Skip to content
Snippets Groups Projects
Commit 2ff80678 authored by i-robot's avatar i-robot Committed by Gitee
Browse files

!1658 u2net 310

Merge pull request !1658 from qqq13579/master
parents 0ae8cb15 148f07b1
No related branches found
No related tags found
No related merge requests found
......@@ -9,7 +9,9 @@
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Run On Modelarts](#run-on-modelarts)
- [Model Export](#model-export)
- [Training Process](#training-process)
- [Ascend310 Inference Process](#ascend310-inference-process)
- [Model Description](#model-description)
- [Performance](#performance)
- [Training Performance](#training-performance)
......@@ -54,7 +56,8 @@ To train U<sup>2</sup>-Net, We use the dataset [DUTS-TR](http://saliencydetectio
```shell
U-2-Net
├─ README.md # descriptions about U-2-Net
├─ scripts
├─ scripts
├─ run_infer_310.sh # 310 inference
└─ run_distribute_train.sh # launch Ascend training (8 Ascend)
├─ assets # save pics for README.MD
├─ ckpts # save ckpt
......@@ -65,7 +68,11 @@ U-2-Net
├─ train_modelarts.py # train script for online train
├─ test.py # generate detection images
├─ eval.py # eval script
└─ train.py # train script
├─ train.py # train script
├─ ascend310_infer # 310 main
├─ export.py
├─ preprocess.py
└─ postprocess.py
```
## [Script Parameters](#contents)
......@@ -166,6 +173,30 @@ bash run_distribute_train.sh [/path/to/content] [/path/to/label] [/path/to/RANK_
1. hccl.json which is specified by RANK_TABLE_FILE is needed when you are running a distribute task. You can generate it
by using the [hccl_tools](https://gitee.com/mindspore/models/tree/master/utils/hccl_tools).
## [Model Export](#contents)
```bash
python export.py --ckpt_dir [/path/to/ckpt_file]
```
## [Ascend310 Inference Process](#contents)
### Export MINDIR file
```bash
python export.py --ckpt_file [/path/to/ckpt_file]
```
### Ascend310 Inference
- Run `run_infer_310.sh` for Ascend310 inference.
```bash
# infer
bash run_infer_310.sh [MINDIR_PATH] [CONTENT_PATH] [LABEL_PATH] [DEVICE_ID]
```
Semantically segmented pictures will be stored in the postprocess_Result path and the evaluation result will be stored in evaluation.log.
# [Model Description](#contents)
......@@ -191,7 +222,7 @@ bash run_distribute_train.sh [/path/to/content] [/path/to/label] [/path/to/RANK_
| Parameters | single Ascend |
| ----------------- | ------------------------------------------------ |
| Model Version | v1 |
| Model Version | U-2-Net |
| Resource | Red Hat 8.3.1; Ascend 910; CPU 2.60GHz; 192cores |
| MindSpore Version | 1.3.0 |
| Dataset | content images |
......@@ -203,7 +234,7 @@ bash run_distribute_train.sh [/path/to/content] [/path/to/label] [/path/to/RANK_
| Parameters | single Ascend |
| ----------------- | ------------------------------------------------ |
| Model Version | v1 |
| Model Version | U-2-Net |
| Resource | Red Hat 8.3.1; Ascend 910; CPU 2.60GHz; 192cores |
| MindSpore Version | 1.3.0 |
| Dataset | DUTS-TE |
......
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
find_package(gflags REQUIRED)
\ No newline at end of file
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <dirent.h>
#include <gflags/gflags.h>
#include <sys/time.h>
#include <algorithm>
#include <fstream>
#include <iosfwd>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include "inc/utils.h"
#include "include/api/context.h"
#include "include/api/model.h"
#include "include/api/serialization.h"
#include "include/api/types.h"
#include "include/dataset/execute.h"
#include "include/dataset/vision.h"
using mindspore::Context;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::Model;
using mindspore::ModelType;
using mindspore::MSTensor;
using mindspore::Serialization;
using mindspore::Status;
using mindspore::dataset::Execute;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(input_path, ".", "input path");
DEFINE_int32(device_id, 0, "device id");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
Model model;
Status ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> model_inputs = model.GetInputs();
if (model_inputs.empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
auto input_files = GetAllFiles(FLAGS_input_path);
if (input_files.empty()) {
std::cout << "ERROR: input data empty." << std::endl;
return 1;
}
std::map<double, double> costTime_map;
size_t size = input_files.size();
for (size_t i = 0; i < size; ++i) {
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << input_files[i] << std::endl;
auto input0 = ReadFileToTensor(input_files[i]);
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(),
model_inputs[0].Shape(), input0.Data().get(),
input0.DataSize());
gettimeofday(&start, nullptr);
ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << input_files[i] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(input_files[i], outputs);
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: " << average
<< " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: " << average
<< "ms of infer_count " << inferCount << std::endl;
std::string fileName =
"./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "inc/utils.h"
#include <algorithm>
#include <fstream>
#include <iostream>
using mindspore::DataType;
using mindspore::MSTensor;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
int WriteResult(const std::string &imageFile,
const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'),
'_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE *outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8,
{static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}
......@@ -75,7 +75,7 @@ if __name__ == '__main__':
pred = np.array(Image.open(pred_path), dtype='float32')
pic_name = content_list[i].replace(".jpg", "").replace(".png", "").replace(".JPEG", "")
print("%d / %d , %s \n" % (i, len(content_list), pic_name))
print("%d / %d , %s \n" % (i+1, len(content_list), pic_name))
label_path = os.path.join(label_directory, pic_name) + ".png"
label = np.array(Image.open(label_path), dtype='float32')
if len(label.shape) > 2:
......
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export U-2-Net model"""
import argparse
import numpy as np
from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
from src.blocks import U2NET
parser = argparse.ArgumentParser(description='checkpoint export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="u2net",
help="output file name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="MINDIR", help="file format")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if __name__ == '__main__':
context.set_context(device_id="Ascend")
net = U2NET()
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(net, param_dict)
input_data = Tensor(np.zeros([1, 3, 320, 320], np.float32))
export(net, input_data, file_name=args.file_name, file_format=args.file_format)
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""postprocess"""
import argparse
import os
import cv2
import imageio
import numpy as np
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument("--bin_path", type=str, help='bin_path, path to binary files generated by 310 model, default: None')
parser.add_argument("--content_path", type=str, help='content_path, default: None')
parser.add_argument("--output_dir", type=str, default='output_dir',
help='output_path, path to store output, default: None')
args = parser.parse_args()
if __name__ == "__main__":
bin_path = args.bin_path
original_dir = args.content_path
content_list = os.listdir(args.bin_path)
def normPRED(d):
"""rescale the value of tensor to between 0 and 1"""
ma = d.max()
mi = d.min()
dn = (d - mi) / (ma - mi)
return dn
for i in range(0, len(content_list)):
pic_path = os.path.join(args.bin_path, content_list[i])
b = np.fromfile(pic_path, dtype=np.float32, count=320 * 320)
b = np.reshape(b, (320, 320))
file_path = os.path.join(original_dir, content_list[i]).replace("_0.bin", ".jpg")
original = np.array(Image.open(file_path), dtype='float32')
shape = original.shape
b = normPRED(b)
image = b
content_name = content_list[i].replace("_0.bin", "")
image = cv2.resize(image, dsize=(0, 0), fx=shape[1] / image.shape[1], fy=shape[0] / image.shape[0])
image_path = os.path.join(args.output_dir, content_name) + ".png"
imageio.imsave(image_path, image)
print("%d / %d , %s \n" % (i, len(content_list), content_name))
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""preprocess"""
import argparse
import os
import cv2
import numpy as np
from PIL import Image
parser = argparse.ArgumentParser('preprocess')
parser.add_argument("--content_path", type=str, help='content_path, default: None')
parser.add_argument('--output_path', type=str, default="./preprocess_Result/", help='eval data dir')
args = parser.parse_args()
if __name__ == "__main__":
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
def normalize(img, im_type):
"""normalize tensor"""
if im_type == "label":
return img
if len(img.shape) == 3:
img[:, :, 0] = (img[:, :, 0] - 0.485) / 0.229
img[:, :, 1] = (img[:, :, 1] - 0.456) / 0.224
img[:, :, 2] = (img[:, :, 2] - 0.406) / 0.225
else:
img = (img - 0.485) / 0.229
return img
def crop_and_resize(img_path, im_type, size=320):
"""crop and resize tensors"""
img = np.array(Image.open(img_path), dtype='float32')
img = img / 255
img = normalize(img, im_type)
h, w = img.shape[:2]
img = cv2.resize(img, dsize=(0, 0), fx=size / w, fy=size / h)
if len(img.shape) == 2:
img = np.expand_dims(img, 2).repeat(1, axis=2)
im = img
im = np.swapaxes(im, 1, 2)
im = np.swapaxes(im, 0, 1)
im = np.reshape(im, (1, im.shape[0], im.shape[1], im.shape[2]))
return im
content_list = os.listdir(args.content_path)
for j in range(0, len(content_list)):
pic_path = os.path.join(args.content_path, content_list[j])
content_pic = crop_and_resize(pic_path, im_type="content", size=320)
file_name = content_list[j].replace(".jpg", "") + ".bin"
image_path = os.path.join(args.output_path, file_name)
content_pic.tofile(image_path)
print("Export bin files finished!")
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 3 || $# -gt 4 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [CONTENT_PATH] [LABEL_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
content_path=$(get_real_path $2)
label_path=$(get_real_path $3)
device_id=0
if [ $# == 4 ]; then
device_id=$4
fi
echo "mindir name: "$model
echo "content path: "$content_path
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function preprocess_data()
{
if [ -d preprocess_Result ]; then
rm -rf ./preprocess_Result
fi
mkdir preprocess_Result
python3.7 ../preprocess.py --content_path $content_path --output_path='./preprocess_Result/'
}
function compile_app()
{
cd ../ascend310_infer/ || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --input_path=./preprocess_Result --device_id=$device_id &> infer.log
}
function post_process()
{
if [ -d postprocess_Result ]; then
rm -rf ./postprocess_Result
fi
mkdir postprocess_Result
python3.7 ../postprocess.py --bin_path='./result_Files' --content_path $content_path --output_dir='./postprocess_Result/' &> postprocess.log
}
function evaluation()
{
python3.7 ../eval.py --pred_dir='./postprocess_Result/' --label_dir $label_path &> evaluation.log
}
preprocess_data
if [ $? -ne 0 ]; then
echo "preprocess dataset failed"
exit 1
fi
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
post_process
if [ $? -ne 0 ]; then
echo " execute post_process failed"
exit 1
fi
\ No newline at end of file
......@@ -82,7 +82,7 @@ if __name__ == '__main__':
return img
def crop_and_resize(img_path, im_type, size=320):
def resize_im(img_path, size=320):
"""crop and resize tensors"""
img = np.array(Image.open(img_path), dtype='float32')
img = img / 255
......@@ -105,7 +105,7 @@ if __name__ == '__main__':
start_time = time.time()
for j in range(0, len(content_list)):
pic_path = os.path.join(local_dataset_dir, content_list[j])
content_pic = crop_and_resize(pic_path, im_type="content", size=320)
content_pic = resize_im(pic_path, size=320)
image = net(Tensor(content_pic))
content_name = content_list[j].replace(".jpg", "")
content_name = content_name.replace(".png", "")
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment