
PRESENTS

KubeEdge Security Audit
In collaboration with the KubeEdge project maintainers and The Open Source Technology
Improvement Fund and commissioned by the Cloud Native Computing Foundation.

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 11th July, 2022.

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

Executive summary

Results summarised
Formalisation of KubeEdge threat model

12 issues found

8 CVEs assigned

OSS-Fuzz and CIFuzz integration of KubeEdge

10 fuzzers developed

SLSA compliance review

This report outlines the security audit carried out by Ada Logics of KubeEdge May and June
2022. The audit was carried out by Ada Logics in collaboration with the KubeEdge
maintainers and was commissioned by the CNCF and facilitated by OSTIF. Ada Logics
dedicated a total of 25 days of effort for this audit.

The goal of this audit was to conduct a holistic security assessment of KubeEdge which
included several high-level tasks. The audit had four three high-level tasks:

● Threat-model formalisation.
● Fuzzing integration.
● Manual code auditing.

In addition to these three main tasks, Ada Logics performed a SLSA compliance review,
which is found in the Appendix of this report.

The threat-model was made for both KubeEdge users and security researchers interested in
improving the security of KubeEdge. To assist KubeEdge users, the threat model identifies
the areas where users need to ensure that their infrastructure around KubeEdge is secure
and outlining the security implications in case users should deploy KubeEdge in insecure
infrastructure. To assist security researchers, the threat model clarifies which security
policies KubeEdge implements to indicate that any behaviour in KubeEdge that contradicts
these intended policies can have security implications that should be brought to the attention
of the KubeEdge team.

At the beginning of this audit KubeEdge had no exposure to fuzzing. In this audit, Ada Logics
integrated KubeEdge into OSS-Fuzz, developed 10 fuzzers and set up these fuzzers to run
in the CI for pull requests. Several issues were found by the fuzzers, and 2 CVEs were
assigned. The KubeEdge team was fast to reproduce crashes and respond with patches.

The manual code auditing found several issues ranging from informational to moderate
severity. 8 denial-of-service CVEs were assigned as a result of this part of the code audit.
These were found in both EdgeCore and CloudCore.

2

Project information

Document History

Version Date Details

1.0 21/06/2022 First version shared with the KubeEdge team

1.1 05/07/2022 Final version of report delivered.

Contacts

Ada Logics

Name Title Email address

Adam Korczynski Security Engineer Adam@adalogics.com

David Korczynski Security Researcher David@adalogics.com

Open Source Technology Improvement Fund

Name Email

Amir Montazery Amir@ostif.org

Derek Zimmer Derek@ostif.org

KubeEdge

Name Email

Kevin Wang wangzefeng@huawei.com

Fisher Xu xufei40@huawei.com

Vincent Lin linguohui1@huawei.com

3

Table of contents
Executive summary 2

Project information 3
Document History 3
Contacts 3

Ada Logics 3
Open Source Technology Improvement Fund 3
KubeEdge 3

Table of contents 4

Fuzzing 6
Fuzzers 6

Overview 6

Threat model formalisation 9
KubeEdge trust architecture 9

KubeEdge attack surface enumeration 10
EdgeCore: MQTT Broker and ServiceBus security 11
EdgeCore: MetaServer 12

Issues found 14
ADA-KE-01: Edge ServiceBus module: DoS by exhausting memory of node with http
request containing large body 15
ADA-KE-02: Cloud AdmissionController component: DoS by exhausting memory of node
with http request containing large body 16
ADA-KE-03: Nil-pointer dereferences can crash multiple packages in CloudCore 17
ADA-KE-04: Deprecated 3rd party libraries 19
ADA-KE-05: DoS when signing the CSR from EdgeCore 22
ADA-KE-06: InsecureSkipVerify: true unsuitable for production 24
ADA-KE-7: Use of weak cryptographic primitive 27
ADA-KE-8: Missing error check for unsafe method 28
ADA-KE-9: CloudCore Router: Large HTTP response can exhaust memory in REST
handler 30
ADA-KE-10: Cloud Stream and Edge Stream: DoS from large stream message 32
ADA-KE-11: Websocket Client in package Viaduct: DoS from large response message 33
ADA-KE-12: Possible type confusions 35

Code complexity 37
Pointer arguments 37

Possible nil-pointers 37
Recommendations 39

Unused parameters 39
Functions always returning same value 40
Other unnecessary complexity 41

KubeEdge SLSA review 42

4

Executive summary 42
SLSA Analysis 43

Source 43
Build 43
Provenance 43
SLSA assessment table 43

Recommendations 44

5

Fuzzing
In this section we outline the fuzzing efforts involved in this holistic security audit. Prior to the
audit, KubeEdge had done no fuzzing and, thus, Ada Logics developed an extensive fuzzing
suite targeted at the KubeEdge project.

The first step in the fuzzing efforts was to integrate KubeEdge into OSS-Fuzz and
CNCF-Fuzzing. The purpose of this step was to get an end-to-end working fuzzing
integration, so that all KubeEdges fuzzers developed throughout the audit would be
automatically run by OSS-Fuzz. The integration into OSS-Fuzz has the added benefit that
each fuzzer will continuously run after completion of the audit. Following this first step, Ada
Logics continued by adding more fuzzers to increase code coverage throughout the entire
code base.

The fuzzers are built with the build script found here:
https://github.com/cncf/cncf-fuzzing/blob/main/projects/kubeedge/build.sh. More fuzzers can
be added to this script by building them by way of the compile_go_fuzzer binary.

All fuzzers were implemented in the go-fuzz fuzzing engine.

Fuzzers
This section outlines the fuzzers written as part of the security audit.

Overview
This table gives an overview of the fuzzers written during the security audit. “CNCF-Fuzzing
repo” refers to this link: https://github.com/cncf/cncf-fuzzing/tree/main/projects/kubeedge

Fuzzer Name Target package Location

FuzzLaneReadMessage github.com/kubeedge/via
duct/pkg/lane

CNCF-Fuzzing repo

FuzzdealTwinActions github.com/kubeedge/kub
eedge/edge/pkg/devicetw
in/dtmanager

CNCF-Fuzzing repo

FuzzExtractMessage github.com/kubeedge/kub
eedge/cloud/pkg/cloudhu
b/servers/udsserver

CNCF-Fuzzing repo

FuzzextractMessage github.com/kubeedge/kub
eedge/cloud/pkg/csidriv
er

CNCF-Fuzzing repo

FuzzParseKey github.com/kubeedge/kub
eedge/pkg/metaserver

CNCF-Fuzzing repo

6

https://github.com/google/oss-fuzz
https://github.com/cncf/cncf-fuzzing
https://github.com/cncf/cncf-fuzzing/blob/main/projects/kubeedge/build.sh
https://github.com/cncf/cncf-fuzzing/tree/main/projects/kubeedge

FuzzReadMessageFromTunnel github.com/kubeedge/kub
eedge/pkg/stream

CNCF-Fuzzing repo

FuzzVolumeRegExp github.com/kubeedge/kub
eedge/cloud/pkg/cloudhu
b/handler

CNCF-Fuzzing repo

FuzzMqttPublish github.com/kubeedge/kub
eedge/edge/pkg/eventbus
/mqtt

CNCF-Fuzzing repo

FuzzRuleContains github.com/kubeedge/kub
eedge/cloud/pkg/router/
utils

CNCF-Fuzzing repo

FuzzLaneReadMessage
Target:
github.com/kubeedge/viaduct/pkg/lane.(*QuicLane).ReadMessage(*model.Messag

e)

Description: FuzzLaneReadMessage creates a new translator and encodes a
pseudo-randomized message. It then instantiates a *QuickLane{}, creates a few mocks
and finally calls (*QuicLane).ReadMessage(*model.Message) with the
pseudo-randomized message.

FuzzdealTwinActions
Targets: This fuzzer targets the following APIs all in
github.com/kubeedge/kubeedge/edge/pkg/devicetwin/dtmanager:

● dealTwinUpdate()

● dealTwinGet()

● dealTwinSync()

● dealDeviceAttrUpdate()

● dealDeviceStateUpdate()

● dealSendToCloud()

● dealSendToEdge()

● dealLifeCycle()

● dealConfirm()

● dealMembershipGet()

● dealMembershipUpdate()

● dealMembershipDetail()

Description: The fuzzer creates a device string, content bytes. It then creates a message
with the content bytes. Finally, it selects one of the deal operations and executes it.

FuzzExtractMessage

7

Target:
github.com/kubeedge/kubeedge/cloud/pkg/cloudhub/servers/udsserver.ExtractM

essage()

Description: Passes a pseudo-random string to the target API.

FuzzextractMessage
Target: github.com/kubeedge/kubeedge/cloud/pkg/csidriver.extractMessage()

Description: Passes a pseudo-random string to the target API.

FuzzParseKey
Target: github.com/kubeedge/kubeedge/pkg/metaserver.ParseKey()

Description: Passes a pseudo-random string to the target API.

FuzzReadMessageFromTunnel
Target: github.com/kubeedge/kubeedge/pkg/stream.ReadMessageFromTunnel()

Description: This fuzzer creates an io.Reader with a pseudo-random buffer and passes it to
the target API.

FuzzVolumeRegExp
Target:
github.com/kubeedge/kubeedge/cloud/pkg/cloudhub/handler.VolumeRegExp()

Description: Tests whether malicious strings can cause disruption when executing the
regex.

FuzzMqttPublish
Target: github.com/256dpi/gomqtt (3rd party dependency).

Description: This is a fuzzer that was written to test a 3rd party dependency. The fuzzer
sets up a server and connects to it by way of a client implemented by gomqtt itself. This is
not the same client that KubeEdge uses. It then subscribes to a topic and publishes a
payload consisting of pseudo-random bytes provided by the fuzzer.

FuzzRuleContains
Target: github.com/kubeedge/kubeedge/cloud/pkg/router/utils.RuleContains()

Description: Passes two pseudo-random strings to the target API.

8

Threat model formalisation
In this section we outline the threat modelling of KubeEdge. The goal of this is to construct
an understanding of KubeEdge in order to establish a suitable attack surface that can be
used throughout the engagement, both as part of the auditing and the fuzzing integration.

In the context of attack surface enumeration we are interested in understanding the various
angles in which a potential adversary can attack the system. In the model we do not focus
on a specific threat actor but use a common set of Kubernetes threat actors:

● External malicious attackers, representing actors that access KubeEdge from
outside.

● Internal attackers, including inadvertent internal actors who accidentally cause
issues.

● Supply chain attackers, representing attackers that subvert components of the
KubeEdge software supply chain.

KubeEdge trust architecture
In this section we will outline the trust components of KubeEdge and the boundaries
between these trust components. We do this after having reviewed the system from a
perspective of understanding its architecture, including code review and documentation
review. We construct the trust components by way of the KubeEdge architectural diagram,
which is shown in the following figure:

9

The system is, from a software perspective, composed of two main parts: Cloud and Edge.
The Device part in the above diagram does not involve any KubeEdge specific software but
rather communicates with the Edge KubeEdge software by way of MQTT.

In order to understand the potential attack scope and the severity of a given attack we
separate the system into components of trust. A component of trust specifically means a
shared level of trust over data and a shared level of authority in terms of the system
functioning properly. We then match these components with the potential actors and use this
as a reference on classifying risk throughout the system.

The risk classification will be used to guide severity of potential issues as well as identify
where high-severity issues may exist. In this sense, the goal of establishing the trust
components is to structurally guide the manual auditing and fuzzing of this security audit
towards where security issues may exist.

We divide the system into the following components of trust:
● CloudCore
● EdgeCore
● HTTP server part of EdgeCore
● MQTT broker part of EdgeCore that communicates with Devices
● Edged part EdgeCore which involves running of pods and, thus, containers.

We isolate these parts into components because they form boundaries in the system where
distinct trust relationships meet:

● CloudCore is connected to EdgeCore by way of EdgeHub.
● The HTTP server in EdgeCore is exposed locally on the system.
● The MQTT broker part of EdgeCore accepts inputs from the Devices. Privileges flow

from low to high in that an attacker in control of a device should not be able to cause
adversarial affect on EdgeCore.

● The Edged part of EdgeCore handles the running of Pods.

We will go into more details on these trust relationships in the following section where we
outline the separate trust entities at the end of each boundary. We will use this to enumerate
the attack surface from a high-level perspective.

KubeEdge attack surface enumeration
In this section we use the trust relationships above to enumerate the possible attack surface.

● CloudCore connection to EdgeCore. EdgeCore has a separate level of authority in
the overall system, in that an attacker in control of EdgeCore should not be able to
negatively affect other edge nodes, e.g. by way of manipulation of CloudCore. In this
sense the trust relationship flows from low to high in that EdgeCore has lower
authority over KubeEdge than CloudCore, and CloudCore should be considered the
highest level of trust in the KubeEdge ecosystem.

● HTTP server connection to EdgeCore. The HTTP server in EdgeCore exposes
EdgeCore locally on the system and the applications on the local system do not have

10

a high level of authority over the full KubeEdge cluster. In this context, EdgeCore
should be protected against attempts from the local system to thwart KubeEdge. In
this sense the trust relationship flows from low to high in that the local applications
have lower authority over the KubeEdge ecosystem than EdgeCore.

● MQTT broker connection to EdgeCore. The Devices can reach EdgeCore by way
of the MQTT broker. There is a trust boundary here where the Devices themselves
should not be able to negatively affect the overall KubeEdge system. For example, if
an attacker controls a device, the overall system should be protected against
possible attacks from this device. In this sense the trust relationship flows from low to
high in that the devices have lower authority over the KubeEdge system than
EdgeCore.

● Edged. Edged handles the running of Pods. The containers in these pods have low
authority over the KubeEdge system and privileges thus flow from low to high. An
attacker in control of some components in the containers should not be able to grow
a foothold of more of the KubeEdge system.

Each of these trust boundaries are a potential entrypoint for a given attack and should be
considered when auditing the security posture of KubeEdge. Any behavior that is counter to
these trust boundaries should be considered a security risk and should be raised with the
KubeEdge team.

EdgeCore: MQTT Broker and ServiceBus security
As a default, EdgeCore trusts all incoming data it receives via ServiceBus and the MQTT
Broker. However, because these will often be deployed in untrusted environments and
contexts, we include a section that goes further into detail regarding these two parts of
EdgeCore.

The MQTT Broker and the ServiceBus receive data from sources that are often not
manufactured or maintained by the KubeEdge cluster admin. Furthermore, the cluster admin
will not have access to the source code of either the apps that connect to the ServiceBus or
the software that runs on the devices that connect to the MQTT broker. Therefore, while
EdgeCore trusts input to the ServiceBus and the MQTT Broker, the external services
connecting to the ServiceBus and the MQTT Broker expose a critical attack surface that
malicious actors will attempt to gain control over as a medium to get control over EdgeCore.

In this section we detail the implications of this attack surface. Specifically, we consider the
implications of EdgeCore being exposed to potentially malicious actors, and which impact
malicious actors would seek.

The security impact of the ServiceBus and the MQTT Broker can be separated into the
following metrics:

Confidentiality
KubeEdge assumes that requests sent to the ServiceBus and the MQTT Broker are
authorised and authenticated. If an attacker is able to send requests to the ServieBus and
the MQTT Broker, it is assumed that the attacker already has full admin rights over the node.

11

However, even in the case of full admin rights of an edge node, the attacker should not be
able to escalate privileges to admin on the Cloud side.

Integrity
KubeEdge has two positions with regards to the data it receives via ServiceBus and the
MQTT Broker:

1. KubeEdge does not make any distinction between correct and incorrect data. Control
over an edge node, for example through control over the Devices connecting to
EventBus or Apps connecting to ServiceBus, would allow an attacker to manipulate
parts of the integrity of the data sent to ServiceBus and EventBus.

2. Control over an edge node should not allow an attacker to mask from which 3rd-party
app or device a given request is coming from. An admin on the cloud side must be
able to filter incorrect data.

Availability
No incoming requests to the ServiceBus and MQTT Broker, even if these were controlled by
a malicious actor, should cause denial of service to EdgeCore or CloudCore.

Implications
Because of this level of trust prescribed to requests coming from the ServiceBus and the
MQTT Broker, the following implications can be noted for the security of KubeEdge:

1. Ensure proper configuration of nodes. If an attacker has access to a device or an
app (app here refers to App in the figure, and is an application on the local system),
they are able to manipulate parts of the incoming data to the cluster but should not
be able to cause denial of service for either an edge node or the cloud. For this
reason, KubeEdge users should be careful to correctly configure the access controls
of their edge nodes.

2. Update 3rd party libraries. Special attention should be paid to ensuring
deployments of the latest security updates on all software on both devices and
3rd-party apps on edge nodes. This is always a general guideline, however, it is
important to highlight in this case because local applications on the node or devices
provide a way to laterally attack KubeEdge.

3. Physical attackers may be likely. There are KubeEdge use cases which may
expose some devices in a manner where they are at high risk of physical attacks by
malicious actors. This could be the result of onsite control obtained by both external
and internal actors. The outcome of physical control of a device is limited to the
ability to manipulate the integrity of the data coming from that device. Physical control
of a device must not allow an attacker to complete a Denial of Service attack targeted
either EdgeCore or CloudCore.

EdgeCore: MetaServer
The MetaServer is a new addition to the KubeEdge. It starts a HTTP server and acts as an
edge api-server for Kubernetes operators. It proxies the Kubernetes resource request to the
dynamic controller in the cloud, and if the node is offline, the MetaServer will request the
edge local storage for a workaround.

12

The MetaServer is a highly trusted piece of the KubeEdge architecture. This makes it
susceptible to attention from attackers that would seek to control the operators
communicating with the MetaServer. Obtaining control of the operator would allow attackers
to perform several attacks along multiple threat vectors, for example:

● An attacker could send “Create” requests to create new objects to make the victim
consume excessive computational resources.

● An attacker could retrieve information about the cluster in an ongoing, stealthy effort
to collect intelligence about its victim.

● An attacker could delete resources to deny availability of expected objects.
● An attacker could modify resources to alter integrity of the data in the cluster.

As such, it is of importance that users make sure that the operator(s) communicating with
the MetaServer are secure and correctly configured. We also recommend that expectations
are set for these operators in terms of their security processes and posture. It is worth noting
here that the MetaServer is disabled by default, and any security risks imposed on
deployment are only relevant, once it is enabled.

13

Issues found
In this section we outline the security issues found during the auditing of KubeEdge.

The following CVEs were assigned issues found as part of this audit:

Issue CVE Severity Fixed

1 ADA-KE-01: Edge ServiceBus module: DoS by
exhausting memory of node with http request
containing large body

CVE-2022-3
1073

Moderate Y

2 ADA-KE-02: Cloud AdmissionController component:
DoS by exhausting memory of node with http request
containing large body

CVE-2022-3
1074

Moderate Y

3 ADA-KE-03: CloudCore UDS Server: Malicious
Message can crash CloudCore

CVE-2022-3
1076 and
CVE-2022-3
1077

Moderate Y

4 ADA-KE-04: Deprecated 3rd party libraries Low Y

5 ADA-KE-05: DoS when signing the CSR from
EdgeCore

CVE-2022-3
1075

Moderate Y

6 ADA-KE-06: InsecureSkipVerify: true unsuitable for
production

Low N

7 ADA-KE-7: Use of weak cryptographic primitive Informati
onal

Y

8 ADA-KE-8: Missing error check for unsafe method Low Y

9 ADA-KE-9: CloudCore Router: Large HTTP response
can exhaust memory in REST handler

CVE-2022-3
1078

Moderate Y

10 ADA-KE-10: Cloud Stream and Edge Stream: DoS
from large stream message

CVE-2022-3
1079

Moderate Y

11 ADA-KE-11: Websocket Client in package Viaduct:
DoS from large response message

CVE-2022-3
1080

Moderate Y

12 ADA-KE-12: Possible type confusions Low Y

14

ADA-KE-01: Edge ServiceBus module: DoS by exhausting
memory of node with http request containing large body

Severity Moderate

Difficulty High

Target Edge ServiceBus

Fix https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull
/1

The ServiceBus server may be susceptible to a DoS attack if an HTTP request containing a
large body is sent to it.

The issue is found in the buildBasicHandler() API which builds the handler function for
the ServiceBus server. This handler reads the requests body entirely into memory on the
marked line below:

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/servicebus/servicebus.go#L235

func buildBasicHandler(timeout time.Duration) http.Handler {

return http.HandlerFunc(func(w http.ResponseWriter, req

*http.Request) {

sReq := &serverRequest{}

sResp := &serverResponse{}

byteData, err := io.ReadAll(req.Body)

15

https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/servicebus/servicebus.go#L235

ADA-KE-02: Cloud AdmissionController component: DoS by
exhausting memory of node with http request containing large
body

Severity Moderate

Difficulty High

Target Cloud Admissioncontroller

Fix https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull
/1

Several endpoints in the Cloud Admissioncontroller may be susceptible to a DoS attack if an
HTTP request containing a large body is sent to it.

The issue is found in the serve() API which handles incoming requests for several
endpoints in the Admissioncontroller. This API reads the requests body entirely into memory
on the marked line below:

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/common.go#L66

func serve(w http.ResponseWriter, r *http.Request, hook hookFunc) {

var body []byte

if r.Body != nil {

if data, err := io.ReadAll(r.Body); err == nil {

body = data

}

}

serve() is used the following places:

● https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/ad
mit_devicemodel.go#L58

● https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/ad
mit_rule.go#L143

● https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/ad
mit_ruleendpoint.go#L52

● https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/m
utate_offlinemigration.go#L67

16

https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/common.go#L66
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/admit_devicemodel.go#L58
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/admit_devicemodel.go#L58
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/admit_rule.go#L143
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/admit_rule.go#L143
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/admit_ruleendpoint.go#L52
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/admit_ruleendpoint.go#L52
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/mutate_offlinemigration.go#L67
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/admissioncontroller/mutate_offlinemigration.go#L67

ADA-KE-03: Nil-pointer dereferences can crash multiple
packages in CloudCore

Severity Moderate

Difficulty High

Target Multiple

Fix https://github.com/kubeedge/kubeedge/pull/3899

An issue was found by the FuzzextractMessage fuzzer, whereby a malicious string could
crash CloudCore. The issue was reported as a build failure by OSS-Fuzz:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47779. Upon inspecting the logs of
the failed build, it became evident that this was not a build failure, but to OSS-Fuzz it looked
like one, because the fuzz harness found the bug within a few iterations.
The issue existed because of passing a double pointer to json.Unmarshal(). If
json.Unmarshal() is passed the bytes []byte{“n”, “u”, “l”, “l”} as its first
parameter and a double pointer as its second, the struct to which the buffer should be
unmarshalled (passed as the second parameter) will be nil.
The issue was found in the UDS Server of the CloudHub and could be used to crash
CloudCore.
Two CVEs were assigned this issue:

1. CVE-2022-31076
2. CVE-2022-31077

The double pointer is passed on the line marked below:
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/udsserver/s
erver.go#L58

func ExtractMessage(context string) (*model.Message, error) {

if context == "" {

return nil, errors.New("failed with error: context is

empty")

}

var msg *model.Message

err := json.Unmarshal([]byte(context), &msg)

if err != nil {

return nil, err

}

return msg, nil

}

Upon further examination, it was found that this code pattern was used in several other
places in the KubeEdge source code. The fix

17

https://github.com/kubeedge/kubeedge/pull/3899
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47779
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/udsserver/server.go#L58
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/udsserver/server.go#L58

(https://github.com/kubeedge/kubeedge/pull/3899) corrected 9 uses of double pointers
passed to json.Unmarshal().

A similar issue was found in another open source project that Ada Logics previously
contributed security work to. See
https://adalogics.com/blog/fuzzing-istio-cve-CVE-2022-23635 for more info which describes
the root cause in more detail.

18

https://github.com/kubeedge/kubeedge/pull/3899
https://adalogics.com/blog/fuzzing-istio-cve-CVE-2022-23635

ADA-KE-04: Deprecated 3rd party libraries

Severity Low

Difficulty High

Target Multiple

Fix https://github.com/kubeedge/kubeedge/pull/3972
Issues added upstream regarding transitive dependencies:

● https://github.com/container-storage-interface/spec/issues/
516

● https://github.com/distribution/distribution/issues/3674

A manual review of KubeEdges 3rd party dependencies was made. 2 factors were
considered. First, we checked for use of any deprecated dependencies. Next, we checked
for use of any dependencies that were not of the latest release version. Using the latest
versions of 3rd party libraries is important, as new releases can include security updates that
could affect the security of KubeEdge.

Deprecated libraries
3 projects in KubeEdges dependency tree were found to be deprecated or unmaintained.

● github.com/golang/protobuf
● github.com/gorilla/mux (see https://github.com/gorilla/mux/issues/659)
● github.com/paypal/gatt (see https://github.com/paypal/gatt/issues/75). gatt is only

used for testing.

Non-latest dependencies

Name Used version Latest version

github.com/256dpi/gomqtt v0.10.4 v0.14.4

github.com/blang/semver v3.5.1 v4.0.0

github.com/container-storage-interfa
ce/spec

v1.5.0 v1.6.0

github.com/eclipse/paho.mqtt.golang V1.2.0 v1.3.5

ithub.com/golang-jwt/jwt v3.2.2 v4.4.1

github.com/google/uuid v1.2.0 v1.3.0

github.com/gorilla/websocket v1.4.2 v1.5.0

github.com/kubernetes-csi/csi-lib-ut
ils

v.0.6.1 v0.11.0

github.com/prometheus/client_golang v1.11.0 1.12.2

github.com/spf13/cobra v1.2.1 v1.4.0

19

https://github.com/kubeedge/kubeedge/pull/3972
https://github.com/container-storage-interface/spec/issues/516
https://github.com/container-storage-interface/spec/issues/516
https://github.com/distribution/distribution/issues/3674
https://github.com/gorilla/mux/issues/659
https://github.com/paypal/gatt/issues/75

golang.org/x/net v0.0.0-202112091249
13-491a49abca63

v0.0.0-20220526
153639-5463443f
8c37

google.golang.org/grpc v1.42.0 v1.46.2

helm.sh/helm/v3 v3.7.2 v3.9.0

k8s.io/api v0.22.6 v0.24.1

k8s.io/apiextensions-apiserver v0.22.6 v0.24.1

k8s.io/apimachinery v0.22.6 v0.24.1

k8s.io/apiserver v0.22.6 v0.24.1

k8s.io/cli-runtime v0.22.6 v0.24.1

k8s.io/client-go v0.22.6 v0.24.1

k8s.io/cloud-provider v0.22.6 v0.24.1

k8s.io/cluster-bootstrap v0.22.6 v0.24.1

k8s.io/code-generator v0.22.6 v0.24.1

k8s.io/component-base v0.22.6 v0.24.1

k8s.io/cri-api v0.22.6 v0.24.1

k8s.io/csi-translation-lib v0.22.6 v0.24.1

k8s.io/klog/v2 v2.9.0 v2.60.1

k8s.io/kube-openapi v0.0.0-2021111523475
2-e816edb12b65

v0.0.0-20220413
171646-5e7f5fdc
6da6

k8s.io/kube-scheduler v0.22.6 v0.24.1

k8s.io/kubelet v0.22.6 v0.24.1

k8s.io/kubernetes v1.22.6 v1.24.1

k8s.io/mount-utils v0.22.6 v0.24.1

k8s.io/utils v0.0.0-202108192037
25-bdf08cb9a70a

v0.0.0-20220210
201930-3a6ce19ff
2f9

sigs.k8s.io/apiserver-network-proxy v0.0.27 v0.0.9-klog-v1

sigs.k8s.io/apiserver-network-proxy/
konnectivity-client

v0.0.27 v0.0.9-klog-v1

20

sigs.k8s.io/yaml v1.2.0 v1.3.0

We recommend never to use deprecated libraries. Furthermore, unless impossible, 3rd-party
dependencies should be updated to the latest to include upstream reliability and security
fixes.

21

ADA-KE-05: DoS when signing the CSR from EdgeCore

Severity Moderate

Difficulty High

Target https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/clou
dhub/servers/httpserver/server.go#L172

Fix https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull
/1

EdgeCore may be susceptible to a DoS attack on CloudHub if an attacker was to send a
well-crafted HTTP request to /edge.crt.

The root cause of this issue is that signEdgeCert() reads the entire HTTP request into
memory.

The endpoint /edge.crt is initiated here:

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#
L44

func StartHTTPServer() {

router := mux.NewRouter()

router.HandleFunc(constants.DefaultCertURL,

edgeCoreClientCert).Methods(http.MethodGet)

router.HandleFunc(constants.DefaultCAURL, getCA).Methods(http.MethodGet)

edgeCoreClientCert() is the handler for the endpoint /edge.crt and is implemented
here:

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#
L84

func edgeCoreClientCert(w http.ResponseWriter, r *http.Request) {

if cert := r.TLS.PeerCertificates; len(cert) > 0 {

if err := verifyCert(cert[0]); err != nil {

klog.Errorf("failed to sign the certificate for edgenode:

%s, failed to verify the certificate", r.Header.Get(constants.NodeName))

w.WriteHeader(http.StatusUnauthorized)

if _, err := w.Write([]byte(err.Error())); err != nil {

klog.Errorf("failed to write response, err: %v", err)

}

} else {

signEdgeCert(w, r)

}

return

}

if verifyAuthorization(w, r) {

22

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L172
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L172
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L44
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L44
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L84
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L84

signEdgeCert(w, r)

} else {

klog.Errorf("failed to sign the certificate for edgenode: %s,

invalid token", r.Header.Get(constants.NodeName))

}

}

If an attacker can send a well-crafted HTTP request that proceeds into signEdgeCert()

above, and that request has a very large body, that request could crash the http service
through a memory exhaustion vulnerability. The requests body is being read into memory on
the line below, and a body that it larger than the available memory could lead to a successful
attack:

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#
L172

func signEdgeCert(w http.ResponseWriter, r *http.Request) {

csrContent, err := io.ReadAll(r.Body)

if err != nil {

klog.Errorf("fail to read file when signing the cert for

edgenode:%s! error:%v", r.Header.Get(constants.NodeName), err)

return

}

csr, er

...

Because the request would have to make it through verifyAuthorization(), only
authorized users could perform this attack.

23

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L172
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/cloudhub/servers/httpserver/server.go#L172

ADA-KE-06: InsecureSkipVerify: true unsuitable for production

Severity Low

Difficulty High

Target Multiple

Fix Not fixed. An issue has been created on Github to track that this
gets fixed in future versions of KubeEdge:
https://github.com/kubeedge/kubeedge/issues/4001

The InsecureSkipVerify: true setting is unsuited for production as per the Golang
documentation for the TLS package:

“InsecureSkipVerify controls whether a client verifies the server's certificate chain and host
name. If InsecureSkipVerify is true, crypto/tls accepts any certificate presented by the server
and any host name in that certificate. In this mode, TLS is susceptible to
machine-in-the-middle attacks unless custom verification is used. This should be used only
for testing or in combination with VerifyConnection or VerifyPeerCertificate.”
https://pkg.go.dev/crypto/tls

InsecureSkipVery: true is used in the following places:

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/eventbus/common/util/commo
n.go#L86

} else {

tlsConfig = &tls.Config{InsecureSkipVerify: true,

ClientAuth: tls.NoClientCert}

}

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgestream/edgestream.go#L
87

tlsConfig := &tls.Config{

InsecureSkipVerify: true,

Certificates: []tls.Certificate{cert},

}

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/common/http/http.go
#L38

transport := &http.Transport{

DialContext: (&net.Dialer{

Timeout: connectTimeout,

24

https://github.com/kubeedge/kubeedge/issues/4001
https://pkg.go.dev/crypto/tls
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/eventbus/common/util/common.go#L86
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/eventbus/common/util/common.go#L86
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgestream/edgestream.go#L87
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgestream/edgestream.go#L87
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/common/http/http.go#L38
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/common/http/http.go#L38

KeepAlive: keepaliveTimeout,

}).DialContext,

MaxIdleConnsPerHost: maxIdleConnectionsPerHost,

ResponseHeaderTimeout: responseReadTimeout,

TLSClientConfig: &tls.Config{InsecureSkipVerify:

true},

}

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/common/http/http.go
#L60

tr := &http.Transport{

TLSClientConfig: &tls.Config{

RootCAs: pool,

Certificates: []tls.Certificate{cliCrt},

MinVersion: tls.VersionTLS12,

CipherSuites: []uint16{

tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

},

InsecureSkipVerify: true}, /*Now we need set it true*/

}

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/clients/quicclient/quic
client.go#L62

tlsConfig := &tls.Config{

RootCAs: pool,

Certificates: []tls.Certificate{cert},

InsecureSkipVerify: true,

}

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/utils/http/http.go#L38

transport := &http.Transport{

DialContext: (&net.Dialer{

Timeout: connectTimeout,

KeepAlive: keepaliveTimeout,

}).DialContext,

MaxIdleConnsPerHost: maxIdleConnectionsPerHost,

ResponseHeaderTimeout: responseReadTimeout,

TLSClientConfig: &tls.Config{InsecureSkipVerify:

true},

}

25

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/common/http/http.go#L60
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/common/http/http.go#L60
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/clients/quicclient/quicclient.go#L62
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edgehub/clients/quicclient/quicclient.go#L62
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/utils/http/http.go#L38

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/utils/http/http.go#L45

tr := &http.Transport{

TLSClientConfig: &tls.Config{

RootCAs: pool,

Certificates: []tls.Certificate{cliCrt},

MinVersion: tls.VersionTLS12,

CipherSuites: []uint16{

tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

},

InsecureSkipVerify: true}, /*Now we need set it true*/

}

26

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/utils/http/http.go#L45

ADA-KE-7: Use of weak cryptographic primitive

Severity Informational

Difficulty n/a

Target CloudCore Dynamic Controller

Fix WontFix

As is noted by the Golang documentation:

“MD5 is cryptographically broken and should not be used for secure applications.”
https://pkg.go.dev/crypto/md5

MD5 encryption was used in CloudCores Dynamic Controller to generate an Application ID.
Because of that, the issue is scored as “Informational”.

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/dynamiccontroller/application/
application.go#L145

func (a *Application) Identifier() string {

if a.ID != "" {

return a.ID

}

b := []byte(a.Nodename)

b = append(b, []byte(a.Key)...)

b = append(b, []byte(a.Verb)...)

b = append(b, a.Option...)

b = append(b, a.ReqBody...)

a.ID = fmt.Sprintf("%x", md5.Sum(b))

return a.ID

}

27

https://pkg.go.dev/crypto/md5
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/dynamiccontroller/application/application.go#L145
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/dynamiccontroller/application/application.go#L145

ADA-KE-8: Missing error check for unsafe method

Severity Low

Difficulty High

Target Multiple

Fix https://github.com/kubeedge/kubeedge/pull/3975

File close operations can return an error that is not checked in deferred calls in KubeEdge.
This can lead to unexpected behaviour and potentially allow attackers to create files on the
machine and at the same time avoid an audit trail.

https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/commo
n.go#L572

func computeSHA512Checksum(filepath string) (string, error) {

f, err := os.Open(filepath)

if err != nil {

return "", err

}

defer f.Close()

https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/commo
n.go#L724

// add file to tar

srcFile, err := os.Open(file)

if err != nil {

return err

}

defer srcFile.Close()

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_util.go#L
63

file, err := os.Create(dataFilePath)

if err != nil {

klog.Error(log("failed to save volume data file %s: %v",

dataFilePath, err))

return err

}

defer file.Close()

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_util.go#L
83

28

https://github.com/kubeedge/kubeedge/pull/3975
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L572
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L572
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L724
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L724
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_util.go#L63
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_util.go#L63
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_util.go#L83
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_util.go#L83

file, err := os.Open(dataFileName)

if err != nil {

klog.Error(log("failed to open volume data file [%s]: %v",

dataFileName, err))

return nil, err

}

defer file.Close()

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/common/util/config.go#L94

file, err := os.Create(path)

if err != nil {

return err

}

defer file.Close()

29

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/common/util/config.go#L94

ADA-KE-9: CloudCore Router: Large HTTP response can
exhaust memory in REST handler

Severity Moderate

Difficulty High

Target github.com/kubeedge/kubeedge/blob/master/cloud/pkg/ro
uter/listener.(rh *RestHandler).httpHandler(w
http.ResponseWriter, r *http.Request)

Fix https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull
/1

KubeEdge does not impose a limit on the size of responses to requests made by the REST
handler. An attacker could use this vulnerability to make a request that will return an http
response with a large body and cause DoS of CloudCore.

In the httpHandler() API, the rest handler makes a request to a pre-specified handle.
The handle will return an http response that is then read entirely into memory.

The line which can be exploited to invoke a DoS is marked below:
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/listener/http.go

func (rh *RestHandler) httpHandler(w http.ResponseWriter, r

*http.Request) {

...

if isNodeName(uriSections[1]) {

params := make(map[string]interface{})

msgID := uuid.New().String()

params["messageID"] = msgID

params["request"] = r

params["timeout"] = rh.restTimeout

params["data"] = b

v, err := handle(params)

if err != nil {

klog.Errorf("handle request error, msg id: %s, err:

%v", msgID, err)

return

}

response, ok := v.(*http.Response)

if !ok {

klog.Errorf("response convert error, msg id: %s",

msgID)

return

}

body, err := io.ReadAll(response.Body)

30

https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/listener/http.go

if err != nil {

klog.Errorf("response body read error, msg id: %s,

reason: %v", msgID, err)

return

}

...

}

This attack would require a handle to first be created for the RequestURI passed in the http
request to execute this attack. Naturally, this makes it highly difficult to complete. It would
require a high level of privileges to create handles and could not be executed on its own.

31

ADA-KE-10: Cloud Stream and Edge Stream: DoS from large
stream message

Severity Moderate

Difficulty High

Target TunnelServer

Fix https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull
/1

A DoS issue exists in the ReadMessageFromTunnel() api. The API reads the entire
message into memory without imposing a limit on the size of this message. An attacker can
exploit this by sending a large message to exhaust memory and cause a DoS.

func ReadMessageFromTunnel(r io.Reader) (*Message, error) {

buf := bufio.NewReader(r)

connectID, err := binary.ReadUvarint(buf)

if err != nil {

return nil, err

}

messageType, err := binary.ReadUvarint(buf)

if err != nil {

return nil, err

}

data, err := io.ReadAll(buf)

if err != nil {

return nil, err

}

klog.V(6).Infof("Receive Tunnel message connectID %d messageType %s

data:%v string:[%v]",

connectID, MessageType(messageType), data, string(data))

return &Message{

ConnectID: connectID,

MessageType: MessageType(messageType),

Data: data,

}, nil

}

32

https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1

ADA-KE-11: Websocket Client in package Viaduct: DoS from
large response message

Severity Moderate

Difficulty High

Target https://github.com/kubeedge/kubeedge/blob/master/staging/src/git
hub.com/kubeedge/viaduct/pkg/client/ws.go#L69

Fix https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull
/1

A large response received by the viaduct WSClient can cause a DoS from memory
exhaustion. The entire body of the response is being read into memory which could allow an
attacker to send a request that returns a response with a large body.

func (c *WSClient) Connect() (conn.Connection, error) {

header := c.exOpts.Header

header.Add("ConnectionUse", string(c.options.ConnUse))

wsConn, resp, err := c.dialer.Dial(c.options.Addr, header)

if err == nil {

klog.Infof("dial %s successfully", c.options.Addr)

// do user's processing on connection or response

if c.exOpts.Callback != nil {

c.exOpts.Callback(wsConn, resp)

}

return conn.NewConnection(&conn.ConnectionOptions{

ConnType: api.ProtocolTypeWS,

ConnUse: c.options.ConnUse,

Base: wsConn,

Consumer: c.options.Consumer,

Handler: c.options.Handler,

CtrlLane: lane.NewLane(api.ProtocolTypeWS, wsConn),

State: &conn.ConnectionState{

State: api.StatConnected,

Headers: c.exOpts.Header.Clone(),

},

AutoRoute: c.options.AutoRoute,

}), nil

}

// something wrong!!

var respMsg string

if resp != nil {

body, errRead := io.ReadAll(resp.Body)

if errRead == nil {

33

https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/client/ws.go#L69
https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/client/ws.go#L69
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1
https://github.com/kubeedge/kubeedge-ghsa-vwm6-qc77-v2rh/pull/1

respMsg = fmt.Sprintf("response code: %d, response body:

%s", resp.StatusCode, string(body))

} else {

respMsg = fmt.Sprintf("response code: %d", resp.StatusCode)

}

resp.Body.Close()

}

klog.Errorf("dial websocket error(%+v), response message: %s", err,

respMsg)

return nil, err

}

34

ADA-KE-12: Possible type confusions

Severity Low

Difficulty High

Target Multiple

Fix https://github.com/kubeedge/kubeedge/pull/3976

Several possible type confusions were discovered in the KubeEdge code base. These
should be avoided by checking for an error when type casting.

The following type confusions were found:
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/eventbus/eventbus.go#L130-L
131

case messagepkg.OperationMessage:

body, ok := accessInfo.GetContent().(map[string]interface{})

if !ok {

klog.Errorf("Message is not map type")

continue

}

message := body["message"].(map[string]interface{})

topic := message["topic"].(string)

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/provider/eventbus/even
tbus.go#L98

func (*EventBus) Forward(target provider.Target, data interface{})

(response interface{}, err error) {

message := data.(*model.Message)

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/provider/servicebus/ser
vicebus.go#L83

func (sb *ServiceBus) Forward(target provider.Target, data interface{})

(response interface{}, err error) {

message := data.(*model.Message)

https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/listener/http.go#L81

func (rh *RestHandler) matchedPath(uri string) (string, bool) {

var candidateRes string

rh.handlers.Range(func(key, value interface{}) bool {

pathReg := key.(string)

35

https://github.com/kubeedge/kubeedge/pull/3976
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/eventbus/eventbus.go#L130-L131
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/eventbus/eventbus.go#L130-L131
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/provider/eventbus/eventbus.go#L98
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/provider/eventbus/eventbus.go#L98
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/provider/servicebus/servicebus.go#L83
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/provider/servicebus/servicebus.go#L83
https://github.com/kubeedge/kubeedge/blob/master/cloud/pkg/router/listener/http.go#L81

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/commu
nicate.go#L77

func dealSendToEdge(context *dtcontext.DTContext, resource string, msg

interface{}) error {

beehiveContext.Send(dtcommon.EventHubModule,

*msg.(*model.Message))

return nil

}

36

https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L77
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L77

Code complexity
In this section we discuss some observations made during the audit about the code
complexity of KubeEdge. The information presented in this section does not present any
immediate security issues, and it should be considered informational.

Code complexity can affect the security posture of a software product in different ways.
Complex code makes maintenance more difficult, and it can add an overhead when patching
security issues. It increases the difficulty when looking for and triaging security issues. In this
audit, the KubeEdge source code was audited for ways to reduce complexity. Overall, we
found that the KubeEdge project is very well written, well documented and easy to approach.
We did find a few areas where KubeEdge could be simplified to avoid security issues that
arise because of unnecessary complexity.

Pointer arguments
Ada Logics made an assessment of KubeEdges handling of pointer arguments. Two CVEs
were found in this audit from nil-pointer dereferences, and because of that we elaborate on
KubeEdges general approach to handling pointers passed as function arguments. This
section is intended to give the KubeEdge maintainers some ideas to further improve the
robustness and reliability of the project.

In our assessment we looked at all the places a pointer to a Message is passed as a function
argument. The goal of this exercise was to look for possible nil-pointer dereferences in the
code base. This was done manually, and findings do not directly impose a security risk.
Several cases of possible nil-pointers were found which we present below.

Possible nil-pointers
This table presents functions in which a nil value could be passed which could trigger a
nil-pointer dereference panic. These do not necessarily impose a risk in terms of security.
Even if these do not have security implications now, this might change every time changes
are made to the KubeEdge source tree.
These were fixed in https://github.com/kubeedge/kubeedge/pull/4000

File Function

cloud/pkg/router/listener/message.go (mh

*MessageHandler).HandleMessage(message

*model.Message)

cloud/pkg/router/listener/message.go (mh *MessageHandler).callback(message
*model.Message)

cloud/pkg/cloudhub/common/model/types.g
o

IsFromEdge(msg *model.Message)

cloud/pkg/cloudhub/common/model/types.g
o

IsToEdge(msg *model.Message)

37

https://github.com/kubeedge/kubeedge/pull/4000

staging/src/github.com/kubeedge/viaduct
/pkg/mux/pattern.go

(pattern *MessagePattern)
matchOp(message *model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/mux/pattern.go

(pattern *MessagePattern) Match(message
*model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/conn/quic.go

(conn *QuicConnection)
headerMessage(msg *model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/conn/quic.go

(conn *QuicConnection)
processControlMessage(msg
*model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/conn/quic.go

(conn *QuicConnection)
WriteMessageAsync(msg *model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/conn/ws.go

(conn *WSConnection)
WriteMessageAsync(msg *model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/conn/ws.go

(conn *WSConnection)
WriteMessageSync(msg *model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/conn/comm.go

(r *responseWriter) WriteResponse(msg
*model.Message, content interface{})

staging/src/github.com/kubeedge/viaduct
/pkg/translator/message.go

(t *MessageTranslator) protoToModel(src
*message.Message, dst *model.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/translator/message.go

(t *MessageTranslator) modelToProto(src
*model.Message, dst *message.Message)

staging/src/github.com/kubeedge/viaduct
/pkg/keeper/synckeeper.go

(k *SyncKeeper) WaitResponse(msg
*model.Message, deadline time.Time)

staging/src/github.com/kubeedge/beehive
/pkg/core/socket/modules/socket/server.
go

(m *Server) processModuleMessage(conn
wrapper.Conn, message *model.Message)

edge/pkg/metamanager/client/metaclient.
go

(s *send) SendSync(message
*model.Message)

edge/pkg/metamanager/process.go msgDebugInfo(message *model.Message)

edge/pkg/edgehub/common/msghandler/hand
ler.go

(*defaultHandler) Filter(message
*model.Message)

edge/pkg/edgehub/common/msghandler/hand
ler.go

(*defaultHandler) Process(message
*model.Message, clientHub
clients.Adapter)

edge/pkg/devicetwin/dtcontext/dtcontext
.go

(dtc *DTContext)
BuildModelMessage(group string,
parentID string, resource string,
operation string, content interface{})

38

Recommendations
Nil-pointers can be exploitable by an attacker if triggerable by an attacker under the right
conditions. Naturally, whether a possible nil-pointer dereference is triggerable by an attacker
depends largely on how the function is used. In many cases it is never possible to pass nil.
As a rule of thumb, we recommend checking pointers for nil at the beginning of the function
body. In our analysis of pointer-handling in KubeEdge, we used the Message type as an
example to demonstrate an area for improvement.

Unused parameters
Code complexity can be reduced by ensuring that functions only accept parameters that are
actually used by the function to which they are passed.

These were fixed in https://github.com/kubeedge/kubeedge/pull/3994

Function name URL Unused
parameters

(c
*csiAttacher).waitForVolumeAttachment(
)

https://github.com/kubeedge
/kubeedge/blob/master/edge
/pkg/edged/volume/csi/csi_a
ttacher.go#L87

timeout

(h
*RegistrationHandler).validateVersions

https://github.com/kubeedge
/kubeedge/blob/master/edge
/pkg/edged/volume/csi/csi_p
lugin.go#L169

endpoint

(e *edged) makeBlockVolumes() https://github.com/kubeedge
/kubeedge/blob/master/edge
/pkg/edged/edged_pods.go#
L887

pod

detailRequest() https://github.com/kubeedge
/kubeedge/blob/master/edge
/pkg/devicetwin/dtmanager/c
ommunicate.go#L129

msg

(cw CommWorker).checkConfirm() https://github.com/kubeedge
/kubeedge/blob/master/edge
/pkg/devicetwin/dtmanager/c
ommunicate.go#L150

msg

(p *Proxy).runAdminServer() https://github.com/kubeedge
/kubeedge/blob/master/edge
site/cmd/edgesite-server/ap
p/server.go#L329

server

runEdgeCore() https://github.com/kubeedge
/kubeedge/blob/master/kead
m/cmd/keadm/app/cmd/util/c
ommon.go#L454

version

39

https://github.com/kubeedge/kubeedge/pull/3994
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_attacher.go#L87
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_attacher.go#L87
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_attacher.go#L87
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_attacher.go#L87
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L169
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L169
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L169
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L169
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_pods.go#L887
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_pods.go#L887
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_pods.go#L887
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_pods.go#L887
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L454
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L454
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L454
https://github.com/kubeedge/kubeedge/blob/master/keadm/cmd/keadm/app/cmd/util/common.go#L454

Functions always returning same value
These were fixed in https://github.com/kubeedge/kubeedge/pull/3994

Function name URL Return values

detailRequest() https://github.com/kubee
dge/kubeedge/blob/mast
er/edge/pkg/devicetwin/d
tmanager/communicate.
go#L129

First return value
(interface{}) is
always nil

(cw CommWorker).checkConfirm() https://github.com/kubee
dge/kubeedge/blob/mast
er/edge/pkg/devicetwin/d
tmanager/communicate.
go#L150

First return value
(interface{}) is
always nil

dealTwinDelete() https://github.com/kubee
dge/kubeedge/blob/mast
er/edge/pkg/devicetwin/d
tmanager/twin.go#L370

The return value
(error) is always
nil

dealMembershipGetInner() https://github.com/kubee
dge/kubeedge/blob/mast
er/edge/pkg/devicetwin/d
tmanager/membership.g
o#L310

The return value
(error) is always
nil

(e *edged).setCPUInfo() https://github.com/kubee
dge/kubeedge/blob/mast
er/edge/pkg/edged/edge
d_status.go#L359

The return value
(error) is always
nil

(p *Proxy).runAdminServer() https://github.com/kubee
dge/kubeedge/blob/mast
er/edgesite/cmd/edgesite
-server/app/server.go#L3
29

The return value
(error) is always
nil

(p *Proxy).runHealthServer() https://github.com/kubee
dge/kubeedge/blob/mast
er/edgesite/cmd/edgesite
-server/app/server.go#L3
56

The return value
(error) is always
nil

setConfigDefaults() https://github.com/kubee
dge/kubeedge/blob/mast
er/pkg/client/clientset/ver
sioned/typed/devices/v1a
lpha2/devices_client.go#
L74

The return value
(error) is always
nil

setConfigDefaults() https://github.com/kubee
dge/kubeedge/blob/mast
er/pkg/client/clientset/ver
sioned/typed/reliablesync
s/v1alpha1/reliablesyncs
_client.go#L74

The return value
(error) is always
nil

setConfigDefaults() https://github.com/kubee
dge/kubeedge/blob/mast
er/pkg/client/clientset/ver

The return value
(error) is always
nil

40

https://github.com/kubeedge/kubeedge/pull/3994
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L129
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/communicate.go#L150
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/twin.go#L370
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/twin.go#L370
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/twin.go#L370
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/twin.go#L370
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/membership.go#L310
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/membership.go#L310
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/membership.go#L310
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/membership.go#L310
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/devicetwin/dtmanager/membership.go#L310
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_status.go#L359
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_status.go#L359
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_status.go#L359
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/edged_status.go#L359
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L329
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L356
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L356
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L356
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L356
https://github.com/kubeedge/kubeedge/blob/master/edgesite/cmd/edgesite-server/app/server.go#L356
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/devices/v1alpha2/devices_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/devices/v1alpha2/devices_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/devices/v1alpha2/devices_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/devices/v1alpha2/devices_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/devices/v1alpha2/devices_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/devices/v1alpha2/devices_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/reliablesyncs/v1alpha1/reliablesyncs_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/reliablesyncs/v1alpha1/reliablesyncs_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/reliablesyncs/v1alpha1/reliablesyncs_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/reliablesyncs/v1alpha1/reliablesyncs_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/reliablesyncs/v1alpha1/reliablesyncs_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/reliablesyncs/v1alpha1/reliablesyncs_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/rules/v1/rules_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/rules/v1/rules_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/rules/v1/rules_client.go#L74

sioned/typed/rules/v1/rul
es_client.go#L74

initializeCSINode() https://github.com/kubee
dge/kubeedge/blob/mast
er/edge/pkg/edged/volu
me/csi/csi_plugin.go#L25
7

The return value
(error) is always
nil

Other unnecessary complexity
These were fixed in https://github.com/kubeedge/kubeedge/pull/3994
The Quic and WS connections of the Viaduct package contain logic that could be removed
altogether. In both cases, the switch statement can be removed. A comment should be left to
explain why the functions look like they do. It could be considered whether
processControlMessage could be removed entirely.

https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/con
n/quic.go#L75

func (conn *QuicConnection) processControlMessage(msg *model.Message)

error {

switch msg.GetOperation() {

case comm.ControlTypeConfig:

case comm.ControlTypePing:

case comm.ControlTypePong:

}

return nil

}

https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/con
n/ws.go#L60

func (conn *WSConnection) processControlMessage(msg *model.Message)

error {

switch msg.GetOperation() {

case comm.ControlTypeConfig:

case comm.ControlTypePing:

case comm.ControlTypePong:

}

return nil

}

41

https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/rules/v1/rules_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/pkg/client/clientset/versioned/typed/rules/v1/rules_client.go#L74
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L257
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L257
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L257
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L257
https://github.com/kubeedge/kubeedge/blob/master/edge/pkg/edged/volume/csi/csi_plugin.go#L257
https://github.com/kubeedge/kubeedge/pull/3994
https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/conn/quic.go#L75
https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/conn/quic.go#L75
https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/conn/ws.go#L60
https://github.com/kubeedge/kubeedge/blob/master/staging/src/github.com/kubeedge/viaduct/pkg/conn/ws.go#L60

Appendix

KubeEdge SLSA review
In this section we perform a review of SLSA compliance in KubeEdge. The Supply Chain
Levels for Software Artifacts - or SLSA (pronounced “salsa”) - is a security framework for
ensuring integrity of software artifacts in the software supply chain. It was introduced in June
20211 and is developed to help protect against common supply chain attacks. Recent years
saw a number of supply chain attacks targeted the open source environment. Some of these
attacks include high-profile software packages that are used by billions of users and in
mission-critical deployments. Examples of these attacks are enumerated here:
https://slsa.dev/spec/v0.1/threats. Furthermore, cyber attacks targeting open source sotware
projects are increasing in volume with some researching indicating a growth of 430% for
cyber attacks against open source software in 2020 alone2.

As a widely deployed open source software project, KubeEdge is exposed to attackers
targeting the open source community of software development. Because of that, a SLSA
review was carried out as part of this security audit. At the time of this review, few SLSA
audits have been carried out. This is due to the recent launch of SLSA. As such, KubeEdge
is one of the first projects to carry out a SLSA audit.

The SLSA framework is still in alpha, and the framework is likely to undergo some changes
in the near future before beta and subsequently full release.

Executive summary
KubeEdges is developed through GitHub, and releases are built in an automatic build
service. This sets the project up for SLSA compliance with a great foundation, and it is
recommended that pursuance of compliance is made on top of this foundation.

KubeEdge is doing well in the areas of Source and Build. With a few missing details, the
project is close to full compliance.

The major missing part is the provenance. The purpose of the provenance is to verify the
production of software artifacts. The provenance provides a verifiable piece of information
that assures consumers and users of supply-chain integrity. During KubeEdges SLSA
review, no provenance was found to be available. Should KubeEdge pursue full compliance,
it is recommended that provenance becomes the primary focus, as this is where most work
is required.

2

https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-
2020_final_aug11.pdf#page=7

1 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

42

https://slsa.dev/spec/v0.1/threats
https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-2020_final_aug11.pdf#page=7
https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-2020_final_aug11.pdf#page=7
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

SLSA Analysis
In this section we iterate over the requirements of SLSA as specified in
http://slsa.dev/spec/v0.1/requirements The section begins with a description of justifications
on the analysis and ends with an overview of the assessment table with indications of
whether KubeEdge meets the requirement or not.

Source
KubeEdge has achieved full compliance in source. The project is maintained in a version
controlled environment, Github, with a history that is retained indefinitely. Pull requests not
authored by trusted maintainers are approved by two trusted maintainers, whereas pull
requests made by trusted maintainers are approved by a single trusted maintainer.
KubeEdges contribution guide does not state that commits need to be signed. This could be
an area of change for higher integrity.

Build
The KubeEdge build system runs on every pull request. The build system runs in Github
actions with a high level of automation. Release artifacts are produced with complete
automation, and in ephemeral environments that are procured specifically for the given build
and are subsequently discarded.
The build is fully automatic and runs in an environment that is free from interference from the
outside world. The environment in which the build runs is provisioned solely for the given
build and is not reused. Artifacts are fetched in a trusted control plane, and TLS ensures
transport integrity. The build service prevents network access while running the build steps.

Provenance
No provenance was found.

SLSA assessment table
Requirement L1 L2 L3 L4

Source

Version controlled Y Y Y Y

Verified history Y Y

Retained indefinitely Y Y

Two-person reviewed Y

Build

Scripted build Y Y Y Y

Build Service Y Y Y

Build as code Y Y

Ephemeral environment Y Y

Isolated Y Y

43

http://slsa.dev/spec/v0.1/requirements

Parameterless Y

Hermetic Y

Provenance

Available N N N N

Authenticated N N N

Service generated N N N

Non-falsifiable N N

Depencies completion N

Common

Security Y

Access Y

Superusers Y

Recommendations
This section presents recommendations for KubeEdge to improve its SLSA compliance.
Future work will build upon a strong foundation. As of this writing there is scarce
documentation on how to achieve SLSA compliance in practice. We recommend the
following CloudNativeCon presentation “Securing Your Container Native Supply Chain with
SLSA, Github and Tekton” for which there is a recording available here:
https://www.youtube.com/watch?v=iZpFtalj4xE

In short, our recommendation are:
- Integrate with Tekton (https://tekton.dev) and Tekton Chains

(https://github.com/tektoncd/chains) to achieve SLSA level 2 compliance.
- Integrate the build as part of Github Actions and workflows together with a trusted

builder to achieve SLSA compliance level 3.

In the following we provide further recommendations.

Documentation
We recommend that KubeEdge enforces that commits are signed. This includes adding this
requirement to the documentation for contributors as well as a test in its CI that tests it.
Furthermore, documentation should include guidance on retrieving provenance as well as
which steps are taken to comply with SLSA requirements.

Provenance
KubeEdges main focus should be on generating SLSA-compliant provenance and making it
available to users. To make this non-falsifiable, which would bring KubeEdge near level 3
compliance, the provenance should be signed. Sigstore3 can be used to sign and verify
provenance data and fulfil this requirement.

3 https://www.sigstore.dev/

44

https://www.youtube.com/watch?v=iZpFtalj4xE
https://tekton.dev
https://github.com/tektoncd/chains
https://www.sigstore.dev/

Build
Ensure that releases are built in environments without network access. Once this is satisfied,
KubeEdge satisfies the requirements of release builds.

Make compliance a community effort
We recommend making SLSA compliance a community effort. Full compliance requires
satisfying many areas of the development and release pipelines, and detailed may be
missed. We recommend including a section in KubeEdges documentation, where the
assumed compliance is available, and where contributors are invited to verify this and report
any findings that may be contrary to the assumed compliance. The assumed compliance can
be presented in the form of the SLSA assessment table above.

45

