Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
2
221cb0332
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Summer2022
221cb0332
Commits
7db3376e
Unverified
Commit
7db3376e
authored
2 years ago
by
i-robot
Committed by
Gitee
2 years ago
Browse files
Options
Downloads
Plain Diff
!2603 fix bug of rotate
Merge pull request !2603 from 周莉莉/master
parents
e3f3c7e6
2c618afc
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
official/recommend/tbnet/export.py
+1
-1
1 addition, 1 deletion
official/recommend/tbnet/export.py
research/nlp/rotate/README_CN.md
+2
-2
2 additions, 2 deletions
research/nlp/rotate/README_CN.md
research/nlp/rotate/eval.py
+35
-22
35 additions, 22 deletions
research/nlp/rotate/eval.py
with
38 additions
and
25 deletions
official/recommend/tbnet/export.py
+
1
−
1
View file @
7db3376e
...
...
@@ -30,7 +30,7 @@ def get_args():
parser
.
add_argument
(
'
--config_path
'
,
type
=
str
,
required
=
Fals
e
,
required
=
Tru
e
,
default
=
''
,
help
=
"
json file for dataset
"
)
...
...
This diff is collapsed.
Click to expand it.
research/nlp/rotate/README_CN.md
+
2
−
2
View file @
7db3376e
...
...
@@ -228,7 +228,7 @@ bash scripts/run_eval.sh [DEVICE_ID] [DEVICE_TARGET] [EVAL_CHECKPOINT] [EVAL_LOG
在运行以下命令之前,请检查用于评估的检查点路径。
```
bash
bash scripts/run_eval.sh 0 Ascend
Data/wn18rr/
checkpoints/rotate-standalone-ascend/rotate.ckpt eval-standalone-ascend.log
bash scripts/run_eval.sh 0 Ascend checkpoints/rotate-standalone-ascend/rotate.ckpt eval-standalone-ascend.log
```
上述python命令将在后台运行,您可以通过ms_log/eval-standalone-ascend文件查看类似如下的结果:
...
...
@@ -342,4 +342,4 @@ python export.py --eval_checkpoint [EVAL_CHECKPOINT] --file_format [FILE_FORMAT]
# [ModelZoo主页](#目录)
请浏览官网
[
主页
](
https://gitee.com/mindspore/models
)
。
\ No newline at end of file
请浏览官网
[
主页
](
https://gitee.com/mindspore/models
)
。
This diff is collapsed.
Click to expand it.
research/nlp/rotate/eval.py
+
35
−
22
View file @
7db3376e
...
...
@@ -42,20 +42,20 @@ class KGEModel(nn.Cell):
def
__init__
(
self
,
network
,
mode
=
'
head-mode
'
):
super
(
KGEModel
,
self
).
__init__
()
self
.
network
=
network
self
.
construct_head
=
self
.
network
.
construct_head
self
.
construct_tail
=
self
.
network
.
construct_tail
self
.
mode
=
mode
self
.
sort
=
P
.
Sort
(
axis
=
1
,
descending
=
True
)
def
construct
(
self
,
positive_sample
,
negative_sample
,
filter_bias
):
"""
Sort candidate entity id and positive sample entity id.
"""
if
self
.
mode
==
'
head-mode
'
:
score
=
self
.
network
.
construct_head
((
positive_sample
,
negative_sample
))
positive_arg
=
positive_sample
[:,
0
]
score
=
self
.
construct_head
((
positive_sample
,
negative_sample
))
else
:
score
=
self
.
network
.
construct_tail
((
positive_sample
,
negative_sample
))
positive_arg
=
positive_sample
[:,
2
]
score
=
self
.
construct_tail
((
positive_sample
,
negative_sample
))
score
+=
filter_bias
_
,
argsort
=
self
.
sort
(
score
)
return
argsort
,
positive_arg
return
argsort
class
EvalKGEMetric
(
nn
.
Cell
):
...
...
@@ -77,27 +77,34 @@ class EvalKGEMetric(nn.Cell):
def
construct
(
self
,
positive_sample
,
negative_sample
,
filter_bias
):
"""
Calculate metrics.
"""
batch_size
=
positive_sample
.
shape
[
0
]
argsort
,
positive_arg
=
self
.
kgemodel
(
positive_sample
,
negative_sample
,
filter_bias
)
argsort
,
positive_arg
=
argsort
.
asnumpy
(),
positive_arg
.
asnumpy
()
log
=
[]
for
i
in
range
(
batch_size
):
ranking
=
np
.
where
(
argsort
[
i
,
:]
==
positive_arg
[
i
])[
0
][
0
]
ranking
=
1
+
ranking
log
.
append
({
'
MRR
'
:
1.0
/
ranking
,
'
MR
'
:
ranking
,
'
HITS@1
'
:
1.0
if
ranking
<=
1
else
0.0
,
'
HITS@3
'
:
1.0
if
ranking
<=
3
else
0.0
,
'
HITS@10
'
:
1.0
if
ranking
<=
10
else
0.0
,
})
return
log
argsort
=
self
.
kgemodel
(
positive_sample
,
negative_sample
,
filter_bias
)
if
self
.
mode
==
'
head-mode
'
:
positive_arg
=
positive_sample
[:,
0
]
else
:
positive_arg
=
positive_sample
[:,
2
]
return
argsort
,
positive_arg
def
modelarts_process
():
pass
def
generate_log
(
argsort
,
positive_arg
,
batch_size
):
argsort
,
positive_arg
=
argsort
.
asnumpy
(),
positive_arg
.
asnumpy
()
log
=
[]
for
i
in
range
(
batch_size
):
ranking
=
np
.
where
(
argsort
[
i
,
:]
==
positive_arg
[
i
])[
0
][
0
]
ranking
=
1
+
ranking
log
.
append
({
'
MRR
'
:
1.0
/
ranking
,
'
MR
'
:
ranking
,
'
HITS@1
'
:
1.0
if
ranking
<=
1
else
0.0
,
'
HITS@3
'
:
1.0
if
ranking
<=
3
else
0.0
,
'
HITS@10
'
:
1.0
if
ranking
<=
10
else
0.0
,
})
return
log
@moxing_wrapper
(
pre_process
=
modelarts_process
)
def
eval_kge
():
"""
Link Prediction Task for Knowledge Graph Embedding Model
"""
...
...
@@ -127,10 +134,16 @@ def eval_kge():
eval_model_tail
=
EvalKGEMetric
(
network
=
eval_net
,
mode
=
'
tail-mode
'
)
for
test_data
in
test_dataloader_head
.
create_dict_iterator
():
log_head
=
eval_model_head
.
construct
(
test_data
[
"
positive
"
],
test_data
[
"
negative
"
],
test_data
[
"
filter_bias
"
])
argsort
,
positive_arg
=
eval_model_head
.
construct
(
test_data
[
"
positive
"
],
test_data
[
"
negative
"
],
test_data
[
"
filter_bias
"
])
batch_size
=
test_data
[
"
positive
"
].
shape
[
0
]
log_head
=
generate_log
(
argsort
,
positive_arg
,
batch_size
)
logs
+=
log_head
for
test_data
in
test_dataloader_tail
.
create_dict_iterator
():
log_tail
=
eval_model_tail
.
construct
(
test_data
[
"
positive
"
],
test_data
[
"
negative
"
],
test_data
[
"
filter_bias
"
])
argsort
,
positive_arg
=
eval_model_tail
.
construct
(
test_data
[
"
positive
"
],
test_data
[
"
negative
"
],
test_data
[
"
filter_bias
"
])
batch_size
=
test_data
[
"
positive
"
].
shape
[
0
]
log_tail
=
generate_log
(
argsort
,
positive_arg
,
batch_size
)
logs
+=
log_tail
metrics
=
{}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment