Skip to content
Snippets Groups Projects
Commit 0af8598c authored by i-robot's avatar i-robot Committed by Gitee
Browse files

!1682 add meta_baseline and refinenet 310 infer

Merge pull request !1682 from 张晓晓/master
parents 8b7c7ffd 68e95b83
No related branches found
No related tags found
No related merge requests found
Showing
with 1381 additions and 15 deletions
......@@ -31,6 +31,8 @@
#include "include/dataset/vision_ascend.h"
#include "include/dataset/execute.h"
#include "include/dataset/vision.h"
#include "include/dataset/vision_lite.h"
#include "inc/utils.h"
using mindspore::Context;
......@@ -47,6 +49,8 @@ using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::Rescale;
using mindspore::dataset::vision::RGB2GRAY;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_path, ".", "dataset path");
......@@ -108,15 +112,14 @@ int main(int argc, char **argv) {
inputs.emplace_back(imgDvpp->Name(), imgDvpp->DataType(), imgDvpp->Shape(),
imgDvpp->Data().get(), imgDvpp->DataSize());
} else {
std::shared_ptr<TensorTransform> decode(new Decode());
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
std::shared_ptr<TensorTransform> normalize(
new Normalize({123.675, 116.28, 103.53}, {58.395, 57.120, 57.375}));
auto decode = Decode();
auto hwc2chw = HWC2CHW();
auto togray = RGB2GRAY();
auto rescale_op1 = Rescale(1/255.0, 0.0);
auto rescale_op2 = Rescale(1/ 0.3081, -1 * 0.1307 / 0.3081);
auto resizeShape = {FLAGS_image_height, FLAGS_image_width};
std::shared_ptr<TensorTransform> resize(new Resize(resizeShape));
auto resizeShape1 = {1, FLAGS_image_height};
std::shared_ptr<TensorTransform> reshape_one_channel(new Resize(resizeShape1));
Execute composeDecode({decode, resize, normalize, hwc2chw, reshape_one_channel});
auto resize = Resize(resizeShape);
Execute composeDecode({decode, togray, resize, rescale_op1, rescale_op2, hwc2chw});
auto img = MSTensor();
auto image = ReadFileToTensor(all_files[i]);
composeDecode(image, &img);
......
......@@ -23,6 +23,10 @@
- [Ascend处理器环境运行](#ascend处理器环境运行-1)
- [结果](#结果-1)
- [训练准确率](#训练准确率)
- [Mindir推理](#Mindir推理)
- [导出模型](#导出模型)
- [在Ascend310执行推理](#在Ascend310执行推理)
- [结果](#结果)
- [模型描述](#模型描述)
- [性能](#性能)
- [评估性能](#评估性能)
......@@ -347,6 +351,35 @@ cd ..
| :----------: | :-----: | :-------------: |
| refinenet | 80.3 | 80.3 |
## Mindir推理
### [导出模型](#contents)
```shell
python export.py --checkpoint [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
- 参数`checkpoint`为必填项。
- `file_format` 必须在 ["AIR", "MINDIR"]中选择。
### 在Ascend310执行推理
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用mindir模型执行推理的示例。
目前仅支持batch_size为1的推理。
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATA_ROOT] [DATA_LIST] [DEVICE_ID]
```
- `DATA_ROOT` 表示进入模型推理数据集的根目录。
- `DATA_LIST` 表示进入模型推理数据集的文件列表。
- `DEVICE_ID` 可选,默认值为0。
### 结果
推理结果保存在脚本执行的当前路径,你可以在acc.log中看到以下精度计算结果。
# 模型描述
## 性能
......
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
\ No newline at end of file
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make
\ No newline at end of file
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
std::vector<std::string> GetImagesById(const std::string &idFile, const std::string &dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::string& segstr,
const std::vector<mindspore::MSTensor> &outputs);
#endif
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/context.h"
#include "include/api/model.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/dataset/vision.h"
#include "include/dataset/execute.h"
#include "../inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
using mindspore::dataset::TensorTransform;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::Pad;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::SwapRedBlue;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::HorizontalFlip;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(image_list, "", "image list");
DEFINE_string(dataset_path, ".", "dataset path");
DEFINE_int32(device_id, 0, "device id");
int PadImage(const MSTensor& input, MSTensor* output) {
std::shared_ptr<TensorTransform> normalize(new Normalize({ 103.53, 116.28, 123.675 },
{ 57.375, 57.120, 58.395 }));
std::shared_ptr<TensorTransform> swapredblue(new SwapRedBlue());
Execute NormalizeBgr({normalize, swapredblue});
std::vector<int64_t> shape = input.Shape();
auto imgResize = MSTensor();
auto imgNormalizeBgr = MSTensor();
int paddingSize;
const int IMAGEWIDTH = 513;
const int IMAGEHEIGHT = 513;
float widthScale, heightScale;
widthScale = static_cast<float>(IMAGEWIDTH) / shape[1];
heightScale = static_cast<float>(IMAGEHEIGHT) / shape[0];
Status ret;
if (widthScale < heightScale) {
int heightSize = shape[0] * widthScale;
std::shared_ptr<TensorTransform> resize(new Resize({ heightSize, IMAGEWIDTH }));
Execute composeResizeWidth({ resize });
ret = composeResizeWidth(input, &imgResize);
if (ret != kSuccess) {
std::cout << "ERROR: Resize Width failed." << std::endl;
return 1;
}
ret = NormalizeBgr(imgResize, &imgNormalizeBgr);
if (ret != kSuccess) {
std::cout << "ERROR: Normalize and bgr transfer failed." << std::endl;
return 1;
}
paddingSize = IMAGEHEIGHT - heightSize;
std::shared_ptr<TensorTransform> pad(new Pad({ 0, 0, 0, paddingSize }));
Execute composePad({ pad });
ret = composePad(imgNormalizeBgr, output);
if (ret != kSuccess) {
std::cout << "ERROR: Height Pad failed." << std::endl;
return 1;
}
} else {
int widthSize = shape[1] * heightScale;
std::shared_ptr<TensorTransform> resize(new Resize({ IMAGEHEIGHT, widthSize }));
Execute composeResizeHeight({ resize });
ret = composeResizeHeight(input, &imgResize);
if (ret != kSuccess) {
std::cout << "ERROR: Resize Height failed." << std::endl;
return 1;
}
ret = NormalizeBgr(imgResize, &imgNormalizeBgr);
if (ret != kSuccess) {
std::cout << "ERROR: Normalize and bgr transfer failed." << std::endl;
return 1;
}
paddingSize = IMAGEWIDTH - widthSize;
std::shared_ptr<TensorTransform> pad(new Pad({ 0, 0, paddingSize, 0 }));
Execute composePad({ pad });
ret = composePad(imgNormalizeBgr, output);
if (ret != kSuccess) {
std::cout << "ERROR: Width Pad failed." << std::endl;
return 1;
}
}
return 0;
}
int main(int argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto all_files = GetImagesById(FLAGS_image_list, FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = all_files.size();
std::shared_ptr<TensorTransform> decode(new Decode());
std::shared_ptr<TensorTransform> swapredblue(new SwapRedBlue());
Execute DecodeBgr({decode, swapredblue});
Execute hwc2chw(std::make_shared<HWC2CHW>());
Execute horizonflip(std::make_shared<HorizontalFlip>());
for (size_t i = 0; i < size; ++i) {
struct timeval start = { 0 }, end = { 0 };
double startTimeMs, endTimeMs;
std::vector<MSTensor> inputs, outputs, inputFlip, outputFlip;
std::cout << "Start predict input files:" << all_files[i] << std::endl;
auto image = ReadFileToTensor(all_files[i]);
auto imgDecodeBgr = MSTensor();
ret = DecodeBgr(image, &imgDecodeBgr);
if (ret != kSuccess) {
std::cout << "ERROR: Decode and RgbToBgr failed." << std::endl;
return 1;
}
auto imgPad = MSTensor(), img = MSTensor(), imgFlip = MSTensor(), imgtrans = MSTensor();
PadImage(imgDecodeBgr, &imgPad);
hwc2chw(imgPad, &img);
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
img.Data().get(), img.DataSize());
horizonflip(imgPad, &imgtrans);
hwc2chw(imgtrans, &imgFlip);
inputFlip.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
imgFlip.Data().get(), imgFlip.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
auto retFlip = model.Predict(inputFlip, &outputFlip);
if ((ret != kSuccess) || (retFlip != kSuccess)) {
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
int rst = WriteResult(all_files[i], "", outputs);
int rstFlip = WriteResult(all_files[i], "_Flip", outputFlip);
if ((rst != 0) || (rstFlip != 0)) {
std::cout << "write result failed." << std::endl;
return rst;
}
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: " << average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: " << average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "../inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
std::vector<std::string> GetImagesById(const std::string &idFile, const std::string &dirName) {
std::ifstream readFile(idFile);
std::string line;
std::vector<std::string> result;
if (!readFile.is_open()) {
std::cout << "can not open image id txt file" << std::endl;
return result;
}
while (getline(readFile, line)) {
std::size_t pos = line.find(" ");
std::string id = line.substr(0, pos);
result.emplace_back(dirName + "/" + id);
}
return result;
}
int WriteResult(const std::string& imageFile, const std::string& segstr, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
const int INVALID_POINTER = -1;
const int ERROR = -2;
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'),
'_' + std::to_string(i) + segstr + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
if (outputFile == nullptr) {
std::cout << "open result file " << outFileName << " failed" << std::endl;
return INVALID_POINTER;
}
size_t size = fwrite(netOutput.get(), sizeof(char), outputSize, outputFile);
if (size != outputSize) {
fclose(outputFile);
outputFile = nullptr;
std::cout << "write result file " << outFileName << " failed, write size[" << size <<
"] is smaller than output size[" << outputSize << "], maybe the disk is full." << std::endl;
return ERROR;
}
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export AIR file."""
"""export file."""
import argparse
import numpy as np
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
......@@ -24,13 +24,17 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser(description='checkpoint export')
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of refinenet (Default: None)')
parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--crop_size', type=int, default=513, help='crop size')
parser.add_argument('--file_name', type=str, default="refinenet", help='model name')
parser.add_argument('--file_format', type=str, choices=["MINDIR", "AIR"], default="MINDIR", help='model format')
args = parser.parse_args()
network = RefineNet(Bottleneck, [3, 4, 23, 3], args.num_classes)
param_dict = load_checkpoint(args.checkpoint)
# load the parameter into net
load_param_into_net(network, param_dict)
input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32)
export(network, Tensor(input_data), file_name=args.model + '-300_11.air', file_format='AIR')
image_shape = [args.batch_size, 3, args.crop_size, args.crop_size]
input_data = np.random.uniform(0.0, 1.0, size=image_shape).astype(np.float32)
export(network, Tensor(input_data), file_name=args.file_name, file_format=args.file_format)
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""post process for 310 inference"""
import os
import argparse
import numpy as np
from PIL import Image
import cv2
parser = argparse.ArgumentParser(description="refinenet accuracy calculation")
parser.add_argument('--data_root', type=str, default='./vocaug_single', help='root path of val data')
parser.add_argument('--data_lst', type=str, default='', help='list of val data')
parser.add_argument('--crop_size', type=int, default=513, help='crop size')
parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
parser.add_argument('--result_path', type=str, default='./result_Files', help='result Files path')
parser.add_argument('--flip', action='store_true', help='perform left-right flip')
args, _ = parser.parse_known_args()
def get_img_size(file_name):
img = Image.open(file_name)
return img.size
def get_resized_size(org_h, org_w, long_size=513):
if org_h > org_w:
new_h = long_size
new_w = int(1.0 * long_size * org_w / org_h)
else:
new_w = long_size
new_h = int(1.0 * long_size * org_h / org_w)
return new_h, new_w
def cal_hist(a, b, n):
k = (a >= 0) & (a < n)
return np.bincount(n * a[k].astype(np.int32) + b[k], minlength=n ** 2).reshape(n, n)
def acc_cal():
''' calculate accuarcy'''
hist = np.zeros((args.num_classes, args.num_classes))
with open(args.data_lst) as f:
img_lst = f.readlines()
for line in enumerate(img_lst):
img_path, msk_path = line[1].strip().split(' ')
img_file_path = os.path.join(args.data_root, img_path)
org_width, org_height = get_img_size(img_file_path)
resize_h, resize_w = get_resized_size(org_height, org_width)
result_file = os.path.join(args.result_path, os.path.basename(img_path).split('.jpg')[0] + '_0.bin')
net_out = np.fromfile(result_file, np.float32).reshape(args.num_classes, args.crop_size, args.crop_size)
if args.flip:
bin_path = os.path.basename(img_path).split('.jpg')[0] + '_0_Flip.bin'
net_out_flip = np.fromfile(os.path.join(args.result_path, bin_path), np.float32)
net_out_flip = net_out_flip.reshape(args.num_classes, args.crop_size, args.crop_size)
net_out += net_out_flip[:, :, ::-1]
probs_ = net_out[:, :resize_h, :resize_w].transpose((1, 2, 0))
probs_ = cv2.resize(probs_, (org_width, org_height))
result_msk = probs_.argmax(axis=2)
msk_path = os.path.join(args.data_root, msk_path)
mask = cv2.imread(msk_path, cv2.IMREAD_GRAYSCALE)
hist += cal_hist(mask.flatten(), result_msk.flatten(), args.num_classes)
print(hist)
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
print('per-class IoU', iu)
print('mean IoU', np.nanmean(iu))
if __name__ == '__main__':
acc_cal()
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_ROOT] [DATA_LIST] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
data_root=$(get_real_path $2)
data_list_path=$(get_real_path $3)
device_id=0
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "data root path: "$data_root
echo "data list path: "$data_list_path
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app()
{
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --dataset_path=$data_root --image_list=$data_list_path --device_id=$device_id &> infer.log
}
function cal_acc()
{
python ../postprocess.py --data_root=$data_root --data_lst=$data_list_path --scales=1.0 --result_path=./result_Files --flip &> acc.log
}
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi
......@@ -14,6 +14,10 @@
- [1. Training Classifier-Baseline](#1-training-classifier-baseline)
- [2. Training Meta-Baseline](#2-training-meta-baseline)
- [3. Test](#3-test)
- [Inference Process](#inference-process)
- [Export MindIR](#export-mindir)
- [Infer on Ascend310](#infer-on-ascend310)
- [result](#result)
- [Performance](#Performance)
- [Citation](#citation)
......@@ -200,6 +204,38 @@ python eval.py --load_encoder (dir) --num_shots 1 --root_path ./dataset/ --devic
```
## Inference Process
### [Export MindIR](#contents)
```shell
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
- The `ckpt_file` parameter is required.
- `file_format` should be in ["AIR", "MINDIR"].
### Infer on Ascend310
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [ROOT_PATH] [NEED_PREPROCESS] [DEVICE_ID]
```
- `ROOT_PATH` the root path of validation dataset.
- `NEED_PREPROCESS` means weather need preprocess or not, it's value is 'y' or 'n'.
- `DEVICE_ID` is optional, default value is 0.
### result
Inference result is saved in current path, you can find result like this in acc.log file.
## [Performance](#Contents)
### Training Performance
......
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/dataset/execute.h"
#include "include/dataset/vision.h"
#include "inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(input0_path, ".", "input0 path");
DEFINE_int32(device_id, 0, "device id");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto input0_files = GetAllFiles(FLAGS_input0_path);
if (input0_files.empty()) {
std::cout << "ERROR: input data empty." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = input0_files.size();
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << input0_files[i] << std::endl;
auto input0 = ReadFileToTensor(input0_files[i]);
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
input0.Data().get(), input0.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(input0_files[i], outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE * outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}
......@@ -25,7 +25,7 @@ from src.model.classifier import Classifier
parser = argparse.ArgumentParser(description='meta-baseline')
parser.add_argument('--device_id', type=int, default=0, help='Device id.')
parser.add_argument("--batch_size", type=int, default=128, help="batch size")
parser.add_argument("--batch_size", type=int, default=320, help="batch size")
parser.add_argument('--n_classes', type=int, default=64)
parser.add_argument('--ckpt_file', type=str, required=True, help='Checkpoint file path.')
parser.add_argument('--file_name', type=str, default='meta_baseline', help='Output file name.')
......@@ -45,7 +45,7 @@ if __name__ == '__main__':
assert args.ckpt_file is not None, "args.ckpt_file is None."
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(network, param_dict)
network.set_train(mode=False)
img = Tensor(np.ones([args.batch_size, 3, 84, 84]), mstype.float32)
export(network, img, file_name=args.file_name, file_format=args.file_format)
export(network.encoder, img, file_name=args.file_name, file_format=args.file_format)
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
postprocess
"""
import os
import argparse
from functools import reduce
import numpy as np
import mindspore as ms
from mindspore import ops, Tensor, context
import src.util as util
def cal_acc(args):
"""
:return: meta-baseline eval
"""
temp = 5.
n_shots = [args.num_shots]
file_num = int(len(os.listdir(args.post_result_path)) / args.num_shots)
aves_keys = ['tl', 'ta', 'vl', 'va']
for n_shot in n_shots:
aves_keys += ['fsa-' + str(n_shot)]
aves = {k: util.Averager() for k in aves_keys}
label_list = np.load(os.path.join(args.pre_result_path, "label.npy"), allow_pickle=True)
shape_list = np.load(os.path.join(args.pre_result_path, "shape.npy"), allow_pickle=True)
x_shot_shape = shape_list[0]
x_query_shape = shape_list[1]
shot_shape = x_shot_shape[:-3]
query_shape = x_query_shape[:-3]
x_shot_len = reduce(lambda x, y: x*y, shot_shape)
x_query_len = reduce(lambda x, y: x*y, query_shape)
for i, n_shot in enumerate(n_shots):
np.random.seed(0)
label_shot = label_list[i]
for j in range(file_num):
labels = Tensor(label_shot[j])
f = os.path.join(args.post_result_path, "nshot_" + str(i) + "_" + str(j) + "_0.bin")
x_tot = Tensor(np.fromfile(f, np.float32).reshape(args.batch_size, 512))
x_shot, x_query = x_tot[:x_shot_len], x_tot[-x_query_len:]
x_shot = x_shot.view(*shot_shape, -1)
x_query = x_query.view(*query_shape, -1)
########## cross-class bias ############
bs = x_shot.shape[0]
fs = x_shot.shape[-1]
bias = x_shot.view(bs, -1, fs).mean(1) - x_query.mean(1)
x_query = x_query + ops.ExpandDims()(bias, 1)
x_shot = x_shot.mean(axis=-2)
x_shot = ops.L2Normalize(axis=-1)(x_shot)
x_query = ops.L2Normalize(axis=-1)(x_query)
logits = ops.BatchMatMul()(x_query, x_shot.transpose(0, 2, 1))
logits = logits * temp
ret = ops.Argmax()(logits) == labels.astype(ms.int32)
acc = ret.astype(ms.float32).mean()
aves['fsa-' + str(n_shot)].add(acc.asnumpy())
for k, v in aves.items():
aves[k] = v.item()
for n_shot in n_shots:
key = 'fsa-' + str(n_shot)
print("epoch {}, {}-shot, val acc {:.4f}".format(str(1), n_shot, aves[key]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device_target', type=str, default='CPU', choices=['Ascend', 'GPU', 'CPU'])
parser.add_argument('--dataset', default='mini-imagenet')
parser.add_argument('--post_result_path', default='./result_Files')
parser.add_argument('--pre_result_path', type=str, default='./preprocess_Result')
parser.add_argument('--batch_size', type=int, default=320)
parser.add_argument('--num_shots', type=int, default=1)
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
cal_acc(args_opt)
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
preprocess
"""
import os
import argparse
import numpy as np
from mindspore import ops, context
import mindspore.dataset as ds
import src.util as util
from src.data.IterSamplers import CategoriesSampler
from src.data.mini_Imagenet import MiniImageNet
def gen_bin(args):
"""
generate binary files
"""
n_way = 5
n_query = 15
n_shots = [args.num_shots]
root_path = os.path.join(args.root_path, args.dataset)
testset = MiniImageNet(root_path, 'test')
fs_loaders = []
for n_shot in n_shots:
test_sampler = CategoriesSampler(testset.data, testset.label, n_way, n_shot + n_query,
200,
args.ep_per_batch)
test_loader = ds.GeneratorDataset(test_sampler, ['data'], shuffle=True)
fs_loaders.append(test_loader)
input_path = os.path.join(args.pre_result_path, "00_data")
label_path = os.path.join(args.pre_result_path, "label.npy")
shape_path = os.path.join(args.pre_result_path, "shape.npy")
if not os.path.exists(input_path):
os.makedirs(input_path)
label_list = []
shape_list = []
for i, n_shot in enumerate(n_shots):
np.random.seed(0)
label_shot = []
for j, data in enumerate(fs_loaders[i].create_dict_iterator()):
x_shot, x_query = data['data'][:, :, :n_shot], data['data'][:, :, n_shot:]
img_shape = x_query.shape[-3:]
x_query = x_query.view(args.ep_per_batch, -1,
*img_shape) # bs*(way*n_query)*3*84*84
label = util.make_nk_label(n_way, n_query, args.ep_per_batch) # bs*(way*n_query)
if j == 0:
shape_list.append(x_shot.shape)
shape_list.append(x_query.shape)
img_shape = x_shot.shape[-3:]
x_shot = x_shot.view(-1, *img_shape)
x_query = x_query.view(-1, *img_shape)
input0 = ops.Concat(0)([x_shot, x_query])
file_name = "nshot_" + str(i) + "_" + str(j) + ".bin"
input0.asnumpy().tofile(os.path.join(input_path, file_name))
label_shot.append(label.asnumpy())
label_list.append(label_shot)
np.save(label_path, label_list)
np.save(shape_path, shape_list)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', default='./dataset/')
parser.add_argument('--device_target', type=str, default='CPU', choices=['Ascend', 'GPU', 'CPU'])
parser.add_argument('--dataset', default='mini-imagenet')
parser.add_argument('--ep_per_batch', type=int, default=4)
parser.add_argument('--pre_result_path', type=str, default='./preprocess_Result')
parser.add_argument('--num_shots', type=int, default=1)
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
gen_bin(args_opt)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [ROOT_PATH] [NEED_PREPROCESS] [DEVICE_ID]
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'.
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
dataset_root_path=$(get_real_path $2)
if [ "$3" == "y" ] || [ "$3" == "n" ];then
need_preprocess=$3
else
echo "weather need preprocess or not, it's value must be in [y, n]"
exit 1
fi
device_id=0
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "root dataset path: "$dataset_root_path
echo "need preprocess: "$need_preprocess
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function preprocess_data()
{
if [ -d preprocess_Result ]; then
rm -rf ./preprocess_Result
fi
mkdir preprocess_Result
python ../preprocess.py --root_path $dataset_root_path
}
function compile_app()
{
cd ../ascend310_infer || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --input0_path=./preprocess_Result/00_data --device_id=$device_id &> infer.log
}
function cal_acc()
{
python ../postprocess.py &> acc.log
}
if [ $need_preprocess == "y" ]; then
preprocess_data
if [ $? -ne 0 ]; then
echo "preprocess dataset failed"
exit 1
fi
fi
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment