Skip to content
Snippets Groups Projects
Commit 0484d956 authored by 崔庆源's avatar 崔庆源
Browse files

code commit

code update
parent 5cd93e4d
No related branches found
No related tags found
No related merge requests found
Showing
with 1314 additions and 0 deletions
aipp_op {
aipp_mode : static
input_format : RGB888_U8
related_input_rank : 0
csc_switch : false
crop: false
rbuv_swap_switch : false
mean_chn_0 : 0
mean_chn_1 : 0
mean_chn_2 : 0
min_chn_0 : 123.675
min_chn_1 : 116.28
min_chn_2 : 103.53
var_reci_chn_0 : 0.01712475383166366983474612552445
var_reci_chn_1 : 0.01750700280112044817927170868347
var_reci_chn_2 : 0.01742919389978213507625272331155
}
#!/bin/bash
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# bash convert.sh /home/data/xd_mindx/gxl/metric_learn/resnet50.air resnet50
input_air_path=$1
output_om_path=$2
aipp_cfg=$3
echo "Input AIR file path: ${input_air_path}"
echo "Output OM file path: ${output_om_path}"
atc --input_format=NCHW --framework=1 \
--model=${input_air_path} \
--output=${output_om_path} \
--soc_version=Ascend310 \
--disable_reuse_memory=0 \
--insert_op_conf=${aipp_cfg} \
--precision_mode=allow_mix_precision \
--op_select_implmode=high_precision
\ No newline at end of file
#!/usr/bin/env bash
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
docker_image=$1
model_dir=$2
function show_help() {
echo "Usage: docker_start.sh docker_image model_dir data_dir"
}
function param_check() {
if [ -z "${docker_image}" ]; then
echo "please input docker_image"
show_help
exit 1
fi
if [ -z "${model_dir}" ]; then
echo "please input model_dir"
show_help
exit 1
fi
}
param_check
docker run -it -u root \
--device=/dev/davinci0 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v ${model_dir}:${model_dir} \
${docker_image} \
/bin/bash
cmake_minimum_required(VERSION 3.14.0)
project(metric_learn)
set(TARGET metric_learn)
add_definitions(-DENABLE_DVPP_INTERFACE)
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
add_definitions(-Dgoogle=mindxsdk_private)
add_compile_options(-std=c++11 -fPIE -fstack-protector-all -fPIC -Wall)
add_link_options(-Wl,-z,relro,-z,now,-z,noexecstack -pie)
# Check environment variable
if(NOT DEFINED ENV{ASCEND_HOME})
message(FATAL_ERROR "please define environment variable:ASCEND_HOME")
endif()
if(NOT DEFINED ENV{ASCEND_VERSION})
message(WARNING "please define environment variable:ASCEND_VERSION")
endif()
if(NOT DEFINED ENV{ARCH_PATTERN})
message(WARNING "please define environment variable:ARCH_PATTERN")
endif()
set(ACL_INC_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/acllib/include)
set(ACL_LIB_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/acllib/lib64)
set(MXBASE_ROOT_DIR $ENV{MX_SDK_HOME})
set(MXBASE_INC $ENV{MX_SDK_HOME}/include)
set(MXBASE_LIB_DIR $ENV{MX_SDK_HOME}/lib)
set(MXBASE_POST_LIB_DIR $ENV{MX_SDK_HOME}/lib/modelpostprocessors)
set(MXBASE_POST_PROCESS_DIR $ENV{MX_SDK_HOME}/include/MxBase/postprocess/include/)
if(DEFINED ENV{MXSDK_OPENSOURCE_DIR})
set(OPENSOURCE_DIR $ENV{MXSDK_OPENSOURCE_DIR})
else()
set(OPENSOURCE_DIR $ENV{MX_SDK_HOME}/opensource)
endif()
include_directories(${ACL_INC_DIR})
include_directories(${MXBASE_INC})
include_directories(${MXBASE_POST_PROCESS_DIR})
include_directories(${OPENSOURCE_DIR}/include)
include_directories(${OPENSOURCE_DIR}/include/opencv4)
link_directories(${ACL_LIB_DIR})
link_directories(${MXBASE_LIB_DIR})
link_directories(${MXBASE_POST_LIB_DIR})
link_directories(${OPENSOURCE_DIR}/lib)
include_directories($ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/x86_64-linux/runtime/include)
link_directories($ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/x86_64-linux/x86_64-linux/lib64/)
include_directories($ENV{MX_SDK_HOME}/opensource/lib/glib-2.0/include)
include_directories($ENV{ASCEND_HOME}/ascend-toolkit/5.0.4/x86_64-linux/runtime/include)
add_executable(${TARGET} src/main.cpp src/MetricLearn.cpp)
target_link_libraries(${TARGET} glog cpprest mxbase opencv_world stdc++fs)
install(TARGETS ${TARGET} RUNTIME DESTINATION ${PROJECT_SOURCE_DIR}/)
#!/bin/bash
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
path_cur=$(dirname $0)
function check_env()
{
# set ASCEND_VERSION to ascend-toolkit/latest when it was not specified by user
if [ ! "${ASCEND_VERSION}" ]; then
export ASCEND_VERSION=nnrt/latest
echo "Set ASCEND_VERSION to the default value: ${ASCEND_VERSION}"
else
echo "ASCEND_VERSION is set to ${ASCEND_VERSION} by user"
fi
if [ ! "${ARCH_PATTERN}" ]; then
# set ARCH_PATTERN to ./ when it was not specified by user
export ARCH_PATTERN=./
echo "ARCH_PATTERN is set to the default value: ${ARCH_PATTERN}"
else
echo "ARCH_PATTERN is set to ${ARCH_PATTERN} by user"
fi
}
function build_metric_learn()
{
cd $path_cur
rm -rf build
mkdir -p build
cd build
cmake ..
make
ret=$?
if [ ${ret} -ne 0 ]; then
echo "Failed to build metric_learn."
exit ${ret}
fi
make install
}
check_env
build_metric_learn
/*
* Copyright (c) 2022 Huawei Technologies Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <unistd.h>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <algorithm>
#include "MxBase/Log/Log.h"
#include "MxBase/DeviceManager/DeviceManager.h"
#include "MetricLearn.h"
void getfilename(std::string *filename, std::string *filedir, const std::string &imgpath);
APP_ERROR MetricLearn::Init(const InitParam &initParam) {
deviceId_ = initParam.deviceId;
APP_ERROR ret = MxBase::DeviceManager::GetInstance()->InitDevices();
if (ret != APP_ERR_OK) {
LogError << "Init devices failed, ret=" << ret << ".";
return ret;
}
ret = MxBase::TensorContext::GetInstance()->SetContext(initParam.deviceId);
if (ret != APP_ERR_OK) {
LogError << "Set context failed, ret=" << ret << ".";
return ret;
}
dvppWrapper_ = std::make_shared<MxBase::DvppWrapper>();
ret = dvppWrapper_->Init();
if (ret != APP_ERR_OK) {
LogError << "DvppWrapper init failed, ret=" << ret << ".";
return ret;
}
model_ = std::make_shared<MxBase::ModelInferenceProcessor>();
ret = model_->Init(initParam.modelPath, modelDesc_);
if (ret != APP_ERR_OK) {
LogError << "ModelInferenceProcessor init failed, ret=" << ret << ".";
return ret;
}
return APP_ERR_OK;
}
APP_ERROR MetricLearn::DeInit() {
dvppWrapper_->DeInit();
model_->DeInit();
MxBase::DeviceManager::GetInstance()->DestroyDevices();
return APP_ERR_OK;
}
APP_ERROR MetricLearn::ReadImage(const std::string &imgPath, cv::Mat &imageMat) {
imageMat = cv::imread(imgPath, cv::IMREAD_COLOR);
return APP_ERR_OK;
}
APP_ERROR MetricLearn::ResizeShortImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat) {
int height = srcImageMat.rows;
int width = srcImageMat.cols;
float percent = static_cast<float>(224.0) / std::min(height, width);
int INTER_LANCZOS4 = 4;
cv::resize(srcImageMat, dstImageMat, cv::Size(round(width * percent),
round(height * percent)), 0, 0, INTER_LANCZOS4);
return APP_ERR_OK;
}
APP_ERROR MetricLearn::ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat) {
static constexpr uint32_t resizeHeight = 224;
static constexpr uint32_t resizeWidth = 224;
cv::resize(srcImageMat, dstImageMat, cv::Size(resizeWidth, resizeHeight));
return APP_ERR_OK;
}
APP_ERROR MetricLearn::CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase) {
const uint32_t dataSize = imageMat.cols * imageMat.rows * MxBase::YUV444_RGB_WIDTH_NU;
MxBase::MemoryData memoryDataDst(dataSize, MxBase::MemoryData::MEMORY_DEVICE, deviceId_);
MxBase::MemoryData memoryDataSrc(imageMat.data, dataSize, MxBase::MemoryData::MEMORY_HOST_MALLOC);
APP_ERROR ret = MxBase::MemoryHelper::MxbsMallocAndCopy(memoryDataDst, memoryDataSrc);
if (ret != APP_ERR_OK) {
LogError << GetError(ret) << "Memory malloc failed.";
return ret;
}
std::vector<uint32_t> shape = {imageMat.rows * MxBase::YUV444_RGB_WIDTH_NU, static_cast<uint32_t>(imageMat.cols)};
tensorBase = MxBase::TensorBase(memoryDataDst, false, shape, MxBase::TENSOR_DTYPE_FLOAT32);
return APP_ERR_OK;
}
APP_ERROR MetricLearn::Inference(const std::vector<MxBase::TensorBase> &inputs, \
std::vector<MxBase::TensorBase> &outputs) {
auto dtypes = model_->GetOutputDataType();
for (size_t i = 0; i < modelDesc_.outputTensors.size(); ++i) {
std::vector<uint32_t> shape = {};
for (size_t j = 0; j < modelDesc_.outputTensors[i].tensorDims.size(); ++j) {
shape.push_back((uint32_t)modelDesc_.outputTensors[i].tensorDims[j]);
}
MxBase::TensorBase tensor(shape, dtypes[i], MxBase::MemoryData::MemoryType::MEMORY_DEVICE, deviceId_);
APP_ERROR ret = MxBase::TensorBase::TensorBaseMalloc(tensor);
if (ret != APP_ERR_OK) {
LogError << "TensorBaseMalloc failed, ret=" << ret << ".";
return ret;
}
outputs.push_back(tensor);
}
MxBase::DynamicInfo dynamicInfo = {};
dynamicInfo.dynamicType = MxBase::DynamicType::STATIC_BATCH;
dynamicInfo.batchSize = 1;
auto startTime = std::chrono::high_resolution_clock::now();
APP_ERROR ret = model_->ModelInference(inputs, outputs, dynamicInfo);
auto endTime = std::chrono::high_resolution_clock::now();
double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count(); // save time
inferCostTimeMilliSec += costMs;
if (ret != APP_ERR_OK) {
LogError << "ModelInference failed, ret=" << ret << ".";
return ret;
}
return APP_ERR_OK;
}
APP_ERROR MetricLearn::SaveResult(MxBase::TensorBase *tensor, const std::string &resultpath) {
std::ofstream outfile(resultpath, std::ios::binary);
APP_ERROR ret = (*tensor).ToHost();
if (ret != APP_ERR_OK) {
LogError << "ToHost failed";
return ret;
}
if (outfile.fail()) {
LogError << "Failed to open result file: ";
return APP_ERR_COMM_FAILURE;
}
outfile.write(reinterpret_cast<char *>((*tensor).GetBuffer()), sizeof(float) * FEATURE_NUM);
outfile.close();
return APP_ERR_OK;
}
APP_ERROR MetricLearn::Process(const std::string &imgPath, const std::string &resultPath) {
cv::Mat imageMat;
APP_ERROR ret = ReadImage(imgPath, imageMat);
if (ret != APP_ERR_OK) {
LogError << "ReadImage failed, ret=" << ret << ".";
return ret;
}
ret = ResizeShortImage(imageMat, imageMat);
if (ret != APP_ERR_OK) {
LogError << "ResizeShortImage failed, ret=" << ret << ".";
return ret;
}
ret = ResizeImage(imageMat, imageMat);
if (ret != APP_ERR_OK) {
LogError << "ResizeImage failed, ret=" << ret << ".";
return ret;
}
std::vector<MxBase::TensorBase> inputs = {};
std::vector<MxBase::TensorBase> outputs = {};
MxBase::TensorBase tensorBase;
ret = CVMatToTensorBase(imageMat, tensorBase);
if (ret != APP_ERR_OK) {
LogError << "CVMatToTensorBase failed, ret=" << ret << ".";
return ret;
}
inputs.push_back(tensorBase);
ret = Inference(inputs, outputs);
if (ret != APP_ERR_OK) {
LogError << "Inference failed, ret=" << ret << ".";
return ret;
}
std::string filename = "";
std::string filedir = "";
getfilename(&filename, &filedir, imgPath);
std::string resultpath = resultPath + "/" + filename + ".bin";
std::string resultdir = resultPath + "/" + filedir;
DIR *dirPtr = opendir(resultdir.c_str());
if (dirPtr == nullptr) {
std::string sys = "mkdir -p "+ resultdir;
system(sys.c_str());
}
ret = SaveResult(&outputs[0], resultpath);
if (ret != APP_ERR_OK) {
LogError << "SaveResult failed, ret=" << ret << ".";
return ret;
}
return APP_ERR_OK;
}
void getfilename(std::string *filename, std::string *filedir, const std::string &imgpath) {
int i, j = 0, count = 0;
for (i = imgpath.length() - 1; i >= 0; i--) {
// '/' is the delimiter between the file name and the parent directory in imgpath
if (imgpath[i] == '/') {
count++;
if (count == 2) {
j = i;
break;
}
}
}
// '.' is the delimiter between the file name and the file suffix
while (imgpath[++j] != '.') {
*filename += imgpath[j];
}
//'/' is the delimiter between the file name and the file directory
j = i;
while (imgpath[++j] != '/') {
*filedir += imgpath[j];
}
}
/*
* Copyright (c) 2022 Huawei Technologies Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MXBASE_METRIC_LEARN_H
#define MXBASE_METRIC_LEARN_H
#include <string>
#include <vector>
#include <memory>
#include <opencv2/opencv.hpp>
#include "MxBase/DvppWrapper/DvppWrapper.h"
#include "MxBase/ModelInfer/ModelInferenceProcessor.h"
#include "MxBase/Tensor/TensorContext/TensorContext.h"
#include "MxBase/DeviceManager/DeviceManager.h"
struct InitParam {
uint32_t deviceId;
std::string modelPath;
};
class MetricLearn {
public:
static const int IMG_C = 3;
static const int IMG_H = 224;
static const int IMG_W = 224;
static const int FEATURE_NUM = 2048;
APP_ERROR Init(const InitParam &initParam);
APP_ERROR DeInit();
APP_ERROR ReadImage(const std::string &imgPath, cv::Mat &imageMat);
APP_ERROR ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat);
APP_ERROR ResizeShortImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat);
APP_ERROR CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase);
APP_ERROR Inference(const std::vector<MxBase::TensorBase> &inputs, std::vector<MxBase::TensorBase> &outputs);
APP_ERROR Process(const std::string &imgPath, const std::string &resultPath);
// get infer time
double GetInferCostMilliSec() const {return inferCostTimeMilliSec;}
private:
APP_ERROR SaveResult(MxBase::TensorBase *tensor,
const std::string &resultpath);
private:
std::shared_ptr<MxBase::DvppWrapper> dvppWrapper_;
std::shared_ptr<MxBase::ModelInferenceProcessor> model_;
MxBase::ModelDesc modelDesc_;
uint32_t deviceId_ = 0;
// infer time
double inferCostTimeMilliSec = 0.0;
};
#endif // MXBASE_METRIC_LEARN_H
/*
* Copyright (c) 2022 Huawei Technologies Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <unistd.h>
#include<fstream>
#include<string>
#include "MetricLearn.h"
#include "MxBase/Log/Log.h"
namespace {
const uint32_t DEVICE_ID = 0;
const char RESULT_PATH[] = "../data/preds/mxbase";
const char MODEL_PATH[] = "../convert/resnet50_acc74_aippnorm.om";
} // namespace
int main(int argc, char* argv[]) {
if (argc <= 1) {
LogWarn << "Please input image path, such as './metric_learn image_dir'.";
return APP_ERR_OK;
}
InitParam initParam = {};
initParam.deviceId = DEVICE_ID;
initParam.modelPath = MODEL_PATH;
auto metric_learn = std::make_shared<MetricLearn>();
APP_ERROR ret = metric_learn->Init(initParam);
if (ret != APP_ERR_OK) {
LogError << "MetricLearn init failed, ret=" << ret << ".";
return ret;
}
std::string imgPath = argv[1];
std::vector<std::string> imgFilePaths;
// read test_half.txt
DIR *dirPtr = opendir(imgPath.c_str());
if (dirPtr == nullptr) {
LogError << "opendir failed. dir:" << imgPath;
return APP_ERR_INTERNAL_ERROR;
}
std::fstream f(imgPath + "/test_half.txt");
std::string line;
while (getline(f, line)) {
int count = 0;
std::string filePath;
for (std::size_t i = 0; i < line.size(); i++) {
count++;
if (line[i] == ' ') {
filePath = line.substr(i - count + 1, count - 1);
}
}
imgFilePaths.emplace_back(imgPath + "/" + filePath);
}
f.close();
auto startTime = std::chrono::high_resolution_clock::now();
for (auto &imgFile : imgFilePaths) {
ret = metric_learn->Process(imgFile, RESULT_PATH);
if (ret != APP_ERR_OK) {
LogError << "MetricLearn process failed, ret=" << ret << ".";
metric_learn->DeInit();
return ret;
}
}
auto endTime = std::chrono::high_resolution_clock::now();
metric_learn->DeInit();
double costMilliSecs = std::chrono::duration<double, std::milli>(endTime - startTime).count();
double fps = 1000.0 * imgFilePaths.size() / metric_learn->GetInferCostMilliSec();
LogInfo << "[Process Delay] cost: " << costMilliSecs << " ms\tfps: " << fps << " imgs/sec";
return APP_ERR_OK;
}
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""sdk infer"""
import json
import logging
import MxpiDataType_pb2 as MxpiDataType
from StreamManagerApi import StreamManagerApi, MxDataInput, InProtobufVector, MxProtobufIn, StringVector
from config import config as cfg
import cv2
class SdkApi:
"""sdk api"""
INFER_TIMEOUT = cfg.INFER_TIMEOUT
STREAM_NAME = cfg.STREAM_NAME
def __init__(self, pipeline_cfg):
self.pipeline_cfg = pipeline_cfg
self._stream_api = None
self._data_input = None
self._device_id = None
def init(self):
"""sdk init """
with open(self.pipeline_cfg, 'r') as fp:
self._device_id = int(
json.loads(fp.read())[self.STREAM_NAME]["stream_config"]
["deviceId"])
print("The device id: {}.".format(self._device_id))
# create api
self._stream_api = StreamManagerApi()
# init stream mgr
ret = self._stream_api.InitManager()
if ret != 0:
return False
# create streams
with open(self.pipeline_cfg, 'rb') as fp:
pipe_line = fp.read()
ret = self._stream_api.CreateMultipleStreams(pipe_line)
if ret != 0:
return False
self._data_input = MxDataInput()
return True
def __del__(self):
"""del sdk"""
if not self._stream_api:
return
self._stream_api.DestroyAllStreams()
def send_data_input(self, stream_name, plugin_id, input_data):
"""input data use SendData"""
data_input = MxDataInput()
encoded_image = cv2.imencode(".jpg", input_data)[1]
img_bytes = encoded_image.tobytes()
data_input.data = img_bytes
unique_id = self._stream_api.SendData(stream_name, plugin_id,
data_input)
if unique_id < 0:
logging.error("Fail to send data to stream.")
return False
return True
def _send_protobuf(self, stream_name, plugin_id, element_name, buf_type,
pkg_list):
"""input data use SendProtobuf"""
protobuf = MxProtobufIn()
protobuf.key = element_name.encode("utf-8")
protobuf.type = buf_type
protobuf.protobuf = pkg_list.SerializeToString()
protobuf_vec = InProtobufVector()
protobuf_vec.push_back(protobuf)
err_code = self._stream_api.SendProtobuf(stream_name, plugin_id,
protobuf_vec)
if err_code != 0:
logging.error(
"Failed to send data to stream, stream_name(%s), plugin_id(%s), element_name(%s), "
"buf_type(%s), err_code(%s).", stream_name, plugin_id,
element_name, buf_type, err_code)
return False
return True
def send_img_input(self, stream_name, plugin_id, element_name, input_data,
img_size):
"""use cv input to sdk"""
vision_list = MxpiDataType.MxpiVisionList()
vision_vec = vision_list.visionVec.add()
vision_vec.visionInfo.format = 1
vision_vec.visionInfo.width = img_size[1]
vision_vec.visionInfo.height = img_size[0]
vision_vec.visionInfo.widthAligned = img_size[1]
vision_vec.visionInfo.heightAligned = img_size[0]
vision_vec.visionData.memType = 0
vision_vec.visionData.dataStr = input_data
vision_vec.visionData.dataSize = len(input_data)
buf_type = b"MxTools.MxpiVisionList"
return self._send_protobuf(stream_name, plugin_id, element_name, buf_type, vision_list)
def get_result(self, stream_name, out_plugin_id=0):
"""get_result"""
key_vec = StringVector()
key_vec.push_back(b'mxpi_tensorinfer0')
infer_result = self._stream_api.GetProtobuf(
stream_name, out_plugin_id, key_vec)
result = MxpiDataType.MxpiTensorPackageList()
result.ParseFromString(infer_result[0].messageBuf)
return result.tensorPackageVec[0].tensorVec[0].dataStr
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""config"""
STREAM_NAME = "im_metric_learn"
MODEL_WIDTH = 224
MODEL_HEIGHT = 224
INFER_TIMEOUT = 100000
TENSOR_DTYPE_FLOAT32 = 0
TENSOR_DTYPE_FLOAT16 = 1
TENSOR_DTYPE_INT8 = 2
{
"im_metric_learn": {
"stream_config": {
"deviceId": "0"
},
"appsrc0": {
"props": {
"blocksize": "409600"
},
"factory": "appsrc",
"next": "mxpi_tensorinfer0"
},
"mxpi_tensorinfer0": {
"props": {
"dataSource": "appsrc0",
"modelPath": "../convert/resnet50_acc74_aippnorm.om",
"tensorFormat": "1"
},
"factory": "mxpi_modelinfer",
"next": "mxpi_dataserialize0"
},
"mxpi_dataserialize0": {
"props": {
"outputDataKeys": "mxpi_tensorinfer0"
},
"factory": "mxpi_dataserialize",
"next": "appsink0"
},
"appsink0": {
"factory": "appsink"
}
}
}
\ No newline at end of file
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""main"""
import argparse
import os
import time
import cv2
from api.infer import SdkApi
from config import config as cfg
from StreamManagerApi import StreamManagerApi
def parser_args():
"""parser_args"""
parser = argparse.ArgumentParser(description="metric_learn inference")
parser.add_argument("--img_path",
type=str,
required=False,
default="../../data/Stanford_Online_Products",
help="image directory.")
parser.add_argument(
"--pipeline_path",
type=str,
required=False,
default="./config/metric_learn.pipeline",
help="image file path. The default is '/metric_learn/infer/sdk/config/metric_learn.pipeline'. ")
parser.add_argument(
"--model_type",
type=str,
required=False,
default="dvpp",
help=
"rgb: high-precision, dvpp: high performance. The default is 'dvpp'.")
parser.add_argument(
"--infer_mode",
type=str,
required=False,
default="infer",
help=
"infer:only infer, eval: accuracy evaluation. The default is 'infer'.")
parser.add_argument(
"--infer_result_dir",
type=str,
required=False,
default="../../data/infer_result",
help=
"cache dir of inference result. The default is '../data/infer_result'.")
arg = parser.parse_args()
return arg
def process_img(img_file):
img0 = cv2.imread(img_file)
img = resize_i(img0, height=cfg.MODEL_HEIGHT, width=cfg.MODEL_WIDTH)
return img
def resize_i(img, height=224, width=224):
"""resize img"""
percent = float(height) / min(img.shape[0], img.shape[1])
resized_width = int(round(img.shape[1] * percent))
resized_height = int(round(img.shape[0] * percent))
img = cv2.resize(img, (resized_width, resized_height), interpolation=cv2.INTER_LANCZOS4)
shape = (224, 224)
resized = cv2.resize(img, shape, interpolation=cv2.INTER_LINEAR)
return resized
def image_inference(pipeline_path, stream_name, data_dir, result_dir):
stream_manager_api = StreamManagerApi()
start_time = time.time()
sdk_api = SdkApi(pipeline_path)
if not sdk_api.init():
exit(-1)
print(stream_name)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
img_data_plugin_id = 0
print("\nBegin to inference for {}.\n".format(data_dir))
TRAIN_LIST = "../data/Stanford_Online_Products/test_half.txt"
TRAIN_LISTS = open(TRAIN_LIST, "r").readlines()
max_len = 30003
# cal_acc
for _, item in enumerate(TRAIN_LISTS):
if _ >= max_len:
break
items = item.strip().split()
path = items[0]
father = path.split("/")[0]
father_path = os.path.join(result_dir, father)
if not os.path.exists(father_path):
os.makedirs(father_path)
file_path = os.path.join(data_dir, path)
save_bin_path = os.path.join(result_dir, "{}.bin".format(path.split(".")[0]))
img_np = process_img(file_path)
img_shape = img_np.shape
# SDK
sdk_api.send_img_input(stream_name,
img_data_plugin_id, "appsrc0",
img_np.tobytes(), img_shape)
result = sdk_api.get_result(stream_name)
with open(save_bin_path, "wb") as fp:
fp.write(result)
print(
"End-2end inference, file_name:", file_path,
"\n"
)
end_time = time.time()
print("cost: ", end_time-start_time, "s")
print("fps: ", 30003.0/(end_time-start_time), "imgs/sec")
stream_manager_api.DestroyAllStreams()
if __name__ == "__main__":
args = parser_args()
image_inference(args.pipeline_path, cfg.STREAM_NAME.encode("utf-8"), args.img_path,
args.infer_result_dir)
#!/bin/bash
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
img_path=$1
infer_result_dir=$2
python3 main.py $img_path $infer_result_dir
exit 0
\ No newline at end of file
import os
import argparse
import multiprocessing as mp
import numpy as np
parser = argparse.ArgumentParser(description="metric_learn inference")
parser.add_argument("--data_dir", type=str, required=True, help="data files directory.")
parser.add_argument("--result_dir", type=str, required=True, help="result files directory.")
args = parser.parse_args()
def functtt(param):
""" fun """
sharedlist, s, e = param
fea, a, b = sharedlist
ab = np.dot(fea[s:e], fea.T)
d = a[s:e] + b - 2 * ab
for i in range(e - s):
d[i][s + i] += 1e8
sorted_index = np.argsort(d, 1)[:, :10]
return sorted_index
def recall_topk_parallel(fea, lab, k):
""" recall_topk_parallel """
fea = np.array(fea)
fea = fea.reshape(fea.shape[0], -1)
n = np.sqrt(np.sum(fea ** 2, 1)).reshape(-1, 1)
fea = fea / n
a = np.sum(fea ** 2, 1).reshape(-1, 1)
b = a.T
sharedlist = mp.Manager().list()
sharedlist.append(fea)
sharedlist.append(a)
sharedlist.append(b)
N = 100
L = fea.shape[0] / N
params = []
for i in range(N):
if i == N - 1:
s, e = int(i * L), int(fea.shape[0])
else:
s, e = int(i * L), int((i + 1) * L)
params.append([sharedlist, s, e])
pool = mp.Pool(processes=4)
sorted_index_list = pool.map(functtt, params)
pool.close()
pool.join()
sorted_index = np.vstack(sorted_index_list)
res = 0
for i in range(len(fea)):
for j in range(k):
pred = lab[sorted_index[i][j]]
if lab[i] == pred:
res += 1.0
break
res = res / len(fea)
return res
def eval_mxbase(data_dir, result_dir):
print("\nBegin to eval \n")
TRAIN_LIST = os.path.join(data_dir, "test_half.txt")
TRAIN_LISTS = open(TRAIN_LIST, "r").readlines()
# cal_acc
result_shape = (1, 2048)
f, l = [], []
for _, item in enumerate(TRAIN_LISTS):
items = item.strip().split()
path = items[0]
result_bin_path = os.path.join(result_dir, "{}.bin".format(path.split(".")[0]))
result = np.fromfile(result_bin_path, dtype=np.float32).reshape(result_shape)
gt = int(items[1]) - 1
f.append(result)
l.append(gt)
f = np.vstack(f)
l = np.hstack(l)
recall = recall_topk_parallel(f, l, k=1)
print("eval_recall:", recall)
if __name__ == '__main__':
eval_mxbase(args.data_dir, args.result_dir)
\ No newline at end of file
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train resnet."""
import os
import time
import argparse
import ast
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore import export
from mindspore.common import set_seed
from mindspore.communication.management import init
from mindspore.train.callback import Callback
from src.loss import Softmaxloss
from src.loss import Tripletloss
from src.loss import Quadrupletloss
from src.lr_generator import get_lr
from src.resnet import resnet50
from src.utility import GetDatasetGenerator_softmax, GetDatasetGenerator_triplet, GetDatasetGenerator_quadruplet
set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
# modelarts parameter
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
parser.add_argument('--ckpt_url', type=str, default=None, help='Pretrained ckpt path')
parser.add_argument('--checkpoint_name', type=str, default='PreMetric.ckpt', help='Checkpoint file')
parser.add_argument('--loss_name', type=str, default='softmax',
help='loss name: softmax(pretrained) triplet quadruplet')
# Ascend parameter
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--ckpt_path', type=str, default=None, help='ckpt path name')
parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
parser.add_argument('--device_id', type=int, default=0, help='Device id')
parser.add_argument('--run_modelarts', type=ast.literal_eval, default=False, help='Run distribute')
# export
parser.add_argument('--export_batch_size', type=int, default=1, help="export batch size")
parser.add_argument('--export_file_name', type=str, default='resnet50', help="export file name.")
parser.add_argument('--export_width', type=int, default=224, help='export width')
parser.add_argument('--export_height', type=int, default=224, help='export height')
parser.add_argument('--export_file_format', type=str, choices=['AIR', 'ONNX', 'MINDIR'],
default='AIR', help='export file format')
args_opt = parser.parse_args()
class Monitor(Callback):
"""Monitor"""
def __init__(self, lr_init=None):
super(Monitor, self).__init__()
self.lr_init = lr_init
self.lr_init_len = len(lr_init)
def epoch_begin(self, run_context):
self.losses = []
self.epoch_time = time.time()
dataset_generator.__init__(data_dir=DATA_DIR, train_list=TRAIN_LIST)
def epoch_end(self, run_context):
cb_params = run_context.original_args()
epoch_mseconds = (time.time() - self.epoch_time) * 1000
per_step_mseconds = epoch_mseconds / cb_params.batch_num
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:8.5f}"
.format(epoch_mseconds, per_step_mseconds, np.mean(self.losses)))
print('batch_size:', config.batch_size, 'epochs_size:', config.epoch_size,
'lr_model:', config.lr_decay_mode, 'lr:', config.lr_max, 'step_size:', step_size)
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
"""step_end"""
cb_params = run_context.original_args()
step_mseconds = (time.time() - self.step_time) * 1000
step_loss = cb_params.net_outputs
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
step_loss = step_loss[0]
if isinstance(step_loss, Tensor):
step_loss = np.mean(step_loss.asnumpy())
self.losses.append(step_loss)
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
print("epochs: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:8.5f}/{:8.5f}], time:[{:5.3f}], lr:[{:8.5f}]".format(
cb_params.cur_epoch_num, config.epoch_size, cur_step_in_epoch, cb_params.batch_num, step_loss,
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
if __name__ == '__main__':
if args_opt.loss_name == 'softmax':
from src.config import config0 as config
from src.dataset import create_dataset0 as create_dataset
elif args_opt.loss_name == 'triplet':
from src.config import config1 as config
from src.dataset import create_dataset1 as create_dataset
elif args_opt.loss_name == 'quadruplet':
from src.config import config2 as config
from src.dataset import create_dataset1 as create_dataset
else:
print('loss no')
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
# init distributed
if args_opt.run_modelarts:
import moxing as mox
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
context.set_context(device_id=device_id)
local_data_url = '/cache/data'
local_ckpt_url = '/cache/ckpt'
local_train_url = '/cache/train'
if device_num > 1:
init()
context.set_auto_parallel_context(device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
local_data_url = os.path.join(local_data_url, str(device_id))
local_ckpt_url = os.path.join(local_ckpt_url, str(device_id))
mox.file.copy_parallel(args_opt.data_url, local_data_url)
mox.file.copy_parallel(args_opt.ckpt_url, local_ckpt_url)
DATA_DIR = local_data_url + '/'
else:
if args_opt.run_distribute:
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
context.set_context(device_id=device_id)
init()
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
else:
context.set_context(device_id=args_opt.device_id)
device_num = 1
device_id = args_opt.device_id
DATA_DIR = args_opt.dataset_path + '/'
# create dataset
TRAIN_LIST = DATA_DIR + 'train_half.txt'
if args_opt.loss_name == 'softmax':
dataset_generator = GetDatasetGenerator_softmax(data_dir=DATA_DIR,
train_list=TRAIN_LIST)
elif args_opt.loss_name == 'triplet':
dataset_generator = GetDatasetGenerator_triplet(data_dir=DATA_DIR,
train_list=TRAIN_LIST)
elif args_opt.loss_name == 'quadruplet':
dataset_generator = GetDatasetGenerator_quadruplet(data_dir=DATA_DIR,
train_list=TRAIN_LIST)
else:
print('loss no')
dataset = create_dataset(dataset_generator, do_train=True, batch_size=config.batch_size,
device_num=device_num, rank_id=device_id)
step_size = dataset.get_dataset_size()
# define net
net = resnet50(class_num=config.class_num)
# init weight
if args_opt.run_modelarts:
checkpoint_path = os.path.join(local_ckpt_url, args_opt.checkpoint_name)
else:
checkpoint_path = args_opt.ckpt_path
param_dict = load_checkpoint(checkpoint_path)
load_param_into_net(net.backbone, param_dict)
# init lr
lr = Tensor(get_lr(lr_init=config.lr_init,
lr_end=config.lr_end,
lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs,
total_epochs=config.epoch_size,
steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode))
# define opt
opt = Momentum(params=net.trainable_params(),
learning_rate=lr,
momentum=config.momentum,
weight_decay=config.weight_decay,
loss_scale=config.loss_scale)
# define loss, model
if args_opt.loss_name == 'softmax':
loss = Softmaxloss(sparse=True, smooth_factor=0.1, num_classes=config.class_num)
elif args_opt.loss_name == 'triplet':
loss = Tripletloss(margin=0.1)
elif args_opt.loss_name == 'quadruplet':
loss = Quadrupletloss(train_batch_size=config.batch_size, samples_each_class=2, margin=0.1)
else:
print('loss no')
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
if args_opt.loss_name == 'softmax':
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=None,
amp_level='O3', keep_batchnorm_fp32=False)
else:
model = Model(net.backbone, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics=None,
amp_level='O3', keep_batchnorm_fp32=False)
#define callback
cb = []
ckpt_cb = None
if config.save_checkpoint and (device_num == 1 or device_id == 0):
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
check_name = 'ResNet50_' + args_opt.loss_name
if args_opt.run_modelarts:
ckpt_cb = ModelCheckpoint(prefix=check_name, directory=local_train_url, config=config_ck)
else:
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_'+ str(device_id) +'/')
ckpt_cb = ModelCheckpoint(prefix=check_name, directory=save_ckpt_path, config=config_ck)
cb += [ckpt_cb]
cb += [Monitor(lr_init=lr.asnumpy())]
# train model
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
ckpt_name = ckpt_cb.latest_ckpt_file_name
# frozen to air file
net = resnet50(config.class_num)
param_dict = load_checkpoint(ckpt_name)
load_param_into_net(net.backbone, param_dict)
input_arr = Tensor(np.zeros([args_opt.export_batch_size, 3, args_opt.export_height, args_opt.export_width],
np.float32))
export(net.backbone, input_arr, file_name='{0}/{1}'.format(local_train_url, args_opt.export_file_name),
file_format=args_opt.export_file_format)
if args_opt.run_modelarts and config.save_checkpoint and (device_num == 1 or device_id == 0):
mox.file.copy_parallel(src_url=local_train_url, dst_url=args_opt.train_url)
#!/bin/bash
# Copyright (c) 2022. Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
docker_image=$1
data_dir=$2
model_dir=$3
docker run -it -u root --ipc=host \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
--privileged \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons \
-v ${data_dir}:${data_dir} \
-v ${model_dir}:${model_dir} \
-v /root/ascend/log:/root/ascend/log ${docker_image} /bin/bash
\ No newline at end of file
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment