Skip to content
Snippets Groups Projects
Commit 8237b1ec authored by zhangximing's avatar zhangximing
Browse files

add Ascend310 inference of Auto-DeepLab in master

parent 12371ef0
No related branches found
No related tags found
No related merge requests found
......@@ -22,10 +22,12 @@
- [Ascend](#ascend-1)
- [Evaluation](#evaluation)
- [Export](#export)
- [Inference](#inference)
- [Model Description](#model-description)
- [Performance](#performance)
- [Training Accuracy](#training-accuracy)
- [Distributed Training Performance](#distributed-training-performance)
- [Inference Performance on Ascend310](#inference-performance-on-ascend310)
- [ModelZoo Homepage](#modelzoo-homepage)
# [Auto-DeepLab Description](#contents)
......@@ -350,6 +352,15 @@ bash scripts/run_eval.sh [DATASET_PATH] [CKPT_FILE] [OUTPUT_PATH]
python export.py --filter_multiplier=20 --parallel=False --ckpt_name=[CKPT_NAME]
```
## [Inference](#contents)
- Inference on Ascend310 device
```bash
cd /PATH/TO/Auto-DeepLab/scripts
bash run_infer_310.sh /PATH/TO/MINDIR/Auto-DeepLab-s.mindir /PATH/TO/DATASET/cityscapes/ 0
```
# [Model Description](#contents)
## [Performance](#contents)
......@@ -375,7 +386,7 @@ be 16 or larger. Simply, we set batch size = 16 and Epoch 1300, 2700, 4000 corre
| Resource | Ascend 910 * 8; CPU 2.60GHz, 192cores; Memory 755G |
| uploaded Date | 11/11/2021 (month/day/year) |
| MindSpore Version | 1.3.0 |
| Dataset | Cityscapes |
| Dataset | Cityscapes (cropped 769*769) |
| Training Parameters | epoch=(1300, 2700, 4000), batch_size = 16, lr=0.05, bn_momentum=0.995 |
| Optimizer | Momentum |
| Loss Function | Cross Entropy with Online Hard Example Mining |
......@@ -384,6 +395,16 @@ be 16 or larger. Simply, we set batch size = 16 and Epoch 1300, 2700, 4000 corre
| Total time | (42, 82, 125) hour (8pcs) |
| Checkpoint | 85.37m (.ckpt file) |
### Inference Performance on Ascend310
| Parameters | Auto-DeepLab |
| -------------------------- | ------------------------------------ |
| Resource | Ascend 310 * 1 |
| uploaded Date | 12/6/2021 (month/day/year) |
| MindSpore Version | 1.3.0 |
| Dataset | Cityscapes (full image 1024*2048) |
| Speed | 1677.48 ms/img |
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/models).
cmake_minimum_required(VERSION 3.14.1)
project(Ascend310Infer)
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
option(MINDSPORE_PATH "mindspore install path" "")
include_directories(${MINDSPORE_PATH})
include_directories(${MINDSPORE_PATH}/include)
include_directories(${PROJECT_SRC_ROOT})
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
find_package(gflags REQUIRED)
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
add_executable(main src/main.cc src/utils.cc)
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
if [ ! -d out ]; then
mkdir out
fi
cd out || exit
cmake .. \
-DMINDSPORE_PATH="`pip show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
make
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INFERENCE_UTILS_H_
#define MINDSPORE_INFERENCE_UTILS_H_
#include <sys/stat.h>
#include <dirent.h>
#include <vector>
#include <string>
#include <memory>
#include "include/api/types.h"
std::vector<std::string> GetAllFiles(std::string_view dirName);
DIR *OpenDir(std::string_view dirName);
std::string RealPath(std::string_view path);
mindspore::MSTensor ReadFileToTensor(const std::string &file);
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
#endif
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/time.h>
#include <gflags/gflags.h>
#include <dirent.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iosfwd>
#include <vector>
#include <fstream>
#include <sstream>
#include "../inc/utils.h"
#include "include/dataset/execute.h"
#include "include/dataset/transforms.h"
#include "include/dataset/vision.h"
#include "include/dataset/vision_ascend.h"
#include "include/api/types.h"
#include "include/api/model.h"
#include "include/api/serialization.h"
#include "include/api/context.h"
using mindspore::Serialization;
using mindspore::Model;
using mindspore::Context;
using mindspore::Status;
using mindspore::ModelType;
using mindspore::Graph;
using mindspore::GraphCell;
using mindspore::kSuccess;
using mindspore::MSTensor;
using mindspore::DataType;
using mindspore::dataset::Execute;
using mindspore::dataset::TensorTransform;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::Resize;
using mindspore::dataset::vision::Rescale;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::HWC2CHW;
using mindspore::dataset::vision::HorizontalFlip;
using mindspore::dataset::vision::SwapRedBlue;
using mindspore::dataset::transforms::TypeCast;
DEFINE_string(model_path, "/PATH/TO/Auto-DeepLab-s.mindir", "model path");
DEFINE_string(dataset_path, "/PATH/TO/Cityscapes/leftImg8bit/val", "dataset path");
DEFINE_int32(device_id, 0, "device id");
DEFINE_string(precision_mode, "allow_fp32_to_fp16", "precision mode");
DEFINE_string(op_select_impl_mode, "", "op select impl mode");
DEFINE_string(device_target, "Ascend310", "device target");
int main(int argc, char **argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (RealPath(FLAGS_model_path).empty()) {
std::cout << "Invalid model" << std::endl;
return 1;
}
auto context = std::make_shared<Context>();
auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>();
ascend310_info->SetDeviceID(FLAGS_device_id);
context->MutableDeviceInfo().push_back(ascend310_info);
Graph graph;
Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph);
if (ret != kSuccess) {
std::cout << "Load model failed." << std::endl;
return 1;
}
Model model;
ret = model.Build(GraphCell(graph), context);
if (ret != kSuccess) {
std::cout << "ERROR: Build failed." << std::endl;
return 1;
}
std::vector<MSTensor> modelInputs = model.GetInputs();
auto all_files = GetAllFiles(FLAGS_dataset_path);
if (all_files.empty()) {
std::cout << "ERROR: no input data." << std::endl;
return 1;
}
auto decode = Decode();
auto normalize = Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375});
auto hwc2chw = HWC2CHW();
auto swapredblue = SwapRedBlue();
auto flip = HorizontalFlip();
auto typeCast = TypeCast(DataType::kNumberTypeFloat32);
mindspore::dataset::Execute transformDecode({decode, swapredblue});
mindspore::dataset::Execute transform({normalize, hwc2chw});
mindspore::dataset::Execute transformFlip({normalize, flip, hwc2chw});
mindspore::dataset::Execute transformCast(typeCast);
std::map<double, double> costTime_map;
size_t size = all_files.size();
for (size_t i = 0; i < size; ++i) {
struct timeval start;
struct timeval end;
double startTime_ms;
double endTime_ms;
std::vector<MSTensor> inputs;
std::vector<MSTensor> flippedInputs;
std::vector<MSTensor> outputs;
std::vector<MSTensor> flippedOutputs;
std::cout << "Start predict input files:" << all_files[i] << std::endl;
mindspore::MSTensor image = ReadFileToTensor(all_files[i]);
mindspore::MSTensor flippedImage;
ret = transformDecode(image, &image);
if (ret != kSuccess) {
std::cout << "ERROR: Decode failed." << std::endl;
return 1;
}
std::vector<int64_t> shape = image.Shape();
transformFlip(image, &flippedImage);
transform(image, &image);
inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(),
image.Data().get(), image.DataSize());
flippedInputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(),
flippedImage.Data().get(), flippedImage.DataSize());
gettimeofday(&start, NULL);
model.Predict(inputs, &outputs);
model.Predict(flippedInputs, &flippedOutputs);
gettimeofday(&end, NULL);
startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms));
std::string flippedName = all_files[i];
flippedName.replace(flippedName.find('.'), flippedName.size() - flippedName.find('.'), "_flip.png");
WriteResult(all_files[i], outputs);
WriteResult(flippedName, flippedOutputs);
}
double average = 0.0;
int infer_cnt = 0;
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
double diff = 0.0;
diff = iter->second - iter->first;
average += diff;
infer_cnt++;
}
average = average / infer_cnt;
std::stringstream timeCost;
timeCost << "NN inference cost average time: " << average << " ms of infer_count " << infer_cnt << std::endl;
std::cout << "NN inference cost average time: " << average << "ms of infer_count " << infer_cnt << std::endl;
std::string file_name = "./time_Result" + std::string("/test_perform_static.txt");
std::ofstream file_stream(file_name.c_str(), std::ios::trunc);
file_stream << timeCost.str();
file_stream.close();
costTime_map.clear();
return 0;
}
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "inc/utils.h"
#include <fstream>
#include <algorithm>
#include <iostream>
using mindspore::MSTensor;
using mindspore::DataType;
std::vector<std::string> GetAllFiles(std::string_view dirName) {
struct dirent *filename;
DIR *dir = OpenDir(dirName);
if (dir == nullptr) {
return {};
}
std::vector<std::string> dirs;
std::vector<std::string> files;
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == "..") {
continue;
} else if (filename->d_type == DT_DIR) {
dirs.emplace_back(std::string(dirName) + "/" + filename->d_name);
} else if (filename->d_type == DT_REG) {
files.emplace_back(std::string(dirName) + "/" + filename->d_name);
} else {
continue;
}
}
for (auto d : dirs) {
dir = OpenDir(d);
while ((filename = readdir(dir)) != nullptr) {
std::string dName = std::string(filename->d_name);
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
continue;
}
files.emplace_back(std::string(d) + "/" + filename->d_name);
}
}
std::sort(files.begin(), files.end());
for (auto &f : files) {
std::cout << "image file: " << f << std::endl;
}
return files;
}
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
std::string homePath = "./result_Files";
for (size_t i = 0; i < outputs.size(); ++i) {
size_t outputSize;
std::shared_ptr<const void> netOutput = outputs[i].Data();
outputSize = outputs[i].DataSize();
int pos = imageFile.rfind('/');
std::string fileName(imageFile, pos + 1);
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
std::string outFileName = homePath + "/" + fileName;
FILE *outputFile = fopen(outFileName.c_str(), "wb");
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
fclose(outputFile);
outputFile = nullptr;
}
return 0;
}
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
if (file.empty()) {
std::cout << "Pointer file is nullptr" << std::endl;
return mindspore::MSTensor();
}
std::ifstream ifs(file);
if (!ifs.good()) {
std::cout << "File: " << file << " is not exist" << std::endl;
return mindspore::MSTensor();
}
if (!ifs.is_open()) {
std::cout << "File: " << file << "open failed" << std::endl;
return mindspore::MSTensor();
}
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)},
nullptr, size);
ifs.seekg(0, std::ios::beg);
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
ifs.close();
return buffer;
}
DIR *OpenDir(std::string_view dirName) {
if (dirName.empty()) {
std::cout << " dirName is null ! " << std::endl;
return nullptr;
}
std::string realPath = RealPath(dirName);
struct stat s;
lstat(realPath.c_str(), &s);
if (!S_ISDIR(s.st_mode)) {
std::cout << "dirName is not a valid directory !" << std::endl;
return nullptr;
}
DIR *dir = opendir(realPath.c_str());
if (dir == nullptr) {
std::cout << "Can not open dir " << dirName << std::endl;
return nullptr;
}
std::cout << "Successfully opened the dir " << dirName << std::endl;
return dir;
}
std::string RealPath(std::string_view path) {
char realPathMem[PATH_MAX] = {0};
char *realPathRet = nullptr;
realPathRet = realpath(path.data(), realPathMem);
if (realPathRet == nullptr) {
std::cout << "File: " << path << " is not exist.";
return "";
}
std::string realPath(realPathMem);
std::cout << path << " realpath is: " << realPath << std::endl;
return realPath;
}
......@@ -142,5 +142,5 @@ def evaluate():
return 0
if __name__ == '__main__':
if __name__ == "__main__":
evaluate()
......@@ -23,7 +23,7 @@ from src.utils.utils import BuildEvalNetwork
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
if __name__ == '__main__':
if __name__ == "__main__":
args = obtain_autodeeplab_args()
args.total_iters = 0
......
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluate mIOU and Pixel accuracy"""
import os
import argparse
import ast
import cv2
from PIL import Image
import numpy as np
from src.utils.utils import fast_hist
from build_mindrecord import encode_segmap
def decode_segmap(pred):
"""decode_segmap"""
mask = np.uint8(pred)
num_classes = 19
valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]
rank_classes = range(num_classes)
class_map = dict(zip(rank_classes, valid_classes))
for _rank in rank_classes:
mask[mask == _rank] = class_map[_rank]
return mask
def get_color(npimg):
"""get_color"""
cityspallete = [
128, 64, 128,
244, 35, 232,
70, 70, 70,
102, 102, 156,
190, 153, 153,
153, 153, 153,
250, 170, 30,
220, 220, 0,
107, 142, 35,
152, 251, 152,
0, 130, 180,
220, 20, 60,
255, 0, 0,
0, 0, 142,
0, 0, 70,
0, 60, 100,
0, 80, 100,
0, 0, 230,
119, 11, 32,
]
img = Image.fromarray(npimg.astype('uint8'), "P")
img.putpalette(cityspallete)
out_img = np.array(img.convert('RGB'))
return out_img
def infer(args):
"""infer"""
images_base = os.path.join(args.dataset_path, 'leftImg8bit/val')
annotations_base = os.path.join(args.dataset_path, 'gtFine/val')
hist = np.zeros((args.num_classes, args.num_classes))
for root, _, files in os.walk(images_base):
for filename in files:
if filename.endswith('.png'):
print("start infer ", filename)
file_name = filename.split('.')[0]
prob_file = os.path.join(args.result_path, file_name + "_0.bin")
flipped_prob_file = os.path.join(args.result_path, file_name + "_flip_0.bin")
prob = np.fromfile(prob_file, dtype=np.float32)
prob = prob.reshape(1, 19, 1024, 2048)
flipped_prob = np.fromfile(flipped_prob_file, dtype=np.float32).reshape(1, 19, 1024, 2048)
pred = (prob + flipped_prob[:, :, :, ::-1])
pred = pred.argmax(1).astype(np.uint8)
folder_name = root.split(os.sep)[-1]
if args.cal_acc:
gtFine_name = filename.replace('leftImg8bit', 'gtFine_labelIds')
label_file = os.path.join(annotations_base, folder_name, gtFine_name)
label = np.array(cv2.imread(label_file, cv2.IMREAD_GRAYSCALE), np.uint8)
label = encode_segmap(label, 255)
hist = hist + fast_hist(pred.copy().flatten(), label.flatten(), args.num_classes)
if args.save_img:
# labelIds image
predImg_name = filename.replace('leftImg8bit', 'predImg_labelIds')
predImg_root = os.path.join(args.output_path, folder_name)
predImg_file = os.path.join(predImg_root, predImg_name)
if not os.path.isdir(predImg_root):
os.makedirs(predImg_root)
decode_pred = decode_segmap(pred.copy().squeeze(0))
cv2.imwrite(predImg_file, decode_pred, [cv2.IMWRITE_PNG_COMPRESSION])
# colorful segmentation image
colorImg_name = filename.replace('leftImg8bit', 'predImg_colorful')
colorImg_root = args.output_path
colorImg_root = os.path.join(colorImg_root.replace('output', 'output_img'), folder_name)
colorImg_file = os.path.join(colorImg_root, colorImg_name)
if not os.path.isdir(colorImg_root):
os.makedirs(colorImg_root)
color_pred = get_color(pred.copy().squeeze(0))
color_pred = cv2.cvtColor(np.asarray(color_pred), cv2.COLOR_RGB2BGR)
cv2.imwrite(colorImg_file, color_pred, [cv2.IMWRITE_PNG_COMPRESSION])
if args.cal_acc:
miou = np.diag(hist) / (hist.sum(0) + hist.sum(1) - np.diag(hist) + 1e-10)
miou = round(np.nanmean(miou) * 100, 2)
print("mIOU = ", miou, "%")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Auto-DeepLab Inference post-process")
parser.add_argument("--dataset_path", type=str, default="", help="dataset path for evaluation")
parser.add_argument("--num_classes", type=int, default=19)
parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.")
parser.add_argument("--result_path", type=str, default="", help="Prob bin file path.")
parser.add_argument("--output_path", type=str, default="", help="Output path.")
parser.add_argument("--save_img", type=ast.literal_eval, default=True, help="Whether save pics after inference.")
parser.add_argument("--cal_acc", type=ast.literal_eval, default=True, help="Calculate mIOU or not.")
Args = parser.parse_args()
infer(Args)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 3 ]; then
echo "Usage: sh run_infer_310.sh [MODEL_PATH] [DATA_PATH] [DEVICE_ID]
DEVICE_ID is optional, it can be set by environment variable DEVICE_ID, otherwise the value is zero"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
MODEL=$(get_real_path $1)
DATA_PATH=$(get_real_path $2)
DEVICE_ID=$3
echo "$MODEL"
echo "$DATA_PATH"
echo "$DEVICE_ID"
export ASCEND_HOME=/usr/local/Ascend/
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
else
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
fi
function compile_app()
{
cd ../ascend310_infer || exit
if [ -f "Makefile" ]; then
make clean
fi
sh build.sh &> build.log
if [ $? -ne 0 ]; then
echo "compile app code failed"
exit 1
fi
cd - || exit
}
function infer()
{
if [ -d result_Files ]; then
rm -rf ./result_Files
fi
if [ -d time_Result ]; then
rm -rf ./time_Result
fi
mkdir result_Files
mkdir time_Result
img_path=$DATA_PATH/leftImg8bit/val
../ascend310_infer/out/main --model_path="$MODEL" --dataset_path="$img_path" --device_id=$DEVICE_ID &> infer.log
if [ $? -ne 0 ]; then
echo "execute inference failed"
exit 1
fi
}
function cal_acc()
{
if [ -d output ]; then
rm -rf ./output
fi
if [ -d output_img ]; then
rm -rf ./output_img
fi
mkdir output
mkdir output_img
gt_path=$DATA_PATH
RESULT_FILES=$(realpath -m "./result_Files")
OUTPUT_PATH=$(realpath -m "./output")
python ../postprocess.py --dataset_path="$gt_path" --result_path="${RESULT_FILES}" --output_path="${OUTPUT_PATH}" &> acc.log
if [ $? -ne 0 ]; then
echo "calculate accuracy failed"
exit 1
fi
}
compile_app
infer
cal_acc
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment