Skip to content
Snippets Groups Projects
Unverified Commit 0c3a90f1 authored by LiamXu-xjl's avatar LiamXu-xjl Committed by GitHub
Browse files

Add floor module and the corresponding testcases (#4964)


* first commit of floor

* Added function floor_op_tensor

* fixed a copy paste bug

* added test for backward_cpu

* Added more test cases, added doctest

* fix conflicts

* changed doctest testmod, eliminated the print commands in doctest

* made sure the math_op.py is the same as in the latest master branch

* added an ending newline

* auto format by CI

* fix test_tensor python format

* auto format by CI

* fix license

* fix docstring

* fix doc test format

* auto format by CI

Co-authored-by: default avataroneflow-ci-bot <69100618+oneflow-ci-bot@users.noreply.github.com>
Co-authored-by: default avataroneflow-ci-bot <ci-bot@oneflow.org>
parent 04046fc6
No related branches found
No related tags found
No related merge requests found
......@@ -175,6 +175,8 @@ Experimental features
.. autofunction:: oneflow.experimental.nn.Upsample
.. autofunction:: oneflow.experimental.nn.UpsamplingNearest2d
.. autofunction:: oneflow.experimental.nn.UpsamplingBilinear2d
.. autofunction:: oneflow.experimental.floor
.. autofunction:: oneflow.experimental.Tensor.floor
.. autofunction:: oneflow.experimental.addmm
.. autofunction:: oneflow.experimental.Tensor.addmm
.. autofunction:: oneflow.experimental.clamp
......
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import collections
from typing import Optional, Sequence, Union
import oneflow as flow
from oneflow.python.oneflow_export import oneflow_export, experimental_api
from oneflow.python.nn.module import Module
from oneflow.python.framework.tensor import register_tensor_op
from oneflow.python.nn.modules.utils import _check_axis
class Floor(Module):
def __init__(self) -> None:
super().__init__()
self._op = flow.builtin_op("floor").Input("x").Output("y").Build()
def forward(self, x):
return self._op(x)[0]
@oneflow_export("floor")
@experimental_api
def floor_op(x):
r"""
Returns a new tensor with the arcsine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \lfloor \text{input}_{i} \rfloor
Args:
input (Tensor): the input tensor.
For example:
.. code-block:: python
>>> import oneflow.experimental as flow
>>> import numpy as np
>>> flow.enable_eager_execution()
>>> input = flow.Tensor(np.array([-0.5, 1.5, 0, 0.8]), dtype=flow.float32)
>>> output = flow.floor(input)
>>> output.shape
flow.Size([4])
>>> output.numpy()
array([-1., 1., 0., 0.], dtype=float32)
>>> input1 = flow.Tensor(np.array([[0.8, 1.0], [-0.6, 2.5]]), dtype=flow.float32)
>>> output1 = input1.floor()
>>> output1.shape
flow.Size([2, 2])
>>> output1.numpy()
array([[ 0., 1.],
[-1., 2.]], dtype=float32)
"""
return Floor()(x)
@register_tensor_op("floor")
@experimental_api
def floor_op_tensor(input):
r"""
See :func:`oneflow.experimental.floor`
"""
return Floor()(input)
if __name__ == "__main__":
import doctest
doctest.testmod(raise_on_error=True)
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import unittest
from collections import OrderedDict
import numpy as np
import oneflow.experimental as flow
from test_util import GenArgList
def _test_floor(test_case, shape, device):
np_input = np.random.randn(*shape)
of_input = flow.Tensor(
np_input, dtype=flow.float32, device=flow.device(device), requires_grad=True
)
of_out = flow.floor(of_input)
np_out = np.floor(np_input)
test_case.assertTrue(
np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5, equal_nan=True)
)
of_out = of_out.sum()
of_out.backward()
np_out_grad = np.zeros_like(of_out, dtype=np.float32)
test_case.assertTrue(
np.allclose(of_input.grad.numpy(), np_out_grad, 1e-4, 1e-4, equal_nan=True)
)
@unittest.skipIf(
not flow.unittest.env.eager_execution_enabled(),
".numpy() doesn't work in lazy mode",
)
class TestFloor(flow.unittest.TestCase):
def test_floor(test_case):
arg_dict = OrderedDict()
arg_dict["shape"] = [(2,), (2, 3), (2, 4, 5, 6)]
arg_dict["device"] = ["cpu", "cuda"]
for arg in GenArgList(arg_dict):
_test_floor(test_case, *arg)
if __name__ == "__main__":
unittest.main()
......@@ -635,6 +635,24 @@ def _test_topk_original(test_case, device):
)
@unittest.skipIf(
not flow.unittest.env.eager_execution_enabled(),
".numpy() doesn't work in lazy mode",
)
class TestPow(flow.unittest.TestCase):
def test_pow(test_case):
input = flow.Tensor(np.array([1, 2, 3, 4, 5, 6]), dtype=flow.float32)
of_out = flow.pow(input, 2.1)
np_out = np.power(input.numpy(), 2.1)
test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5))
def test_pow_tensor_function(test_case):
input = flow.Tensor(np.array([1, 2, 3, 4, 5, 6]), dtype=flow.float32)
of_out = input.pow(2.1)
np_out = np.power(input.numpy(), 2.1)
test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5))
@unittest.skipIf(
not flow.unittest.env.eager_execution_enabled(),
".numpy() doesn't work in lazy mode",
......
......@@ -636,6 +636,18 @@ class TestTensor(flow.unittest.TestCase):
test_case.assertEqual(tensor.dtype, flow.float32)
test_case.assertTrue(np.allclose(tensor.numpy(), np.array(scalar), 1e-4, 1e-4))
@unittest.skipIf(
not flow.unittest.env.eager_execution_enabled(),
"numpy doesn't work in lazy mode",
)
def test_floor(test_case):
input = flow.Tensor(np.random.randn(4, 5, 6), dtype=flow.float32)
of_out = input.floor()
np_out = np.floor(input.numpy())
test_case.assertTrue(
np.allclose(of_out.numpy(), np_out, 1e-5, 1e-5, equal_nan=True)
)
@unittest.skipIf(
not flow.unittest.env.eager_execution_enabled(),
"numpy doesn't work in lazy mode",
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment