Skip to content
Snippets Groups Projects
Select Git revision
  • e786ad6aa8322436483f895694f2ab145f385415
  • master default protected
  • benchmark protected
  • v2.0.0-rc4
  • v2.0.0-rc2
  • v2.0.0-rc1
  • v1.1.1
  • v1.1.0
  • v1.0.0
  • v0.10.6
  • v0.10.5
  • v0.10.4
  • v0.10.3
  • v0.10.2
  • v0.10.1
  • v0.8.1
  • v0.10.0
  • v0.9.1
  • v0.9.0
  • v0.8.0
  • v0.7.1
  • v0.7.0
  • v0.6.0
23 results

segment_loader.go

Blame
  • rx.c 22.54 KiB
    /****************************************************************************
     * Driver for Solarflare Solarstorm network controllers and boards
     * Copyright 2005-2006 Fen Systems Ltd.
     * Copyright 2005-2011 Solarflare Communications Inc.
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License version 2 as published
     * by the Free Software Foundation, incorporated herein by reference.
     */
    
    #include <linux/socket.h>
    #include <linux/in.h>
    #include <linux/slab.h>
    #include <linux/ip.h>
    #include <linux/tcp.h>
    #include <linux/udp.h>
    #include <linux/prefetch.h>
    #include <linux/moduleparam.h>
    #include <linux/iommu.h>
    #include <net/ip.h>
    #include <net/checksum.h>
    #include "net_driver.h"
    #include "efx.h"
    #include "nic.h"
    #include "selftest.h"
    #include "workarounds.h"
    
    /* Preferred number of descriptors to fill at once */
    #define EFX_RX_PREFERRED_BATCH 8U
    
    /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
     * ring, this number is divided by the number of buffers per page to calculate
     * the number of pages to store in the RX page recycle ring.
     */
    #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
    #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
    
    /* Size of buffer allocated for skb header area. */
    #define EFX_SKB_HEADERS  64u
    
    /* This is the percentage fill level below which new RX descriptors
     * will be added to the RX descriptor ring.
     */
    static unsigned int rx_refill_threshold;
    
    /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
    #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
    				      EFX_RX_USR_BUF_SIZE)
    
    /*
     * RX maximum head room required.
     *
     * This must be at least 1 to prevent overflow, plus one packet-worth
     * to allow pipelined receives.
     */
    #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
    
    static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
    {
    	return page_address(buf->page) + buf->page_offset;
    }
    
    static inline u32 efx_rx_buf_hash(const u8 *eh)
    {
    	/* The ethernet header is always directly after any hash. */
    #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
    	return __le32_to_cpup((const __le32 *)(eh - 4));
    #else
    	const u8 *data = eh - 4;
    	return (u32)data[0]	  |
    	       (u32)data[1] << 8  |
    	       (u32)data[2] << 16 |
    	       (u32)data[3] << 24;
    #endif
    }
    
    static inline struct efx_rx_buffer *
    efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
    {
    	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
    		return efx_rx_buffer(rx_queue, 0);
    	else
    		return rx_buf + 1;
    }
    
    static inline void efx_sync_rx_buffer(struct efx_nic *efx,
    				      struct efx_rx_buffer *rx_buf,
    				      unsigned int len)
    {
    	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
    				DMA_FROM_DEVICE);
    }
    
    void efx_rx_config_page_split(struct efx_nic *efx)
    {
    	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
    				      EFX_RX_BUF_ALIGNMENT);
    	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
    		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
    		 efx->rx_page_buf_step);
    	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
    		efx->rx_bufs_per_page;
    	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
    					       efx->rx_bufs_per_page);
    }
    
    /* Check the RX page recycle ring for a page that can be reused. */
    static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	struct page *page;
    	struct efx_rx_page_state *state;
    	unsigned index;
    
    	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
    	page = rx_queue->page_ring[index];
    	if (page == NULL)
    		return NULL;
    
    	rx_queue->page_ring[index] = NULL;
    	/* page_remove cannot exceed page_add. */
    	if (rx_queue->page_remove != rx_queue->page_add)
    		++rx_queue->page_remove;
    
    	/* If page_count is 1 then we hold the only reference to this page. */
    	if (page_count(page) == 1) {
    		++rx_queue->page_recycle_count;
    		return page;
    	} else {
    		state = page_address(page);
    		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
    			       PAGE_SIZE << efx->rx_buffer_order,
    			       DMA_FROM_DEVICE);
    		put_page(page);
    		++rx_queue->page_recycle_failed;
    	}
    
    	return NULL;
    }
    
    /**
     * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
     *
     * @rx_queue:		Efx RX queue
     *
     * This allocates a batch of pages, maps them for DMA, and populates
     * struct efx_rx_buffers for each one. Return a negative error code or
     * 0 on success. If a single page can be used for multiple buffers,
     * then the page will either be inserted fully, or not at all.
     */
    static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	struct efx_rx_buffer *rx_buf;
    	struct page *page;
    	unsigned int page_offset;
    	struct efx_rx_page_state *state;
    	dma_addr_t dma_addr;
    	unsigned index, count;
    
    	count = 0;
    	do {
    		page = efx_reuse_page(rx_queue);
    		if (page == NULL) {
    			page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
    					   efx->rx_buffer_order);
    			if (unlikely(page == NULL))
    				return -ENOMEM;
    			dma_addr =
    				dma_map_page(&efx->pci_dev->dev, page, 0,
    					     PAGE_SIZE << efx->rx_buffer_order,
    					     DMA_FROM_DEVICE);
    			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
    						       dma_addr))) {
    				__free_pages(page, efx->rx_buffer_order);
    				return -EIO;
    			}
    			state = page_address(page);
    			state->dma_addr = dma_addr;
    		} else {
    			state = page_address(page);
    			dma_addr = state->dma_addr;
    		}
    
    		dma_addr += sizeof(struct efx_rx_page_state);
    		page_offset = sizeof(struct efx_rx_page_state);
    
    		do {
    			index = rx_queue->added_count & rx_queue->ptr_mask;
    			rx_buf = efx_rx_buffer(rx_queue, index);
    			rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
    			rx_buf->page = page;
    			rx_buf->page_offset = page_offset + NET_IP_ALIGN;
    			rx_buf->len = efx->rx_dma_len;
    			rx_buf->flags = 0;
    			++rx_queue->added_count;
    			get_page(page);
    			dma_addr += efx->rx_page_buf_step;
    			page_offset += efx->rx_page_buf_step;
    		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
    
    		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
    	} while (++count < efx->rx_pages_per_batch);
    
    	return 0;
    }
    
    /* Unmap a DMA-mapped page.  This function is only called for the final RX
     * buffer in a page.
     */
    static void efx_unmap_rx_buffer(struct efx_nic *efx,
    				struct efx_rx_buffer *rx_buf)
    {
    	struct page *page = rx_buf->page;
    
    	if (page) {
    		struct efx_rx_page_state *state = page_address(page);
    		dma_unmap_page(&efx->pci_dev->dev,
    			       state->dma_addr,
    			       PAGE_SIZE << efx->rx_buffer_order,
    			       DMA_FROM_DEVICE);
    	}
    }
    
    static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
    {
    	if (rx_buf->page) {
    		put_page(rx_buf->page);
    		rx_buf->page = NULL;
    	}
    }
    
    /* Attempt to recycle the page if there is an RX recycle ring; the page can
     * only be added if this is the final RX buffer, to prevent pages being used in
     * the descriptor ring and appearing in the recycle ring simultaneously.
     */
    static void efx_recycle_rx_page(struct efx_channel *channel,
    				struct efx_rx_buffer *rx_buf)
    {
    	struct page *page = rx_buf->page;
    	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
    	struct efx_nic *efx = rx_queue->efx;
    	unsigned index;
    
    	/* Only recycle the page after processing the final buffer. */
    	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
    		return;
    
    	index = rx_queue->page_add & rx_queue->page_ptr_mask;
    	if (rx_queue->page_ring[index] == NULL) {
    		unsigned read_index = rx_queue->page_remove &
    			rx_queue->page_ptr_mask;
    
    		/* The next slot in the recycle ring is available, but
    		 * increment page_remove if the read pointer currently
    		 * points here.
    		 */
    		if (read_index == index)
    			++rx_queue->page_remove;
    		rx_queue->page_ring[index] = page;
    		++rx_queue->page_add;
    		return;
    	}
    	++rx_queue->page_recycle_full;
    	efx_unmap_rx_buffer(efx, rx_buf);
    	put_page(rx_buf->page);
    }
    
    static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
    			       struct efx_rx_buffer *rx_buf)
    {
    	/* Release the page reference we hold for the buffer. */
    	if (rx_buf->page)
    		put_page(rx_buf->page);
    
    	/* If this is the last buffer in a page, unmap and free it. */
    	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
    		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
    		efx_free_rx_buffer(rx_buf);
    	}
    	rx_buf->page = NULL;
    }
    
    /* Recycle the pages that are used by buffers that have just been received. */
    static void efx_recycle_rx_buffers(struct efx_channel *channel,
    				   struct efx_rx_buffer *rx_buf,
    				   unsigned int n_frags)
    {
    	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
    
    	do {
    		efx_recycle_rx_page(channel, rx_buf);
    		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
    	} while (--n_frags);
    }
    
    /**
     * efx_fast_push_rx_descriptors - push new RX descriptors quickly
     * @rx_queue:		RX descriptor queue
     *
     * This will aim to fill the RX descriptor queue up to
     * @rx_queue->@max_fill. If there is insufficient atomic
     * memory to do so, a slow fill will be scheduled.
     *
     * The caller must provide serialisation (none is used here). In practise,
     * this means this function must run from the NAPI handler, or be called
     * when NAPI is disabled.
     */
    void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	unsigned int fill_level, batch_size;
    	int space, rc = 0;
    
    	/* Calculate current fill level, and exit if we don't need to fill */
    	fill_level = (rx_queue->added_count - rx_queue->removed_count);
    	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
    	if (fill_level >= rx_queue->fast_fill_trigger)
    		goto out;
    
    	/* Record minimum fill level */
    	if (unlikely(fill_level < rx_queue->min_fill)) {
    		if (fill_level)
    			rx_queue->min_fill = fill_level;
    	}
    
    	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
    	space = rx_queue->max_fill - fill_level;
    	EFX_BUG_ON_PARANOID(space < batch_size);
    
    	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
    		   "RX queue %d fast-filling descriptor ring from"
    		   " level %d to level %d\n",
    		   efx_rx_queue_index(rx_queue), fill_level,
    		   rx_queue->max_fill);
    
    
    	do {
    		rc = efx_init_rx_buffers(rx_queue);
    		if (unlikely(rc)) {
    			/* Ensure that we don't leave the rx queue empty */
    			if (rx_queue->added_count == rx_queue->removed_count)
    				efx_schedule_slow_fill(rx_queue);
    			goto out;
    		}
    	} while ((space -= batch_size) >= batch_size);
    
    	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
    		   "RX queue %d fast-filled descriptor ring "
    		   "to level %d\n", efx_rx_queue_index(rx_queue),
    		   rx_queue->added_count - rx_queue->removed_count);
    
     out:
    	if (rx_queue->notified_count != rx_queue->added_count)
    		efx_nic_notify_rx_desc(rx_queue);
    }
    
    void efx_rx_slow_fill(unsigned long context)
    {
    	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
    
    	/* Post an event to cause NAPI to run and refill the queue */
    	efx_nic_generate_fill_event(rx_queue);
    	++rx_queue->slow_fill_count;
    }
    
    static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
    				     struct efx_rx_buffer *rx_buf,
    				     int len)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
    
    	if (likely(len <= max_len))
    		return;
    
    	/* The packet must be discarded, but this is only a fatal error
    	 * if the caller indicated it was
    	 */
    	rx_buf->flags |= EFX_RX_PKT_DISCARD;
    
    	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
    		if (net_ratelimit())
    			netif_err(efx, rx_err, efx->net_dev,
    				  " RX queue %d seriously overlength "
    				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
    				  efx_rx_queue_index(rx_queue), len, max_len,
    				  efx->type->rx_buffer_padding);
    		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
    	} else {
    		if (net_ratelimit())
    			netif_err(efx, rx_err, efx->net_dev,
    				  " RX queue %d overlength RX event "
    				  "(0x%x > 0x%x)\n",
    				  efx_rx_queue_index(rx_queue), len, max_len);
    	}
    
    	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
    }
    
    /* Pass a received packet up through GRO.  GRO can handle pages
     * regardless of checksum state and skbs with a good checksum.
     */
    static void
    efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
    		  unsigned int n_frags, u8 *eh)
    {
    	struct napi_struct *napi = &channel->napi_str;
    	gro_result_t gro_result;
    	struct efx_nic *efx = channel->efx;
    	struct sk_buff *skb;
    
    	skb = napi_get_frags(napi);
    	if (unlikely(!skb)) {
    		while (n_frags--) {
    			put_page(rx_buf->page);
    			rx_buf->page = NULL;
    			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
    		}
    		return;
    	}
    
    	if (efx->net_dev->features & NETIF_F_RXHASH)
    		skb->rxhash = efx_rx_buf_hash(eh);
    	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
    			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
    
    	for (;;) {
    		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
    				   rx_buf->page, rx_buf->page_offset,
    				   rx_buf->len);
    		rx_buf->page = NULL;
    		skb->len += rx_buf->len;
    		if (skb_shinfo(skb)->nr_frags == n_frags)
    			break;
    
    		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
    	}
    
    	skb->data_len = skb->len;
    	skb->truesize += n_frags * efx->rx_buffer_truesize;
    
    	skb_record_rx_queue(skb, channel->rx_queue.core_index);
    
    	gro_result = napi_gro_frags(napi);
    	if (gro_result != GRO_DROP)
    		channel->irq_mod_score += 2;
    }
    
    /* Allocate and construct an SKB around page fragments */
    static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
    				     struct efx_rx_buffer *rx_buf,
    				     unsigned int n_frags,
    				     u8 *eh, int hdr_len)
    {
    	struct efx_nic *efx = channel->efx;
    	struct sk_buff *skb;
    
    	/* Allocate an SKB to store the headers */
    	skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
    	if (unlikely(skb == NULL))
    		return NULL;
    
    	EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
    
    	skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
    	memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
    
    	/* Append the remaining page(s) onto the frag list */
    	if (rx_buf->len > hdr_len) {
    		rx_buf->page_offset += hdr_len;
    		rx_buf->len -= hdr_len;
    
    		for (;;) {
    			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
    					   rx_buf->page, rx_buf->page_offset,
    					   rx_buf->len);
    			rx_buf->page = NULL;
    			skb->len += rx_buf->len;
    			skb->data_len += rx_buf->len;
    			if (skb_shinfo(skb)->nr_frags == n_frags)
    				break;
    
    			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
    		}
    	} else {
    		__free_pages(rx_buf->page, efx->rx_buffer_order);
    		rx_buf->page = NULL;
    		n_frags = 0;
    	}
    
    	skb->truesize += n_frags * efx->rx_buffer_truesize;
    
    	/* Move past the ethernet header */
    	skb->protocol = eth_type_trans(skb, efx->net_dev);
    
    	return skb;
    }
    
    void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
    		   unsigned int n_frags, unsigned int len, u16 flags)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
    	struct efx_rx_buffer *rx_buf;
    
    	rx_buf = efx_rx_buffer(rx_queue, index);
    	rx_buf->flags |= flags;
    
    	/* Validate the number of fragments and completed length */
    	if (n_frags == 1) {
    		efx_rx_packet__check_len(rx_queue, rx_buf, len);
    	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
    		   unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
    		   unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
    		   unlikely(!efx->rx_scatter)) {
    		/* If this isn't an explicit discard request, either
    		 * the hardware or the driver is broken.
    		 */
    		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
    		rx_buf->flags |= EFX_RX_PKT_DISCARD;
    	}
    
    	netif_vdbg(efx, rx_status, efx->net_dev,
    		   "RX queue %d received ids %x-%x len %d %s%s\n",
    		   efx_rx_queue_index(rx_queue), index,
    		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
    		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
    		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
    
    	/* Discard packet, if instructed to do so.  Process the
    	 * previous receive first.
    	 */
    	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
    		efx_rx_flush_packet(channel);
    		put_page(rx_buf->page);
    		efx_recycle_rx_buffers(channel, rx_buf, n_frags);
    		return;
    	}
    
    	if (n_frags == 1)
    		rx_buf->len = len;
    
    	/* Release and/or sync the DMA mapping - assumes all RX buffers
    	 * consumed in-order per RX queue.
    	 */
    	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
    
    	/* Prefetch nice and early so data will (hopefully) be in cache by
    	 * the time we look at it.
    	 */
    	prefetch(efx_rx_buf_va(rx_buf));
    
    	rx_buf->page_offset += efx->type->rx_buffer_hash_size;
    	rx_buf->len -= efx->type->rx_buffer_hash_size;
    
    	if (n_frags > 1) {
    		/* Release/sync DMA mapping for additional fragments.
    		 * Fix length for last fragment.
    		 */
    		unsigned int tail_frags = n_frags - 1;
    
    		for (;;) {
    			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
    			if (--tail_frags == 0)
    				break;
    			efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
    		}
    		rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
    		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
    	}
    
    	/* All fragments have been DMA-synced, so recycle buffers and pages. */
    	rx_buf = efx_rx_buffer(rx_queue, index);
    	efx_recycle_rx_buffers(channel, rx_buf, n_frags);
    
    	/* Pipeline receives so that we give time for packet headers to be
    	 * prefetched into cache.
    	 */
    	efx_rx_flush_packet(channel);
    	channel->rx_pkt_n_frags = n_frags;
    	channel->rx_pkt_index = index;
    }
    
    static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
    			   struct efx_rx_buffer *rx_buf,
    			   unsigned int n_frags)
    {
    	struct sk_buff *skb;
    	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
    
    	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
    	if (unlikely(skb == NULL)) {
    		efx_free_rx_buffer(rx_buf);
    		return;
    	}
    	skb_record_rx_queue(skb, channel->rx_queue.core_index);
    
    	/* Set the SKB flags */
    	skb_checksum_none_assert(skb);
    	if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
    		skb->ip_summed = CHECKSUM_UNNECESSARY;
    
    	if (channel->type->receive_skb)
    		if (channel->type->receive_skb(channel, skb))
    			return;
    
    	/* Pass the packet up */
    	netif_receive_skb(skb);
    }
    
    /* Handle a received packet.  Second half: Touches packet payload. */
    void __efx_rx_packet(struct efx_channel *channel)
    {
    	struct efx_nic *efx = channel->efx;
    	struct efx_rx_buffer *rx_buf =
    		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
    	u8 *eh = efx_rx_buf_va(rx_buf);
    
    	/* If we're in loopback test, then pass the packet directly to the
    	 * loopback layer, and free the rx_buf here
    	 */
    	if (unlikely(efx->loopback_selftest)) {
    		efx_loopback_rx_packet(efx, eh, rx_buf->len);
    		efx_free_rx_buffer(rx_buf);
    		goto out;
    	}
    
    	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
    		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
    
    	if (!channel->type->receive_skb)
    		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
    	else
    		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
    out:
    	channel->rx_pkt_n_frags = 0;
    }
    
    int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	unsigned int entries;
    	int rc;
    
    	/* Create the smallest power-of-two aligned ring */
    	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
    	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
    	rx_queue->ptr_mask = entries - 1;
    
    	netif_dbg(efx, probe, efx->net_dev,
    		  "creating RX queue %d size %#x mask %#x\n",
    		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
    		  rx_queue->ptr_mask);
    
    	/* Allocate RX buffers */
    	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
    				   GFP_KERNEL);
    	if (!rx_queue->buffer)
    		return -ENOMEM;
    
    	rc = efx_nic_probe_rx(rx_queue);
    	if (rc) {
    		kfree(rx_queue->buffer);
    		rx_queue->buffer = NULL;
    	}
    
    	return rc;
    }
    
    static void efx_init_rx_recycle_ring(struct efx_nic *efx,
    				     struct efx_rx_queue *rx_queue)
    {
    	unsigned int bufs_in_recycle_ring, page_ring_size;
    
    	/* Set the RX recycle ring size */
    #ifdef CONFIG_PPC64
    	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
    #else
    	if (efx->pci_dev->dev.iommu_group)
    		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
    	else
    		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
    #endif /* CONFIG_PPC64 */
    
    	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
    					    efx->rx_bufs_per_page);
    	rx_queue->page_ring = kcalloc(page_ring_size,
    				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
    	rx_queue->page_ptr_mask = page_ring_size - 1;
    }
    
    void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
    {
    	struct efx_nic *efx = rx_queue->efx;
    	unsigned int max_fill, trigger, max_trigger;
    
    	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
    		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
    
    	/* Initialise ptr fields */
    	rx_queue->added_count = 0;
    	rx_queue->notified_count = 0;
    	rx_queue->removed_count = 0;
    	rx_queue->min_fill = -1U;
    	efx_init_rx_recycle_ring(efx, rx_queue);
    
    	rx_queue->page_remove = 0;
    	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
    	rx_queue->page_recycle_count = 0;
    	rx_queue->page_recycle_failed = 0;
    	rx_queue->page_recycle_full = 0;
    
    	/* Initialise limit fields */
    	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
    	max_trigger =
    		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
    	if (rx_refill_threshold != 0) {
    		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
    		if (trigger > max_trigger)
    			trigger = max_trigger;
    	} else {
    		trigger = max_trigger;
    	}
    
    	rx_queue->max_fill = max_fill;
    	rx_queue->fast_fill_trigger = trigger;
    
    	/* Set up RX descriptor ring */
    	rx_queue->enabled = true;
    	efx_nic_init_rx(rx_queue);
    }
    
    void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
    {
    	int i;
    	struct efx_nic *efx = rx_queue->efx;
    	struct efx_rx_buffer *rx_buf;
    
    	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
    		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
    
    	/* A flush failure might have left rx_queue->enabled */
    	rx_queue->enabled = false;
    
    	del_timer_sync(&rx_queue->slow_fill);
    	efx_nic_fini_rx(rx_queue);
    
    	/* Release RX buffers from the current read ptr to the write ptr */
    	if (rx_queue->buffer) {
    		for (i = rx_queue->removed_count; i < rx_queue->added_count;
    		     i++) {
    			unsigned index = i & rx_queue->ptr_mask;
    			rx_buf = efx_rx_buffer(rx_queue, index);
    			efx_fini_rx_buffer(rx_queue, rx_buf);
    		}
    	}
    
    	/* Unmap and release the pages in the recycle ring. Remove the ring. */
    	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
    		struct page *page = rx_queue->page_ring[i];
    		struct efx_rx_page_state *state;
    
    		if (page == NULL)
    			continue;
    
    		state = page_address(page);
    		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
    			       PAGE_SIZE << efx->rx_buffer_order,
    			       DMA_FROM_DEVICE);
    		put_page(page);
    	}
    	kfree(rx_queue->page_ring);
    	rx_queue->page_ring = NULL;
    }
    
    void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
    {
    	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
    		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
    
    	efx_nic_remove_rx(rx_queue);
    
    	kfree(rx_queue->buffer);
    	rx_queue->buffer = NULL;
    }
    
    
    module_param(rx_refill_threshold, uint, 0444);
    MODULE_PARM_DESC(rx_refill_threshold,
    		 "RX descriptor ring refill threshold (%)");