Skip to content
Snippets Groups Projects
Select Git revision
  • 127e8f58185dd436b293c58a31f9264355233b40
  • master default
2 results

GoValidator.cpp

Blame
  • mpih-mul.c 14.91 KiB
    /* mpihelp-mul.c  -  MPI helper functions
     * Copyright (C) 1994, 1996, 1998, 1999,
     *               2000 Free Software Foundation, Inc.
     *
     * This file is part of GnuPG.
     *
     * GnuPG is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * GnuPG is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
     *
     * Note: This code is heavily based on the GNU MP Library.
     *	 Actually it's the same code with only minor changes in the
     *	 way the data is stored; this is to support the abstraction
     *	 of an optional secure memory allocation which may be used
     *	 to avoid revealing of sensitive data due to paging etc.
     *	 The GNU MP Library itself is published under the LGPL;
     *	 however I decided to publish this code under the plain GPL.
     */
    
    #include <linux/string.h>
    #include "mpi-internal.h"
    #include "longlong.h"
    
    #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\
    	do {							\
    		if ((size) < KARATSUBA_THRESHOLD)		\
    			mul_n_basecase(prodp, up, vp, size);	\
    		else						\
    			mul_n(prodp, up, vp, size, tspace);	\
    	} while (0);
    
    #define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\
    	do {							\
    		if ((size) < KARATSUBA_THRESHOLD)		\
    			mpih_sqr_n_basecase(prodp, up, size);	\
    		else						\
    			mpih_sqr_n(prodp, up, size, tspace);	\
    	} while (0);
    
    /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
     * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
     * always stored.  Return the most significant limb.
     *
     * Argument constraints:
     * 1. PRODP != UP and PRODP != VP, i.e. the destination
     *    must be distinct from the multiplier and the multiplicand.
     *
     *
     * Handle simple cases with traditional multiplication.
     *
     * This is the most critical code of multiplication.  All multiplies rely
     * on this, both small and huge.  Small ones arrive here immediately.  Huge
     * ones arrive here as this is the base case for Karatsuba's recursive
     * algorithm below.
     */
    
    static mpi_limb_t
    mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
    {
    	mpi_size_t i;
    	mpi_limb_t cy;
    	mpi_limb_t v_limb;
    
    	/* Multiply by the first limb in V separately, as the result can be
    	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
    	v_limb = vp[0];
    	if (v_limb <= 1) {
    		if (v_limb == 1)
    			MPN_COPY(prodp, up, size);
    		else
    			MPN_ZERO(prodp, size);
    		cy = 0;
    	} else
    		cy = mpihelp_mul_1(prodp, up, size, v_limb);
    
    	prodp[size] = cy;
    	prodp++;
    
    	/* For each iteration in the outer loop, multiply one limb from
    	 * U with one limb from V, and add it to PROD.  */
    	for (i = 1; i < size; i++) {
    		v_limb = vp[i];
    		if (v_limb <= 1) {
    			cy = 0;
    			if (v_limb == 1)
    				cy = mpihelp_add_n(prodp, prodp, up, size);
    		} else
    			cy = mpihelp_addmul_1(prodp, up, size, v_limb);
    
    		prodp[size] = cy;
    		prodp++;
    	}
    
    	return cy;
    }
    
    static void
    mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
    		mpi_size_t size, mpi_ptr_t tspace)
    {
    	if (size & 1) {
    		/* The size is odd, and the code below doesn't handle that.
    		 * Multiply the least significant (size - 1) limbs with a recursive
    		 * call, and handle the most significant limb of S1 and S2
    		 * separately.
    		 * A slightly faster way to do this would be to make the Karatsuba
    		 * code below behave as if the size were even, and let it check for
    		 * odd size in the end.  I.e., in essence move this code to the end.
    		 * Doing so would save us a recursive call, and potentially make the
    		 * stack grow a lot less.
    		 */
    		mpi_size_t esize = size - 1;	/* even size */
    		mpi_limb_t cy_limb;
    
    		MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace);
    		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]);
    		prodp[esize + esize] = cy_limb;
    		cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]);
    		prodp[esize + size] = cy_limb;
    	} else {
    		/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
    		 *
    		 * Split U in two pieces, U1 and U0, such that
    		 * U = U0 + U1*(B**n),
    		 * and V in V1 and V0, such that
    		 * V = V0 + V1*(B**n).
    		 *
    		 * UV is then computed recursively using the identity
    		 *
    		 *        2n   n          n                     n
    		 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
    		 *                1 1        1  0   0  1              0 0
    		 *
    		 * Where B = 2**BITS_PER_MP_LIMB.
    		 */
    		mpi_size_t hsize = size >> 1;
    		mpi_limb_t cy;
    		int negflg;
    
    		/* Product H.      ________________  ________________
    		 *                |_____U1 x V1____||____U0 x V0_____|
    		 * Put result in upper part of PROD and pass low part of TSPACE
    		 * as new TSPACE.
    		 */
    		MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize,
    				  tspace);
    
    		/* Product M.      ________________
    		 *                |_(U1-U0)(V0-V1)_|
    		 */
    		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) {
    			mpihelp_sub_n(prodp, up + hsize, up, hsize);
    			negflg = 0;
    		} else {
    			mpihelp_sub_n(prodp, up, up + hsize, hsize);
    			negflg = 1;
    		}
    		if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) {
    			mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
    			negflg ^= 1;
    		} else {
    			mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
    			/* No change of NEGFLG.  */
    		}
    		/* Read temporary operands from low part of PROD.
    		 * Put result in low part of TSPACE using upper part of TSPACE
    		 * as new TSPACE.
    		 */
    		MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize,
    				  tspace + size);
    
    		/* Add/copy product H. */
    		MPN_COPY(prodp + hsize, prodp + size, hsize);
    		cy = mpihelp_add_n(prodp + size, prodp + size,
    				   prodp + size + hsize, hsize);
    
    		/* Add product M (if NEGFLG M is a negative number) */
    		if (negflg)
    			cy -=
    			    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace,
    					  size);
    		else
    			cy +=
    			    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace,
    					  size);
    
    		/* Product L.      ________________  ________________
    		 *                |________________||____U0 x V0_____|
    		 * Read temporary operands from low part of PROD.
    		 * Put result in low part of TSPACE using upper part of TSPACE
    		 * as new TSPACE.
    		 */
    		MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
    
    		/* Add/copy Product L (twice) */
    
    		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
    		if (cy)
    			mpihelp_add_1(prodp + hsize + size,
    				      prodp + hsize + size, hsize, cy);
    
    		MPN_COPY(prodp, tspace, hsize);
    		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
    				   hsize);
    		if (cy)
    			mpihelp_add_1(prodp + size, prodp + size, size, 1);
    	}
    }
    
    void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size)
    {
    	mpi_size_t i;
    	mpi_limb_t cy_limb;
    	mpi_limb_t v_limb;
    
    	/* Multiply by the first limb in V separately, as the result can be
    	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
    	v_limb = up[0];
    	if (v_limb <= 1) {
    		if (v_limb == 1)
    			MPN_COPY(prodp, up, size);
    		else
    			MPN_ZERO(prodp, size);
    		cy_limb = 0;
    	} else
    		cy_limb = mpihelp_mul_1(prodp, up, size, v_limb);
    
    	prodp[size] = cy_limb;
    	prodp++;
    
    	/* For each iteration in the outer loop, multiply one limb from
    	 * U with one limb from V, and add it to PROD.  */
    	for (i = 1; i < size; i++) {
    		v_limb = up[i];
    		if (v_limb <= 1) {
    			cy_limb = 0;
    			if (v_limb == 1)
    				cy_limb = mpihelp_add_n(prodp, prodp, up, size);
    		} else
    			cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
    
    		prodp[size] = cy_limb;
    		prodp++;
    	}
    }
    
    void
    mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
    {
    	if (size & 1) {
    		/* The size is odd, and the code below doesn't handle that.
    		 * Multiply the least significant (size - 1) limbs with a recursive
    		 * call, and handle the most significant limb of S1 and S2
    		 * separately.
    		 * A slightly faster way to do this would be to make the Karatsuba
    		 * code below behave as if the size were even, and let it check for
    		 * odd size in the end.  I.e., in essence move this code to the end.
    		 * Doing so would save us a recursive call, and potentially make the
    		 * stack grow a lot less.
    		 */
    		mpi_size_t esize = size - 1;	/* even size */
    		mpi_limb_t cy_limb;
    
    		MPN_SQR_N_RECURSE(prodp, up, esize, tspace);
    		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]);
    		prodp[esize + esize] = cy_limb;
    		cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]);
    
    		prodp[esize + size] = cy_limb;
    	} else {
    		mpi_size_t hsize = size >> 1;
    		mpi_limb_t cy;
    
    		/* Product H.      ________________  ________________
    		 *                |_____U1 x U1____||____U0 x U0_____|
    		 * Put result in upper part of PROD and pass low part of TSPACE
    		 * as new TSPACE.
    		 */
    		MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
    
    		/* Product M.      ________________
    		 *                |_(U1-U0)(U0-U1)_|
    		 */
    		if (mpihelp_cmp(up + hsize, up, hsize) >= 0)
    			mpihelp_sub_n(prodp, up + hsize, up, hsize);
    		else
    			mpihelp_sub_n(prodp, up, up + hsize, hsize);
    
    		/* Read temporary operands from low part of PROD.
    		 * Put result in low part of TSPACE using upper part of TSPACE
    		 * as new TSPACE.  */
    		MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
    
    		/* Add/copy product H  */
    		MPN_COPY(prodp + hsize, prodp + size, hsize);
    		cy = mpihelp_add_n(prodp + size, prodp + size,
    				   prodp + size + hsize, hsize);
    
    		/* Add product M (if NEGFLG M is a negative number).  */
    		cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
    
    		/* Product L.      ________________  ________________
    		 *                |________________||____U0 x U0_____|
    		 * Read temporary operands from low part of PROD.
    		 * Put result in low part of TSPACE using upper part of TSPACE
    		 * as new TSPACE.  */
    		MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size);
    
    		/* Add/copy Product L (twice).  */
    		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
    		if (cy)
    			mpihelp_add_1(prodp + hsize + size,
    				      prodp + hsize + size, hsize, cy);
    
    		MPN_COPY(prodp, tspace, hsize);
    		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize,
    				   hsize);
    		if (cy)
    			mpihelp_add_1(prodp + size, prodp + size, size, 1);
    	}
    }
    
    /* This should be made into an inline function in gmp.h.  */
    int mpihelp_mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
    {
    	if (up == vp) {
    		if (size < KARATSUBA_THRESHOLD)
    			mpih_sqr_n_basecase(prodp, up, size);
    		else {
    			mpi_ptr_t tspace;
    			tspace = mpi_alloc_limb_space(2 * size);
    			if (!tspace)
    				return -ENOMEM;
    			mpih_sqr_n(prodp, up, size, tspace);
    			mpi_free_limb_space(tspace);
    		}
    	} else {
    		if (size < KARATSUBA_THRESHOLD)
    			mul_n_basecase(prodp, up, vp, size);
    		else {
    			mpi_ptr_t tspace;
    			tspace = mpi_alloc_limb_space(2 * size);
    			if (!tspace)
    				return -ENOMEM;
    			mul_n(prodp, up, vp, size, tspace);
    			mpi_free_limb_space(tspace);
    		}
    	}
    
    	return 0;
    }
    
    int
    mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
    			   mpi_ptr_t up, mpi_size_t usize,
    			   mpi_ptr_t vp, mpi_size_t vsize,
    			   struct karatsuba_ctx *ctx)
    {
    	mpi_limb_t cy;
    
    	if (!ctx->tspace || ctx->tspace_size < vsize) {
    		if (ctx->tspace)
    			mpi_free_limb_space(ctx->tspace);
    		ctx->tspace = mpi_alloc_limb_space(2 * vsize);
    		if (!ctx->tspace)
    			return -ENOMEM;
    		ctx->tspace_size = vsize;
    	}
    
    	MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace);
    
    	prodp += vsize;
    	up += vsize;
    	usize -= vsize;
    	if (usize >= vsize) {
    		if (!ctx->tp || ctx->tp_size < vsize) {
    			if (ctx->tp)
    				mpi_free_limb_space(ctx->tp);
    			ctx->tp = mpi_alloc_limb_space(2 * vsize);
    			if (!ctx->tp) {
    				if (ctx->tspace)
    					mpi_free_limb_space(ctx->tspace);
    				ctx->tspace = NULL;
    				return -ENOMEM;
    			}
    			ctx->tp_size = vsize;
    		}
    
    		do {
    			MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace);
    			cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize);
    			mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize,
    				      cy);
    			prodp += vsize;
    			up += vsize;
    			usize -= vsize;
    		} while (usize >= vsize);
    	}
    
    	if (usize) {
    		if (usize < KARATSUBA_THRESHOLD) {
    			mpi_limb_t tmp;
    			if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp)
    			    < 0)
    				return -ENOMEM;
    		} else {
    			if (!ctx->next) {
    				ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL);
    				if (!ctx->next)
    					return -ENOMEM;
    			}
    			if (mpihelp_mul_karatsuba_case(ctx->tspace,
    						       vp, vsize,
    						       up, usize,
    						       ctx->next) < 0)
    				return -ENOMEM;
    		}
    
    		cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize);
    		mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy);
    	}
    
    	return 0;
    }
    
    void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx)
    {
    	struct karatsuba_ctx *ctx2;
    
    	if (ctx->tp)
    		mpi_free_limb_space(ctx->tp);
    	if (ctx->tspace)
    		mpi_free_limb_space(ctx->tspace);
    	for (ctx = ctx->next; ctx; ctx = ctx2) {
    		ctx2 = ctx->next;
    		if (ctx->tp)
    			mpi_free_limb_space(ctx->tp);
    		if (ctx->tspace)
    			mpi_free_limb_space(ctx->tspace);
    		kfree(ctx);
    	}
    }
    
    /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
     * and v (pointed to by VP, with VSIZE limbs), and store the result at
     * PRODP.  USIZE + VSIZE limbs are always stored, but if the input
     * operands are normalized.  Return the most significant limb of the
     * result.
     *
     * NOTE: The space pointed to by PRODP is overwritten before finished
     * with U and V, so overlap is an error.
     *
     * Argument constraints:
     * 1. USIZE >= VSIZE.
     * 2. PRODP != UP and PRODP != VP, i.e. the destination
     *    must be distinct from the multiplier and the multiplicand.
     */
    
    int
    mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
    	    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result)
    {
    	mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
    	mpi_limb_t cy;
    	struct karatsuba_ctx ctx;
    
    	if (vsize < KARATSUBA_THRESHOLD) {
    		mpi_size_t i;
    		mpi_limb_t v_limb;
    
    		if (!vsize) {
    			*_result = 0;
    			return 0;
    		}
    
    		/* Multiply by the first limb in V separately, as the result can be
    		 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */
    		v_limb = vp[0];
    		if (v_limb <= 1) {
    			if (v_limb == 1)
    				MPN_COPY(prodp, up, usize);
    			else
    				MPN_ZERO(prodp, usize);
    			cy = 0;
    		} else
    			cy = mpihelp_mul_1(prodp, up, usize, v_limb);
    
    		prodp[usize] = cy;
    		prodp++;
    
    		/* For each iteration in the outer loop, multiply one limb from
    		 * U with one limb from V, and add it to PROD.  */
    		for (i = 1; i < vsize; i++) {
    			v_limb = vp[i];
    			if (v_limb <= 1) {
    				cy = 0;
    				if (v_limb == 1)
    					cy = mpihelp_add_n(prodp, prodp, up,
    							   usize);
    			} else
    				cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
    
    			prodp[usize] = cy;
    			prodp++;
    		}
    
    		*_result = cy;
    		return 0;
    	}
    
    	memset(&ctx, 0, sizeof ctx);
    	if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0)
    		return -ENOMEM;
    	mpihelp_release_karatsuba_ctx(&ctx);
    	*_result = *prod_endp;
    	return 0;
    }