁撴灉浠in鏍煎紡淇濆瓨锛岃矾寰勪负鈥�./result_Files/鈥�.
+
+## MindX SDK鎺ㄧ悊
+
+1. 锛堝彲閫夛級淇敼閰嶇疆鏂囦欢銆�
+
+   1. 鍙牴鎹疄闄呮儏鍐典慨鏀筽ipeline鏂囦欢銆�
+
+      ```python
+
+      鈹溾攢鈹€ config
+      鈹�   鈹溾攢鈹€ config.py
+      鈹�   鈹斺攢鈹€  posenet.pipeline # PIPELINE鏂囦欢
+
+      ```
+
+2. 妯″瀷鎺ㄧ悊銆�
+
+   1. 鎵ц鎺ㄧ悊銆�
+
+      鍒囨崲鍒皊dk鐩綍涓嬶紝鎵ц鎺ㄧ悊鑴氭湰銆�
+      **python3.7 main.py**  *--img_path*
+      | 鍙傛暟        | 璇存槑                                  |
+      | ----------- | ------------------------------------- |
+      | img_path  | 鎺ㄧ悊鍥剧墖璺緞銆傚锛氣€�../dataset/KingsCollege鈥濄€�        |
+
+3. 鎵ц绮惧害娴嬭瘯銆�
+   鎺ㄧ悊绮惧害鑴氭湰瀛樻斁鍦�"sdk/eval"鐩綍涓嬨€備繚瀛樹负acc.log鏂囦欢,鑴氭湰鎺ュ彈1涓弬鏁帮紝渚濇鏄暟鎹泦璺緞銆傝剼鏈ず渚嬪涓嬶細
+
+   ```python
+   python eval_by_sdk.py --result_path ../infer_result >acc.log
+   ```
+
+4. 鏌ョ湅鎬ц兘缁撴灉銆�
+   鎬ц兘缁撴灉濡備笅锛�
+
+   ```bash
+
+   Median error 1.8816218573685832 m and 4.192690626738049 degrees.
+
+   ```
diff --git a/official/cv/posenet/infer/convert/aipp.cfg b/official/cv/posenet/infer/convert/aipp.cfg
new file mode 100644
index 0000000000000000000000000000000000000000..7a64c181d5b82bba102eeecab023a9cff961647a
--- /dev/null
+++ b/official/cv/posenet/infer/convert/aipp.cfg
@@ -0,0 +1,39 @@
+aipp_op {
+    aipp_mode : static
+    input_format : RGB888_U8
+    related_input_rank : 0
+
+    src_image_size_w: 224
+    src_image_size_h: 456
+
+    crop: true
+    load_start_pos_w: 0
+    load_start_pos_h: 116
+    crop_size_w: 224
+    crop_size_h: 224
+
+    csc_switch : false
+    rbuv_swap_switch : true
+    matrix_r0c0 : 256
+    matrix_r0c1 : 0
+    matrix_r0c2 : 359
+    matrix_r1c0 : 256
+    matrix_r1c1 : -88
+    matrix_r1c2 : -183
+    matrix_r2c0 : 256
+    matrix_r2c1 : 454
+    matrix_r2c2 : 0
+    input_bias_0 : 0
+    input_bias_1 : 128
+    input_bias_2 : 128
+
+    mean_chn_0 : 0
+    mean_chn_1 : 0
+    mean_chn_2 : 0
+    min_chn_0 : 123.675
+    min_chn_1 : 116.28
+    min_chn_2 : 103.53
+    var_reci_chn_0 : 0.0171247538316637
+    var_reci_chn_1 : 0.0175070028011204
+    var_reci_chn_2 : 0.0174291938997821
+}
diff --git a/official/cv/posenet/infer/convert/convert_om.sh b/official/cv/posenet/infer/convert/convert_om.sh
new file mode 100644
index 0000000000000000000000000000000000000000..6848e24222705cedb478e68da58169f080ecfd9a
--- /dev/null
+++ b/official/cv/posenet/infer/convert/convert_om.sh
@@ -0,0 +1,45 @@
+#!/bin/bash
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+# The number of parameters must be 3.
+if [ $# -ne 3 ]
+then
+  echo "Wrong parameter format."
+  echo "Usage:"
+  echo "         bash $0 [INPUT_AIR_PATH] [AIPP_PATH] [OUTPUT_OM_PATH_NAME]"
+  echo "Example: "
+  echo "         bash convert_om.sh  xxx.air ./aipp.cfg xx"
+
+  exit 1
+fi
+
+# The model path to be converted
+model_path=$1
+# The Aipp configuration file path
+aipp_cfg_file=$2
+# The name of the generated model
+output_model_name=$3
+
+atc \
+--model=$model_path \
+--framework=1 \
+--output=$output_model_name \
+--input_format=NCHW \
+--input_shape="x:1,3,224,224" \
+--enable_small_channel=1 \
+--log=error \
+--soc_version=Ascend310 \
+--insert_op_conf=$aipp_cfg_file
diff --git a/official/cv/posenet/infer/data/config/config.py b/official/cv/posenet/infer/data/config/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8d5a44bc3b9df2a3f90c6e1ae62c9a3534b8d72
--- /dev/null
+++ b/official/cv/posenet/infer/data/config/config.py
@@ -0,0 +1,25 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+
+STREAM_NAME = "im_posenet"
+MODEL_WIDTH = 224
+MODEL_HEIGHT = 224
+
+INFER_TIMEOUT = 100000
+
+TENSOR_DTYPE_FLOAT32 = 0
+TENSOR_DTYPE_FLOAT16 = 1
+TENSOR_DTYPE_INT8 = 2
diff --git a/official/cv/posenet/infer/data/config/posenet.pipeline b/official/cv/posenet/infer/data/config/posenet.pipeline
new file mode 100644
index 0000000000000000000000000000000000000000..5b6dc8faeb047688ce705f10eae1df972f0976d4
--- /dev/null
+++ b/official/cv/posenet/infer/data/config/posenet.pipeline
@@ -0,0 +1,44 @@
+{
+    "im_posenet": {
+        "stream_config": {
+            "deviceId": "0"
+        },
+        "appsrc0": {
+            "props": {
+                "blocksize": "409600"
+            },
+            "factory": "appsrc",
+            "next": "mxpi_imageresize0"
+        },
+        "mxpi_imageresize0": {
+            "props": {
+                "dataSource": "appsrc0",
+                "handleMethod": "opencv",
+                "resizeType": "Resizer_Stretch",
+                "resizeHeight": "456",
+                "resizeWidth": "224"
+            },
+            "factory": "mxpi_imageresize",
+            "next": "mxpi_modelinfer0"
+        },
+        "mxpi_modelinfer0": {
+            "props": {
+                "dataSource": "mxpi_imageresize0",
+                "modelPath": "../convert/posenet.om",
+                "outputDeviceId": "-1"
+            },
+            "factory": "mxpi_modelinfer",
+            "next": "mxpi_dataserialize0"
+        },
+        "mxpi_dataserialize0": {
+            "props": {
+                "outputDataKeys": "mxpi_modelinfer0"
+            },
+            "factory": "mxpi_dataserialize",
+            "next": "appsink0"
+        },
+        "appsink0": {
+            "factory": "appsink"
+        }
+    }
+}
diff --git a/official/cv/posenet/infer/dataset_test.txt b/official/cv/posenet/infer/dataset_test.txt
new file mode 100644
index 0000000000000000000000000000000000000000..37128eb31b5bc1cd30e529737feceb53725b81dd
--- /dev/null
+++ b/official/cv/posenet/infer/dataset_test.txt
@@ -0,0 +1,346 @@
+Visual Landmark Dataset V1
+ImageFile, Camera Position [X Y Z W P Q R]
+
+seq7/frame00030.png -20.134839 -16.641770 1.735459 0.672315 0.574745 -0.296687 0.360053
+seq7/frame00029.png -20.932895 -16.398778 1.587640 0.649817 0.579078 -0.314630 0.378702
+seq7/frame00032.png -18.625600 -17.393665 1.836093 0.658770 0.575333 -0.314400 0.369009
+seq7/frame00033.png -17.857495 -17.568780 1.790984 0.656993 0.584342 -0.320180 0.352689
+seq7/frame00034.png -17.040426 -17.714711 1.846034 0.657814 0.577350 -0.331544 0.352173
+seq7/frame00035.png -16.414970 -18.002380 1.733040 0.665271 0.590037 -0.314774 0.331945
+seq7/frame00028.png -21.519864 -15.970470 1.733840 0.638432 0.556592 -0.337607 0.410649
+seq7/frame00027.png -22.258832 -15.582319 1.699754 0.630068 0.565083 -0.346911 0.404163
+seq7/frame00031.png -19.509803 -17.016859 1.828394 0.680741 0.591615 -0.263813 0.342030
+seq7/frame00036.png -15.492117 -18.038837 2.012505 0.676508 0.580960 -0.310246 0.329500
+seq7/frame00037.png -14.823916 -18.303939 1.743378 0.685468 0.575526 -0.292651 0.336540
+seq7/frame00038.png -13.902669 -18.223222 1.869704 0.676583 0.571875 -0.308713 0.346252
+seq7/frame00039.png -13.182436 -18.442966 1.724784 0.678307 0.569025 -0.308146 0.348075
+seq7/frame00040.png -12.339218 -18.478848 1.774631 0.677755 0.562410 -0.318602 0.350479
+seq7/frame00041.png -11.531299 -18.548329 1.807577 0.685505 0.565523 -0.301249 0.345710
+seq7/frame00042.png -10.703305 -18.439226 1.876607 0.677126 0.569889 -0.305359 0.351403
+seq7/frame00043.png -9.931183 -18.680199 1.687524 0.690301 0.581122 -0.291632 0.317383
+seq7/frame00044.png -9.085261 -18.609865 1.823413 0.692639 0.575331 -0.284477 0.329117
+seq7/frame00045.png -8.413352 -18.817093 1.798918 0.708845 0.584995 -0.259047 0.297008
+seq7/frame00046.png -7.603774 -18.817994 1.954586 0.717915 0.575522 -0.253223 0.298750
+seq7/frame00047.png -6.843852 -19.194916 1.752180 0.718287 0.580690 -0.242047 0.297111
+seq7/frame00048.png -6.092491 -19.389024 1.980602 0.727145 0.579574 -0.234742 0.283285
+seq7/frame00049.png -5.386179 -19.751707 1.851691 0.723023 0.592302 -0.224914 0.275372
+seq7/frame00050.png -4.598479 -20.011251 1.890012 0.725292 0.578877 -0.241972 0.283376
+seq7/frame00051.png -3.963772 -20.312341 1.893778 0.723698 0.593926 -0.232298 0.263724
+seq7/frame00052.png -3.253335 -20.480189 1.889798 0.724990 0.593836 -0.234774 0.258128
+seq7/frame00053.png -2.470283 -20.774158 1.759759 0.736172 0.593938 -0.214720 0.243276
+seq7/frame00026.png -22.980050 -15.229048 1.661614 0.610755 0.549177 -0.377694 0.427469
+seq7/frame00025.png -23.660958 -14.852443 1.744996 0.627253 0.558269 -0.348565 0.416403
+seq7/frame00054.png -1.910129 -20.862950 1.822718 0.749814 0.593862 -0.189459 0.221839
+seq7/frame00055.png -1.131067 -21.084283 1.874709 0.744780 0.596975 -0.189060 0.230607
+seq7/frame00056.png -0.318291 -21.044916 1.979469 0.742911 0.603992 -0.177733 0.227349
+seq7/frame00057.png 0.442729 -21.277574 1.786215 0.740726 0.599125 -0.202078 0.227020
+seq7/frame00058.png 1.329111 -21.285416 1.849226 0.744088 0.599272 -0.205412 0.212159
+seq7/frame00059.png 2.011176 -21.496994 1.749186 0.742240 0.612652 -0.185565 0.198248
+seq7/frame00060.png 2.763441 -21.570304 1.823128 0.736954 0.620389 -0.188534 0.190975
+seq7/frame00061.png 3.512889 -21.796686 1.668700 0.743539 0.606749 -0.184085 0.212409
+seq7/frame00062.png 4.324028 -21.996924 1.791973 0.735588 0.620108 -0.187697 0.197852
+seq7/frame00063.png 5.062083 -22.135850 1.807266 0.732778 0.618931 -0.195359 0.204442
+seq7/frame00064.png 5.871245 -22.145514 1.906262 0.740236 0.618086 -0.170983 0.201954
+seq7/frame00065.png 6.623529 -22.285303 1.907085 0.748097 0.608516 -0.179827 0.194219
+seq7/frame00066.png 7.480523 -22.373368 1.730820 0.765808 0.598968 -0.170964 0.159832
+seq7/frame00067.png 8.198709 -22.460965 1.748254 0.764411 0.608538 -0.152823 0.148331
+seq7/frame00068.png 8.920337 -22.738723 1.834570 0.769459 0.613496 -0.129266 0.121845
+seq7/frame00069.png 9.711602 -22.799802 1.608074 0.781506 0.608808 -0.097772 0.095087
+seq7/frame00070.png 10.233350 -23.024696 1.862208 0.777161 0.624425 -0.064681 0.043936
+seq7/frame00071.png 11.137815 -23.263750 1.980607 0.777863 0.624057 -0.055555 0.048954
+seq7/frame00072.png 11.915640 -23.576071 1.714673 0.776329 0.628560 -0.037820 0.028179
+seq7/frame00073.png 12.608373 -23.747977 1.845003 0.777898 0.627975 -0.021355 0.008143
+seq7/frame00074.png 13.236864 -24.132282 1.828876 0.769271 0.637893 -0.030718 0.019230
+seq7/frame00075.png 13.727763 -24.404897 2.025082 0.777170 0.628241 -0.034767 -0.010528
+seq7/frame00076.png 14.628859 -24.777264 1.881960 0.762735 0.645918 -0.031750 0.004187
+seq7/frame00077.png 15.161935 -25.064914 2.094405 0.769715 0.637865 -0.023526 0.010625
+seq7/frame00078.png 15.885105 -25.527937 1.877668 0.776165 0.630256 0.009150 -0.016152
+seq7/frame00079.png 16.542913 -25.732379 2.042813 0.788732 0.614613 -0.001659 0.012234
+seq7/frame00081.png 17.877780 -26.056916 1.943285 0.772265 0.634455 0.032078 -0.006607
+seq7/frame00080.png 17.202593 -25.964246 1.917686 0.775751 0.629480 0.041409 -0.015838
+seq7/frame00082.png 18.804973 -26.229792 1.945266 0.767357 0.638709 0.054500 -0.015585
+seq7/frame00083.png 19.584452 -26.324690 1.993557 0.766080 0.633166 0.085784 -0.069741
+seq7/frame00085.png 21.019635 -26.439089 1.905365 0.772953 0.624955 0.078520 -0.076218
+seq7/frame00084.png 20.284757 -26.554089 1.704921 0.761300 0.635009 0.103977 -0.079835
+seq2/frame00060.png -12.960270 -17.745061 1.905141 0.665089 0.638548 -0.267225 0.280186
+seq2/frame00059.png -10.964422 -18.003095 1.948263 0.667120 0.654447 -0.240937 0.261915
+seq2/frame00058.png -9.017906 -18.339121 1.861857 0.687444 0.641992 -0.225948 0.253405
+seq2/frame00061.png -14.954063 -17.336136 1.834820 0.660323 0.620394 -0.285394 0.312465
+seq2/frame00057.png -7.087590 -18.692583 2.015063 0.681510 0.634720 -0.246317 0.268332
+seq7/frame00086.png 21.843061 -26.318040 1.971262 0.771946 0.632664 0.041653 -0.045845
+seq7/frame00087.png 22.719980 -26.110785 2.017998 0.776274 0.627766 0.050053 -0.028332
+seq7/frame00089.png 24.010295 -26.440990 2.054388 0.776831 0.626232 0.038133 -0.053971
+seq7/frame00024.png -24.710930 -14.667284 1.646102 0.643159 0.521205 -0.342827 0.444029
+seq7/frame00023.png -25.306145 -14.080827 1.784188 0.672492 0.547897 -0.299737 0.397141
+seq7/frame00022.png -26.069780 -13.883237 1.650105 0.676209 0.538876 -0.295872 0.405973
+seq7/frame00021.png -26.819517 -13.747240 1.462271 0.666445 0.558229 -0.303743 0.389836
+seq7/frame00020.png -27.572461 -13.690306 1.494322 0.653788 0.532517 -0.336450 0.419270
+seq7/frame00019.png -28.463042 -13.666061 1.594805 0.664652 0.545069 -0.315639 0.401883
+seq7/frame00018.png -29.269544 -13.728495 1.594069 0.665765 0.545036 -0.315019 0.400569
+seq7/frame00017.png -29.845609 -13.873187 1.498556 0.658673 0.561319 -0.310940 0.392922
+seq7/frame00016.png -30.613969 -14.003083 1.596305 0.667217 0.535779 -0.325913 0.401924
+seq7/frame00015.png -31.415423 -14.009665 1.546501 0.674922 0.548503 -0.315396 0.379671
+seq7/frame00014.png -32.151277 -14.286741 1.375209 0.655395 0.538127 -0.339799 0.406712
+seq7/frame00013.png -32.903157 -14.548988 1.464914 0.654342 0.541226 -0.338489 0.405383
+seq7/frame00012.png -33.518579 -14.645796 1.648173 0.656966 0.531542 -0.340899 0.411882
+seq7/frame00011.png -34.187139 -14.773166 1.807015 0.652495 0.550711 -0.342289 0.392181
+seq7/frame00010.png -35.026903 -15.278819 1.539848 0.654489 0.543334 -0.342117 0.399234
+seq7/frame00009.png -35.650949 -15.306225 1.702727 0.647379 0.544282 -0.349532 0.403094
+seq7/frame00008.png -36.187556 -15.283162 1.818985 0.644113 0.560526 -0.345990 0.388870
+seq7/frame00007.png -36.910072 -15.679902 1.612457 0.630602 0.533410 -0.371394 0.424125
+seq7/frame00006.png -37.579731 -15.826912 1.658315 0.630280 0.538737 -0.365744 0.422778
+seq7/frame00005.png -38.328727 -16.037059 1.684635 0.633765 0.532060 -0.370847 0.421575
+seq7/frame00004.png -38.754687 -16.184989 1.624090 0.617140 0.546980 -0.380032 0.418959
+seq7/frame00003.png -39.003548 -16.294218 1.547187 0.606914 0.550287 -0.388440 0.421845
+seq7/frame00002.png -38.987651 -16.333623 1.408049 0.607569 0.546396 -0.392806 0.421918
+seq7/frame00001.png -39.114574 -16.434146 1.580481 0.604090 0.547015 -0.394160 0.424839
+seq2/frame00042.png 18.487009 -24.596167 1.877998 0.751006 0.650286 0.085662 -0.076031
+seq2/frame00053.png 0.502577 -20.476069 1.989070 0.715320 0.642978 -0.178216 0.207690
+seq2/frame00052.png 2.331193 -21.026126 1.884274 0.720336 0.646438 -0.167083 0.187930
+seq2/frame00056.png -5.101734 -19.098551 1.921939 0.677377 0.652143 -0.223851 0.256438
+seq2/frame00055.png -3.333103 -19.690758 1.965272 0.704197 0.640179 -0.196215 0.236171
+seq2/frame00041.png 19.716315 -25.093488 1.926848 0.745147 0.651885 0.094133 -0.104601
+seq2/frame00040.png 20.990331 -25.396332 1.917402 0.738011 0.655101 0.094262 -0.131514
+seq2/frame00044.png 15.713788 -23.890760 2.045090 0.742887 0.664975 0.058885 -0.049603
+seq2/frame00051.png 4.074920 -21.531486 2.119677 0.734309 0.659289 -0.118656 0.109769
+seq7/frame00090.png 24.933611 -26.514861 1.558637 0.791625 0.610671 0.011067 -0.016967
+seq7/frame00091.png 25.531671 -26.357883 1.756772 0.794085 0.605601 0.048069 -0.019102
+seq2/frame00054.png -1.345000 -20.110207 1.879715 0.690742 0.655883 -0.194221 0.234460
+seq2/frame00039.png 22.182492 -25.816673 1.921312 0.731982 0.655040 0.125468 -0.139222
+seq2/frame00038.png 23.178462 -26.182215 2.059261 0.729576 0.655586 0.131515 -0.143631
+seq7/frame00094.png 27.816061 -25.713179 1.874889 0.769877 0.630881 0.048542 -0.083193
+seq7/frame00095.png 28.171809 -25.506527 1.822525 0.762428 0.638284 0.061968 -0.086355
+seq7/frame00096.png 28.873539 -25.035019 1.813797 0.770605 0.631039 0.046422 -0.076175
+seq7/frame00097.png 29.519009 -24.795584 1.754097 0.748698 0.639150 0.109502 -0.137651
+seq7/frame00098.png 30.031667 -24.135448 1.739406 0.751185 0.628205 0.110341 -0.170014
+seq7/frame00099.png 30.573838 -23.504232 1.746393 0.724033 0.637074 0.149210 -0.218290
+seq7/frame00101.png 31.396926 -22.666954 1.693398 0.716354 0.646226 0.150562 -0.215780
+seq7/frame00100.png 30.673723 -23.144318 1.590409 0.719554 0.647185 0.142015 -0.207905
+seq7/frame00102.png 31.890466 -22.265945 1.830871 0.721809 0.636428 0.172512 -0.210217
+seq7/frame00103.png 32.248842 -21.921128 1.889033 0.711631 0.644949 0.174206 -0.217429
+seq2/frame00037.png 23.985989 -26.478699 2.105896 0.697299 0.693116 0.122218 -0.135746
+seq2/frame00048.png 9.190721 -22.903337 2.018002 0.750139 0.658323 -0.031548 0.053915
+seq2/frame00046.png 12.615848 -23.444136 1.845602 0.727731 0.685550 -0.002402 -0.020569
+seq2/frame00028.png 29.106021 -28.133399 1.703110 0.731597 0.617472 0.188338 -0.219139
+seq2/frame00049.png 7.578897 -22.303338 2.036418 0.733257 0.672483 -0.066005 0.075784
+seq2/frame00050.png 5.738534 -21.989335 1.923081 0.745687 0.661018 -0.064036 0.053910
+seq2/frame00031.png 26.716803 -28.044949 1.993961 0.686766 0.683765 0.136926 -0.205108
+seq2/frame00030.png 27.428373 -28.176526 1.800162 0.683676 0.674030 0.167450 -0.224121
+seq2/frame00029.png 28.283813 -28.406858 1.991715 0.695298 0.647519 0.199379 -0.239848
+seq2/frame00043.png 16.942498 -24.478378 1.913141 0.733042 0.668439 0.097171 -0.079983
+seq2/frame00035.png 24.885554 -27.146634 1.919669 0.682457 0.701719 0.125510 -0.161525
+seq2/frame00036.png 24.295339 -26.922771 1.820972 0.681526 0.706946 0.109338 -0.154259
+seq2/frame00025.png 31.435086 -27.894023 2.012606 0.707193 0.630567 0.218434 -0.233559
+seq2/frame00024.png 32.798448 -27.809429 1.833719 0.701456 0.658731 0.194652 -0.190116
+seq2/frame00032.png 26.536172 -27.894728 1.986256 0.695666 0.684385 0.127193 -0.177446
+seq2/frame00023.png 34.250713 -28.284919 1.820037 0.691678 0.657593 0.214038 -0.208187
+seq7/frame00088.png 23.251434 -26.479859 1.510365 0.784174 0.620224 0.019787 -0.001316
+seq7/frame00093.png 27.114362 -26.250571 1.914346 0.775687 0.618989 0.083341 -0.090642
+seq2/frame00047.png 10.743074 -23.194569 2.038243 0.730533 0.682398 -0.024878 0.005990
+seq2/frame00022.png 35.823399 -28.637137 1.865744 0.696229 0.641301 0.218161 -0.237495
+seq2/frame00026.png 30.476980 -27.823019 2.097214 0.689695 0.628747 0.222699 -0.281786
+seq2/frame00027.png 29.749933 -28.081827 1.866483 0.668271 0.645213 0.228198 -0.291616
+seq2/frame00045.png 14.066624 -24.012200 1.956258 0.727741 0.674116 0.083287 -0.094996
+seq2/frame00021.png 37.391115 -28.857567 1.904555 0.721933 0.613308 0.207810 -0.243888
+seq2/frame00020.png 39.052885 -29.070675 1.786923 0.707470 0.629460 0.201023 -0.250711
+seq2/frame00019.png 40.835689 -29.964266 1.676046 0.693940 0.631140 0.216140 -0.270910
+seq2/frame00018.png 42.593560 -30.325250 1.653050 0.690112 0.611968 0.246161 -0.297733
+seq2/frame00017.png 44.261717 -30.124020 1.829271 0.681964 0.624273 0.239088 -0.296724
+seq2/frame00016.png 46.077913 -30.988135 1.636236 0.668421 0.617304 0.264881 -0.319353
+seq2/frame00015.png 47.818720 -31.095740 1.865446 0.667864 0.613170 0.285328 -0.310753
+seq2/frame00014.png 49.686010 -31.542042 1.641933 0.669488 0.620352 0.273001 -0.304007
+seq2/frame00013.png 51.236881 -31.814558 1.816354 0.664994 0.610963 0.293628 -0.313511
+seq2/frame00012.png 52.951725 -32.511530 1.649876 0.666808 0.627747 0.280986 -0.286964
+seq2/frame00011.png 54.707905 -32.785491 1.667338 0.665511 0.615534 0.276844 -0.318700
+seq2/frame00010.png 56.376691 -33.555047 1.620395 0.673108 0.600839 0.287531 -0.321317
+seq2/frame00009.png 58.060887 -33.568937 1.935799 0.659991 0.621190 0.260646 -0.332564
+seq2/frame00008.png 59.480640 -34.301409 1.546711 0.677551 0.603757 0.259558 -0.330200
+seq2/frame00007.png 60.937416 -34.769914 1.520846 0.675375 0.600007 0.273871 -0.329931
+seq2/frame00006.png 62.642648 -35.359387 1.506509 0.657930 0.619431 0.283033 -0.321442
+seq7/frame00092.png 26.542868 -26.612129 1.990189 0.790215 0.607124 0.072953 -0.040488
+seq2/frame00001.png 65.420899 -35.664849 1.474799 0.651572 0.620833 0.300240 -0.316032
+seq2/frame00002.png 65.474678 -35.436835 1.599990 0.650746 0.620279 0.302991 -0.316196
+seq2/frame00003.png 65.515111 -35.397531 1.718850 0.648756 0.618917 0.307399 -0.318691
+seq2/frame00004.png 65.156833 -35.632574 1.626711 0.647665 0.608819 0.321294 -0.326557
+seq2/frame00005.png 64.053425 -35.684471 1.511922 0.648736 0.608755 0.311236 -0.334201
+seq2/frame00033.png 25.822611 -27.923541 1.942434 0.708153 0.657330 0.146490 -0.212081
+seq2/frame00034.png 25.270767 -27.590831 1.964343 0.693240 0.680907 0.134926 -0.193853
+seq3/frame00035.png -10.880652 -19.515416 1.592769 0.699763 0.614805 -0.249096 0.265139
+seq3/frame00036.png -10.013308 -19.465902 1.787279 0.685823 0.620507 -0.260538 0.277014
+seq3/frame00037.png -9.307181 -19.779749 1.694278 0.675973 0.620264 -0.275882 0.286744
+seq3/frame00034.png -11.624243 -19.338281 1.814680 0.693521 0.622262 -0.240803 0.271722
+seq3/frame00038.png -8.519983 -19.774672 1.733770 0.676746 0.617637 -0.286078 0.280533
+seq3/frame00040.png -6.954472 -20.083193 1.722779 0.683017 0.619273 -0.274006 0.273695
+seq3/frame00039.png -7.707132 -20.059667 1.770922 0.675097 0.617984 -0.293334 0.276213
+seq3/frame00032.png -13.057288 -19.030974 1.810387 0.681456 0.624408 -0.273558 0.266266
+seq3/frame00033.png -12.431570 -19.402619 1.431984 0.704001 0.610005 -0.241154 0.272250
+seq3/frame00031.png -13.953789 -19.207257 1.497858 0.692379 0.603898 -0.280314 0.278104
+seq3/frame00030.png -14.674403 -18.851122 1.782683 0.682258 0.610179 -0.277146 0.292226
+seq3/frame00029.png -15.446940 -18.719218 1.735135 0.678796 0.599680 -0.296549 0.302785
+seq3/frame00041.png -6.066286 -20.419237 1.716882 0.680475 0.622691 -0.280335 0.265749
+seq3/frame00042.png -5.262388 -20.345740 1.692534 0.691343 0.622567 -0.265085 0.253348
+seq3/frame00043.png -4.416381 -20.568274 1.631511 0.694964 0.621020 -0.264645 0.247632
+seq3/frame00044.png -3.555698 -20.520995 1.779623 0.684884 0.642896 -0.243675 0.241333
+seq3/frame00045.png -2.805892 -21.072321 1.714146 0.705244 0.618915 -0.258309 0.229897
+seq3/frame00046.png -1.987490 -20.890493 1.861636 0.694691 0.638185 -0.237463 0.231810
+seq3/frame00047.png -1.179256 -21.335031 1.667385 0.705685 0.632248 -0.232591 0.219484
+seq3/frame00048.png -0.370476 -21.255275 1.828279 0.703252 0.637310 -0.224496 0.221077
+seq3/frame00049.png 0.379013 -21.669740 1.625053 0.711608 0.623632 -0.230885 0.226693
+seq3/frame00050.png 1.083506 -21.726651 1.746660 0.713601 0.626231 -0.214601 0.229249
+seq3/frame00051.png 1.947420 -21.995034 1.539901 0.709856 0.640837 -0.207730 0.205622
+seq3/frame00052.png 2.661493 -21.929875 1.822724 0.694840 0.670043 -0.184019 0.185410
+seq3/frame00028.png -16.171541 -18.488807 1.798854 0.664583 0.616472 -0.318130 0.277643
+seq3/frame00053.png 3.411407 -22.252066 1.669250 0.715452 0.662323 -0.166462 0.147471
+seq3/frame00054.png 4.161118 -22.404130 2.041327 0.725252 0.656901 -0.154964 0.135932
+seq3/frame00055.png 4.971774 -22.487978 1.735610 0.745584 0.631868 -0.152950 0.146471
+seq3/frame00056.png 5.595621 -22.657830 1.909707 0.754562 0.635282 -0.117628 0.114962
+seq3/frame00057.png 6.523833 -22.996992 1.849588 0.762913 0.626378 -0.116315 0.109933
+seq3/frame00058.png 7.166671 -23.053888 2.065909 0.753807 0.633072 -0.127897 0.120982
+seq3/frame00059.png 7.944351 -23.319791 1.512887 0.767716 0.617736 -0.119398 0.121484
+seq3/frame00060.png 8.768098 -23.637179 1.859119 0.762030 0.629329 -0.110383 0.105218
+seq3/frame00061.png 9.475024 -23.799671 1.902305 0.760152 0.628127 -0.114325 0.120644
+seq3/frame00062.png 10.242060 -23.992528 1.948129 0.764317 0.624009 -0.124907 0.104068
+seq3/frame00063.png 11.049388 -24.292776 1.633273 0.773540 0.616034 -0.109236 0.101024
+seq3/frame00064.png 11.757283 -24.567696 1.973605 0.767476 0.629284 -0.084032 0.089005
+seq3/frame00065.png 12.529689 -24.816962 1.796000 0.770357 0.631764 -0.051220 0.069288
+seq3/frame00068.png 15.018277 -25.450999 1.829682 0.766824 0.641828 0.003867 -0.004720
+seq3/frame00067.png 14.282715 -25.299586 1.769999 0.765807 0.639588 -0.032936 0.058154
+seq3/frame00027.png -17.040541 -18.506951 1.386512 0.672125 0.603369 -0.322315 0.283384
+seq3/frame00026.png -17.773808 -18.247233 1.645731 0.662295 0.610257 -0.314908 0.299642
+seq3/frame00025.png -18.482603 -18.064309 1.507602 0.665905 0.594171 -0.320936 0.317066
+seq3/frame00024.png -19.225750 -17.828047 1.781465 0.655381 0.604295 -0.321686 0.319094
+seq3/frame00023.png -20.131545 -17.893094 1.482647 0.667977 0.591507 -0.314736 0.323831
+seq3/frame00022.png -20.764098 -17.588699 1.747531 0.662049 0.597011 -0.330988 0.309381
+seq3/frame00021.png -21.643557 -17.674844 1.581228 0.664310 0.594005 -0.326603 0.314929
+seq3/frame00020.png -22.332044 -17.311181 1.835565 0.668366 0.593467 -0.326872 0.306984
+seq3/frame00019.png -23.205457 -17.488494 1.697514 0.670892 0.588442 -0.323281 0.314847
+seq3/frame00016.png -25.592521 -16.986552 1.710339 0.655356 0.576794 -0.339628 0.349955
+seq3/frame00017.png -24.743103 -17.156521 1.632756 0.658250 0.592121 -0.318290 0.338809
+seq3/frame00015.png -26.281513 -16.776485 1.504828 0.653812 0.577656 -0.344138 0.347005
+seq3/frame00018.png -23.908076 -17.137860 1.732057 0.657148 0.601142 -0.318628 0.324441
+seq3/frame00013.png -27.759170 -16.342396 1.650983 0.641803 0.578980 -0.345176 0.365685
+seq3/frame00014.png -26.943203 -16.386902 1.818913 0.640231 0.581352 -0.349245 0.360780
+seq3/frame00012.png -28.451110 -16.099443 1.906413 0.637721 0.584300 -0.346335 0.363259
+seq3/frame00011.png -29.326462 -15.998757 1.653885 0.648566 0.581708 -0.333527 0.360191
+seq3/frame00010.png -29.975050 -15.670871 1.755439 0.636890 0.577201 -0.348815 0.373548
+seq3/frame00009.png -30.799877 -15.707292 1.592149 0.635620 0.577703 -0.349490 0.374305
+seq3/frame00008.png -31.381890 -15.441220 1.758762 0.624146 0.554662 -0.372114 0.405368
+seq3/frame00007.png -32.386951 -15.475078 1.550142 0.618131 0.546673 -0.378733 0.419075
+seq3/frame00006.png -32.922984 -15.252195 1.780605 0.614299 0.534984 -0.403627 0.416550
+seq3/frame00005.png -33.660942 -15.079173 1.792348 0.613662 0.555255 -0.377123 0.415799
+seq3/frame00004.png -34.598300 -15.145560 1.659762 0.624355 0.549608 -0.362906 0.420013
+seq3/frame00003.png -34.900801 -15.358878 1.563386 0.625286 0.545911 -0.353293 0.431489
+seq3/frame00002.png -34.989102 -15.526462 1.403498 0.629925 0.540327 -0.350186 0.434294
+seq3/frame00001.png -35.197725 -15.532348 1.576306 0.628037 0.538772 -0.344815 0.443167
+seq3/frame00069.png 15.888016 -25.675248 1.825791 0.774158 0.627282 0.061298 -0.058652
+seq3/frame00070.png 16.426830 -25.769647 1.637296 0.778673 0.624387 0.014879 -0.059895
+seq3/frame00071.png 17.305088 -25.981876 1.514049 0.793274 0.608049 -0.003072 -0.031360
+seq3/frame00072.png 18.297650 -26.072098 1.845428 0.774844 0.630791 0.007748 -0.040749
+seq3/frame00073.png 19.114576 -26.259264 1.755660 0.774135 0.632433 0.016429 -0.021778
+seq3/frame00074.png 19.626718 -26.414757 1.781599 0.778750 0.626236 0.022439 -0.029557
+seq3/frame00075.png 20.474994 -26.581537 1.715441 0.770176 0.636402 0.025889 -0.033941
+seq3/frame00076.png 21.092053 -26.727456 1.713237 0.771927 0.633801 0.017929 -0.045863
+seq3/frame00077.png 21.916758 -26.857009 1.819166 0.781069 0.621953 0.050066 -0.024458
+seq3/frame00079.png 23.688416 -27.216405 1.695531 0.773800 0.624942 0.072365 -0.073780
+seq3/frame00081.png 25.146194 -27.572525 1.399887 0.786723 0.602585 0.062049 -0.118778
+seq3/frame00082.png 26.000104 -27.543227 1.692289 0.774889 0.615584 0.075424 -0.122128
+seq3/frame00080.png 24.217606 -27.321169 1.673850 0.767494 0.621492 0.102499 -0.119143
+seq3/frame00078.png 22.657182 -26.913615 1.823798 0.780550 0.621870 0.047454 -0.042033
+seq3/frame00083.png 26.968623 -27.897530 1.960345 0.780266 0.605864 0.082360 -0.131645
+seq3/frame00084.png 27.726686 -27.917309 1.852859 0.775465 0.606874 0.095605 -0.145664
+seq3/frame00089.png 32.021251 -28.557701 1.767918 0.729756 0.622890 0.159885 -0.232165
+seq3/frame00090.png 32.374559 -28.803774 1.688052 0.715501 0.638917 0.169104 -0.226379
+seq3/frame00091.png 33.619752 -29.127399 1.744170 0.734385 0.613951 0.176648 -0.229212
+seq3/frame00093.png 35.317838 -29.518294 1.652304 0.714380 0.627302 0.185701 -0.248331
+seq3/frame00092.png 34.433395 -29.220641 1.894530 0.720023 0.626016 0.175725 -0.242469
+seq3/frame00086.png 29.470839 -28.381274 1.747847 0.771991 0.601384 0.102950 -0.178235
+seq3/frame00087.png 30.449776 -28.756481 1.853763 0.760884 0.610587 0.110309 -0.189924
+seq3/frame00088.png 31.032342 -28.702253 1.814845 0.739466 0.621923 0.146619 -0.211908
+seq3/frame00097.png 38.072191 -29.983433 2.023823 0.695218 0.655710 0.193652 -0.221844
+seq3/frame00098.png 38.699098 -30.202205 1.606922 0.694258 0.662791 0.170909 -0.222495
+seq3/frame00096.png 37.226719 -29.931789 1.602856 0.703900 0.651743 0.167136 -0.227644
+seq3/frame00095.png 36.629541 -29.605544 1.954797 0.686506 0.670103 0.169653 -0.225585
+seq3/frame00094.png 35.764334 -29.382775 1.579626 0.700654 0.654293 0.161529 -0.234294
+seq3/frame00085.png 28.560854 -28.243059 1.656036 0.783922 0.605803 0.072652 -0.114851
+seq3/frame00100.png 40.294779 -30.262045 1.925529 0.707280 0.670030 0.146065 -0.171696
+seq3/frame00101.png 41.045486 -30.682359 1.837153 0.713186 0.657622 0.164026 -0.178871
+seq3/frame00099.png 39.311314 -30.590434 1.631193 0.715271 0.664481 0.131422 -0.171989
+seq3/frame00102.png 41.507186 -30.772561 1.543219 0.711113 0.673233 0.130697 -0.154899
+seq3/frame00104.png 43.612879 -31.131640 2.058776 0.696580 0.677056 0.157951 -0.177265
+seq3/frame00103.png 42.583733 -31.148673 2.000705 0.709004 0.678202 0.122767 -0.149276
+seq3/frame00107.png 45.685916 -31.674662 2.452373 0.681911 0.655975 0.190647 -0.261433
+seq3/frame00106.png 44.846326 -32.140513 2.048338 0.674181 0.659217 0.205685 -0.261927
+seq3/frame00105.png 44.124544 -31.759509 2.025405 0.704503 0.641374 0.174683 -0.248597
+seq3/frame00110.png 47.458483 -32.517983 1.865825 0.689380 0.665199 0.195653 -0.209726
+seq3/frame00112.png 49.077779 -32.592975 1.924935 0.702605 0.663098 0.171594 -0.192881
+seq3/frame00111.png 48.614774 -32.497446 1.632638 0.704627 0.664601 0.160221 -0.190093
+seq3/frame00108.png 46.158340 -32.040366 1.576983 0.682121 0.671640 0.160728 -0.240369
+seq3/frame00109.png 47.012622 -32.123869 2.034306 0.689956 0.654990 0.184732 -0.246622
+seq3/frame00113.png 50.148641 -33.060285 1.776467 0.691631 0.658619 0.180512 -0.235125
+seq3/frame00114.png 50.509511 -33.299200 1.738528 0.679654 0.665079 0.196882 -0.238701
+seq3/frame00115.png 51.410409 -34.035272 1.605123 0.686212 0.631095 0.221818 -0.285708
+seq3/frame00116.png 52.284159 -33.759050 1.628129 0.678108 0.640302 0.230999 -0.277170
+seq3/frame00117.png 52.651438 -33.927015 1.739615 0.694545 0.651188 0.207732 -0.224518
+seq3/frame00066.png 13.162847 -24.937541 1.803064 0.761377 0.645142 -0.040283 0.049737
+seq3/frame00118.png 53.337671 -34.528124 1.470150 0.688330 0.660307 0.188544 -0.233767
+seq3/frame00119.png 54.345687 -34.236350 1.618328 0.692081 0.666151 0.185048 -0.207419
+seq3/frame00121.png 55.697766 -34.839988 1.563339 0.688117 0.657981 0.213514 -0.219016
+seq3/frame00120.png 54.950246 -34.587114 1.648702 0.684112 0.662738 0.207742 -0.222740
+seq3/frame00122.png 56.480214 -35.043024 1.723075 0.664446 0.660418 0.237014 -0.257264
+seq3/frame00123.png 57.232421 -35.025240 1.502953 0.680043 0.654926 0.219559 -0.245780
+seq3/frame00125.png 58.873408 -35.081007 1.832640 0.668702 0.679099 0.190964 -0.234936
+seq3/frame00124.png 57.959330 -35.412237 1.441297 0.675309 0.672245 0.201697 -0.226632
+seq3/frame00126.png 59.209627 -35.713040 1.419191 0.669415 0.685185 0.183600 -0.220671
+seq3/frame00128.png 60.767351 -36.188643 1.539174 0.685343 0.662610 0.206066 -0.220884
+seq3/frame00130.png 62.425359 -36.550846 1.541783 0.674776 0.638823 0.252554 -0.269812
+seq3/frame00131.png 62.974726 -36.408518 1.393487 0.656638 0.652980 0.250476 -0.282321
+seq3/frame00132.png 64.055363 -36.696005 1.747080 0.641752 0.647807 0.263862 -0.314446
+seq3/frame00133.png 64.519984 -36.781989 1.693645 0.658275 0.655277 0.235458 -0.286085
+seq3/frame00127.png 59.790336 -36.289884 1.609196 0.699969 0.671412 0.160549 -0.182958
+seq3/frame00134.png 65.383349 -37.558214 1.522220 0.611285 0.675501 0.263291 -0.317342
+seq3/frame00129.png 61.670009 -35.964148 1.547626 0.690417 0.646561 0.228059 -0.230807
+seq3/frame00143.png 72.045994 -38.677635 1.293038 0.660811 0.637939 0.264897 -0.293586
+seq3/frame00144.png 72.886854 -38.971542 1.659427 0.653224 0.642983 0.272808 -0.292314
+seq3/frame00145.png 73.409006 -38.787894 1.269161 0.678825 0.645491 0.249053 -0.245990
+seq3/frame00146.png 74.180663 -39.272692 1.671056 0.654822 0.664981 0.241992 -0.265420
+seq3/frame00167.png 88.802838 -44.740111 0.961261 0.652982 0.598089 0.294915 -0.359068
+seq3/frame00168.png 89.253569 -44.210593 2.259424 0.643529 0.596224 0.272824 -0.394909
+seq3/frame00166.png 87.970942 -44.118364 1.850851 0.670784 0.617777 0.253218 -0.322924
+seq3/frame00165.png 87.462170 -44.932490 1.905784 0.668909 0.624730 0.243889 -0.320612
+seq3/frame00170.png 90.441380 -44.519198 0.690766 0.625766 0.607560 0.289923 -0.393995
+seq3/frame00162.png 84.697138 -44.484970 1.193427 0.671273 0.604462 0.292785 -0.313520
+seq3/frame00163.png 85.514718 -44.623726 0.306098 0.675549 0.616140 0.276191 -0.296182
+seq3/frame00161.png 84.653721 -43.924327 0.791126 0.662139 0.609144 0.300114 -0.316934
+seq3/frame00169.png 89.980703 -44.458769 1.404199 0.609342 0.582649 0.321567 -0.431064
+seq3/frame00173.png 92.770472 -44.095908 1.243756 0.596852 0.592237 0.309447 -0.444145
+seq3/frame00175.png 93.915472 -43.794138 1.360823 0.605417 0.575723 0.326223 -0.442257
+seq3/frame00174.png 92.948139 -44.026004 1.200078 0.607405 0.574774 0.335821 -0.433496
+seq3/frame00176.png 94.110339 -43.603872 1.170585 0.609486 0.582856 0.348919 -0.408731
+seq3/frame00177.png 94.716140 -43.570409 1.219343 0.613926 0.578791 0.329899 -0.423393
+seq3/frame00178.png 95.315960 -43.556121 0.429182 0.623430 0.587391 0.313390 -0.409992
+seq3/frame00150.png 77.184021 -40.998864 1.983617 0.677711 0.655229 0.217043 -0.253525
+seq3/frame00149.png 76.134862 -40.366852 1.425800 0.681157 0.658662 0.205549 -0.244824
+seq3/frame00148.png 75.339367 -39.897548 0.899923 0.686556 0.660359 0.187043 -0.239961
+seq3/frame00147.png 74.961959 -39.105738 1.113821 0.675798 0.677447 0.184573 -0.224266
+seq3/frame00151.png 77.227309 -40.466798 0.638578 0.708220 0.658545 0.161296 -0.196792
+seq3/frame00137.png 67.543072 -37.853361 1.375500 0.654435 0.661645 0.234021 -0.281380
+seq3/frame00136.png 66.903182 -37.597024 1.761870 0.624651 0.674013 0.263700 -0.293225
+seq3/frame00138.png 68.349158 -37.823584 1.412371 0.648281 0.669854 0.221980 -0.285925
+seq3/frame00139.png 69.090633 -38.295722 1.446950 0.656101 0.670104 0.212684 -0.274333
+seq3/frame00140.png 69.877793 -38.258068 1.688589 0.631561 0.664449 0.255163 -0.307457
+seq3/frame00141.png 70.653635 -38.472841 1.673464 0.636145 0.638867 0.292725 -0.318561
+seq3/frame00142.png 71.342006 -38.586870 1.596849 0.650201 0.622815 0.301334 -0.313908
+seq3/frame00135.png 66.022410 -37.009684 1.501345 0.641561 0.678695 0.229120 -0.274367
+seq3/frame00172.png 91.623901 -44.407272 1.458999 0.621521 0.647720 0.241379 -0.368655
+seq3/frame00171.png 91.538858 -44.493985 1.588877 0.635543 0.646733 0.206157 -0.367860
+seq3/frame00159.png 82.437181 -43.567202 1.683157 0.689340 0.656925 0.213970 -0.217891
+seq3/frame00160.png 83.869820 -44.269240 1.467334 0.677481 0.631864 0.247762 -0.283515
+seq3/frame00164.png 86.305969 -43.937875 1.077479 0.694409 0.643863 0.190304 -0.258884
+seq3/frame00152.png 78.055110 -41.757196 1.772416 0.723136 0.664041 0.127417 -0.141026
+seq3/frame00153.png 78.497264 -41.642593 1.749448 0.699013 0.683039 0.122620 -0.172636
+seq3/frame00179.png 94.045424 -42.706223 -2.738007 0.701154 0.613271 0.189196 -0.310623
+seq3/frame00155.png 80.107396 -41.269057 1.301610 0.687216 0.688730 0.134844 -0.187620
+seq3/frame00154.png 79.293232 -42.179272 1.537174 0.693231 0.687452 0.152108 -0.153959
+seq3/frame00156.png 80.679576 -42.981171 1.690933 0.676255 0.691514 0.183557 -0.175483
+seq3/frame00157.png 81.296046 -43.514991 2.048095 0.666162 0.693679 0.193293 -0.194100
+seq3/frame00158.png 81.688880 -43.725473 1.541449 0.701129 0.671537 0.167976 -0.170999
diff --git a/official/cv/posenet/infer/docker_start_infer.sh b/official/cv/posenet/infer/docker_start_infer.sh
new file mode 100644
index 0000000000000000000000000000000000000000..2fb4b47bb87b0e7b306034bcf2b8b25f384309aa
--- /dev/null
+++ b/official/cv/posenet/infer/docker_start_infer.sh
@@ -0,0 +1,42 @@
+#!/bin/bash
+
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+docker_image=$1
+share_dir=$2
+echo "$1"
+echo "$2"
+if [ -z "${docker_image}" ]; then
+    echo "please input docker_image"
+    exit 1
+fi
+
+if [ ! -d "${share_dir}" ]; then
+    echo "please input share directory that contains dataset, models and codes"
+    exit 1
+fi
+
+
+docker run -it \
+    --device=/dev/davinci0 \
+    --device=/dev/davinci_manager \
+    --device=/dev/devmm_svm \
+    --device=/dev/hisi_hdc \
+    --privileged \
+    -v //usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
+    -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
+    -v ${share_dir}:${share_dir} \
+    ${docker_image} \
+    /bin/bash
\ No newline at end of file
diff --git a/official/cv/posenet/infer/mxbase/CMakeLists.txt b/official/cv/posenet/infer/mxbase/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..821d9dd79fbb4281e16761a607c8084cd2c54594
--- /dev/null
+++ b/official/cv/posenet/infer/mxbase/CMakeLists.txt
@@ -0,0 +1,42 @@
+cmake_minimum_required(VERSION 3.5.2)
+project(posenet)
+add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
+
+#set(PLUGIN_NAME "midas_mindspore_post")
+
+set(TARGET_MAIN posenet_mindspore)
+
+set(ACL_LIB_PATH $ENV{ASCEND_HOME}/nnrt/latest/acllib)
+
+include_directories(${CMAKE_CURRENT_BINARY_DIR})
+
+include_directories($ENV{MX_SDK_HOME}/include)
+include_directories($ENV{MX_SDK_HOME}/opensource/include)
+include_directories($ENV{MX_SDK_HOME}/opensource/include/opencv4)
+include_directories($ENV{MX_SDK_HOME}/opensource/include/gstreamer-1.0)
+include_directories($ENV{MX_SDK_HOME}/opensource/include/glib-2.0)
+include_directories($ENV{MX_SDK_HOME}/opensource/lib/glib-2.0/include)
+
+link_directories($ENV{MX_SDK_HOME}/lib)
+link_directories($ENV{MX_SDK_HOME}/opensource/lib/)
+
+
+add_compile_options(-std=c++11 -fPIC -fstack-protector-all -pie -Wno-deprecated-declarations)
+add_compile_options("-DPLUGIN_NAME=${PLUGIN_NAME}")
+add_compile_options("-Dgoogle=mindxsdk_private")
+
+add_definitions(-DENABLE_DVPP_INTERFACE)
+
+#message("ACL_LIB_PATH:${ACL_LIB_PATH}/lib64/.")
+#include_directories(${CMAKE_CURRENT_BINARY_DIR})
+include_directories(${ACL_LIB_PATH}/include)
+link_directories(${ACL_LIB_PATH}/lib64/)
+
+
+
+
+add_executable(${TARGET_MAIN} src/main.cpp src/Posenet.cpp)
+target_link_libraries(${TARGET_MAIN} glib-2.0 gstreamer-1.0 gobject-2.0 gstbase-1.0 gmodule-2.0)
+target_link_libraries(${TARGET_MAIN} plugintoolkit mxpidatatype mxbase)
+target_link_libraries(${TARGET_MAIN} -Wl,-z,relro,-z,now,-z,noexecstack -s)
+target_link_libraries(${TARGET_MAIN}  glog  cpprest mxbase libascendcl.so opencv_world)
diff --git a/official/cv/posenet/infer/mxbase/build.sh b/official/cv/posenet/infer/mxbase/build.sh
new file mode 100644
index 0000000000000000000000000000000000000000..76812328b8ff08340fcd476644b0f87cfad562e2
--- /dev/null
+++ b/official/cv/posenet/infer/mxbase/build.sh
@@ -0,0 +1,47 @@
+#!/bin/bash
+
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+
+# env
+
+mkdir -p build
+cd build || exit
+
+function make_plugin() {
+    if ! cmake ..;
+    then
+      echo "cmake failed."
+      return 1
+    fi
+
+    if ! (make);
+    then
+      echo "make failed."
+      return 1
+    fi
+
+    return 0
+}
+
+if make_plugin;
+then
+  echo "INFO: Build successfully."
+else
+  echo "ERROR: Build failed."
+fi
+
+cd - || exit
diff --git a/official/cv/posenet/infer/mxbase/src/Posenet.cpp b/official/cv/posenet/infer/mxbase/src/Posenet.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..ce94d9cc1b64759ff3ce1b4c32689aa0494a9cc5
--- /dev/null
+++ b/official/cv/posenet/infer/mxbase/src/Posenet.cpp
@@ -0,0 +1,354 @@
+/*
+ * Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <sys/stat.h>
+#include <dirent.h>
+#include <string>
+#include <fstream>
+#include <memory>
+#include <boost/property_tree/json_parser.hpp>
+#include <opencv4/opencv2/core.hpp>
+#include <opencv4/opencv2/opencv.hpp>
+#include "acl/acl.h"
+#include "MxBase/DeviceManager/DeviceManager.h"
+#include "MxBase/CV/ObjectDetection/Nms/Nms.h"
+#include "MxBase/Log/Log.h"
+#include "Posenet.h"
+namespace {
+    const uint32_t YUV_BYTE_NU = 3;
+    const uint32_t YUV_BYTE_DE = 2;
+    const uint32_t MODEL_HEIGHT = 224;
+    const uint32_t MODEL_WIDTH = 224;
+}  // namespace
+
+void PrintTensorShape(const std::vector<MxBase::TensorDesc> &tensorDescVec, const std::string &tensorName) {
+    LogInfo << "The shape of " << tensorName << " is as follows:";
+    for (size_t i = 0; i < tensorDescVec.size(); ++i) {
+        LogInfo << "  Tensor " << i << ":";
+        for (size_t j = 0; j < tensorDescVec[i].tensorDims.size(); ++j) {
+            LogInfo << "   dim: " << j << ": " << tensorDescVec[i].tensorDims[j];
+        }
+    }
+}
+
+APP_ERROR Posenet::Init(const InitParam &initParam) {
+    deviceId_ = initParam.deviceId;
+    APP_ERROR ret = MxBase::DeviceManager::GetInstance()->InitDevices();
+    if (ret != APP_ERR_OK) {
+        LogError << "Init devices failed, ret=" << ret << ".";
+        return ret;
+    }
+    ret = MxBase::TensorContext::GetInstance()->SetContext(initParam.deviceId);
+    if (ret != APP_ERR_OK) {
+        LogError << "Set context failed, ret=" << ret << ".";
+        return ret;
+    }
+    dvppWrapper_ = std::make_shared<MxBase::DvppWrapper>();
+    ret = dvppWrapper_->Init();
+    if (ret != APP_ERR_OK) {
+        LogError << "DvppWrapper init failed, ret=" << ret << ".";
+        return ret;
+    }
+    model_ = std::make_shared<MxBase::ModelInferenceProcessor>();
+    ret = model_->Init(initParam.modelPath, modelDesc_);
+    if (ret != APP_ERR_OK) {
+        LogError << "ModelInferenceProcessor init failed, ret=" << ret << ".";
+        return ret;
+    }
+    PrintTensorShape(modelDesc_.inputTensors, "Model Input Tensors");
+    PrintTensorShape(modelDesc_.outputTensors, "Model Output Tensors");
+    return APP_ERR_OK;
+}
+
+APP_ERROR Posenet::DeInit() {
+    dvppWrapper_->DeInit();
+    model_->DeInit();
+    MxBase::DeviceManager::GetInstance()->DestroyDevices();
+    return APP_ERR_OK;
+}
+
+APP_ERROR Posenet::Inference(const std::vector<MxBase::TensorBase> &inputs,
+                                std::vector<MxBase::TensorBase> &outputs) {
+    auto dtypes = model_->GetOutputDataType();
+    for (size_t i = 0; i < modelDesc_.outputTensors.size(); ++i) {
+        std::vector<uint32_t> shape = {};
+        for (size_t j = 0; j < modelDesc_.outputTensors[i].tensorDims.size(); ++j) {
+            shape.push_back((uint32_t)modelDesc_.outputTensors[i].tensorDims[j]);
+        }
+        MxBase::TensorBase tensor(shape, dtypes[i], MxBase::MemoryData::MemoryType::MEMORY_DEVICE, deviceId_);
+        APP_ERROR ret = MxBase::TensorBase::TensorBaseMalloc(tensor);
+        if (ret != APP_ERR_OK) {
+            LogError << "TensorBaseMalloc failed, ret=" << ret << ".";
+            return ret;
+        }
+        outputs.push_back(tensor);
+    }
+    MxBase::DynamicInfo dynamicInfo = {};
+    dynamicInfo.dynamicType = MxBase::DynamicType::STATIC_BATCH;
+    auto startTime = std::chrono::high_resolution_clock::now();
+    APP_ERROR ret = model_->ModelInference(inputs, outputs, dynamicInfo);
+    auto endTime = std::chrono::high_resolution_clock::now();
+    double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count();  // save time
+    inferCostTimeMilliSec += costMs;
+    if (ret != APP_ERR_OK) {
+        LogError << "ModelInference failed, ret=" << ret << ".";
+        return ret;
+    }
+    return APP_ERR_OK;
+}
+
+APP_ERROR Posenet::Process(const std::string &imgPath, const std::string &resultPath, const std::string &dataset_name) {
+    ImageShape imageShape{};
+    ImageShape resizedImageShape{};
+    std::vector<std::string> dirs;
+
+    std::string data_set = imgPath;
+    dirs = GetAlldir(data_set, dataset_name);
+
+    for (const auto &dir : dirs) {
+        std::vector<std::string> images;
+        if (dataset_name == "TUM") {
+            images = GetAlldir(data_set, "TUM");
+        } else {
+            images = GetAllFiles(data_set + dir);
+        }
+        for (const auto& image_file : images) {
+            cv::Mat imageMat;
+            APP_ERROR ret = ReadImageCV(image_file, imageMat, imageShape);
+            if (ret != APP_ERR_OK) {
+                LogError << "ReadImage failed, ret=" << ret << ".";
+                return ret;
+            }
+            ret = ResizeImage(imageMat, imageMat, resizedImageShape);
+            if (ret != APP_ERR_OK) {
+                LogError << "ResizeImage failed, ret=" << ret << ".";
+                return ret;
+            }
+            MxBase::TensorBase tensorBase;
+            ret = CVMatToTensorBase(imageMat, tensorBase);
+            if (ret != APP_ERR_OK) {
+                LogError << "CVMatToTensorBase failed, ret=" << ret << ".";
+                return ret;
+            }
+            std::vector<MxBase::TensorBase> inputs = {};
+            std::vector<MxBase::TensorBase> outputs = {};
+            inputs.push_back(tensorBase);
+            std::cout << "inputsshapeis" << inputs[0].GetShape()[0] << " "
+            << inputs[0].GetShape()[1] << " " << inputs[0].GetShape()[2] << std::endl;
+            auto startTime = std::chrono::high_resolution_clock::now();
+            ret = Inference(inputs, outputs);
+            auto endTime = std::chrono::high_resolution_clock::now();
+            double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count();  // save time
+            inferCostTimeMilliSec += costMs;
+            if (ret != APP_ERR_OK) {
+                LogError << "Inference failed, ret=" << ret << ".";
+                return ret;
+            }
+            WriteResult(image_file, outputs, dataset_name, dir);
+        }
+    }
+    return APP_ERR_OK;
+}
+
+std::vector<std::string> GetAlldir(const std::string& dir_name, const std::string& data_name) {
+    std::vector<std::string> res;
+    if (data_name == "TUM") {
+        std::string txt_name = dir_name + "/associate.txt";
+        std::ifstream infile;
+        infile.open(txt_name.data());
+        std::string s;
+        while (getline(infile, s)) {
+            std::stringstream input(s);
+            std::string result;
+            input >> result;
+            res.emplace_back(dir_name + "/" + result);
+        }
+        return res;
+    }
+    struct dirent *filename;
+    DIR *dir = OpenDir(dir_name);
+    if (dir == nullptr) {
+    return {};
+    }
+    if (data_name == "Kitti") {
+        while ((filename = readdir(dir)) != nullptr) {
+            std::string d_name = std::string(filename->d_name);
+            // get rid of "." and ".."
+            if (d_name == "." || d_name == ".." || filename->d_type != DT_DIR)
+            continue;
+            res.emplace_back(d_name + "/image");
+            std::cout << "image_file name is " << d_name << std::endl;
+        }
+    } else {
+        while ((filename = readdir(dir)) != nullptr) {
+            std::string d_name = std::string(filename->d_name);
+            // get rid of "." and ".."
+            if (d_name == "." || d_name == ".." || filename->d_type != DT_DIR)
+            continue;
+            res.emplace_back(d_name);
+        }
+    }
+    return res;
+}
+
+APP_ERROR Posenet::GetMetaMap(const ImageShape imgShape,
+                              const ImageShape resizeimgShape,
+                              std::map<std::string, float> &meta) {
+    int a = 2;
+    int b = 4;
+    std::vector<float> c = {static_cast<float>(imgShape.width) / a, static_cast<float>(imgShape.height) / a};
+    float s = std::max(static_cast<float>(resizeimgShape.width) / static_cast<float>(resizeimgShape.height)
+    * static_cast<float>(imgShape.height), static_cast<float>(imgShape.width)) * 1.0;
+    meta["c1"] = c[0];
+    meta["c2"] = c[1];
+    meta["s"] = s;
+    meta["out_height"] = resizeimgShape.height / b;
+    meta["out_width"] = resizeimgShape.width / b;
+    return APP_ERR_OK;
+}
+
+APP_ERROR Posenet::CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase) {
+    const uint32_t dataSize = imageMat.cols * imageMat.rows * imageMat.channels();
+    MxBase::MemoryData memoryDataDst(dataSize, MxBase::MemoryData::MEMORY_DEVICE, deviceId_);
+    MxBase::MemoryData memoryDataSrc(imageMat.data, dataSize, MxBase::MemoryData::MEMORY_HOST_MALLOC);
+    APP_ERROR ret = MxBase::MemoryHelper::MxbsMallocAndCopy(memoryDataDst, memoryDataSrc);
+    if (ret != APP_ERR_OK) {
+        LogError << GetError(ret) << "Memory malloc failed.";
+        return ret;
+    }
+    std::vector<uint32_t> shape = {static_cast<uint32_t>(imageMat.rows),
+                                   static_cast<uint32_t>(imageMat.cols),
+                                   static_cast<uint32_t>(imageMat.channels())};
+    tensorBase = MxBase::TensorBase(memoryDataDst, false, shape, MxBase::TENSOR_DTYPE_UINT8);
+    return APP_ERR_OK;
+}
+
+APP_ERROR Posenet::ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat, ImageShape &imgShape) {
+    int height = 456;
+    int width = 224;
+    cv::resize(srcImageMat, dstImageMat, cv::Size(width, height), 0, 0);
+    LogInfo << dstImageMat.cols << dstImageMat.rows;
+    imgShape.width = dstImageMat.cols;
+    imgShape.height = dstImageMat.rows;
+    return APP_ERR_OK;
+}
+
+APP_ERROR Posenet::ReadImageCV(const std::string &imgPath, cv::Mat &imageMat, ImageShape &imgShape) {
+    imageMat = cv::imread(imgPath, cv::IMREAD_COLOR);
+    imgShape.width = imageMat.cols;
+    imgShape.height = imageMat.rows;
+    return APP_ERR_OK;
+}
+
+std::vector<std::string> GetAllFiles(std::string dirName) {
+    struct dirent *filename;
+    DIR *dir = OpenDir(dirName);
+    std::cout << dirName << std::endl;
+    if (dir == nullptr) {
+        return {};
+    }
+    std::vector<std::string> res;
+    while ((filename = readdir(dir)) != nullptr) {
+        std::string dName = std::string(filename->d_name);
+        if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
+            continue;
+        }
+        res.emplace_back(std::string(dirName) + "/" + filename->d_name);
+    }
+    std::sort(res.begin(), res.end());
+    for (auto &f : res) {
+        std::cout << "image file: " << f << std::endl;
+    }
+    return res;
+}
+
+std::string RealPath(std::string path) {
+    char realPathMem[PATH_MAX] = {0};
+    char *realPathRet = nullptr;
+    realPathRet = realpath(path.data(), realPathMem);
+    if (realPathRet == nullptr) {
+        std::cout << "File: " << path << " is not exist.";
+        return "";
+    }
+    std::string realPath(realPathMem);
+    std::cout << path << " realpath is: " << realPath << std::endl;
+    return realPath;
+}
+
+DIR *OpenDir(std::string dirName) {
+    if (dirName.empty()) {
+        std::cout << " dirName is null ! " << std::endl;
+        return nullptr;
+    }
+    std::string realPath = RealPath(dirName);
+    struct stat s;
+    lstat(realPath.c_str(), &s);
+    if (!S_ISDIR(s.st_mode)) {
+        std::cout << "dirName is not a valid directory !" << std::endl;
+        return nullptr;
+    }
+    DIR *dir = opendir(realPath.c_str());
+    if (dir == nullptr) {
+        std::cout << "Can not open dir " << dirName << std::endl;
+        return nullptr;
+    }
+    std::cout << "Successfully opened the dir " << dirName << std::endl;
+    return dir;
+}
+
+APP_ERROR  Posenet::WriteResult(const std::string& imageFile, std::vector<MxBase::TensorBase> &outputs,
+                const std::string & dataset_name, const std::string& seq) {
+    std::string homePath;
+    if (dataset_name == "Kitti") {
+        int pos = seq.find('/');
+        std::string seq1(seq, 0, pos);
+        homePath = "./result_Files/"+ dataset_name + "/" + seq1;
+        std::cout << "1" << std::endl;
+    } else {
+        homePath = "./result_Files/"+ dataset_name + "/" + seq;
+    }
+    std::string path1 = "mkdir -p " + homePath;
+    system(path1.c_str());
+    std::cout << "homePath is " << homePath << std::endl;
+    for (size_t i = 0; i < outputs.size(); ++i) {
+        size_t outputSize;
+        APP_ERROR ret = outputs[i].ToHost();
+        if (ret != APP_ERR_OK) {
+        LogError << GetError(ret) << "tohost fail.";
+        return ret;
+        }
+        void *netOutput = outputs[i].GetBuffer();
+        std::vector<uint32_t> out_shape = outputs[i].GetShape();
+        LogDebug << "shape is "<< out_shape[0] << " " << out_shape[1] << " " << out_shape[2];
+        outputSize = outputs[i].GetByteSize();
+        std::cout << "outputsize is " << outputSize << std::endl;
+        int pos = imageFile.rfind('/');
+        std::string fileName(imageFile, pos + 1);
+        fileName.replace(fileName.rfind('.'), fileName.size() - fileName.rfind('.'), '_' + std::to_string(i) + ".bin");
+        std::string outFileName = homePath + "/" + fileName;
+        std::cout << "output file is " << outFileName << std::endl;
+        FILE *outputFile = fopen(outFileName.c_str(), "wb");
+        if (outputFile == nullptr) {
+            std::cout << "read fail" << std::endl;
+            return ret;
+        }
+        auto count1 = fwrite(netOutput, outputSize, sizeof(char), outputFile);
+        std::cout << "count is " << count1 << " " << sizeof(char) << std::endl;
+        fclose(outputFile);
+        outputFile = nullptr;
+    }
+    LogDebug << "PosenetMindspore write results success.";
+    return APP_ERR_OK;
+}
diff --git a/official/cv/posenet/infer/mxbase/src/Posenet.h b/official/cv/posenet/infer/mxbase/src/Posenet.h
new file mode 100644
index 0000000000000000000000000000000000000000..524926f13dff66d3b0cf3e3f05745ca2f689fee4
--- /dev/null
+++ b/official/cv/posenet/infer/mxbase/src/Posenet.h
@@ -0,0 +1,90 @@
+/*
+ * Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef POSENET_H
+#define POSENET_H
+
+#include <dirent.h>
+#include <sys/stat.h>
+#include <map>
+#include <vector>
+#include <string>
+#include <sstream>
+#include <algorithm>
+#include <memory>
+#include <opencv4/opencv2/opencv.hpp>
+#include "MxBase/CV/Core/DataType.h"
+#include "MxBase/DeviceManager/DeviceManager.h"
+#include "MxBase/DvppWrapper/DvppWrapper.h"
+#include "MxBase/ErrorCode/ErrorCode.h"
+#include "MxBase/ModelInfer/ModelInferenceProcessor.h"
+#include "MxBase/PostProcessBases/ObjectPostProcessBase.h"
+#include "MxBase/Tensor/TensorContext/TensorContext.h"
+
+struct InitParam {
+    uint32_t deviceId;
+    std::string labelPath;
+    std::string dataset_name;
+    bool checkTensor;
+    std::string modelPath;
+};
+
+struct ImageShape {
+    uint32_t width;
+    uint32_t height;
+};
+std::vector<std::string> GetAllFiles(std::string dirName);
+std::vector<std::string> GetAlldir(const std::string &dir_name,
+                                   const std::string &data_name);
+std::string RealPath(std::string path);
+DIR *OpenDir(std::string dirName);
+
+class Posenet {
+ public:
+    APP_ERROR Init(const InitParam &initParam);
+    APP_ERROR DeInit();
+    APP_ERROR Inference(const std::vector<MxBase::TensorBase> &inputs,
+                        std::vector<MxBase::TensorBase> &outputs);
+    APP_ERROR PostProcess(const std::vector<MxBase::TensorBase> &inputs,
+                          const std::map<std::string, float> &meta,
+                          std::string &seq, std::string &image_file);
+    APP_ERROR Process(const std::string &imgPath, const std::string &resultPath,
+                      const std::string &dataset_name);
+    APP_ERROR ReadImageCV(const std::string &imgPath, cv::Mat &imageMat,
+                          ImageShape &imgShape);
+    APP_ERROR ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat,
+                          ImageShape &imgShape);
+    APP_ERROR CVMatToTensorBase(const cv::Mat &imageMat,
+                                MxBase::TensorBase &tensorBase);
+    APP_ERROR GetMetaMap(const ImageShape imgShape,
+                         const ImageShape resizeimgShape,
+                         std::map<std::string, float> &meta);
+    APP_ERROR WriteResult(const std::string &imageFile,
+                          std::vector<MxBase::TensorBase> &outputs,
+                          const std::string &dataset_name,
+                          const std::string &seq);
+
+ private:
+    APP_ERROR GetImageMeta(const ImageShape &imageShape,
+                           MxBase::TensorBase &imgMetas) const;
+    std::shared_ptr<MxBase::DvppWrapper> dvppWrapper_;
+    std::shared_ptr<MxBase::ModelInferenceProcessor> model_;
+    MxBase::ModelDesc modelDesc_;
+    uint32_t deviceId_ = 0;
+    double inferCostTimeMilliSec = 0.0;
+};
+
+#endif  // posenet_H
diff --git a/official/cv/posenet/infer/mxbase/src/main.cpp b/official/cv/posenet/infer/mxbase/src/main.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..f84da3f8f8bc04203d30cc28003cde816669c012
--- /dev/null
+++ b/official/cv/posenet/infer/mxbase/src/main.cpp
@@ -0,0 +1,49 @@
+/*
+ * Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include "MxBase/Log/Log.h"
+#include "Posenet.h"
+
+namespace {
+    const uint32_t DEVICE_ID = 0;
+    const std::string RESULT_PATH = "./result";
+}  // namespace
+
+int main(int argc, char *argv[]) {
+    if (argc <= 3) {
+        LogWarn << "Please input image path, such as './ [om_file_path] [img_path] [dataset_name]'.";
+        return APP_ERR_OK;
+    }
+    InitParam initParam = {};
+    initParam.deviceId = DEVICE_ID;
+    initParam.checkTensor = true;
+    initParam.modelPath = argv[1];
+    auto inferPosenet = std::make_shared<Posenet>();
+    APP_ERROR ret = inferPosenet->Init(initParam);
+    if (ret != APP_ERR_OK) {
+        LogError << "Posenet init failed, ret=" << ret << ".";
+        return ret;
+    }
+    std::string imgPath = argv[2];
+    std::string dataset_name = argv[3];
+    ret = inferPosenet->Process(imgPath, RESULT_PATH, dataset_name);
+    if (ret != APP_ERR_OK) {
+        LogError << "Posenet process failed, ret=" << ret << ".";
+        inferPosenet->DeInit();
+        return ret;
+    }
+    inferPosenet->DeInit();
+    return APP_ERR_OK;
+}
diff --git a/official/cv/posenet/infer/sdk/api/infer.py b/official/cv/posenet/infer/sdk/api/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..de51d2783aa093903696e3d5e689923dcff12aeb
--- /dev/null
+++ b/official/cv/posenet/infer/sdk/api/infer.py
@@ -0,0 +1,143 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""sdk infer"""
+import json
+import logging
+import MxpiDataType_pb2 as MxpiDataType
+from StreamManagerApi import StreamManagerApi, MxDataInput, InProtobufVector, MxProtobufIn, StringVector
+from config import config as cfg
+
+class SdkApi:
+    """sdk api"""
+    INFER_TIMEOUT = cfg.INFER_TIMEOUT
+    STREAM_NAME = cfg.STREAM_NAME
+
+    def __init__(self, pipeline_cfg):
+        self.pipeline_cfg = pipeline_cfg
+        self._stream_api = None
+        self._data_input = None
+        self._device_id = None
+
+    def init(self):
+        """sdk init """
+        with open(self.pipeline_cfg, 'r') as fp:
+            self._device_id = int(
+                json.loads(fp.read())[self.STREAM_NAME]["stream_config"]
+                ["deviceId"])
+            print(f"The device id: {self._device_id}.")
+
+        # create api
+        self._stream_api = StreamManagerApi()
+
+        # init stream mgr
+        ret = self._stream_api.InitManager()
+        if ret != 0:
+            print(f"Failed to init stream manager, ret={ret}.")
+            return False
+
+        # create streams
+        with open(self.pipeline_cfg, 'rb') as fp:
+            pipe_line = fp.read()
+
+        ret = self._stream_api.CreateMultipleStreams(pipe_line)
+        if ret != 0:
+            print(f"Failed to create stream, ret={ret}.")
+            return False
+
+        self._data_input = MxDataInput()
+
+        return True
+
+    def __del__(self):
+        """del sdk"""
+        if not self._stream_api:
+            return
+
+        self._stream_api.DestroyAllStreams()
+
+    def send_data_input(self, stream_name, plugin_id, input_data):
+        """input data use SendData"""
+        data_input = MxDataInput()
+        data_input.data = input_data
+        unique_id = self._stream_api.SendData(stream_name, plugin_id,
+                                              data_input)
+        if unique_id < 0:
+            logging.error("Fail to send data to stream.")
+            return False
+        return True
+
+    def _send_protobuf(self, stream_name, plugin_id, element_name, buf_type,
+                       pkg_list):
+        """input data use SendProtobuf"""
+        protobuf = MxProtobufIn()
+        protobuf.key = element_name.encode("utf-8")
+        protobuf.type = buf_type
+        protobuf.protobuf = pkg_list.SerializeToString()
+        protobuf_vec = InProtobufVector()
+        protobuf_vec.push_back(protobuf)
+        err_code = self._stream_api.SendProtobuf(stream_name, plugin_id,
+                                                 protobuf_vec)
+        if err_code != 0:
+            logging.error(
+                "Failed to send data to stream, stream_name(%s), plugin_id(%s), element_name(%s), "
+                "buf_type(%s), err_code(%s).", stream_name, plugin_id,
+                element_name, buf_type, err_code)
+            return False
+        return True
+
+    def send_img_input(self, stream_name, plugin_id, element_name, input_data,
+                       img_size):
+        """use cv input to sdk"""
+        vision_list = MxpiDataType.MxpiVisionList()
+        vision_vec = vision_list.visionVec.add()
+        vision_vec.visionInfo.format = 1
+        vision_vec.visionInfo.width = img_size[1]
+        vision_vec.visionInfo.height = img_size[0]
+        vision_vec.visionInfo.widthAligned = img_size[1]
+        vision_vec.visionInfo.heightAligned = img_size[0]
+        vision_vec.visionData.memType = 0
+        vision_vec.visionData.dataStr = input_data
+        vision_vec.visionData.dataSize = len(input_data)
+        buf_type = b"MxTools.MxpiVisionList"
+        return self._send_protobuf(stream_name, plugin_id, element_name,
+                                   buf_type, vision_list)
+
+    #pylint: disable=R1710
+    def get_result(self, stream_name, out_plugin_id=0):
+        """get_result
+        """
+        key_vec = StringVector()
+        key_vec.push_back(b'mxpi_modelinfer0')
+        infer_result = self._stream_api.GetProtobuf(
+            stream_name, out_plugin_id, key_vec)
+        if infer_result.size() == 0:
+            print("inferResult is null")
+            return
+        if infer_result[0].errorCode != 0:
+            print("GetProtobuf error. errorCode=%d" % infer_result[0].errorCode)
+            return
+        result = MxpiDataType.MxpiTensorPackageList()
+        result.ParseFromString(infer_result[0].messageBuf)
+
+        print('datastr', type(result.tensorPackageVec[0].tensorVec[0].dataStr))
+        print('datastr', type(result.tensorPackageVec[0].tensorVec[1].dataStr))
+        print('datastr', type(result.tensorPackageVec[0].tensorVec[2].dataStr))
+        print('datastr', type(result.tensorPackageVec[0].tensorVec[3].dataStr))
+        print('datastr', type(result.tensorPackageVec[0].tensorVec[4].dataStr))
+        print('datastr', type(result.tensorPackageVec[0].tensorVec[5].dataStr))
+
+        return result.tensorPackageVec[0].tensorVec[0].dataStr, result.tensorPackageVec[0].tensorVec[1].dataStr, \
+               result.tensorPackageVec[0].tensorVec[2].dataStr, result.tensorPackageVec[0].tensorVec[3].dataStr, \
+               result.tensorPackageVec[0].tensorVec[4].dataStr, result.tensorPackageVec[0].tensorVec[5].dataStr
diff --git a/official/cv/posenet/infer/sdk/config/config.py b/official/cv/posenet/infer/sdk/config/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..e8d5a44bc3b9df2a3f90c6e1ae62c9a3534b8d72
--- /dev/null
+++ b/official/cv/posenet/infer/sdk/config/config.py
@@ -0,0 +1,25 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+
+
+STREAM_NAME = "im_posenet"
+MODEL_WIDTH = 224
+MODEL_HEIGHT = 224
+
+INFER_TIMEOUT = 100000
+
+TENSOR_DTYPE_FLOAT32 = 0
+TENSOR_DTYPE_FLOAT16 = 1
+TENSOR_DTYPE_INT8 = 2
diff --git a/official/cv/posenet/infer/sdk/config/posenet.pipeline b/official/cv/posenet/infer/sdk/config/posenet.pipeline
new file mode 100644
index 0000000000000000000000000000000000000000..5b6dc8faeb047688ce705f10eae1df972f0976d4
--- /dev/null
+++ b/official/cv/posenet/infer/sdk/config/posenet.pipeline
@@ -0,0 +1,44 @@
+{
+    "im_posenet": {
+        "stream_config": {
+            "deviceId": "0"
+        },
+        "appsrc0": {
+            "props": {
+                "blocksize": "409600"
+            },
+            "factory": "appsrc",
+            "next": "mxpi_imageresize0"
+        },
+        "mxpi_imageresize0": {
+            "props": {
+                "dataSource": "appsrc0",
+                "handleMethod": "opencv",
+                "resizeType": "Resizer_Stretch",
+                "resizeHeight": "456",
+                "resizeWidth": "224"
+            },
+            "factory": "mxpi_imageresize",
+            "next": "mxpi_modelinfer0"
+        },
+        "mxpi_modelinfer0": {
+            "props": {
+                "dataSource": "mxpi_imageresize0",
+                "modelPath": "../convert/posenet.om",
+                "outputDeviceId": "-1"
+            },
+            "factory": "mxpi_modelinfer",
+            "next": "mxpi_dataserialize0"
+        },
+        "mxpi_dataserialize0": {
+            "props": {
+                "outputDataKeys": "mxpi_modelinfer0"
+            },
+            "factory": "mxpi_dataserialize",
+            "next": "appsink0"
+        },
+        "appsink0": {
+            "factory": "appsink"
+        }
+    }
+}
diff --git a/official/cv/posenet/infer/sdk/eval/eval_by_sdk.py b/official/cv/posenet/infer/sdk/eval/eval_by_sdk.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec8a749a74f33d6a604a2b278bf1d4477f71959c
--- /dev/null
+++ b/official/cv/posenet/infer/sdk/eval/eval_by_sdk.py
@@ -0,0 +1,88 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""post process for 310 inference"""
+import os
+import argparse
+import math
+import numpy as np
+
+parser = argparse.ArgumentParser(description='postprocess for posenet')
+parser.add_argument("--result_path", type=str, required=True, help="result file path")
+
+args = parser.parse_args()
+
+def get_result(result_path):
+    results = np.zeros((343, 2))
+    txt_file = "../dataset_test.txt"
+    step = 0
+    i = 0
+    with open(txt_file, 'r') as f:
+        next(f)
+        next(f)
+        next(f)
+        for line in f:
+            fname, p0, p1, p2, p3, p4, p5, p6 = line.split()
+            fname = str(fname)
+            p0 = float(p0)
+            p1 = float(p1)
+            p2 = float(p2)
+            p3 = float(p3)
+            p4 = float(p4)
+            p5 = float(p5)
+            p6 = float(p6)
+            image_poses = []
+            image_poses.append((p0, p1, p2, p3, p4, p5, p6))
+            poses = np.array(image_poses)
+            pose_x = np.squeeze(poses[:, 0:3])
+            pose_q = np.squeeze(poses[:, 3:])
+            file_name = "posenet" + "_" + str(i)
+            i = i + 1
+            result_path_0 = os.path.join(result_path, file_name + "_0.bin")
+            result_path_1 = os.path.join(result_path, file_name + "_1.bin")
+            result_path_2 = os.path.join(result_path, file_name + "_2.bin")
+            result_path_3 = os.path.join(result_path, file_name + "_3.bin")
+            result_path_4 = os.path.join(result_path, file_name + "_4.bin")
+            result_path_5 = os.path.join(result_path, file_name + "_5.bin")
+            p1_x = np.fromfile(result_path_0, dtype=np.float32).reshape(1, 3)
+            p1_q = np.fromfile(result_path_1, dtype=np.float32).reshape(1, 4)
+            p2_x = np.fromfile(result_path_2, dtype=np.float32).reshape(1, 3)
+            p2_q = np.fromfile(result_path_3, dtype=np.float32).reshape(1, 4)
+            p3_x = np.fromfile(result_path_4, dtype=np.float32).reshape(1, 3)
+            p3_q = np.fromfile(result_path_5, dtype=np.float32).reshape(1, 4)
+            print(p1_x)
+            print(p1_q)
+            print(p2_x)
+            print(p2_q)
+            print(p3_x)
+            print(p3_q)
+            predicted_x = p3_x
+            predicted_q = p3_q
+            q1 = pose_q / np.linalg.norm(pose_q)
+            q2 = predicted_q / np.linalg.norm(predicted_q)
+            d = abs(np.sum(np.multiply(q1, q2)))
+
+            a = 2
+            b = 180
+            theta = a * np.arccos(d) * b / math.pi
+            error_x = np.linalg.norm(pose_x - predicted_x)
+            results[step, :] = [error_x, theta]
+            step = step + 1
+            print('Iteration:  ', step, ', Error XYZ (m):  ', error_x, ', Error Q (degrees):  ', theta)
+
+    median_result = np.median(results, axis=0)
+    print('Median error ', median_result[0], 'm  and ', median_result[1], 'degrees.')
+
+if __name__ == '__main__':
+    get_result(args.result_path)
diff --git a/official/cv/posenet/infer/sdk/main.py b/official/cv/posenet/infer/sdk/main.py
new file mode 100644
index 0000000000000000000000000000000000000000..d54bbc78f40337661995f6210b8d268817a225e3
--- /dev/null
+++ b/official/cv/posenet/infer/sdk/main.py
@@ -0,0 +1,186 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""main"""
+
+import argparse
+import os
+import time
+import cv2
+from api.infer import SdkApi
+from config import config as cfg
+
+
+def parser_args():
+    """parser_args"""
+    parser = argparse.ArgumentParser(description="fairmot inference")
+
+    parser.add_argument("--img_path",
+                        type=str,
+                        required=False,
+                        help="image directory.")
+    parser.add_argument(
+        "--pipeline_path",
+        type=str,
+        required=False,
+        default="/home/data/xd_mindx/rsd/infer/sdk/config/posenet.pipeline",
+        help="image file path. The default is '/home/data/xd_mindx/czp/fairmot/infer/sdk/config/fairmot.pipeline'. ")
+    parser.add_argument(
+        "--model_type",
+        type=str,
+        required=False,
+        default="dvpp",
+        help=
+        "rgb: high-precision, dvpp: high performance. The default is 'dvpp'.")
+    parser.add_argument(
+        "--infer_mode",
+        type=str,
+        required=False,
+        default="infer",
+        help=
+        "infer:only infer, eval: accuracy evaluation. The default is 'infer'.")
+    parser.add_argument(
+        "--infer_result_dir",
+        type=str,
+        required=False,
+        default="./infer_result",
+        help=
+        "cache dir of inference result. The default is '../data/infer_result'."
+    )
+    arg = parser.parse_args()
+    return arg
+
+
+def process_img(img_file):
+    #img2 = Image.open(img_file)
+    #img1 = img2.resize((224, 455),Image.ANTIALIAS)
+    img = cv2.imread(img_file)
+    #pad_img = cv2.resize(img, (224, 455), interpolation=cv2.INTER_AREA)
+    #img,__, _, _ = letterbox(img0, height=cfg.MODEL_HEIGHT, width=cfg.MODEL_WIDTH)
+    return img
+
+def letterbox(img, height=608, width=1088, color=(127.5, 127.5, 127.5)):
+    """resize a rectangular image to a padded rectangular"""
+    shape = img.shape[:2]  # shape = [height, width]
+    ratio = min(float(height) / shape[0], float(width) / shape[1])
+    new_shape = (round(shape[1] * ratio), round(shape[0] * ratio))  # new_shape = [width, height]
+    dw = (width - new_shape[0]) / 2  # width padding
+    dh = (height - new_shape[1]) / 2  # height padding
+    top, bottom = round(dh - 0.1), round(dh + 0.1)
+    left, right = round(dw - 0.1), round(dw + 0.1)
+    img = cv2.resize(img, new_shape, interpolation=cv2.INTER_AREA)  # resized, no border
+    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # padded rectangular
+    return img, ratio, dw, dh
+
+
+def image_inference(pipeline_path, stream_name, img_dir, result_dir):
+    """image_inference"""
+    sdk_api = SdkApi(pipeline_path)
+    if not sdk_api.init():
+        exit(-1)
+    print(stream_name)
+    if not os.path.exists(result_dir):
+        os.makedirs(result_dir)
+    img_data_plugin_id = 0
+    i = 0
+    print(f"\nBegin to inference for {img_dir}.\n")
+    file_list = os.listdir(img_dir)
+    txt_file = "../dataset_test.txt"
+    with open(txt_file, 'r') as f:
+        next(f)
+        next(f)
+        next(f)
+        for line in f:
+            fname, _, _, _, _, _, _, _ = line.split()
+            file_name1 = fname.split('/')[0] # seq
+            file_name2 = fname.split('/')[1] # frame0009
+            for filedirname in os.listdir(img_dir): # bianli file name
+                if filedirname == file_name1:
+                    files = img_dir + "/" + file_name1
+                    file_list = os.listdir(files)
+                    for img_id, file_name in enumerate(file_list):
+                        total_len = len(file_list)
+                        if file_name == file_name2:
+                            file_name1 = file_name1 + "/" + file_name
+                            file_path = os.path.join(img_dir, file_name1)
+                            file_binname0 = "posenet" + "_" + str(i) + "_0.bin"
+                            file_binname1 = "posenet" + "_" + str(i) + "_1.bin"
+                            file_binname2 = "posenet" + "_" + str(i) + "_2.bin"
+                            file_binname3 = "posenet" + "_" + str(i) + "_3.bin"
+                            file_binname4 = "posenet" + "_" + str(i) + "_4.bin"
+                            file_binname5 = "posenet" + "_" + str(i) + "_5.bin"
+                            i = i + 1
+                            save_path = [os.path.join(result_dir, file_binname0),
+                                         os.path.join(result_dir, file_binname1),
+                                         os.path.join(result_dir, file_binname2),
+                                         os.path.join(result_dir, file_binname3),
+                                         os.path.join(result_dir, file_binname4),
+                                         os.path.join(result_dir, file_binname5)]
+                            img_np = process_img(file_path)
+                            img_shape = img_np.shape
+                            sdk_api.send_img_input(stream_name,
+                                                   img_data_plugin_id, "appsrc0",
+                                                   img_np.tobytes(), img_shape)
+                            start_time = time.time()
+                            result = sdk_api.get_result(stream_name)
+                            end_time = time.time() - start_time
+                            with open(save_path[0], "wb") as fp:
+                                fp.write(result[0])
+                                print(
+                                    f"End-2end inference, file_name: {file_path}, "
+                                    f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n"
+                                )
+                            with open(save_path[1], "wb") as fp:
+                                fp.write(result[1])
+                                print(
+                                    f"End-2end inference, file_name: {file_path}, "
+                                    f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n"
+                                )
+                            with open(save_path[2], "wb") as fp:
+                                fp.write(result[2])
+                                print(
+                                    f"End-2end inference, file_name: {file_path}, "
+                                    f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n"
+                                )
+                            with open(save_path[3], "wb") as fp:
+                                fp.write(result[3])
+                                print(
+                                    f"End-2end inference, file_name: {file_path}, "
+                                    f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n"
+                                )
+                            with open(save_path[4], "wb") as fp:
+                                fp.write(result[4])
+                                print(
+                                    f"End-2end inference, file_name: {file_path}, "
+                                    f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n"
+                                )
+                            with open(save_path[5], "wb") as fp:
+                                fp.write(result[5])
+                                print(
+                                    f"End-2end inference, file_name: {file_path}, "
+                                    f"{img_id + 1}/{total_len}, elapsed_time: {end_time}.\n"
+                                )
+
+
+
+
+if __name__ == "__main__":
+    args = parser_args()
+    seqs_str = '''MOT20-01
+      MOT20-02
+     MOT20-03
+     MOT20-05
+     '''
+    image_inference(args.pipeline_path, cfg.STREAM_NAME.encode("utf-8"), args.img_path,
+                    args.infer_result_dir)
diff --git a/official/cv/posenet/modelarts/train_start.py b/official/cv/posenet/modelarts/train_start.py
new file mode 100644
index 0000000000000000000000000000000000000000..421fb309e454892b6d80a271e25dba717d26140d
--- /dev/null
+++ b/official/cv/posenet/modelarts/train_start.py
@@ -0,0 +1,158 @@
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ============================================================================
+"""train posenet"""
+import ast
+import argparse
+import os
+import shutil
+import numpy as np
+from mindspore.common import set_seed
+from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
+from mindspore.context import ParallelMode
+from mindspore.communication.management import init, get_rank
+from mindspore.nn import Adagrad
+from mindspore.train.model import Model
+from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
+import mindspore.common.dtype as ms
+from src.posenet import PoseNet
+from src.config import common_config, KingsCollege, StMarysChurch
+from src.dataset import create_posenet_dataset
+from src.loss import PosenetWithLoss
+
+set_seed(1)
+
+parser = argparse.ArgumentParser(description='Posenet train.')
+parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default is false.")
+parser.add_argument('--dataset', type=str, default='KingsCollege',
+                    choices=['KingsCollege', 'StMarysChurch'], help='Name of dataset.')
+parser.add_argument('--device_num', type=int, default=1, help='Number of device.')
+# 妯″瀷杈撳嚭鐩綍
+parser.add_argument('--train_url', type=str, default='', help='the path model saved')
+# 鏁版嵁闆嗙洰褰�
+parser.add_argument('--data_url', type=str, default='', help='the training data')
+# 鎶藉彇鍑烘潵鐨勮秴鍙傞厤缃�
+parser.add_argument('--pre_trained', type=ast.literal_eval, default=False, help='Pretrained checkpoint path')
+parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
+parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"),
+                    help="Device target, support Ascend, GPU and CPU.")
+parser.add_argument('--max_steps', type=int, default=30000, help='max_steps')
+parser.add_argument('--save_checkpoint_epochs', type=int, default=5, help='save_checkpoint_epochs')
+parser.add_argument('--keep_checkpoint_max', type=int, default=10, help='keep_checkpoint_max')
+parser.add_argument('--save_checkpoint', type=ast.literal_eval, default=True, help='save_checkpoint')
+parser.add_argument("--file_name", type=str, default="posenet", help="output file name.")
+parser.add_argument('--is_modelarts', type=ast.literal_eval, default=True, help='Train in Modelarts.')
+args_opt = parser.parse_args()
+CACHE_TRAINING_URL = "/cache/training/"
+CACHE = "/cache/"
+src = "/"
+local_data_path = '/cache/data/'
+if not os.path.isdir(CACHE_TRAINING_URL):
+    os.makedirs(CACHE_TRAINING_URL)
+
+if __name__ == '__main__':
+    cfg = common_config
+    if args_opt.dataset == "KingsCollege":
+        dataset_cfg = KingsCollege
+    elif args_opt.dataset == "StMarysChurch":
+        dataset_cfg = StMarysChurch
+
+    device_target = args_opt.device_target
+    context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
+    if args_opt.run_distribute:
+        if device_target == "Ascend":
+            device_id = int(os.getenv('DEVICE_ID'))
+            context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
+            context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
+                                              gradients_mean=True,
+                                              auto_parallel_search_mode="recursive_programming")
+            init()
+        elif device_target == "GPU":
+            init()
+            context.set_auto_parallel_context(device_num=args_opt.device_num,
+                                              parallel_mode=ParallelMode.DATA_PARALLEL,
+                                              gradients_mean=True,
+                                              auto_parallel_search_mode="recursive_programming")
+    else:
+        if args_opt.device_id is not None:
+            context.set_context(device_id=args_opt.device_id)
+        else:
+            context.set_context(device_id=cfg.device_id)
+
+    train_dataset_path = dataset_cfg.dataset_path
+    if args_opt.is_modelarts:
+        import moxing as mox
+        mox.file.copy_parallel(args_opt.data_url, CACHE)
+    if args_opt.dataset == "KingsCollege":
+        mindrecord_file_name = "KingsCollege_posenet_train.mindrecord"
+    elif args_opt.dataset == "StMarysChurch":
+        mindrecord_file_name = "StMarysChurch_posenet_train.mindrecord"
+    mindrecord_file = os.path.join(CACHE, mindrecord_file_name)
+    dataset = create_posenet_dataset(mindrecord_file, batch_size=dataset_cfg.batch_size,
+                                     device_num=args_opt.device_num, is_training=True)
+    step_per_epoch = dataset.get_dataset_size()
+
+    net_with_loss = PosenetWithLoss(args_opt.pre_trained)
+    opt = Adagrad(params=net_with_loss.trainable_params(),
+                  learning_rate=dataset_cfg.lr_init,
+                  weight_decay=dataset_cfg.weight_decay)
+    model = Model(net_with_loss, optimizer=opt)
+
+    time_cb = TimeMonitor(data_size=step_per_epoch)
+    loss_cb = LossMonitor()
+    cb = [time_cb, loss_cb]
+    if args_opt.save_checkpoint:
+        config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_epochs * step_per_epoch,
+                                     keep_checkpoint_max=args_opt.keep_checkpoint_max)
+        if args_opt.is_modelarts:
+            save_checkpoint_path = CACHE_TRAINING_URL
+            if args_opt.device_num == 1:
+                ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset,
+                                          directory=save_checkpoint_path,
+                                          config=config_ck)
+                cb += [ckpt_cb]
+            if args_opt.device_num > 1 and get_rank() % 8 == 0:
+                ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset,
+                                          directory=save_checkpoint_path,
+                                          config=config_ck)
+                cb += [ckpt_cb]
+        else:
+            save_checkpoint_path = cfg.checkpoint_dir
+            if not os.path.isdir(save_checkpoint_path):
+                os.makedirs(save_checkpoint_path)
+
+            if args_opt.device_num == 1:
+                ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset,
+                                          directory=save_checkpoint_path,
+                                          config=config_ck)
+                cb += [ckpt_cb]
+            if args_opt.device_num > 1 and get_rank() % 8 == 0:
+                ckpt_cb = ModelCheckpoint(prefix='train_posenet_' + args_opt.dataset,
+                                          directory=save_checkpoint_path,
+                                          config=config_ck)
+                cb += [ckpt_cb]
+
+    epoch_size = args_opt.max_steps // args_opt.device_num // step_per_epoch
+    model.train(1, dataset, callbacks=cb)
+
+    net = PoseNet()
+    file_name1 = "train_posenet_KingsCollege-1_16.ckpt"
+    assert cfg.checkpoint_dir is not None, "cfg.checkpoint_dir is None."
+    param_dict = load_checkpoint(os.path.join(CACHE_TRAINING_URL, file_name1))
+    load_param_into_net(net, param_dict)
+    input_arr = Tensor(np.ones([1, 3, 224, 224]), ms.float32)
+    export(net, input_arr, file_name=args_opt.file_name, file_format='AIR')
+    shutil.copy('posenet.air', CACHE_TRAINING_URL)
+    if args_opt.is_modelarts:
+        mox.file.copy_parallel(src_url=CACHE_TRAINING_URL, dst_url=args_opt.train_url)
diff --git a/official/cv/posenet/scripts/docker_start.sh b/official/cv/posenet/scripts/docker_start.sh
new file mode 100644
index 0000000000000000000000000000000000000000..e39553192b435f70dae6aa6b6adbfd6ffe901b40
--- /dev/null
+++ b/official/cv/posenet/scripts/docker_start.sh
@@ -0,0 +1,35 @@
+#!/bin/bash
+# Copyright 2021 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.mitations under the License.
+
+docker_image=$1
+data_dir=$2
+model_dir=$3
+
+docker run -it --ipc=host \
+              --device=/dev/davinci0 \
+              --device=/dev/davinci1 \
+              --device=/dev/davinci2 \
+              --device=/dev/davinci3 \
+              --device=/dev/davinci4 \
+              --device=/dev/davinci5 \
+              --device=/dev/davinci6 \
+              --device=/dev/davinci7 \
+              --device=/dev/davinci_manager \
+              --device=/dev/devmm_svm --device=/dev/hisi_hdc \
+              -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
+              -v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons/ \
+              -v ${model_dir}:${model_dir} \
+              -v ${data_dir}:${data_dir}  \
+              -v /root/ascend/log:/root/ascend/log ${docker_image} /bin/bash
\ No newline at end of file