-
高慧茹 authored02fa864d
eval.py 10.25 KiB
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for retinanet"""
import os
import time
import json
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.retinanet import retinanet50, resnet50, retinanetInferWithDecoder
from src.dataset import create_retinanet_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord, \
facemask_data_to_mindrecord
from src.box_utils import default_boxes
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_device_id, get_device_num
def apply_nms(all_boxes, all_scores, thres, max_boxes):
"""Apply NMS to bboxes."""
y1 = all_boxes[:, 0]
x1 = all_boxes[:, 1]
y2 = all_boxes[:, 2]
x2 = all_boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = all_scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if len(keep) >= max_boxes:
break
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thres)[0]
order = order[inds + 1]
return keep
def make_dataset_dir(mindrecord_dir, mindrecord_file, prefix):
if config.dataset == "voc":
config.coco_root = config.voc_root
if config.dataset == 'facemask':
config.coco_root = config.facemask_root
if not os.path.exists(mindrecord_file):
if not os.path.isdir(mindrecord_dir):
os.makedirs(mindrecord_dir)
if config.dataset == "coco":
if os.path.isdir(config.coco_root):
print("Create Mindrecord.")
data_to_mindrecord_byte_image("coco", False, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("coco_root not exits.")
elif config.dataset == "voc":
if os.path.isdir(config.voc_dir) and os.path.isdir(config.voc_root):
print("Create Mindrecord.")
voc_data_to_mindrecord(mindrecord_dir, False, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("voc_root or voc_dir not exits.")
elif config.dataset == 'facemask':
if os.path.isdir(config.facemask_dir) and os.path.isdir(config.facemask_root):
print("Create Mindrecord.")
facemask_data_to_mindrecord(mindrecord_dir, False, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("facemask_root or facemask_dir not exits.")
else:
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
print("Create Mindrecord.")
data_to_mindrecord_byte_image("other", False, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("IMAGE_DIR or ANNO_PATH not exits.")
print("Start Eval!")
def modelarts_pre_process():
'''modelarts pre process function.'''
def unzip(zip_file, save_dir):
import zipfile
s_time = time.time()
if not os.path.exists(os.path.join(save_dir, config.modelarts_dataset_unzip_name)):
zip_isexist = zipfile.is_zipfile(zip_file)
if zip_isexist:
fz = zipfile.ZipFile(zip_file, 'r')
data_num = len(fz.namelist())
print("Extract Start...")
print("unzip file num: {}".format(data_num))
data_print = int(data_num / 100) if data_num > 100 else 1
i = 0
for file in fz.namelist():
if i % data_print == 0:
print("unzip percent: {}%".format(int(i * 100 / data_num)), flush=True)
i += 1
fz.extract(file, save_dir)
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
int(int(time.time() - s_time) % 60)))
print("Extract Done.")
else:
print("This is not zip.")
else:
print("Zip has been extracted.")
if config.need_modelarts_dataset_unzip:
zip_file_1 = os.path.join(config.data_path, config.modelarts_dataset_unzip_name + ".zip")
save_dir_1 = os.path.join(config.data_path)
sync_lock = "/tmp/unzip_sync.lock"
# Each server contains 8 devices as most.
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print("Zip file path: ", zip_file_1)
print("Unzip file save dir: ", save_dir_1)
unzip(zip_file_1, save_dir_1)
print("===Finish extract data synchronization===")
try:
os.mknod(sync_lock)
except IOError:
pass
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
@moxing_wrapper(pre_process=modelarts_pre_process)
def retinanet_eval():
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
prefix = "retinanet_eval.mindrecord"
mindrecord_dir = config.mindrecord_dir
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
make_dataset_dir(mindrecord_dir, mindrecord_file, prefix)
batch_size = 1
ds = create_retinanet_dataset(mindrecord_file, batch_size=batch_size, repeat_num=1, is_training=False)
backbone = resnet50(config.num_classes)
net = retinanet50(backbone, config)
net = retinanetInferWithDecoder(net, Tensor(default_boxes), config)
print("Load Checkpoint!")
param_dict = load_checkpoint(config.checkpoint_path)
net.init_parameters_data()
load_param_into_net(net, param_dict)
net.set_train(False)
i = batch_size
total = ds.get_dataset_size() * batch_size
start = time.time()
predictions = []
img_ids = []
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
num_classes = config.num_classes
coco_root = config.coco_root
data_type = config.val_data_type
# Classes need to train or test.’
val_cls = config.coco_classes
val_cls_dict = {}
for i, cls in enumerate(val_cls):
val_cls_dict[i] = cls
anno_json = os.path.join(coco_root, config.instances_set.format(data_type))
coco_gt = COCO(anno_json)
classs_dict = {}
cat_ids = coco_gt.loadCats(coco_gt.getCatIds())
for cat in cat_ids:
classs_dict[cat["name"]] = cat["id"]
for data in ds.create_dict_iterator(output_numpy=True):
pred_data = []
img_id = data['img_id']
img_np = data['image']
image_shape = data['image_shape']
output = net(Tensor(img_np))
for batch_idx in range(img_np.shape[0]):
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],
"img_id": int(np.squeeze(img_id[batch_idx])),
"image_shape": image_shape[batch_idx]})
i += batch_size
for sample in pred_data:
pred_boxes = sample['boxes']
box_scores = sample['box_scores']
img_id = sample['img_id']
h, w = sample['image_shape']
final_boxes = []
final_label = []
final_score = []
img_ids.append(img_id)
for c in range(1, num_classes):
class_box_scores = box_scores[:, c]
score_mask = class_box_scores > config.min_score
class_box_scores = class_box_scores[score_mask]
class_boxes = pred_boxes[score_mask] * [h, w, h, w]
if score_mask.any():
nms_index = apply_nms(class_boxes, class_box_scores, config.nms_thershold, config.max_boxes)
class_boxes = class_boxes[nms_index]
class_box_scores = class_box_scores[nms_index]
final_boxes += class_boxes.tolist()
final_score += class_box_scores.tolist()
final_label += [classs_dict[val_cls_dict[c]]] * len(class_box_scores)
for loc, label, score in zip(final_boxes, final_label, final_score):
res = {}
res['image_id'] = img_id
res['bbox'] = [loc[1], loc[0], loc[3] - loc[1], loc[2] - loc[0]]
res['score'] = score
res['category_id'] = label
predictions.append(res)
with open('predictions.json', 'w') as f:
json.dump(predictions, f)
cost_time = int((time.time() - start) * 1000)
print(f' 100% [{total}/{total}] cost {cost_time} ms')
coco_dt = coco_gt.loadRes('predictions.json')
E = COCOeval(coco_gt, coco_dt, iouType='bbox')
E.params.imgIds = img_ids
E.evaluate()
E.accumulate()
E.summarize()
mAP = E.stats[0]
print("\n========================================\n")
print(f"mAP: {mAP}")
if __name__ == '__main__':
retinanet_eval()