Skip to content
Snippets Groups Projects
Commit 63187dd0 authored by i-robot's avatar i-robot Committed by Gitee
Browse files

!354 [西安电子科技大学][高校贡献][Mindspore][ibnnet]-新增ascend310推理

Merge pull request !354 from 水扬波/ibnnet_310
parents 3b9db5c0 264e8b3b
No related branches found
No related tags found
No related merge requests found
......@@ -15,13 +15,14 @@
- [分布式训练](#分布式训练)
- [评估过程](#评估过程)
- [评估](#评估)
- [导出mindir模型](#导出mindir模型)
- [推理过程](#推理过程)
- [用法](#用法)
- [结果](#结果)
- [模型描述](#模型描述)
- [性能](#性能)
- [训练性能](#训练性能)
- [评估性能](#评估性能)
- [推理性能](#推理性能)
- [使用方法](#使用方法)
- [推理](#推理)
- [迁移学习](#迁移学习)
- [随机情况说明](#随机情况说明)
- [ModelZoo主页](#ModelZoo主页)
......@@ -50,8 +51,8 @@
- 框架
- [MindSpore](https://www.mindspore.cn/install)
- 如需查看详情,请参见如下资源:
- [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html)
- [MindSpore教程](https://www.mindspore.cn/tutorial/training/zh-CN/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/zh-CN/master/index.html)
# 快速入门
......@@ -75,25 +76,35 @@ sh scripts/run_eval.sh
```path
└── IBNNet
├── README.md // IBNNet相关描述
├── scripts
├── run_distribute_train.sh // 用于分布式训练的shell脚本
├── ascend310_infer //310推理
├── inc
├── utils.h
├── src
├── main.cc
├── utils.cc
├── build.sh
└── CMakeLists.txt
├── scripts
├── run_310_infer.sh // 用于310推理的shell脚本
├── run_distribute_train.sh // 用于分布式训练的shell脚本
├── run_distribute_train_gpu.sh // 用于GPU分布式训练的shell脚本
├── run_standalone_train.sh // 用于单机训练的shell脚本
├── run_standalone_train.sh // 用于GPU单机训练的shell脚本
├── run_eval.sh // 用于评估的shell脚本
└── run_eval.sh // 用于GPU评估的shell脚本
├── run_standalone_train.sh // 用于单机训练的shell脚本
├── run_standalone_train.sh // 用于GPU单机训练的shell脚本
├── run_eval.sh // 用于评估的shell脚本
└── run_eval.sh // 用于GPU评估的shell脚本
├── src
├── loss.py //损失函数
├── loss.py //损失函数
├── lr_generator.py //生成学习率
├── config.py // 参数配置
├── dataset.py // 创建数据集
├── resnet_ibn.py // IBNNet架构
├── resnet_ibn.py // IBNNet架构
├── utils
├── pth2ckpt.py //转换pth文件为ckpt文件
├── export.py
├── eval.py // 测试脚本
├── train.py // 训练脚本
├── preprocess.py // 310推理数据预处理
├── preprocess.py // 310推理数据后处理
```
......@@ -191,11 +202,36 @@ sh scripts/run_eval_gpu.sh path/evalset path/ckpt
============== Accuracy:{'top_5_accuracy': 0.93684, 'top_1_accuracy': 0.7743} ==============
```
## 导出mindir模型
```python
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
```
参数`ckpt_file` 是必需的,`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中进行选择。
# 推理过程
## 用法
在执行推理之前,需要通过export.py导出mindir文件。
```bash
# Ascend310 推理
bash run_310_infer.sh [MINDIR_PATH] [DATASET_PATH]
```
`MINDIR_PATH` 为mindir文件路径,`DATASET_PATH` 表示数据集路径。
### 结果
推理结果保存在当前路径,可在acc.log中看到最终精度结果。
# 模型描述
## 性能
### 评估性能
### 训练性能
| 参数 | IBN-Net |
| ------------- | ----------------------------------------------- |
......@@ -215,7 +251,7 @@ sh scripts/run_eval_gpu.sh path/evalset path/ckpt
| 微调检查点 | 293M (.ckpt file) |
| 脚本 | [脚本路径](https://gitee.com/mindspore/models/tree/master/research/cv/ibnnet) |
### 推理性能
### 评估性能
| 参数 | IBN-Net |
| ------------- | ------------------ |
......@@ -227,55 +263,6 @@ sh scripts/run_eval_gpu.sh path/evalset path/ckpt
| 输出 | 概率 |
| 准确性 | 1卡:77.45%; 8卡:77.45% |
## 使用方法
### 推理
如果您需要使用已训练模型在GPU、Ascend 910、Ascend 310等多个硬件平台上进行推理,可参考[此处](https://www.mindspore.cn/docs/programming_guide/zh-CN/master/multi_platform_inference.html)。操作示例如下:
```python
# 加载未知数据集进行推理
dataset = dataset.create_dataset(cfg.data_path, 1, False)
# 定义模型
net = resnet50_ibn_a(num_classes=1000, pretrained=False)
param_dict = load_checkpoint(args.ckpt_url)
load_param_into_net(net, param_dict)
print('Load Pretrained parameters done!')
criterion = SoftmaxCrossEntropyExpand(sparse=True)
step = train_dataset.get_dataset_size()
lr = lr_generator(args.lr, train_epoch, steps_per_epoch=step)
optimizer = nn.SGD(params=net.trainable_params(), learning_rate=lr,
momentum=args.momentum, weight_decay=args.weight_decay)
# 模型变形
model = Model(net, loss_fn=criterion, optimizer=optimizer, metrics={"Accuracy": Accuracy()})
time_cb = TimeMonitor(data_size=train_dataset.get_dataset_size())
loss_cb = LossMonitor()
# 设置并应用检查点参数
config_ck = CheckpointConfig(save_checkpoint_steps=step, keep_checkpoint_max=5)
ckpoint_cb = ModelCheckpoint(prefix="ResNet50_" + str(device_id), config=config_ck, directory='/cache/train_output/device_' + str(device_id))
cb = [ckpoint_cb, time_cb, loss_cb, eval_cb]
model.train(train_epoch, train_dataset, callbacks=cb)
# 加载预训练模型
param_dict = load_checkpoint(cfg.checkpoint_path)
load_param_into_net(net, param_dict)
# 对未知数据集进行预测
acc = model.eval(eval_dataset)
print("accuracy: ", acc)
```
### 迁移学习
待补充
# 随机情况说明
在dataset.py中,我们设置了“create_dataset_ImageNet”函数内的种子。
......@@ -283,3 +270,4 @@ print("accuracy: ", acc)
# ModelZoo主页
请浏览官网[主页](https://gitee.com/mindspore/models)
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ -d out ]; then
rm -rf out
fi
mkdir out
cd out || exit
if [ -f "Makefile" ]; then
make clean
fi
cmake .. \
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
std::vector<std::string> GetAllFiles(std::string dir_name);
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name);
#endif
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "include/api/model.h"
#include "include/api/context.h"
#include "include/api/types.h"
#include "include/api/serialization.h"
#include "include/dataset/vision_ascend.h"
#include "include/dataset/execute.h"
#include "include/dataset/transforms.h"
#include "include/dataset/vision.h"
#include "inc/utils.h"
using mindspore::Context;
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::dataset::Execute;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::CenterCrop;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::HWC2CHW;
DEFINE_string(mindir_path, "", "mindir path");
DEFINE_string(dataset_name, "imagenet2012", "['cifar10', 'imagenet2012']");
DEFINE_string(input0_path, ".", "input0 path");
DEFINE_int32(device_id, 0, "device id");
int load_model(Model *model, std::vector<MSTensor> *model_inputs, std::string mindir_path, int device_id) {
if (RealPath(mindir_path).empty()) {
std::cout << "Invalid mindir" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310->SetDeviceID(device_id);
context->MutableDeviceInfo().push_back(ascend310);
mindspore::Graph graph;
Serialization::Load(mindir_path, ModelType::kMindIR, &graph);
Status ret = model->Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
*model_inputs = model->GetInputs();
if (model_inputs->empty()) {
std::cout << "Invalid model, inputs is empty." << std::endl;
return 1;
}
return 0;
}
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
Model model;
std::vector<MSTensor> model_inputs;
load_model(&model, &model_inputs, FLAGS_mindir_path, FLAGS_device_id);
std::map<double, double> costTime_map;
struct timeval start = {0};
struct timeval end = {0};
double startTimeMs;
double endTimeMs;
auto input0_files = GetAllInputData(FLAGS_input0_path);
if (input0_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
size_t size = input0_files.size();
for (size_t i = 0; i < size; ++i) {
for (size_t j = 0; j < input0_files[i].size(); ++j) {
std::vector<MSTensor> inputs;
std::vector<MSTensor> outputs;
std::cout << "Start predict input files:" << input0_files[i][j] <<std::endl;
auto decode = Decode();
auto resize = Resize({256, 256});
auto centercrop = CenterCrop({224, 224});
auto normalize = Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375});
auto hwc2chw = HWC2CHW();
Execute SingleOp({decode, resize, centercrop, normalize, hwc2chw});
auto imgDvpp = std::make_shared<MSTensor>();
SingleOp(ReadFileToTensor(input0_files[i][j]), imgDvpp.get());
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
imgDvpp->Data().get(), imgDvpp->DataSize());
gettimeofday(&start, nullptr);
Status ret = model.Predict(inputs, &outputs);
gettimeofday(&end, nullptr);
if (ret != kSuccess) {
std::cout << "Predict " << input0_files[i][j] << " failed." << std::endl;
return 1;
}
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
WriteResult(input0_files[i][j], outputs);
}
}
double average = 0.0;
int inferCount = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
inferCount++;
}
average = average / inferCount;
std::stringstream timeCost;
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
fileStream << timeCost.str();
fileStream.close();
costTime_map.clear();
return 0;
}
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <algorithm>
#include <iostream>
#include "inc/utils.h"
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name) {
std::vector<std::vector<std::string>> ret;
DIR *dir = OpenDir(dir_name);
if (dir == nullptr) {
return {};
}
struct dirent *filename;
/* read all the files in the dir ~ */
std::vector<std::string> sub_dirs;
while ((filename = readdir(dir)) != nullptr) {
std::string d_name = std::string(filename->d_name);
// get rid of "." and ".."
if (d_name == "." || d_name == ".." || d_name.empty()) {
continue;
}
std::string dir_path = RealPath(std::string(dir_name) + "/" + filename->d_name);
struct stat s;
lstat(dir_path.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
continue;
}
sub_dirs.emplace_back(dir_path);
}
std::sort(sub_dirs.begin(), sub_dirs.end());
(void)std::transform(sub_dirs.begin(), sub_dirs.end(), std::back_inserter(ret),
[](const std::string &d) { return GetAllFiles(d); });
return ret;
}
std::vector<std::string> GetAllFiles(std::string dir_name) {
struct dirent *filename;
DIR *dir = OpenDir(dir_name);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string d_name = std::string(filename->d_name);
if (d_name == "." || d_name == ".." || d_name.size() <= 3) {
continue;
}
res.emplace_back(std::string(dir_name) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
return res;
}
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> res;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
}
std::sort(res.begin(), res.end());
for (auto &f : res) {
std::cout << "image file: " << f << std::endl;
}
return res;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput;
netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE *outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir;
dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}
......@@ -59,7 +59,7 @@ if __name__ == "__main__":
step = 60
target = args.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
context.set_context(device_id=args.device_id)
context.set_context(device_id=args.device_id, enable_auto_mixed_precision=True)
lr = lr_generator(cfg.lr, train_epoch, steps_per_epoch=step)
net = resnet50_ibn_a(num_classes=cfg.class_num)
......
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""postprocess for 310 inference"""
import os
import argparse
import json
import numpy as np
from mindspore.nn import Top1CategoricalAccuracy, Top5CategoricalAccuracy
parser = argparse.ArgumentParser(description="postprocess")
label_path = "./preprocess_Result/cifar10_label_ids.npy"
parser.add_argument("--result_dir", type=str, default="./result_Files", help="result files path.")
parser.add_argument('--dataset_name', type=str, default="imagenet2012")
parser.add_argument("--label_dir", type=str, default=label_path, help="image file path.")
args = parser.parse_args()
def calcul_acc(lab, preds):
return sum(1 for x, y in zip(lab, preds) if x == y) / len(lab)
if __name__ == '__main__':
batch_size = 1
top1_acc = Top1CategoricalAccuracy()
rst_path = args.result_dir
label_list = []
pred_list = []
file_list = os.listdir(rst_path)
top5_acc = Top5CategoricalAccuracy()
with open('./preprocess_Result/imagenet_label.json', "r") as label:
labels = json.load(label)
for f in file_list:
label = f.split("_0.bin")[0] + ".JPEG"
label_list.append(labels[label])
pred = np.fromfile(os.path.join(rst_path, f), np.float32)
pred = pred.reshape(batch_size, int(pred.shape[0] / batch_size))
top1_acc.update(pred, [labels[label],])
top5_acc.update(pred, [labels[label],])
print("Top1 acc: ", top1_acc.eval())
print("Top5 acc: ", top5_acc.eval())
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""preprocess"""
import os
import argparse
import json
parser = argparse.ArgumentParser('preprocess')
parser.add_argument('--dataset_name', type=str, choices=["cifar10", "imagenet2012"], default="imagenet2012")
parser.add_argument('--data_path', type=str, default='', help='eval data dir')
parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='result path')
def create_label(result_path, dir_path):
"""create label json for imagenet"""
print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!")
dirs = os.listdir(dir_path)
file_list = []
for file in dirs:
file_list.append(file)
file_list = sorted(file_list)
total = 0
img_label = {}
for i, file_dir in enumerate(file_list):
files = os.listdir(os.path.join(dir_path, file_dir))
for f in files:
img_label[f] = i
total += len(files)
json_file = os.path.join(result_path, "imagenet_label.json")
with open(json_file, "w+") as label:
json.dump(img_label, label)
print("[INFO] Completed! Total {} data.".format(total))
args = parser.parse_args()
if __name__ == "__main__":
create_label('./preprocess_Result/', args.data_path)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [[ $# -lt 2 || $# -gt 3 ]]; then
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATASET_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
model=$(get_real_path $1)
dataset_name='imagenet2012'
dataset_path=$(get_real_path $2)
need_preprocess='y'
device_id=0
if [ $# == 3 ]; then
device_id=$3
fi
echo "mindir name: "$model
echo "dataset name: "$dataset_name
echo "dataset path: "$dataset_path
echo "need preprocess: "$need_preprocess
echo "device id: "$device_id
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
export ASCEND_HOME=/usr/local/Ascend
export PATH=$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/toolkit/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib/:/usr/local/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:/usr/local/Ascend/toolkit/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages
export PATH=/usr/local/python375/bin:$PATH
export NPU_HOST_LIB=/usr/local/Ascend/acllib/lib64/stub
export ASCEND_OPP_PATH=/usr/local/Ascend/opp
export ASCEND_AICPU_PATH=/usr/local/Ascend
export LD_LIBRARY_PATH=/usr/local/lib64/:$LD_LIBRARY_PATH
function preprocess_data()
{
if [ -d preprocess_Result ]; then
rm -rf ./preprocess_Result
fi
mkdir preprocess_Result
python3.7 ../preprocess.py --dataset_name=$dataset_name --data_path=$dataset_path
}
function compile_app()
{
cd ../ascend310_infer/ || exit
bash build.sh &> build.log
}
function infer()
{
cd - || exit
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
../ascend310_infer/out/main --mindir_path=$model --dataset_name=$dataset_name --input0_path=$dataset_path --device_id=$device_id &> infer.log
}
function cal_acc()
{
python3.7 ../postprocess.py --dataset_name=$dataset_name &> acc.log
}
if [ $need_preprocess == "y" ]; then
preprocess_data
if [ $? -ne 0 ]; then
echo "preprocess dataset failed"
exit 1
fi
fi
compile_app
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
infer
if [ $? -ne 0 ]; then
echo " execute inference failed"
exit 1
fi
cal_acc
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi
......@@ -20,8 +20,7 @@ import os
import mindspore.nn as nn
from mindspore import context
from mindspore.context import ParallelMode
from mindspore.train.model import Model
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor, Callback
from mindspore.nn.metrics import Accuracy
......@@ -97,7 +96,8 @@ if __name__ == "__main__":
if args.device_num > 1:
if target == 'Ascend':
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(device_id=device_id)
context.set_context(device_id=device_id,
enable_auto_mixed_precision=True)
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True,
auto_parallel_search_mode="recursive_programming")
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment