Skip to content
Snippets Groups Projects
deconv_op.cpp 9.54 KiB
Newer Older
/*
Copyright 2020 The OneFlow Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
JamiePlur's avatar
JamiePlur committed
#include "oneflow/core/framework/framework.h"
#include "oneflow/user/ops/nn_util.h"
JamiePlur's avatar
JamiePlur committed

namespace oneflow {

namespace {

template<size_t NDims>
Maybe<void> InferTensorDesc4DeConv(user_op::InferContext* ctx) {
  const user_op::TensorDesc& in = ctx->InputTensorDesc("in", 0);
  CHECK_EQ_OR_RETURN(NDims + 2, in.shape().NumAxes());
JamiePlur's avatar
JamiePlur committed

OuYang Yu's avatar
OuYang Yu committed
  const std::string& data_format = ctx->Attr<std::string>("data_format");
  const auto& kernel_size = ctx->Attr<std::vector<int32_t>>("kernel_size");
JamiePlur's avatar
JamiePlur committed
  CHECK_EQ_OR_RETURN(NDims, kernel_size.size());
OuYang Yu's avatar
OuYang Yu committed
  const int32_t filters = ctx->Attr<int32_t>("filters");
JamiePlur's avatar
JamiePlur committed
  size_t idx_offset = IdxOffset(data_format);

  {
OuYang Yu's avatar
OuYang Yu committed
    const auto& dilation_rate = ctx->Attr<std::vector<int32_t>>("dilation_rate");
guo ran's avatar
guo ran committed
    const auto& output_padding = ctx->Attr<std::vector<int32_t>>("output_padding");
OuYang Yu's avatar
OuYang Yu committed
    const auto& strides = ctx->Attr<std::vector<int32_t>>("strides");
guo ran's avatar
guo ran committed
    const auto& padding_before = ctx->Attr<std::vector<int32_t>>("padding_before");
JamiePlur's avatar
JamiePlur committed
    CHECK_EQ_OR_RETURN(NDims, dilation_rate.size());
    CHECK_EQ_OR_RETURN(NDims, strides.size());
guo ran's avatar
guo ran committed
    CHECK_EQ_OR_RETURN(NDims, output_padding.size());
JamiePlur's avatar
JamiePlur committed

    user_op::TensorDesc* out = ctx->OutputTensorDesc("out", 0);
JamiePlur's avatar
JamiePlur committed
    DimVector out_shape(NDims + 2);
    out_shape.at(0) = in.shape().At(0);
JamiePlur's avatar
JamiePlur committed
    const size_t c_dim = data_format == "channels_first" ? 1 : NDims + 1;
    out_shape.at(c_dim) = filters;
    for (int32_t i = 0; i < NDims; ++i) {
JamiePlur's avatar
JamiePlur committed
      int32_t effective_filter_size = (kernel_size.at(i) - 1) * dilation_rate.at(i) + 1;
      out_shape.at(idx_offset + i) = (in.shape().At(idx_offset + i) - 1) * strides.at(i)
guo ran's avatar
guo ran committed
                                     - 2 * padding_before.at(i) + output_padding.at(i)
                                     + effective_filter_size;
JamiePlur's avatar
JamiePlur committed
    }
    *out->mut_is_dynamic() = in.is_dynamic();
JamiePlur's avatar
JamiePlur committed
    *out->mut_shape() = Shape(out_shape);
  }

  {
    DimVector weight_shape(in.shape().dim_vec());
JamiePlur's avatar
JamiePlur committed
    if (data_format == "channels_first") {
      weight_shape.at(0) = in.shape().At(1);
JamiePlur's avatar
JamiePlur committed
      weight_shape.at(1) = filters;
    } else if (data_format == "channels_last") {
      weight_shape.at(0) = in.shape().At(NDims + 1);
JamiePlur's avatar
JamiePlur committed
      weight_shape.at(NDims + 1) = filters;
    } else {
      UNIMPLEMENTED_THEN_RETURN();
    }
    for (size_t i = 0; i < NDims; ++i) { weight_shape.at(idx_offset + i) = kernel_size.at(i); }

    const user_op::TensorDesc& weight = ctx->InputTensorDesc("weight", 0);
    CHECK_EQ_OR_RETURN(weight.shape(), Shape(weight_shape));
JamiePlur's avatar
JamiePlur committed
  }

  return Maybe<void>::Ok();
}

Maybe<void> InferDataType(user_op::InferContext* ctx) {
  *ctx->OutputDType("out", 0) = ctx->InputDType("in", 0);
  return Maybe<void>::Ok();
}

JamiePlur's avatar
JamiePlur committed
Maybe<void> GetSbpSignatures4DeConv(user_op::SbpContext* ctx) {
  ctx->NewBuilder()
      .Split(user_op::OpArg("in", 0), 0)
      .Broadcast(user_op::OpArg("weight", 0))
      .Split(user_op::OpArg("out", 0), 0)
      .Build();

  return Maybe<void>::Ok();
}

template<size_t NDims>
Maybe<void> CheckAttr(const user_op::UserOpDefWrapper& def,
                      const user_op::UserOpConfWrapper& conf) {
  bool is_checked = true;
  std::stringstream err;
  err << "Illegal value for " << conf.op_type_name() << " op " << conf.op_name() << ": ";

  const std::string& data_format = conf.attr<std::string>("data_format");
  if (!(data_format == "channels_first" || data_format == "channels_last")) {
    err << " data_format:" << data_format;
    is_checked = false;
  }

  if (NDims != 0) {
guo ran's avatar
guo ran committed
    const auto& padding_before = conf.attr<std::vector<int32_t>>("padding_before");
    if (padding_before.size() != NDims) {
      err << " padding_before: number of element is " << padding_before.size();
JamiePlur's avatar
JamiePlur committed
      is_checked = false;
    }

guo ran's avatar
guo ran committed
    const auto& kernel_size = conf.attr<std::vector<int32_t>>("kernel_size");
    if (kernel_size.size() != NDims) {
      err << " kernel_size: number of element is " << kernel_size.size();
JamiePlur's avatar
JamiePlur committed
      is_checked = false;
    }

    const auto& strides = conf.attr<std::vector<int32_t>>("strides");
    if (strides.size() != NDims) {
      err << " strides: number of element is " << strides.size();
      is_checked = false;
    }

    const auto& dilation_rate = conf.attr<std::vector<int32_t>>("dilation_rate");
    if (dilation_rate.size() != NDims) {
      err << " dilation_rate: number of element is " << dilation_rate.size();
      is_checked = false;
    }
  }

  if (is_checked) {
    return Maybe<void>::Ok();
  } else {
    return oneflow::Error::CheckFailedError() << err.str();
Maybe<void> GenerateBackwardOpConf4DeConv(const user_op::UserOpWrapper& op,
                                          user_op::AddOpFn AddOp) {
JamiePlur's avatar
JamiePlur committed
  const std::string& data_format = op.attr<std::string>("data_format");
guo ran's avatar
guo ran committed
  const auto& padding_before = op.attr<std::vector<int32_t>>("padding_before");
JamiePlur's avatar
JamiePlur committed
  const auto& kernel_size = op.attr<std::vector<int32_t>>("kernel_size");
  const auto& strides = op.attr<std::vector<int32_t>>("strides");
  const auto& dilation_rate = op.attr<std::vector<int32_t>>("dilation_rate");
  const Shape& weight_shape = op.TensorDesc4ArgNameAndIndex("weight", 0).shape();

  const int32_t ndims = kernel_size.size();
  CHECK_EQ_OR_RETURN(ndims, strides.size());
  CHECK_EQ_OR_RETURN(ndims, dilation_rate.size());
JamiePlur's avatar
JamiePlur committed

  if (op.NeedGenGradTensor4OpInput("weight", 0)) {
    auto filter_grad_op =
        user_op::UserOpConfWrapperBuilder("System-AutoGrad-" + op.op_name() + "-FilterGrad")
            .Op("conv_filter_grad")
            .Input("dy", op.input("in", 0))
            .Input("x", op.GetGradTensorWithOpOutput("out", 0))
            .Output("filter_diff")
            .Attr<int32_t>("num_spatial_dims", ndims)
guo ran's avatar
guo ran committed
            .Attr<std::vector<int32_t>>("padding_before", padding_before)
JamiePlur's avatar
JamiePlur committed
            .Attr<std::string>("data_format", data_format)
            .Attr<std::vector<int32_t>>("kernel_size", kernel_size)
            .Attr<std::vector<int32_t>>("strides", strides)
            .Attr<std::vector<int32_t>>("dilation_rate", dilation_rate)
            .Attr<int32_t>("groups", 1)
            .Build();
    op.BindGradTensorWithOpInput(filter_grad_op.output("filter_diff", 0), "weight", 0);
    AddOp(filter_grad_op);
  }

  if (op.NeedGenGradTensor4OpInput("in", 0)) {
    std::string ndims_str = std::to_string(ndims);
    auto data_grad_op =
        user_op::UserOpConfWrapperBuilder("System-AutoGrad-" + op.op_name() + "-DataGrad")
            .Op("conv" + ndims_str + "d")
            .Input("in", op.GetGradTensorWithOpOutput("out", 0))
            .Input("weight", op.input("weight", 0))
            .Output("out")
            .Attr<int32_t>("filters", weight_shape.At(0))
            .Attr<std::string>("data_format", data_format)
guo ran's avatar
guo ran committed
            .Attr<std::vector<int32_t>>("padding_before", padding_before)
JamiePlur's avatar
JamiePlur committed
            .Attr<std::vector<int32_t>>("kernel_size", kernel_size)
            .Attr<std::vector<int32_t>>("strides", strides)
            .Attr<std::vector<int32_t>>("dilation_rate", dilation_rate)
            .Attr<int32_t>("groups", 1)
            .Build();
    op.BindGradTensorWithOpInput(data_grad_op.output("out", 0), "in", 0);
    AddOp(data_grad_op);
  }
  return Maybe<void>::Ok();
JamiePlur's avatar
JamiePlur committed
}

}  // namespace

REGISTER_USER_OP("deconv1d")
    .Input("in")
    .Input("weight")
    .Output("out")
    .Attr<int32_t>("filters")
    .Attr<std::vector<int32_t>>("padding_before")
    .Attr<std::string>("data_format")
    .Attr<std::vector<int32_t>>("kernel_size")
    .Attr<std::vector<int32_t>>("output_padding")
    .Attr<std::vector<int32_t>>("strides")
    .Attr<std::vector<int32_t>>("dilation_rate")
    .Attr<int32_t>("groups", 1)
JamiePlur's avatar
JamiePlur committed
    .SetCheckAttrFn(CheckAttr<1>)
    .SetTensorDescInferFn(InferTensorDesc4DeConv<1>)
    .SetGetSbpFn(GetSbpSignatures4DeConv)
    .SetDataTypeInferFn(InferDataType);
JamiePlur's avatar
JamiePlur committed

REGISTER_USER_OP("deconv2d")
    .Input("in")
    .Input("weight")
    .Output("out")
    .Attr<int32_t>("filters")
    .Attr<std::vector<int32_t>>("padding_before")
    .Attr<std::string>("data_format")
    .Attr<std::vector<int32_t>>("kernel_size")
    .Attr<std::vector<int32_t>>("output_padding")
    .Attr<std::vector<int32_t>>("strides")
    .Attr<std::vector<int32_t>>("dilation_rate")
    .Attr<int32_t>("groups", 1)
JamiePlur's avatar
JamiePlur committed
    .SetCheckAttrFn(CheckAttr<2>)
    .SetTensorDescInferFn(InferTensorDesc4DeConv<2>)
    .SetGetSbpFn(GetSbpSignatures4DeConv)
    .SetDataTypeInferFn(InferDataType);
JamiePlur's avatar
JamiePlur committed

REGISTER_USER_OP("deconv3d")
    .Input("in")
    .Input("weight")
    .Output("out")
    .Attr<int32_t>("filters")
    .Attr<std::vector<int32_t>>("padding_before")
    .Attr<std::string>("data_format")
    .Attr<std::vector<int32_t>>("kernel_size")
    .Attr<std::vector<int32_t>>("output_padding")
    .Attr<std::vector<int32_t>>("strides")
    .Attr<std::vector<int32_t>>("dilation_rate")
    .Attr<int32_t>("groups", 1)
JamiePlur's avatar
JamiePlur committed
    .SetCheckAttrFn(CheckAttr<3>)
    .SetTensorDescInferFn(InferTensorDesc4DeConv<3>)
    .SetDataTypeInferFn(InferDataType)
JamiePlur's avatar
JamiePlur committed
    .SetGetSbpFn(GetSbpSignatures4DeConv);

REGISTER_USER_OP_GRAD("deconv1d").SetGenBackwardOpConfFn(GenerateBackwardOpConf4DeConv);
REGISTER_USER_OP_GRAD("deconv2d").SetGenBackwardOpConfFn(GenerateBackwardOpConf4DeConv);
REGISTER_USER_OP_GRAD("deconv3d").SetGenBackwardOpConfFn(GenerateBackwardOpConf4DeConv);

}  // namespace oneflow