Skip to content
Snippets Groups Projects
Select Git revision
2 results Searching

grpc_service.go

Blame
  • sparse.c 20.47 KiB
    /*
     * sparse memory mappings.
     */
    #include <linux/mm.h>
    #include <linux/slab.h>
    #include <linux/mmzone.h>
    #include <linux/bootmem.h>
    #include <linux/highmem.h>
    #include <linux/export.h>
    #include <linux/spinlock.h>
    #include <linux/vmalloc.h>
    #include "internal.h"
    #include <asm/dma.h>
    #include <asm/pgalloc.h>
    #include <asm/pgtable.h>
    
    /*
     * Permanent SPARSEMEM data:
     *
     * 1) mem_section	- memory sections, mem_map's for valid memory
     */
    #ifdef CONFIG_SPARSEMEM_EXTREME
    struct mem_section *mem_section[NR_SECTION_ROOTS]
    	____cacheline_internodealigned_in_smp;
    #else
    struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
    	____cacheline_internodealigned_in_smp;
    #endif
    EXPORT_SYMBOL(mem_section);
    
    #ifdef NODE_NOT_IN_PAGE_FLAGS
    /*
     * If we did not store the node number in the page then we have to
     * do a lookup in the section_to_node_table in order to find which
     * node the page belongs to.
     */
    #if MAX_NUMNODES <= 256
    static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
    #else
    static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
    #endif
    
    int page_to_nid(const struct page *page)
    {
    	return section_to_node_table[page_to_section(page)];
    }
    EXPORT_SYMBOL(page_to_nid);
    
    static void set_section_nid(unsigned long section_nr, int nid)
    {
    	section_to_node_table[section_nr] = nid;
    }
    #else /* !NODE_NOT_IN_PAGE_FLAGS */
    static inline void set_section_nid(unsigned long section_nr, int nid)
    {
    }
    #endif
    
    #ifdef CONFIG_SPARSEMEM_EXTREME
    static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
    {
    	struct mem_section *section = NULL;
    	unsigned long array_size = SECTIONS_PER_ROOT *
    				   sizeof(struct mem_section);
    
    	if (slab_is_available()) {
    		if (node_state(nid, N_HIGH_MEMORY))
    			section = kmalloc_node(array_size, GFP_KERNEL, nid);
    		else
    			section = kmalloc(array_size, GFP_KERNEL);
    	} else
    		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
    
    	if (section)
    		memset(section, 0, array_size);
    
    	return section;
    }
    
    static int __meminit sparse_index_init(unsigned long section_nr, int nid)
    {
    	static DEFINE_SPINLOCK(index_init_lock);
    	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
    	struct mem_section *section;
    	int ret = 0;
    
    	if (mem_section[root])
    		return -EEXIST;
    
    	section = sparse_index_alloc(nid);
    	if (!section)
    		return -ENOMEM;
    	/*
    	 * This lock keeps two different sections from
    	 * reallocating for the same index
    	 */
    	spin_lock(&index_init_lock);
    
    	if (mem_section[root]) {
    		ret = -EEXIST;
    		goto out;
    	}
    
    	mem_section[root] = section;
    out:
    	spin_unlock(&index_init_lock);
    	return ret;
    }
    #else /* !SPARSEMEM_EXTREME */
    static inline int sparse_index_init(unsigned long section_nr, int nid)
    {
    	return 0;
    }
    #endif
    
    /*
     * Although written for the SPARSEMEM_EXTREME case, this happens
     * to also work for the flat array case because
     * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
     */
    int __section_nr(struct mem_section* ms)
    {
    	unsigned long root_nr;
    	struct mem_section* root;
    
    	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
    		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
    		if (!root)
    			continue;
    
    		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
    		     break;
    	}
    
    	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
    }
    
    /*
     * During early boot, before section_mem_map is used for an actual
     * mem_map, we use section_mem_map to store the section's NUMA
     * node.  This keeps us from having to use another data structure.  The
     * node information is cleared just before we store the real mem_map.
     */
    static inline unsigned long sparse_encode_early_nid(int nid)
    {
    	return (nid << SECTION_NID_SHIFT);
    }
    
    static inline int sparse_early_nid(struct mem_section *section)
    {
    	return (section->section_mem_map >> SECTION_NID_SHIFT);
    }
    
    /* Validate the physical addressing limitations of the model */
    void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
    						unsigned long *end_pfn)
    {
    	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
    
    	/*
    	 * Sanity checks - do not allow an architecture to pass
    	 * in larger pfns than the maximum scope of sparsemem:
    	 */
    	if (*start_pfn > max_sparsemem_pfn) {
    		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
    			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
    			*start_pfn, *end_pfn, max_sparsemem_pfn);
    		WARN_ON_ONCE(1);
    		*start_pfn = max_sparsemem_pfn;
    		*end_pfn = max_sparsemem_pfn;
    	} else if (*end_pfn > max_sparsemem_pfn) {
    		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
    			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
    			*start_pfn, *end_pfn, max_sparsemem_pfn);
    		WARN_ON_ONCE(1);
    		*end_pfn = max_sparsemem_pfn;
    	}
    }
    
    /* Record a memory area against a node. */
    void __init memory_present(int nid, unsigned long start, unsigned long end)
    {
    	unsigned long pfn;
    
    	start &= PAGE_SECTION_MASK;
    	mminit_validate_memmodel_limits(&start, &end);
    	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
    		unsigned long section = pfn_to_section_nr(pfn);
    		struct mem_section *ms;
    
    		sparse_index_init(section, nid);
    		set_section_nid(section, nid);
    
    		ms = __nr_to_section(section);
    		if (!ms->section_mem_map)
    			ms->section_mem_map = sparse_encode_early_nid(nid) |
    							SECTION_MARKED_PRESENT;
    	}
    }
    
    /*
     * Only used by the i386 NUMA architecures, but relatively
     * generic code.
     */
    unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
    						     unsigned long end_pfn)
    {
    	unsigned long pfn;
    	unsigned long nr_pages = 0;
    
    	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
    	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
    		if (nid != early_pfn_to_nid(pfn))
    			continue;
    
    		if (pfn_present(pfn))
    			nr_pages += PAGES_PER_SECTION;
    	}
    
    	return nr_pages * sizeof(struct page);
    }
    
    /*
     * Subtle, we encode the real pfn into the mem_map such that
     * the identity pfn - section_mem_map will return the actual
     * physical page frame number.
     */
    static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
    {
    	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
    }
    
    /*
     * Decode mem_map from the coded memmap
     */
    struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
    {
    	/* mask off the extra low bits of information */
    	coded_mem_map &= SECTION_MAP_MASK;
    	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
    }
    
    static int __meminit sparse_init_one_section(struct mem_section *ms,
    		unsigned long pnum, struct page *mem_map,
    		unsigned long *pageblock_bitmap)
    {
    	if (!present_section(ms))
    		return -EINVAL;
    
    	ms->section_mem_map &= ~SECTION_MAP_MASK;
    	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
    							SECTION_HAS_MEM_MAP;
     	ms->pageblock_flags = pageblock_bitmap;
    
    	return 1;
    }
    
    unsigned long usemap_size(void)
    {
    	unsigned long size_bytes;
    	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
    	size_bytes = roundup(size_bytes, sizeof(unsigned long));
    	return size_bytes;
    }
    
    #ifdef CONFIG_MEMORY_HOTPLUG
    static unsigned long *__kmalloc_section_usemap(void)
    {
    	return kmalloc(usemap_size(), GFP_KERNEL);
    }
    #endif /* CONFIG_MEMORY_HOTPLUG */
    
    #ifdef CONFIG_MEMORY_HOTREMOVE
    static unsigned long * __init
    sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
    					 unsigned long size)
    {
    	unsigned long goal, limit;
    	unsigned long *p;
    	int nid;
    	/*
    	 * A page may contain usemaps for other sections preventing the
    	 * page being freed and making a section unremovable while
    	 * other sections referencing the usemap retmain active. Similarly,
    	 * a pgdat can prevent a section being removed. If section A
    	 * contains a pgdat and section B contains the usemap, both
    	 * sections become inter-dependent. This allocates usemaps
    	 * from the same section as the pgdat where possible to avoid
    	 * this problem.
    	 */
    	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
    	limit = goal + (1UL << PA_SECTION_SHIFT);
    	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
    again:
    	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
    					  SMP_CACHE_BYTES, goal, limit);
    	if (!p && limit) {
    		limit = 0;
    		goto again;
    	}
    	return p;
    }
    
    static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
    {
    	unsigned long usemap_snr, pgdat_snr;
    	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
    	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
    	struct pglist_data *pgdat = NODE_DATA(nid);
    	int usemap_nid;
    
    	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
    	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
    	if (usemap_snr == pgdat_snr)
    		return;
    
    	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
    		/* skip redundant message */
    		return;
    
    	old_usemap_snr = usemap_snr;
    	old_pgdat_snr = pgdat_snr;
    
    	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
    	if (usemap_nid != nid) {
    		printk(KERN_INFO
    		       "node %d must be removed before remove section %ld\n",
    		       nid, usemap_snr);
    		return;
    	}
    	/*
    	 * There is a circular dependency.
    	 * Some platforms allow un-removable section because they will just
    	 * gather other removable sections for dynamic partitioning.
    	 * Just notify un-removable section's number here.
    	 */
    	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
    	       pgdat_snr, nid);
    	printk(KERN_CONT
    	       " have a circular dependency on usemap and pgdat allocations\n");
    }
    #else
    static unsigned long * __init
    sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
    					 unsigned long size)
    {
    	return alloc_bootmem_node_nopanic(pgdat, size);
    }
    
    static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
    {
    }
    #endif /* CONFIG_MEMORY_HOTREMOVE */
    
    static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
    				 unsigned long pnum_begin,
    				 unsigned long pnum_end,
    				 unsigned long usemap_count, int nodeid)
    {
    	void *usemap;
    	unsigned long pnum;
    	int size = usemap_size();
    
    	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
    							  size * usemap_count);
    	if (!usemap) {
    		printk(KERN_WARNING "%s: allocation failed\n", __func__);
    		return;
    	}
    
    	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
    		if (!present_section_nr(pnum))
    			continue;
    		usemap_map[pnum] = usemap;
    		usemap += size;
    		check_usemap_section_nr(nodeid, usemap_map[pnum]);
    	}
    }
    
    #ifndef CONFIG_SPARSEMEM_VMEMMAP
    struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
    {
    	struct page *map;
    	unsigned long size;
    
    	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
    	if (map)
    		return map;
    
    	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
    	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
    					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
    	return map;
    }
    void __init sparse_mem_maps_populate_node(struct page **map_map,
    					  unsigned long pnum_begin,
    					  unsigned long pnum_end,
    					  unsigned long map_count, int nodeid)
    {
    	void *map;
    	unsigned long pnum;
    	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
    
    	map = alloc_remap(nodeid, size * map_count);
    	if (map) {
    		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
    			if (!present_section_nr(pnum))
    				continue;
    			map_map[pnum] = map;
    			map += size;
    		}
    		return;
    	}
    
    	size = PAGE_ALIGN(size);
    	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
    					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
    	if (map) {
    		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
    			if (!present_section_nr(pnum))
    				continue;
    			map_map[pnum] = map;
    			map += size;
    		}
    		return;
    	}
    
    	/* fallback */
    	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
    		struct mem_section *ms;
    
    		if (!present_section_nr(pnum))
    			continue;
    		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
    		if (map_map[pnum])
    			continue;
    		ms = __nr_to_section(pnum);
    		printk(KERN_ERR "%s: sparsemem memory map backing failed "
    			"some memory will not be available.\n", __func__);
    		ms->section_mem_map = 0;
    	}
    }
    #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
    
    #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
    static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
    				 unsigned long pnum_begin,
    				 unsigned long pnum_end,
    				 unsigned long map_count, int nodeid)
    {
    	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
    					 map_count, nodeid);
    }
    #else
    static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
    {
    	struct page *map;
    	struct mem_section *ms = __nr_to_section(pnum);
    	int nid = sparse_early_nid(ms);
    
    	map = sparse_mem_map_populate(pnum, nid);
    	if (map)
    		return map;
    
    	printk(KERN_ERR "%s: sparsemem memory map backing failed "
    			"some memory will not be available.\n", __func__);
    	ms->section_mem_map = 0;
    	return NULL;
    }
    #endif
    
    void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
    {
    }
    
    /*
     * Allocate the accumulated non-linear sections, allocate a mem_map
     * for each and record the physical to section mapping.
     */
    void __init sparse_init(void)
    {
    	unsigned long pnum;
    	struct page *map;
    	unsigned long *usemap;
    	unsigned long **usemap_map;
    	int size;
    	int nodeid_begin = 0;
    	unsigned long pnum_begin = 0;
    	unsigned long usemap_count;
    #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
    	unsigned long map_count;
    	int size2;
    	struct page **map_map;
    #endif
    
    	/*
    	 * map is using big page (aka 2M in x86 64 bit)
    	 * usemap is less one page (aka 24 bytes)
    	 * so alloc 2M (with 2M align) and 24 bytes in turn will
    	 * make next 2M slip to one more 2M later.
    	 * then in big system, the memory will have a lot of holes...
    	 * here try to allocate 2M pages continuously.
    	 *
    	 * powerpc need to call sparse_init_one_section right after each
    	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
    	 */
    	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
    	usemap_map = alloc_bootmem(size);
    	if (!usemap_map)
    		panic("can not allocate usemap_map\n");
    
    	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
    		struct mem_section *ms;
    
    		if (!present_section_nr(pnum))
    			continue;
    		ms = __nr_to_section(pnum);
    		nodeid_begin = sparse_early_nid(ms);
    		pnum_begin = pnum;
    		break;
    	}
    	usemap_count = 1;
    	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
    		struct mem_section *ms;
    		int nodeid;
    
    		if (!present_section_nr(pnum))
    			continue;
    		ms = __nr_to_section(pnum);
    		nodeid = sparse_early_nid(ms);
    		if (nodeid == nodeid_begin) {
    			usemap_count++;
    			continue;
    		}
    		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
    		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
    						 usemap_count, nodeid_begin);
    		/* new start, update count etc*/
    		nodeid_begin = nodeid;
    		pnum_begin = pnum;
    		usemap_count = 1;
    	}
    	/* ok, last chunk */
    	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
    					 usemap_count, nodeid_begin);
    
    #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
    	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
    	map_map = alloc_bootmem(size2);
    	if (!map_map)
    		panic("can not allocate map_map\n");
    
    	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
    		struct mem_section *ms;
    
    		if (!present_section_nr(pnum))
    			continue;
    		ms = __nr_to_section(pnum);
    		nodeid_begin = sparse_early_nid(ms);
    		pnum_begin = pnum;
    		break;
    	}
    	map_count = 1;
    	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
    		struct mem_section *ms;
    		int nodeid;
    
    		if (!present_section_nr(pnum))
    			continue;
    		ms = __nr_to_section(pnum);
    		nodeid = sparse_early_nid(ms);
    		if (nodeid == nodeid_begin) {
    			map_count++;
    			continue;
    		}
    		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
    		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
    						 map_count, nodeid_begin);
    		/* new start, update count etc*/
    		nodeid_begin = nodeid;
    		pnum_begin = pnum;
    		map_count = 1;
    	}
    	/* ok, last chunk */
    	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
    					 map_count, nodeid_begin);
    #endif
    
    	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
    		if (!present_section_nr(pnum))
    			continue;
    
    		usemap = usemap_map[pnum];
    		if (!usemap)
    			continue;
    
    #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
    		map = map_map[pnum];
    #else
    		map = sparse_early_mem_map_alloc(pnum);
    #endif
    		if (!map)
    			continue;
    
    		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
    								usemap);
    	}
    
    	vmemmap_populate_print_last();
    
    #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
    	free_bootmem(__pa(map_map), size2);
    #endif
    	free_bootmem(__pa(usemap_map), size);
    }
    
    #ifdef CONFIG_MEMORY_HOTPLUG
    #ifdef CONFIG_SPARSEMEM_VMEMMAP
    static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
    						 unsigned long nr_pages)
    {
    	/* This will make the necessary allocations eventually. */
    	return sparse_mem_map_populate(pnum, nid);
    }
    static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
    {
    	return; /* XXX: Not implemented yet */
    }
    static void free_map_bootmem(struct page *page, unsigned long nr_pages)
    {
    }
    #else
    static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
    {
    	struct page *page, *ret;
    	unsigned long memmap_size = sizeof(struct page) * nr_pages;
    
    	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
    	if (page)
    		goto got_map_page;
    
    	ret = vmalloc(memmap_size);
    	if (ret)
    		goto got_map_ptr;
    
    	return NULL;
    got_map_page:
    	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
    got_map_ptr:
    	memset(ret, 0, memmap_size);
    
    	return ret;
    }
    
    static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
    						  unsigned long nr_pages)
    {
    	return __kmalloc_section_memmap(nr_pages);
    }
    
    static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
    {
    	if (is_vmalloc_addr(memmap))
    		vfree(memmap);
    	else
    		free_pages((unsigned long)memmap,
    			   get_order(sizeof(struct page) * nr_pages));
    }
    
    static void free_map_bootmem(struct page *page, unsigned long nr_pages)
    {
    	unsigned long maps_section_nr, removing_section_nr, i;
    	unsigned long magic;
    
    	for (i = 0; i < nr_pages; i++, page++) {
    		magic = (unsigned long) page->lru.next;
    
    		BUG_ON(magic == NODE_INFO);
    
    		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
    		removing_section_nr = page->private;
    
    		/*
    		 * When this function is called, the removing section is
    		 * logical offlined state. This means all pages are isolated
    		 * from page allocator. If removing section's memmap is placed
    		 * on the same section, it must not be freed.
    		 * If it is freed, page allocator may allocate it which will
    		 * be removed physically soon.
    		 */
    		if (maps_section_nr != removing_section_nr)
    			put_page_bootmem(page);
    	}
    }
    #endif /* CONFIG_SPARSEMEM_VMEMMAP */
    
    static void free_section_usemap(struct page *memmap, unsigned long *usemap)
    {
    	struct page *usemap_page;
    	unsigned long nr_pages;
    
    	if (!usemap)
    		return;
    
    	usemap_page = virt_to_page(usemap);
    	/*
    	 * Check to see if allocation came from hot-plug-add
    	 */
    	if (PageSlab(usemap_page)) {
    		kfree(usemap);
    		if (memmap)
    			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
    		return;
    	}
    
    	/*
    	 * The usemap came from bootmem. This is packed with other usemaps
    	 * on the section which has pgdat at boot time. Just keep it as is now.
    	 */
    
    	if (memmap) {
    		struct page *memmap_page;
    		memmap_page = virt_to_page(memmap);
    
    		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
    			>> PAGE_SHIFT;
    
    		free_map_bootmem(memmap_page, nr_pages);
    	}
    }
    
    /*
     * returns the number of sections whose mem_maps were properly
     * set.  If this is <=0, then that means that the passed-in
     * map was not consumed and must be freed.
     */
    int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
    			   int nr_pages)
    {
    	unsigned long section_nr = pfn_to_section_nr(start_pfn);
    	struct pglist_data *pgdat = zone->zone_pgdat;
    	struct mem_section *ms;
    	struct page *memmap;
    	unsigned long *usemap;
    	unsigned long flags;
    	int ret;
    
    	/*
    	 * no locking for this, because it does its own
    	 * plus, it does a kmalloc
    	 */
    	ret = sparse_index_init(section_nr, pgdat->node_id);
    	if (ret < 0 && ret != -EEXIST)
    		return ret;
    	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
    	if (!memmap)
    		return -ENOMEM;
    	usemap = __kmalloc_section_usemap();
    	if (!usemap) {
    		__kfree_section_memmap(memmap, nr_pages);
    		return -ENOMEM;
    	}
    
    	pgdat_resize_lock(pgdat, &flags);
    
    	ms = __pfn_to_section(start_pfn);
    	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
    		ret = -EEXIST;
    		goto out;
    	}
    
    	ms->section_mem_map |= SECTION_MARKED_PRESENT;
    
    	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
    
    out:
    	pgdat_resize_unlock(pgdat, &flags);
    	if (ret <= 0) {
    		kfree(usemap);
    		__kfree_section_memmap(memmap, nr_pages);
    	}
    	return ret;
    }
    
    void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
    {
    	struct page *memmap = NULL;
    	unsigned long *usemap = NULL;
    
    	if (ms->section_mem_map) {
    		usemap = ms->pageblock_flags;
    		memmap = sparse_decode_mem_map(ms->section_mem_map,
    						__section_nr(ms));
    		ms->section_mem_map = 0;
    		ms->pageblock_flags = NULL;
    	}
    
    	free_section_usemap(memmap, usemap);
    }
    #endif