Skip to content
Snippets Groups Projects
Select Git revision
  • f10e2d71e910705307410e228faf849f3340c52b
  • master default protected
  • r1.8
  • r1.6
  • r1.9
  • r1.5
  • r1.7
  • r1.3
  • r1.4
  • r1.2
  • v1.6.0
  • v1.5.0
12 results

export.py

Blame
  • pgtable.h 10.10 KiB
    /* SPDX-License-Identifier: GPL-2.0-only */
    /*
     *  arch/arm/include/asm/pgtable.h
     *
     *  Copyright (C) 1995-2002 Russell King
     */
    #ifndef _ASMARM_PGTABLE_H
    #define _ASMARM_PGTABLE_H
    
    #include <linux/const.h>
    #include <asm/proc-fns.h>
    
    #ifndef CONFIG_MMU
    
    #include <asm-generic/pgtable-nopud.h>
    #include <asm/pgtable-nommu.h>
    
    #else
    
    #include <asm-generic/pgtable-nopud.h>
    #include <asm/memory.h>
    #include <asm/pgtable-hwdef.h>
    
    
    #include <asm/tlbflush.h>
    
    #ifdef CONFIG_ARM_LPAE
    #include <asm/pgtable-3level.h>
    #else
    #include <asm/pgtable-2level.h>
    #endif
    
    /*
     * Just any arbitrary offset to the start of the vmalloc VM area: the
     * current 8MB value just means that there will be a 8MB "hole" after the
     * physical memory until the kernel virtual memory starts.  That means that
     * any out-of-bounds memory accesses will hopefully be caught.
     * The vmalloc() routines leaves a hole of 4kB between each vmalloced
     * area for the same reason. ;)
     */
    #define VMALLOC_OFFSET		(8*1024*1024)
    #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
    #define VMALLOC_END		0xff800000UL
    
    #define LIBRARY_TEXT_START	0x0c000000
    
    #ifndef __ASSEMBLY__
    extern void __pte_error(const char *file, int line, pte_t);
    extern void __pmd_error(const char *file, int line, pmd_t);
    extern void __pgd_error(const char *file, int line, pgd_t);
    
    #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
    #define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
    #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
    
    /*
     * This is the lowest virtual address we can permit any user space
     * mapping to be mapped at.  This is particularly important for
     * non-high vector CPUs.
     */
    #define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
    
    /*
     * Use TASK_SIZE as the ceiling argument for free_pgtables() and
     * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
     * page shared between user and kernel).
     */
    #ifdef CONFIG_ARM_LPAE
    #define USER_PGTABLES_CEILING	TASK_SIZE
    #endif
    
    /*
     * The pgprot_* and protection_map entries will be fixed up in runtime
     * to include the cachable and bufferable bits based on memory policy,
     * as well as any architecture dependent bits like global/ASID and SMP
     * shared mapping bits.
     */
    #define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
    
    extern pgprot_t		pgprot_user;
    extern pgprot_t		pgprot_kernel;
    
    #define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
    
    #define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
    #define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
    #define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
    #define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
    #define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
    #define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
    #define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
    #define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
    #define PAGE_KERNEL_EXEC	pgprot_kernel
    
    #define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
    #define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
    #define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
    #define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
    #define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
    #define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
    #define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
    
    #define __pgprot_modify(prot,mask,bits)		\
    	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
    
    #define pgprot_noncached(prot) \
    	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
    
    #define pgprot_writecombine(prot) \
    	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
    
    #define pgprot_stronglyordered(prot) \
    	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
    
    #define pgprot_device(prot) \
    	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
    
    #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
    #define pgprot_dmacoherent(prot) \
    	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
    #define __HAVE_PHYS_MEM_ACCESS_PROT
    struct file;
    extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
    				     unsigned long size, pgprot_t vma_prot);
    #else
    #define pgprot_dmacoherent(prot) \
    	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
    #endif
    
    #endif /* __ASSEMBLY__ */
    
    /*
     * The table below defines the page protection levels that we insert into our
     * Linux page table version.  These get translated into the best that the
     * architecture can perform.  Note that on most ARM hardware:
     *  1) We cannot do execute protection
     *  2) If we could do execute protection, then read is implied
     *  3) write implies read permissions
     */
    #define __P000  __PAGE_NONE
    #define __P001  __PAGE_READONLY
    #define __P010  __PAGE_COPY
    #define __P011  __PAGE_COPY
    #define __P100  __PAGE_READONLY_EXEC
    #define __P101  __PAGE_READONLY_EXEC
    #define __P110  __PAGE_COPY_EXEC
    #define __P111  __PAGE_COPY_EXEC
    
    #define __S000  __PAGE_NONE
    #define __S001  __PAGE_READONLY
    #define __S010  __PAGE_SHARED
    #define __S011  __PAGE_SHARED
    #define __S100  __PAGE_READONLY_EXEC
    #define __S101  __PAGE_READONLY_EXEC
    #define __S110  __PAGE_SHARED_EXEC
    #define __S111  __PAGE_SHARED_EXEC
    
    #ifndef __ASSEMBLY__
    /*
     * ZERO_PAGE is a global shared page that is always zero: used
     * for zero-mapped memory areas etc..
     */
    extern struct page *empty_zero_page;
    #define ZERO_PAGE(vaddr)	(empty_zero_page)
    
    
    extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
    
    #define pmd_none(pmd)		(!pmd_val(pmd))
    
    static inline pte_t *pmd_page_vaddr(pmd_t pmd)
    {
    	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
    }
    
    #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
    
    #define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
    #define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
    
    #define pte_page(pte)		pfn_to_page(pte_pfn(pte))
    #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
    
    #define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
    
    #define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
    						: !!(pte_val(pte) & (val)))
    #define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
    
    #define pte_none(pte)		(!pte_val(pte))
    #define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
    #define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
    #define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
    #define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
    #define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
    #define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
    #define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
    
    #define pte_valid_user(pte)	\
    	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
    
    static inline bool pte_access_permitted(pte_t pte, bool write)
    {
    	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
    	pteval_t needed = mask;
    
    	if (write)
    		mask |= L_PTE_RDONLY;
    
    	return (pte_val(pte) & mask) == needed;
    }
    #define pte_access_permitted pte_access_permitted
    
    #if __LINUX_ARM_ARCH__ < 6
    static inline void __sync_icache_dcache(pte_t pteval)
    {
    }
    #else
    extern void __sync_icache_dcache(pte_t pteval);
    #endif
    
    void set_pte_at(struct mm_struct *mm, unsigned long addr,
    		      pte_t *ptep, pte_t pteval);
    
    static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
    {
    	pte_val(pte) &= ~pgprot_val(prot);
    	return pte;
    }
    
    static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
    {
    	pte_val(pte) |= pgprot_val(prot);
    	return pte;
    }
    
    static inline pte_t pte_wrprotect(pte_t pte)
    {
    	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
    }
    
    static inline pte_t pte_mkwrite(pte_t pte)
    {
    	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
    }
    
    static inline pte_t pte_mkclean(pte_t pte)
    {
    	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
    }
    
    static inline pte_t pte_mkdirty(pte_t pte)
    {
    	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
    }
    
    static inline pte_t pte_mkold(pte_t pte)
    {
    	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
    }
    
    static inline pte_t pte_mkyoung(pte_t pte)
    {
    	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
    }
    
    static inline pte_t pte_mkexec(pte_t pte)
    {
    	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
    }
    
    static inline pte_t pte_mknexec(pte_t pte)
    {
    	return set_pte_bit(pte, __pgprot(L_PTE_XN));
    }
    
    static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
    {
    	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
    		L_PTE_NONE | L_PTE_VALID;
    	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
    	return pte;
    }
    
    /*
     * Encode and decode a swap entry.  Swap entries are stored in the Linux
     * page tables as follows:
     *
     *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
     *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
     *   <--------------- offset ------------------------> < type -> 0 0
     *
     * This gives us up to 31 swap files and 128GB per swap file.  Note that
     * the offset field is always non-zero.
     */
    #define __SWP_TYPE_SHIFT	2
    #define __SWP_TYPE_BITS		5
    #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
    #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
    
    #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
    #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
    #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
    
    #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
    #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
    
    /*
     * It is an error for the kernel to have more swap files than we can
     * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
     * is increased beyond what we presently support.
     */
    #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
    
    /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
    /* FIXME: this is not correct */
    #define kern_addr_valid(addr)	(1)
    
    /*
     * We provide our own arch_get_unmapped_area to cope with VIPT caches.
     */
    #define HAVE_ARCH_UNMAPPED_AREA
    #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
    
    #endif /* !__ASSEMBLY__ */
    
    #endif /* CONFIG_MMU */
    
    #endif /* _ASMARM_PGTABLE_H */