Skip to content
Snippets Groups Projects
Select Git revision
  • 23da2be664bcbf4196d1ed1f5f137e245cd72c46
  • master default protected
  • r1.8
  • r1.6
  • r1.9
  • r1.5
  • r1.7
  • r1.3
  • r1.4
  • r1.2
  • v1.6.0
  • v1.5.0
12 results

export.py

Blame
  • export.py 1.75 KiB
    # Copyright 2022 Huawei Technologies Co., Ltd
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ============================================================================
    """
    ##############export checkpoint file into air, onnx or mindir model#################
    python export.py
    """
    
    import numpy as np
    from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
    from mindspore import dtype as mstype
    
    from src.args import args
    from src.tools.cell import cast_amp
    from src.tools.criterion import get_criterion, NetWithLoss
    from src.tools.get_misc import get_model
    
    context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
    
    if args.device_target in ["Ascend", "GPU"]:
        context.set_context(device_id=args.device_id)
    
    if __name__ == '__main__':
        net = get_model(args)
        criterion = get_criterion(args)
        cast_amp(net)
        net_with_loss = NetWithLoss(net, criterion)
        assert args.pretrained is not None, "checkpoint_path is None."
    
        param_dict = load_checkpoint(args.pretrained)
        load_param_into_net(net, param_dict)
    
        net.set_train(False)
        net.to_float(mstype.float32)
    
        input_arr = Tensor(np.zeros([1, 3, args.image_size, args.image_size], np.float32))
        export(net, input_arr, file_name=args.arch, file_format=args.file_format)