Skip to content
Snippets Groups Projects
Commit e2ae2e6e authored by i-robot's avatar i-robot Committed by Gitee
Browse files

!1051 [东北大学][高校贡献][Mindspore][SqueezeNetResidual]-高性能预训练模型提交+功能

Merge pull request !1051 from 赵立阳/master
parents 8f8241d9 a735dfba
No related branches found
No related tags found
No related merge requests found
Showing
with 2187 additions and 0 deletions
......@@ -41,3 +41,7 @@
"models/research/cv/inception_resnet_v2/infer/mxbase/InceptionResnetV2Classify.h" "runtime/references"
"models/official/cv/LearningToSeeInTheDark/infer/mxbase/src/LearningToSeeInTheDark.h" "runtime/references"
"models/official/cv/squeezenet/infer/mxbase/src/squeezenetResidual.h" "runtime/references"
"models/official/cv/squeezenet/infer/mxbase/src/main.cpp" "runtime/references"
aipp_op{
aipp_mode : static
input_format : RGB888_U8
rbuv_swap_switch : true
mean_chn_0 : 0
mean_chn_1 : 0
mean_chn_2 : 0
min_chn_0 : 123.675
min_chn_1 : 116.28
min_chn_2 : 103.53
var_reci_chn_0 : 0.0171247538316637
var_reci_chn_1 : 0.0175070028011204
var_reci_chn_2 : 0.0174291938997821
}
#!/bin/bash
if [ $# != 2 ]
then
echo "Wrong parameter format."
echo "Usage:"
echo " bash $0 [INPUT_AIR_PATH] [OUTPUT_OM_PATH_NAME]"
echo "Example"
echo " bash convert_om.sh xxx.air xx"
exit 1
fi
input_air_path=$1
output_om_path=$2
export install_path=/usr/local/Ascend
export ASCEND_ATC_PATH=${install_path}/atc
export LD_LIBRARY_PATH=${install_path}/atc/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH
export PYTHONPATH=${install_path}/atc/python/site-packages:${install_path}/atc/python/site-packages/auto_tune.egg/auto_tune:${install_path}/atc/python/site-packages/schedule_search.egg:$PYTHONPATH
export ASCEND_OPP_PATH=${install_path}/opp
export ASCEND_SLOG_PRINT_TO_STDOUT=1
echo "Input AIR file path: ${input_air_path}"
echo "Output OM file path: ${output_om_path}"
atc --framework=1 \
--input_format=NCHW \
--model="${input_air_path}" \
--output="${output_om_path}" \
--insert_op_conf=./aipp.config \
--soc_version=Ascend310 \
--output_type=FP32 \
--op_select_implmode=high_precision
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import sys
def convert(input_path, output_path):
data = []
with open(input_path, 'r') as f:
for line in f.readlines():
data.append(line[10:-1])
fp = open(output_path, 'a', encoding='utf-8')
for name in data:
fp.write(name+'\n')
if __name__ == '__main__':
if len(sys.argv) != 3:
print("Wrong parameter format.")
print("Usage:")
print(" python3 convert.py [SYN__PATH] [NAMES_OUTPUT_PATH_NAME]")
sys.exit()
input_p = sys.argv[1]
output_p = sys.argv[2]
convert(input_p, output_p)
{
"im_squeezenetResidual": {
"stream_config": {
"deviceId": "0"
},
"appsrc0": {
"propc": {
"blocksize": "409600"
},
"factory": "appsrc",
"next": "mxpi_imagedecoder0"
},
"mxpi_imagedecoder0": {
"props": {
"handleMethod": "opencv"
},
"factory": "mxpi_imagedecoder",
"next": "mxpi_imageresize0"
},
"mxpi_imageresize0": {
"props": {
"handleMethod": "opencv",
"resizeType": "Resizer_Stretch",
"resizeHeight": "256",
"resizeWidth": "256"
},
"factory": "mxpi_imageresize",
"next": "mxpi_opencvcentercrop0"
},
"mxpi_opencvcentercrop0": {
"props": {
"dataSource": "mxpi_imageresize0",
"cropHeight": "227",
"cropWidth": "227"
},
"factory": "mxpi_opencvcentercrop",
"next": "mxpi_tensorinfer0"
},
"mxpi_tensorinfer0": {
"props": {
"dataSource": "mxpi_opencvcentercrop0",
"modelPath": "../data/model/squeezenetResidual.om",
"waitingTime": "2000",
"outputDeviceId": "-1"
},
"factory": "mxpi_tensorinfer",
"next": "mxpi_classpostprocessor0"
},
"mxpi_classpostprocessor0": {
"props": {
"dataSource": "mxpi_tensorinfer0",
"postProcessConfigPath": "../data/config/squeezenetResidual.cfg",
"labelPath": "../data/config/imagenet1000_claidx_to_labels.names",
"postProcessLibPath": "/usr/local/sdk_home/mxManufacture/lib/modelpostprocessors/libresnet50postprocess.so"
},
"factory": "mxpi_classpostprocessor",
"next": "mxpi_dataserialize0"
},
"mxpi_dataserialize0": {
"props": {
"outputDataKeys": "mxpi_classpostprocessor0"
},
"factory": "mxpi_dataserialize",
"next": "appsink0"
},
"appsink0": {
"props": {
"blocksize": "4096000"
},
"factory": "appsink"
}
}
}
CLASS_NUM=1000
SOFTMAX=false
TOP_K=5
#!/usr/bin/env bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
docker_image=$1
model_dir=$2
data_dir=$3
function show_help() {
echo "Usage: docker_start.sh docker_image data_dir"
}
function param_check() {
if [ -z "${docker_image}" ]; then
echo "please input docker_image"
show_help
exit 1
fi
if [ -z "${model_dir}" ]; then
echo "please input model_dir"
show_help
exit 1
fi
if [ -z "${data_dir}" ]; then
echo "please input data_dir"
show_help
exit 1
fi
}
param_check
docker run -it \
--device=/dev/davinci0 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v ${model_dir}:${model_dir} \
-v ${data_dir}:${data_dir} \
${docker_image} \
/bin/bash
cmake_minimum_required(VERSION 3.14.0)
project(squeezenetResidual)
set(TARGET squeezenetResidual)
add_definitions(-DENABLE_DVPP_INTERFACE)
add_compile_options(-std=c++11 -fPIE -fstack-protector-all -fPIC -Wall
-Dgoogle=mindxsdk_private -D_GLIBCXX_USE_CXX11_ABI=0)
add_link_options(-Wl,-z,relro,-z,now,-z,noexecstack -pie)
# Check environment variable
if(NOT DEFINED ENV{MX_SDK_HOME})
message(FATAL_ERROR "please define environment variable:MX_SDK_HOME")
endif()
if(NOT DEFINED ENV{ASCEND_HOME})
message(FATAL_ERROR "please define environment variable:ASCEND_HOME")
endif()
if(NOT DEFINED ENV{ASCEND_VERSION})
message(WARNING "please define environment variable:ASCEND_VERSION")
endif()
if(NOT DEFINED ENV{ARCH_PATTERN})
message(WARNING "please define environment variable:ARCH_PATTERN")
endif()
set(ACL_INC_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/acllib/include)
set(ACL_LIB_DIR $ENV{ASCEND_HOME}/$ENV{ASCEND_VERSION}/$ENV{ARCH_PATTERN}/acllib/lib64)
set(MXBASE_ROOT_DIR $ENV{MX_SDK_HOME})
set(MXBASE_INC ${MXBASE_ROOT_DIR}/include)
set(MXBASE_LIB_DIR ${MXBASE_ROOT_DIR}/lib)
set(MXBASE_POST_LIB_DIR ${MXBASE_ROOT_DIR}/lib/modelpostprocessors)
set(MXBASE_POST_PROCESS_DIR ${MXBASE_ROOT_DIR}/include/MxBase/postprocess/include)
if(DEFINED ENV{MXSDK_OPENSOURCE_DIR})
set(OPENSOURCE_DIR $ENV{MXSDK_OPENSOURCE_DIR})
else()
set(OPENSOURCE_DIR ${MXBASE_ROOT_DIR}/opensource)
endif()
include_directories(${ACL_INC_DIR})
include_directories(${OPENSOURCE_DIR}/include)
include_directories(${OPENSOURCE_DIR}/include/opencv4)
include_directories(${MXBASE_INC})
include_directories(${MXBASE_POST_PROCESS_DIR})
link_directories(${ACL_LIB_DIR})
link_directories(${OPENSOURCE_DIR}/lib)
link_directories(${MXBASE_LIB_DIR})
link_directories(${MXBASE_POST_LIB_DIR})
add_executable(${TARGET} ./src/main.cpp ./src/squeezenetResidual.cpp)
target_link_libraries(${TARGET} glog cpprest mxbase resnet50postprocess opencv_world stdc++fs)
install(TARGETS ${TARGET} RUNTIME DESTINATION ${PROJECT_SOURCE_DIR}/)
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
path_cur=$(dirname $0)
function check_env()
{
# set ASCEND_VERSION to ascend-toolkit/latest when it was not specified by user
if [ ! "${ASCEND_VERSION}" ]; then
export ASCEND_VERSION=ascend-toolkit/latest
echo "Set ASCEND_VERSION to the default value: ${ASCEND_VERSION}"
else
echo "ASCEND_VERSION is set to ${ASCEND_VERSION} by user"
fi
if [ ! "${ARCH_PATTERN}" ]; then
# set ARCH_PATTERN to ./ when it was not specified by user
export ARCH_PATTERN=./
echo "ARCH_PATTERN is set to the default value: ${ARCH_PATTERN}"
else
echo "ARCH_PATTERN is set to ${ARCH_PATTERN} by user"
fi
}
function build_resnext101()
{
cd $path_cur
rm -rf build
mkdir -p build
cd build
cmake ..
make
ret=$?
if [ ${ret} -ne 0 ]; then
echo "Failed to build resnext101."
exit ${ret}
fi
make install
}
check_env
build_resnext101
/*
* Copyright (c) 2021. Huawei Technologies Co., Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "squeezenetResidual.h"
#include <dirent.h>
#include "MxBase/Log/Log.h"
namespace {
const uint32_t CLASS_NUM = 1000;
} // namespace
APP_ERROR ScanImages(const std::string &path, std::vector<std::string> &imgFiles) {
DIR *dirPtr = opendir(path.c_str());
if (dirPtr == nullptr) {
LogError << "opendir failed. dir:" << path;
return APP_ERR_INTERNAL_ERROR;
}
dirent *direntPtr = nullptr;
while ((direntPtr = readdir(dirPtr)) != nullptr) {
std::string fileName = direntPtr->d_name;
if (fileName == "." || fileName == "..") {
continue;
}
imgFiles.emplace_back(path + "/" + fileName);
}
closedir(dirPtr);
return APP_ERR_OK;
}
int main(int argc, char* argv[]) {
if (argc <= 1) {
LogWarn << "Please input image path, such as './squeezenetResidual image_dir'.";
return APP_ERR_OK;
}
InitParam initParam = {};
initParam.deviceId = 0;
initParam.classNum = CLASS_NUM;
initParam.labelPath = "../../data/config/imagenet1000_claidx_to_labels.names";
initParam.topk = 5;
initParam.softmax = false;
initParam.checkTensor = true;
initParam.modelPath = "../../data/model/squeezenetResidual.om";
auto squeezenet = std::make_shared<squeezenetResidual>();
APP_ERROR ret = squeezenet->Init(initParam);
if (ret != APP_ERR_OK) {
LogError << "SqueezenetResidual init failed, ret=" << ret << ".";
return ret;
}
std::string imgPath = argv[1];
std::vector<std::string> imgFilePaths;
ret = ScanImages(imgPath, imgFilePaths);
if (ret != APP_ERR_OK) {
squeezenet->DeInit();
return ret;
}
auto startTime = std::chrono::high_resolution_clock::now();
for (auto &imgFile : imgFilePaths) {
ret = squeezenet->Process(imgFile);
if (ret != APP_ERR_OK) {
LogError << "SqueezenetResidual process failed, ret=" << ret << ".";
squeezenet->DeInit();
return ret;
}
}
auto endTime = std::chrono::high_resolution_clock::now();
squeezenet->DeInit();
double costMilliSecs = std::chrono::duration<double, std::milli>(endTime - startTime).count();
double fps = 1000.0 * imgFilePaths.size() / squeezenet->GetInferCostMilliSec();
LogInfo << "[Process Delay] cost: " << costMilliSecs << " ms\tfps: " << fps << " imgs/sec";
return APP_ERR_OK;
}
/*
* Copyright (c) 2021. Huawei Technologies Co., Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <map>
#include "MxBase/DeviceManager/DeviceManager.h"
#include "MxBase/Log/Log.h"
#include "squeezenetResidual.h"
namespace {
const uint32_t YUV_BYTE_NU = 3;
const uint32_t YUV_BYTE_DE = 2;
const uint32_t VPC_H_ALIGN = 2;
}
APP_ERROR squeezenetResidual::Init(const InitParam &initParam) {
deviceId_ = initParam.deviceId;
APP_ERROR ret = MxBase::DeviceManager::GetInstance()->InitDevices();
if (ret != APP_ERR_OK) {
LogError << "Init devices failed, ret=" << ret << ".";
return ret;
}
ret = MxBase::TensorContext::GetInstance()->SetContext(initParam.deviceId);
if (ret != APP_ERR_OK) {
LogError << "Set context failed, ret=" << ret << ".";
return ret;
}
dvppWrapper_ = std::make_shared<MxBase::DvppWrapper>();
ret = dvppWrapper_->Init();
if (ret != APP_ERR_OK) {
LogError << "DvppWrapper init failed, ret=" << ret << ".";
return ret;
}
model_ = std::make_shared<MxBase::ModelInferenceProcessor>();
ret = model_->Init(initParam.modelPath, modelDesc_);
if (ret != APP_ERR_OK) {
LogError << "ModelInferenceProcessor init failed, ret=" << ret << ".";
return ret;
}
MxBase::ConfigData configData;
const std::string softmax = initParam.softmax ? "true" : "false";
const std::string checkTensor = initParam.checkTensor ? "true" : "false";
configData.SetJsonValue("CLASS_NUM", std::to_string(initParam.classNum));
configData.SetJsonValue("TOP_K", std::to_string(initParam.topk));
configData.SetJsonValue("SOFTMAX", softmax);
configData.SetJsonValue("CHECK_MODEL", checkTensor);
auto jsonStr = configData.GetCfgJson().serialize();
std::map<std::string, std::shared_ptr<void>> config;
config["postProcessConfigContent"] = std::make_shared<std::string>(jsonStr);
config["labelPath"] = std::make_shared<std::string>(initParam.labelPath);
post_ = std::make_shared<MxBase::Resnet50PostProcess>();
ret = post_->Init(config);
if (ret != APP_ERR_OK) {
LogError << "Resnet50PostProcess init failed, ret=" << ret << ".";
return ret;
}
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::DeInit() {
dvppWrapper_->DeInit();
model_->DeInit();
post_->DeInit();
MxBase::DeviceManager::GetInstance()->DestroyDevices();
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::ReadImage(const std::string &imgPath, cv::Mat &imageMat) {
imageMat = cv::imread(imgPath, cv::IMREAD_COLOR);
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat) {
static constexpr uint32_t resizeHeight = 256;
static constexpr uint32_t resizeWidth = 256;
cv::resize(srcImageMat, dstImageMat, cv::Size(resizeWidth, resizeHeight));
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase) {
const uint32_t dataSize = imageMat.cols * imageMat.rows * MxBase::YUV444_RGB_WIDTH_NU;
LogInfo << "image size after crop" << imageMat.cols << " " << imageMat.rows;
MxBase::MemoryData memoryDataDst(dataSize, MxBase::MemoryData::MEMORY_DEVICE, deviceId_);
MxBase::MemoryData memoryDataSrc(imageMat.data, dataSize, MxBase::MemoryData::MEMORY_HOST_MALLOC);
APP_ERROR ret = MxBase::MemoryHelper::MxbsMallocAndCopy(memoryDataDst, memoryDataSrc);
if (ret != APP_ERR_OK) {
LogError << GetError(ret) << "Memory malloc failed.";
return ret;
}
std::vector<uint32_t> shape = {imageMat.rows * MxBase::YUV444_RGB_WIDTH_NU, static_cast<uint32_t>(imageMat.cols)};
tensorBase = MxBase::TensorBase(memoryDataDst, false, shape, MxBase::TENSOR_DTYPE_UINT8);
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::Crop(const cv::Mat &srcImageMat, cv::Mat &dstImageMat) {
static cv::Rect rectOfImg(16, 16, 227, 227);
dstImageMat = srcImageMat(rectOfImg).clone();
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::Inference(const std::vector<MxBase::TensorBase> &inputs,
std::vector<MxBase::TensorBase> &outputs) {
auto dtypes = model_->GetOutputDataType();
for (size_t i = 0; i < modelDesc_.outputTensors.size(); ++i) {
std::vector<uint32_t> shape = {};
for (size_t j = 0; j < modelDesc_.outputTensors[i].tensorDims.size(); ++j) {
shape.push_back((uint32_t)modelDesc_.outputTensors[i].tensorDims[j]);
}
MxBase::TensorBase tensor(shape, dtypes[i], MxBase::MemoryData::MemoryType::MEMORY_DEVICE, deviceId_);
APP_ERROR ret = MxBase::TensorBase::TensorBaseMalloc(tensor);
if (ret != APP_ERR_OK) {
LogError << "TensorBaseMalloc failed, ret=" << ret << ".";
return ret;
}
outputs.push_back(tensor);
}
MxBase::DynamicInfo dynamicInfo = {};
dynamicInfo.dynamicType = MxBase::DynamicType::STATIC_BATCH;
auto startTime = std::chrono::high_resolution_clock::now();
APP_ERROR ret = model_->ModelInference(inputs, outputs, dynamicInfo);
auto endTime = std::chrono::high_resolution_clock::now();
double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count(); // save time
inferCostTimeMilliSec += costMs;
if (ret != APP_ERR_OK) {
LogError << "ModelInference failed, ret=" << ret << ".";
return ret;
}
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::PostProcess(const std::vector<MxBase::TensorBase> &inputs,
std::vector<std::vector<MxBase::ClassInfo>> &clsInfos) {
APP_ERROR ret = post_->Process(inputs, clsInfos);
if (ret != APP_ERR_OK) {
LogError << "Process failed, ret=" << ret << ".";
return ret;
}
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::SaveResult(const std::string &imgPath,
const std::vector<std::vector<MxBase::ClassInfo>> &BatchClsInfos) {
LogInfo << "image path" << imgPath;
std::string fileName = imgPath.substr(imgPath.find_last_of("/") + 1);
size_t dot = fileName.find_last_of(".");
std::string resFileName = "../result/" + fileName.substr(0, dot) + "_1.txt";
LogInfo << "file path for saving result" << resFileName;
std::ofstream outfile(resFileName);
if (outfile.fail()) {
LogError << "Failed to open result file: ";
return APP_ERR_COMM_FAILURE;
}
uint32_t batchIndex = 0;
for (auto clsInfos : BatchClsInfos) {
std::string resultStr;
for (auto clsInfo : clsInfos) {
LogDebug << " className:" << clsInfo.className << " confidence:" << clsInfo.confidence <<
" classIndex:" << clsInfo.classId;
resultStr += std::to_string(clsInfo.classId) + " ";
}
outfile << resultStr << std::endl;
batchIndex++;
}
outfile.close();
return APP_ERR_OK;
}
APP_ERROR squeezenetResidual::Process(const std::string &imgPath) {
cv::Mat imageMat;
APP_ERROR ret = ReadImage(imgPath, imageMat);
if (ret != APP_ERR_OK) {
LogError << "ReadImage failed, ret=" << ret << ".";
return ret;
}
cv::Mat resizeImage;
ret = ResizeImage(imageMat, resizeImage);
if (ret != APP_ERR_OK) {
LogError << "Resize failed, ret=" << ret << ".";
return ret;
}
cv::Mat cropImage;
ret = Crop(resizeImage, cropImage);
if (ret != APP_ERR_OK) {
LogError << "Crop failed, ret=" << ret << ".";
return ret;
}
std::vector<MxBase::TensorBase> inputs = {};
std::vector<MxBase::TensorBase> outputs = {};
MxBase::TensorBase tensorBase;
ret = CVMatToTensorBase(cropImage, tensorBase);
if (ret != APP_ERR_OK) {
LogError << "CVMatToTensorBase failed, ret=" << ret << ".";
return ret;
}
inputs.push_back(tensorBase);
auto startTime = std::chrono::high_resolution_clock::now();
ret = Inference(inputs, outputs);
auto endTime = std::chrono::high_resolution_clock::now();
double costMs = std::chrono::duration<double, std::milli>(endTime - startTime).count(); // save time
inferCostTimeMilliSec += costMs;
if (ret != APP_ERR_OK) {
LogError << "Inference failed, ret=" << ret << ".";
return ret;
}
std::vector<std::vector<MxBase::ClassInfo>> BatchClsInfos = {};
ret = PostProcess(outputs, BatchClsInfos);
if (ret != APP_ERR_OK) {
LogError << "PostProcess failed, ret=" << ret << ".";
return ret;
}
ret = SaveResult(imgPath, BatchClsInfos);
if (ret != APP_ERR_OK) {
LogError << "Save infer results into file failed. ret = " << ret << ".";
return ret;
}
return APP_ERR_OK;
}
/*
* Copyright (c) 2021. Huawei Technologies Co., Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MXBASE_SQUEEZENETRESIDUAL_H
#define MXBASE_SQUEEZENETRESIDUAL_H
#include <string>
#include <vector>
#include <memory>
#include <opencv2/opencv.hpp>
#include "MxBase/DvppWrapper/DvppWrapper.h"
#include "MxBase/ModelInfer/ModelInferenceProcessor.h"
#include "MxBase/Tensor/TensorContext/TensorContext.h"
#include "ClassPostProcessors/Resnet50PostProcess.h"
struct InitParam {
uint32_t deviceId;
std::string labelPath;
uint32_t classNum;
uint32_t topk;
bool softmax;
bool checkTensor;
std::string modelPath;
};
class squeezenetResidual {
public:
APP_ERROR Init(const InitParam &initParam);
APP_ERROR DeInit();
APP_ERROR ReadImage(const std::string &imgPath, cv::Mat &imageMat);
APP_ERROR ResizeImage(const cv::Mat &srcImageMat, cv::Mat &dstImageMat);
APP_ERROR CVMatToTensorBase(const cv::Mat &imageMat, MxBase::TensorBase &tensorBase);
APP_ERROR Crop(const cv::Mat &srcImageMat, cv::Mat &dstImageMat);
APP_ERROR Inference(const std::vector<MxBase::TensorBase> &inputs, std::vector<MxBase::TensorBase> &outputs);
APP_ERROR PostProcess(const std::vector<MxBase::TensorBase> &inputs,
std::vector<std::vector<MxBase::ClassInfo>> &clsInfos);
APP_ERROR Process(const std::string &imgPath);
// get infer time
double GetInferCostMilliSec() const {return inferCostTimeMilliSec;}
private:
APP_ERROR SaveResult(const std::string &imgPath,
const std::vector<std::vector<MxBase::ClassInfo>> &batchClsInfos);
private:
std::shared_ptr<MxBase::DvppWrapper> dvppWrapper_;
std::shared_ptr<MxBase::ModelInferenceProcessor> model_;
std::shared_ptr<MxBase::Resnet50PostProcess> post_;
MxBase::ModelDesc modelDesc_;
uint32_t deviceId_ = 0;
// infer time
double inferCostTimeMilliSec = 0.0;
};
#endif
#coding = utf-8
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import datetime
from StreamManagerApi import StreamManagerApi, MxDataInput
if __name__ == '__main__':
# init stream manager
stream_manager = StreamManagerApi()
ret = stream_manager.InitManager()
if ret != 0:
print("Failed to init Stream manager, ret=%s" % str(ret))
exit()
# create streams by pipeline config file
with open("../data/config/squeezenet.pipeline", 'rb') as f:
pipeline = f.read()
ret = stream_manager.CreateMultipleStreams(pipeline)
if ret != 0:
print("Failed to create Stream, ret=%s" % str(ret))
exit()
# Construct the input of the stream
data_input = MxDataInput()
dir_name = sys.argv[1]
res_dir_name = sys.argv[2]
file_list = os.listdir(dir_name)
if not os.path.exists(res_dir_name):
os.makedirs(res_dir_name)
for file_name in file_list:
file_path = os.path.join(dir_name, file_name)
print(file_path)
if not (file_name.lower().endswith(".jpg")
or file_name.lower().endswith(".jpeg")):
continue
with open(file_path, 'rb') as f:
data_input.data = f.read()
empty_data = []
stream_name = b'im_squeezenetResidual'
# Inputs data to a specified stream based on streamName.
in_plugin_id = 0
unique_id = stream_manager.SendData(stream_name, in_plugin_id, data_input)
if unique_id < 0:
print("Failed to send data to stream.")
exit()
# Obtain the inference result by specifying streamName and uniqueId.
start_time = datetime.datetime.now()
infer_result = stream_manager.GetResult(stream_name, unique_id)
end_time = datetime.datetime.now()
print('sdk run time: {}'.format((end_time - start_time).microseconds))
if infer_result.errorCode != 0:
print("GetResultWithUniqueId error. errorCode=%d, errorMsg=%s" % (
infer_result.errorCode, infer_result.data.decode()))
exit()
# print the infer result
infer_res = infer_result.data.decode()
print("process img: {}, infer result: {}".format(file_name, infer_res))
load_dict = json.loads(infer_result.data.decode())
if load_dict.get('MxpiClass') is None:
with open(res_dir_name + "/" + file_name[:-5] + '.txt',
'w') as f_write:
f_write.write("")
continue
res_vec = load_dict.get('MxpiClass')
with open(res_dir_name + "/" + file_name[:-5] + '_1.txt',
'w') as f_write:
res_list = [str(item.get("classId")) + " " for item in res_vec]
f_write.writelines(res_list)
f_write.write('\n')
# destroy streams
stream_manager.DestroyAllStreams()
\ No newline at end of file
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
image_path=$1
result_dir=$2
set -e
# Simple log helper functions
info() { echo -e "\033[1;34m[INFO ][MxStream] $1\033[1;37m" ; }
warn() { echo >&2 -e "\033[1;31m[WARN ][MxStream] $1\033[1;37m" ; }
export LD_LIBRARY_PATH=${MX_SDK_HOME}/lib:${MX_SDK_HOME}/opensource/lib:${MX_SDK_HOME}/opensource/lib64:/usr/local/Ascend/ascend-toolkit/latest/acllib/lib64:${LD_LIBRARY_PATH}
export GST_PLUGIN_SCANNER=${MX_SDK_HOME}/opensource/libexec/gstreamer-1.0/gst-plugin-scanner
export GST_PLUGIN_PATH=${MX_SDK_HOME}/opensource/lib/gstreamer-1.0:${MX_SDK_HOME}/lib/plugins
#to set PYTHONPATH, import the StreamManagerApi.py
export PYTHONPATH=$PYTHONPATH:${MX_SDK_HOME}/python
python3.7 main.py $image_path $result_dir
#coding = utf-8
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import json
import numpy as np
def cre_groundtruth_dict_fromtxt(gtfile_path):
"""
:param filename: file contains the imagename and label number
:return: dictionary key imagename, value is label number
"""
img_dict = {}
with open(gtfile_path, 'r') as f:
for line in f.readlines():
temp = line.strip().split(" ")
img_name = temp[0].split(".")[0]
img_dict[img_name] = temp[1]
return img_dict
def load_statistical_predict_result(filepath):
"""
function:
the prediction esult file data extraction
input:
result file:filepath
output:
n_label:numble of label
data_vec: the probabilitie of prediction in the 1000
:return: probabilities, numble of label, in_type, color
"""
with open(filepath, 'r')as f:
temp = f.readline().strip().split(" ")
n_label = len(temp)
data_vec = np.zeros((len(temp)), dtype=np.float32)
if n_label != 0:
for ind, cls_ind in enumerate(temp):
data_vec[ind] = np.int32(cls_ind)
return data_vec, n_label
def create_visualization_statistical_result(prediction_file_path,
result_store_path,
img_dict_2, topn=5):
"""
:param prediction_file_path:
:param result_store_path:
:param json_file_name:
:param img_dict_2:
:param topn:
:return:
"""
writer = open(result_store_path, 'w')
table_dict = {}
table_dict["title"] = "Overall statistical evaluation"
table_dict["value"] = []
count = 0
res_cnt = 0
n_labels = ""
count_hit = np.zeros(topn)
for tfile_name in os.listdir(prediction_file_path):
count += 1
temp = tfile_name.split('.')[0]
index = temp.rfind('_')
img_name = temp[:index]
filepath = os.path.join(prediction_file_path, tfile_name)
prediction, n_labels = load_statistical_predict_result(filepath)
if n_labels == 11:
real_label = int(img_dict_2[img_name]) + 1
else:
real_label = int(img_dict_2[img_name])
res_cnt = min(len(prediction), topn)
for i in range(res_cnt):
if real_label == int(prediction[i]):
count_hit[i] += 1
break
if 'value' not in table_dict.keys():
print("the item value does not exist!")
else:
table_dict["value"].extend(
[{"key": "Number of images", "value": str(count)},
{"key": "Number of classes", "value": str(n_labels)}])
accuracy = np.cumsum(count_hit) / count if count else 0
for i in range(res_cnt):
table_dict["value"].append({"key": "Top" + str(i + 1) + " accuracy",
"value": str(
round(accuracy[i] * 100, 2)) + '%'})
json.dump(table_dict, writer, indent=2)
writer.close()
if __name__ == '__main__':
if len(sys.argv) == 4:
# txt file path
folder_davinci_target = sys.argv[1]
# annotation files path, "val_label.txt"
annotation_file_path = sys.argv[2]
# the path to store the results json path
result_json_path = sys.argv[3]
else:
print("Please enter target file result folder | ground truth label file | result json file folder | "
"result json file name, such as ./result val_label.txt . result.json")
exit(1)
if not os.path.exists(folder_davinci_target):
print("Target file folder does not exist.")
if not os.path.exists(annotation_file_path):
print("Ground truth file does not exist.")
img_dict_1 = cre_groundtruth_dict_fromtxt(annotation_file_path)
create_visualization_statistical_result(folder_davinci_target,
result_json_path,
img_dict_1, topn=5)
# Contents
- [SqueezeNet Description](#squeezenet-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Features](#features)
- [Mixed Precision](#mixed-precision)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Evaluation Process](#evaluation-process)
- [Inference Process](#inference-process)
- [Export MindIR](#export-mindir)
- [Infer on Ascend310](#infer-on-ascend310)
- [result](#result)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [Inference Performance](#inference-performance)
- [310 Inference Performance](#310-inference-performance)
- [How to use](#how-to-use)
- [Inference](#inference)
- [Continue Training on the Pretrained Model](#continue-training-on-the-pretrained-model)
- [Transfer Learning](#transfer-learning)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [SqueezeNet Description](#contents)
SqueezeNet is a lightweight and efficient CNN model proposed by Han et al., published in ICLR-2017. SqueezeNet has 50x fewer parameters than AlexNet, but the model performance (accuracy) is close to AlexNet.
These are examples of training SqueezeNet/SqueezeNet_Residual with CIFAR-10/ImageNet dataset in MindSpore. SqueezeNet_Residual adds residual operation on the basis of SqueezeNet, which can improve the accuracy of the model without increasing the amount of parameters.
[Paper](https://arxiv.org/abs/1602.07360): Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
# [Model Architecture](#contents)
SqueezeNet is composed of fire modules. A fire module mainly includes two layers of convolution operations: one is the squeeze layer using a **1x1 convolution** kernel; the other is an expand layer using a mixture of **1x1** and **3x3 convolution** kernels.
# [Dataset](#contents)
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
- Train:146M,50,000 images
- Test:29M,10,000 images
- Data format:binary files
- Note:Data will be processed in src/dataset.py
Dataset used: [ImageNet2012](http://www.image-net.org/)
- Dataset size: 125G, 1250k colorful images in 1000 classes
- Train: 120G, 1200k images
- Test: 5G, 50k images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
# [Features](#contents)
## Mixed Precision
The [mixed precision](https://www.mindspore.cn/docs/programming_guide/en/master/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
# [Environment Requirements](#contents)
- Hardware(Ascend/CPU)
- Prepare hardware environment with Ascend processor. Squeezenet training on GPU performs is not good now, and it is still in research. See [squeezenet in research](https://gitee.com/mindspore/models/tree/master/research/cv/squeezenet) to get up-to-date details.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
- [MindSpore Tutorials](https://www.mindspore.cn/tutorials/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/docs/api/en/master/index.html)
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation as follows:
- running on Ascend
```bash
run squeezenet_residual as example
# distributed training
Usage: bash scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATA_PATH] [PRETRAINED_CKPT_PATH](optional)
# example: bash scripts/run_distribute_train.sh squeezenet_residual imagenet ~/hccl_8p.json /home/DataSet/ImageNet_Original/train
# example: bash scripts/run_distribute_train.sh squeezenet_residual cifar10 ~/hccl_8p.json /home/DataSet/cifar10/cifar-10-batches-bin
# standalone training
Usage: bash scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATA_PATH] [PRETRAINED_CKPT_PATH](optional)
# example: bash scripts/run_standalone_train.sh squeezenet_residual imagenet 0 /home/DataSet/ImageNet_Original/train
# example: bash scripts/run_standalone_train.sh squeezenet_residual cifar10 0 /home/DataSet/cifar10/cifar-10-batches-bin
# run evaluation example
Usage: bash scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATA_PATH] [CHECKPOINT_PATH]
# example bash scripts/run_eval.sh squeezenet_residual cifar10 0 /home/DataSet/cifar10/cifar-10-verify-bin /home/model/squeezenet/ckpt/squeezenet_residual_cifar10-120_1562.ckpt
# example bash scripts/run_eval.sh squeezenet_residual imagenet 0 /home/DataSet/ImageNet_Original/validation_preprocess /home/model/squeezenet/ckpt/squeezenet_residual_imagenet-300_5004.ckpt
```
- running on GPU
```bash
# distributed training
Usage: bash scripts/run_distribute_train_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
# standalone training
Usage: bash scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATA_PATH] [PRETRAINED_CKPT_PATH](optional)
# run evaluation example
Usage: bash scripts/run_eval_gpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATASET_PATH] [CHECKPOINT_PATH]
```
- running on CPU
```bash
# standalone training
Usage: bash scripts/run_train_cpu.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATA_PATH] [PRETRAINED_CKPT_PATH](optional)
# run evaluation example
Usage: bash scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DATA_PATH] [CHECKPOINT_PATH]
```
If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start training and evaluation as follows:
```ModelArts
# run distributed training on modelarts example
# (1) First, Perform a or b.
# a. Set "enable_modelarts=True" on yaml file.
# Set other parameters on yaml file you need.
# b. Add "enable_modelarts=True" on the website UI interface.
# Add other parameters on the website UI interface.
# (2) Set the config directory to "config_path=/The path of config in S3/"
# (3) Set the Dataset directory in config file.
# (4) Set the code directory to "/path/squeezenet" on the website UI interface.
# (5) Set the startup file to "train.py" on the website UI interface.
# (6) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
# (7) Create your job.
# run evaluation on modelarts example
# (1) Copy or upload your trained model to S3 bucket.
# (2) Perform a or b.
# a. Set "enable_modelarts=True" on yaml file.
# Set "checkpoint_file_path='/cache/checkpoint_path/model.ckpt'" on yaml file.
# Set "checkpoint_url=/The path of checkpoint in S3/" on yaml file.
# b. Add "enable_modelarts=True" on the website UI interface.
# Add "checkpoint_file_path='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
# Add "checkpoint_url=/The path of checkpoint in S3/" on the website UI interface.
# (3) Set the config directory to "config_path=/The path of config in S3/"
# (4) Set the Dataset directory in config file.
# (5) Set the code directory to "/path/squeezenet" on the website UI interface.
# (6) Set the startup file to "eval.py" on the website UI interface.
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
# (8) Create your job.
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```text
.
└── squeezenet
├── README.md
├── ascend310_infer # application for 310 inference
├── scripts
├── run_distribute_train.sh # launch ascend distributed training(8 pcs)
├── run_distribute_train_gpu.sh # launch GPU distributed training(8 pcs)
├── run_standalone_train.sh # launch ascend standalone training(1 pcs)
├── run_standalone_train_gpu.sh # launch GPU standalone training(1 pcs)
├── run_train_cpu.sh # launch CPU training
├── run_eval.sh # launch ascend evaluation
├── run_eval_gpu.sh # launch GPU evaluation
├── run_eval_cpu.sh # launch CPU evaluation
├── run_infer_310.sh # shell script for 310 infer
├── src
├── dataset.py # data preprocessing
├── CrossEntropySmooth.py # loss definition for ImageNet dataset
├── lr_generator.py # generate learning rate for each step
└── squeezenet.py # squeezenet architecture, including squeezenet and squeezenet_residual
├── model_utils
│ ├── device_adapter.py # device adapter
│ ├── local_adapter.py # local adapter
│ ├── moxing_adapter.py # moxing adapter
│ └── config.py # parameter analysis
├── squeezenet_cifar10_config.yaml # parameter configuration
├── squeezenet_imagenet_config.yaml # parameter configuration
├── squeezenet_residual_cifar10_config.yaml # parameter configuration
├── squeezenet_residual_imagenet_config.yaml # parameter configuration
├── train.py # train net
├── eval.py # eval net
├── export.py # export checkpoint files into geir/onnx
├── postprocess.py # postprocess script
├── preprocess.py # preprocess script
├── requirements.txt
└── mindspore_hub_conf.py # mindspore hub interface
```
## [Script Parameters](#contents)
Parameters for both training and evaluation can be set in *.yaml
- config for SqueezeNet, CIFAR-10 dataset
```py
"class_num": 10, # dataset class num
"batch_size": 32, # Batch_size for training, evaluation and export. If running distributed on gpu, divide this value by device_num.
"loss_scale": 1024, # loss scale
"momentum": 0.9, # momentum
"weight_decay": 1e-4, # weight decay
"epoch_size": 120, # only valid for taining, which is always 1 for inference
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./", # path to save checkpoint
"warmup_epochs": 5, # number of warmup epoch
"lr_decay_mode": "poly" # decay mode for generating learning rate
"lr_init": 0, # initial learning rate
"lr_end": 0, # final learning rate
"lr_max": 0.01, # maximum learning rate
```
- config for SqueezeNet, ImageNet dataset
```py
"class_num": 1000, # dataset class num
"batch_size": 32, # Batch_size for training, evaluation and export
"loss_scale": 1024, # loss scale
"momentum": 0.9, # momentum
"weight_decay": 7e-5, # weight decay
"epoch_size": 200, # only valid for taining, which is always 1 for inference
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./", # path to save checkpoint
"warmup_epochs": 0, # number of warmup epoch
"lr_decay_mode": "poly" # decay mode for generating learning rate
"use_label_smooth": True, # label smooth
"label_smooth_factor": 0.1, # label smooth factor
"lr_init": 0, # initial learning rate
"lr_end": 0, # final learning rate
"lr_max": 0.01, # maximum learning rate
```
- config for SqueezeNet_Residual, CIFAR-10 dataset
```py
"class_num": 10, # dataset class num
"batch_size": 32, # Batch_size for training, evaluation and export. If running distributed on gpu, divide this value by device_num.
"loss_scale": 1024, # loss scale
"momentum": 0.9, # momentum
"weight_decay": 1e-4, # weight decay
"epoch_size": 150, # only valid for taining, which is always 1 for inference
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./", # path to save checkpoint
"warmup_epochs": 5, # number of warmup epoch
"lr_decay_mode": "linear" # decay mode for generating learning rate
"lr_init": 0, # initial learning rate
"lr_end": 0, # final learning rate
"lr_max": 0.01, # maximum learning rate
```
- config for SqueezeNet_Residual, ImageNet dataset
```py
"class_num": 1000, # dataset class num
"batch_size": 32, # Batch_size for training, evaluation and export
"loss_scale": 1024, # loss scale
"momentum": 0.9, # momentum
"weight_decay": 7e-5, # weight decay
"epoch_size": 300, # only valid for taining, which is always 1 for inference
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last step
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./", # path to save checkpoint
"warmup_epochs": 0, # number of warmup epoch
"lr_decay_mode": "cosine" # decay mode for generating learning rate
"use_label_smooth": True, # label smooth
"label_smooth_factor": 0.1, # label smooth factor
"lr_init": 0, # initial learning rate
"lr_end": 0, # final learning rate
"lr_max": 0.01, # maximum learning rate
```
For more configuration details, please refer the file `*.yaml`.
## [Training Process](#contents)
### Usage
#### Running on Ascend
```shell
# distributed training
Usage: bash scripts/run_distribute_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [RANK_TABLE_FILE] [DATA_PATH] [PRETRAINED_CKPT_PATH](optional)
# example: bash scripts/run_distribute_train.sh squeezenet_residual imagenet ~/hccl_8p.json /home/DataSet/ImageNet_Original/train
# example: bash scripts/run_distribute_train.sh squeezenet_residual cifar10 ~/hccl_8p.json /home/DataSet/cifar10/cifar-10-batches-bin
# standalone training
Usage: bash scripts/run_standalone_train.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATA_PATH] [PRETRAINED_CKPT_PATH](optional)
# example: bash scripts/run_standalone_train.sh squeezenet_residual imagenet 0 /home/DataSet/ImageNet_Original/train
# example: bash scripts/run_standalone_train.sh squeezenet_residual cifar10 0 /home/DataSet/cifar10/cifar-10-batches-bin
```
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
Please follow the instructions in the link [hccl_tools](https://gitee.com/mindspore/models/tree/master/utils/hccl_tools).
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". Under this, you can find checkpoint file together with result like the followings in log.
### Result
- Training SqueezeNet with CIFAR-10 dataset
```log
# standalone training result
epoch: 1 step 1562, loss is 1.7103254795074463
epoch: 2 step 1562, loss is 2.06101131439209
epoch: 3 step 1562, loss is 1.5594401359558105
epoch: 4 step 1562, loss is 1.4127278327941895
epoch: 5 step 1562, loss is 1.2140142917633057
...
```
- Training SqueezeNet with ImageNet dataset
```log
# distribute training result(8 pcs)
epoch: 1 step 5004, loss is 5.716324329376221
epoch: 2 step 5004, loss is 5.350603103637695
epoch: 3 step 5004, loss is 4.580031394958496
epoch: 4 step 5004, loss is 4.784664154052734
epoch: 5 step 5004, loss is 4.136358261108398
...
```
- Training SqueezeNet_Residual with CIFAR-10 dataset
```log
# standalone training result
epoch: 1 step 1562, loss is 2.298271656036377
epoch: 2 step 1562, loss is 2.2728664875030518
epoch: 3 step 1562, loss is 1.9493038654327393
epoch: 4 step 1562, loss is 1.7553865909576416
epoch: 5 step 1562, loss is 1.3370063304901123
...
```
- Training SqueezeNet_Residual with ImageNet dataset
```log
# distribute training result(8 pcs)
epoch: 1 step 5004, loss is 6.802495002746582
epoch: 2 step 5004, loss is 6.386072158813477
epoch: 3 step 5004, loss is 5.513605117797852
epoch: 4 step 5004, loss is 5.312961101531982
epoch: 5 step 5004, loss is 4.888848304748535
...
```
## [Evaluation Process](#contents)
### Usage
#### Running on Ascend
```shell
# evaluation
Usage: bash scripts/run_eval.sh [squeezenet|squeezenet_residual] [cifar10|imagenet] [DEVICE_ID] [DATA_PATH] [CHECKPOINT_PATH]
# example bash scripts/run_eval.sh squeezenet_residual cifar10 0 /home/DataSet/cifar10/cifar-10-verify-bin /home/model/squeezenet/ckpt/squeezenet_residual_cifar10-120_1562.ckpt
# example bash scripts/run_eval.sh squeezenet_residual imagenet 0 /home/DataSet/ImageNet_Original/validation_preprocess /home/model/squeezenet/ckpt/squeezenet_residual_imagenet-300_5004.ckpt
```
checkpoint can be produced in training process.
### Result
Evaluation result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log.
- Evaluating SqueezeNet with CIFAR-10 dataset
```log
result: {'top_1_accuracy': 0.8896233974358975, 'top_5_accuracy': 0.9965945512820513}
```
- Evaluating SqueezeNet with ImageNet dataset
```log
result: {'top_1_accuracy': 0.5851472471190781, 'top_5_accuracy': 0.8105393725992317}
```
- Evaluating SqueezeNet_Residual with CIFAR-10 dataset
```log
result: {'top_1_accuracy': 0.9077524038461539, 'top_5_accuracy': 0.9969951923076923}
```
- Evaluating SqueezeNet_Residual with ImageNet dataset
```log
result: {'top_1_accuracy': 0.6094950384122919, 'top_5_accuracy': 0.826324423815621}
```
## [Inference process](#contents)
### Export MindIR
Export MindIR on local
```python
python export.py --checkpoint_file_path [CKPT_PATH] --batch_size [BATCH_SIZE] --net_name [NET] --dataset [DATASET] --file_format [EXPORT_FORMAT] --config_path [CONFIG_PATH]
```
The checkpoint_file_path parameter is required,
`BATCH_SIZE` can only be set to 1
`NET` should be in ["squeezenet", "squeezenet_residual"]
`DATASET` should be in ["cifar10", "imagenet"]
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
Export on ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start as follows)
```ModelArts
# Export on ModelArts
# (1) Perform a or b.
# a. Set "enable_modelarts=True" on default_config.yaml file.
# Set "checkpoint_file_path='/cache/checkpoint_path/model.ckpt'" on default_config.yaml file.
# Set "checkpoint_url='s3://dir_to_trained_ckpt/'" on default_config.yaml file.
# Set "file_name='./squeezenet'" on default_config.yaml file.
# Set "file_format='AIR'" on default_config.yaml file.
# Set other parameters on default_config.yaml file you need.
# b. Add "enable_modelarts=True" on the website UI interface.
# Add "checkpoint_file_path='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
# Add "checkpoint_url='s3://dir_to_trained_ckpt/'" on the website UI interface.
# Add "file_name='./squeezenet'" on the website UI interface.
# Add "file_format='AIR'" on the website UI interface.
# Add other parameters on the website UI interface.
# (2) Set the config_path="/path/yaml file" on the website UI interface.
# (3) Set the code directory to "/path/squeezenet" on the website UI interface.
# (4) Set the startup file to "export.py" on the website UI interface.
# (5) Set the "Output file path" and "Job log path" to your path on the website UI interface.
# (6) Create your job.
```
### Infer on Ascend310
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
```shell
# Ascend310 inference
bash run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [LABEL_PATH] [DEVICE_ID]
```
- `DATASET` should be in ["imagenet", "cifar10"]. If the DATASET is cifar10, you don't need to set LABEL_FILE.
- `LABEL_PATH` label.txt path, LABEL_FILE is only useful for imagenet. Write a py script to sort the category under the dataset, map the file names under the categories and category sort values,Such as[file name : sort value], and write the mapping results to the labe.txt file.
- `DEVICE_ID` is optional, default value is 0.
### result
Inference result is saved in current path, you can find result like this in acc.log file.
- Infer SqueezeNet with CIFAR-10 dataset
```log
'Top1_Accuracy': 83.62% 'Top5_Accuracy': 99.31%
```
- Infer SqueezeNet with ImageNet dataset
```log
'Top1_Accuracy': 59.30% 'Top5_Accuracy': 81.40%
```
- Infer SqueezeNet_Residual with CIFAR-10 dataset
```log
'Top1_Accuracy': 87.28% 'Top5_Accuracy': 99.58%
```
- Infer SqueezeNet_Residual with ImageNet dataset
```log
'Top1_Accuracy': 60.82% 'Top5_Accuracy': 82.56%
```
# [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
#### SqueezeNet on CIFAR-10
| Parameters | Ascend | GPU |
| -------------------------- | ----------------------------------------------------------- | --- |
| Model Version | SqueezeNet | SqueezeNet |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
| uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | CIFAR-10 | CIFAR-10 |
| Training Parameters | epoch=120, steps=195, batch_size=32, lr=0.01 | 1pc:epoch=120, steps=1562, batch_size=32, lr=0.01; 8pcs:epoch=120, steps=1562, batch_size=4, lr=0.01|
| Optimizer | Momentum | Momentum |
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
| outputs | probability | probability |
| Loss | 0.0496 | 1pc:0.0892, 8pcs:0.0130 |
| Speed | 1pc: 16.7 ms/step; 8pcs: 17.0 ms/step | 1pc: 28.6 ms/step; 8pcs: 10.8 ms/step |
| Total time | 1pc: 55.5 mins; 8pcs: 15.0 mins | 1pc: 90mins; 8pcs: 34mins |
| Parameters (M) | 4.8 | 0.74 |
| Checkpoint for Fine tuning | 6.4M (.ckpt file) | 6.4M (.ckpt file)|
| Scripts | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) |
#### SqueezeNet on ImageNet
| Parameters | Ascend | GPU |
| -------------------------- | ----------------------------------------------------------- | --- |
| Model Version | SqueezeNet | SqueezeNet |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
| uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | ImageNet | ImageNet |
| Training Parameters | epoch=200, steps=5004, batch_size=32, lr=0.01 | epoch=200, steps=5004, batch_size=32, lr=0.01 |
| Optimizer | Momentum | Momentum |
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
| outputs | probability | probability |
| Loss | 2.9150 | 3.009 |
| Speed | 8pcs: 19.9 ms/step | 8pcs: 43.5ms/step|
| Total time | 8pcs: 5.2 hours | 8pcs: 12.1 hours |
| Parameters (M) | 4.8 | 1.25 |
| Checkpoint for Fine tuning | 13.3M (.ckpt file) | 13.3M (.ckpt file) |
| Scripts | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) |
#### SqueezeNet_Residual on CIFAR-10
| Parameters | Ascend | GPU |
| -------------------------- | ----------------------------------------------------------- | --- |
| Model Version | SqueezeNet_Residual | SqueezeNet_Residual |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
| uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | CIFAR-10 | CIFAR-10 |
| Training Parameters | epoch=150, steps=195, batch_size=32, lr=0.01 | 1pc:epoch=150, steps=1562, batch_size=32, lr=0.01; 8pcs: epoch=150, steps=1562, batch_size=4|
| Optimizer | Momentum | Momentum
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy
| outputs | probability | probability
| Loss | 0.0641 | 1pc: 0.0402; 8pcs:0.004 |
| Speed | 1pc: 16.9 ms/step; 8pcs: 17.3 ms/step | 1pc: 29.4 ms/step; 8pcs:11.0 ms/step |
| Total time | 1pc: 68.6 mins; 8pcs: 20.9 mins | 1pc: 115 mins; 8pcs: 43.5 mins |
| Parameters (M) | 4.8 | 0.74 |
| Checkpoint for Fine tuning | 6.5M (.ckpt file) | 6.5M (.ckpt file) |
| Scripts | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) |
#### SqueezeNet_Residual on ImageNet
| Parameters | Ascend | GPU |
| -------------------------- | ----------------------------------------------------------- | --- |
| Model Version | SqueezeNet_Residual | SqueezeNet_Residual |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | NV SMX2 V100-32G |
| uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | ImageNet | ImageNet |
| Training Parameters | epoch=300, steps=5004, batch_size=32, lr=0.01 | epoch=300, steps=5004, batch_size=32, lr=0.01 |
| Optimizer | Momentum | Momentum |
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
| outputs | probability | probability |
| Loss | 2.9040 | 2.969 |
| Speed | 8pcs: 20.2 ms/step | 8pcs: 44.1 ms/step |
| Total time | 8pcs: 8.0 hours | 8pcs: 18.4 hours |
| Parameters (M) | 4.8 | 1.25 |
| Checkpoint for Fine tuning | 15.3M (.ckpt file) | 15.3M (.ckpt file) |
| Scripts | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) | [squeezenet script](https://gitee.com/mindspore/models/tree/master/official/cv/squeezenet) |
### Inference Performance
#### SqueezeNet on CIFAR-10
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --- |
| Model Version | SqueezeNet | SqueezeNet |
| Resource | Ascend 910; OS Euler2.8 | NV SMX2 V100-32G |
| Uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | CIFAR-10 | CIFAR-10 |
| batch_size | 32 | 1pc:32; 8pcs:4 |
| outputs | probability | probability |
| Accuracy | 1pc: 89.0%; 8pcs: 84.4% | 1pc: 89.0%; 8pcs: 88.8%|
#### SqueezeNet on ImageNet
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --- |
| Model Version | SqueezeNet | SqueezeNet |
| Resource | Ascend 910; OS Euler2.8 | NV SMX2 V100-32G |
| Uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | ImageNet | ImageNet |
| batch_size | 32 | 32 |
| outputs | probability | probability |
| Accuracy | 8pcs: 58.5%(TOP1), 81.1%(TOP5) | 8pcs: 58.5%(TOP1), 80.7%(TOP5) |
#### SqueezeNet_Residual on CIFAR-10
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --- |
| Model Version | SqueezeNet_Residual | SqueezeNet_Residual |
| Resource | Ascend 910; OS Euler2.8 | NV SMX2 V100-32G |
| Uploaded Date | 11/06/2020 (month/day/year) | 8/26/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | CIFAR-10 | CIFAR-10 |
| batch_size | 32 | 1pc:32; 8pcs:4 |
| outputs | probability | probability |
| Accuracy | 1pc: 90.8%; 8pcs: 87.4% | 1pc: 90.7%; 8pcs: 90.5% |
#### SqueezeNet_Residual on ImageNet
| Parameters | Ascend | GPU |
| ------------------- | --------------------------- | --- |
| Model Version | SqueezeNet_Residual | SqueezeNet_Residual |
| Resource | Ascend 910; OS Euler2.8 | NV SMX2 V100-32G |
| Uploaded Date | 11/06/2020 (month/day/year) | 8/24/2021 (month/day/year) |
| MindSpore Version | 1.0.0 | 1.4.0 |
| Dataset | ImageNet | ImageNet |
| batch_size | 32 | 32 |
| outputs | probability | probability |
| Accuracy | 8pcs: 60.9%(TOP1), 82.6%(TOP5) | 8pcs: 60.2%(TOP1), 82.3%(TOP5)|
### 310 Inference Performance
#### SqueezeNet on CIFAR-10
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | SqueezeNet |
| Resource | Ascend 310; OS Euler2.8 |
| Uploaded Date | 27/05/2021 (month/day/year) |
| MindSpore Version | 1.2.0 |
| Dataset | CIFAR-10 |
| batch_size | 1 |
| outputs | Accuracy |
| Accuracy | TOP1: 83.62%, TOP5: 99.31% |
#### SqueezeNet on ImageNet
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | SqueezeNet |
| Resource | Ascend 310; OS Euler2.8 |
| Uploaded Date | 27/05/2020 (month/day/year) |
| MindSpore Version | 1.2.0 |
| Dataset | ImageNet |
| batch_size | 1 |
| outputs | Accuracy |
| Accuracy | TOP1: 59.30%, TOP5: 81.40% |
#### SqueezeNet_Residual on CIFAR-10
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | SqueezeNet_Residual |
| Resource | Ascend 310; OS Euler2.8 |
| Uploaded Date | 27/05/2020 (month/day/year) |
| MindSpore Version | 1.2.0 |
| Dataset | CIFAR-10 |
| batch_size | 1 |
| outputs | Accuracy |
| Accuracy | TOP1: 87.28%, TOP5: 99.58% |
#### SqueezeNet_Residual on ImageNet
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | SqueezeNet_Residual |
| Resource | Ascend 310; OS Euler2.8 |
| Uploaded Date | 27/05/2020 (month/day/year) |
| MindSpore Version | 1.2.0 |
| Dataset | ImageNet |
| batch_size | 1 |
| outputs | Accuracy |
| Accuracy | TOP1: 60.82%, TOP5: 82.56% |
## [How to use](#contents)
### Inference
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/docs/programming_guide/en/master/multi_platform_inference.html). Following the steps below, this is a simple example:
- Running on Ascend
```py
# Set context
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE,
device_target='Ascend',
device_id=device_id)
# Load unseen dataset for inference
dataset = create_dataset(dataset_path=config.data_path,
do_train=False,
batch_size=config.batch_size,
target='Ascend')
# Define model
net = squeezenet(num_classes=config.class_num)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
model = Model(net,
loss_fn=loss,
metrics={'top_1_accuracy', 'top_5_accuracy'})
# Load pre-trained model
param_dict = load_checkpoint(config.checkpoint_file_path)
load_param_into_net(net, param_dict)
net.set_train(False)
# Make predictions on the unseen dataset
acc = model.eval(dataset)
print("accuracy: ", acc)
```
### Continue Training on the Pretrained Model
- running on Ascend
```py
# Load dataset
dataset = create_dataset(dataset_path=config.data_path,
do_train=True,
repeat_num=1,
batch_size=config.batch_size,
target='Ascend')
step_size = dataset.get_dataset_size()
# define net
net = squeezenet(num_classes=config.class_num)
# load checkpoint
if config.pre_trained:
param_dict = load_checkpoint(config.pre_trained)
load_param_into_net(net, param_dict)
# init lr
lr = get_lr(lr_init=config.lr_init,
lr_end=config.lr_end,
lr_max=config.lr_max,
total_epochs=config.epoch_size,
warmup_epochs=config.warmup_epochs,
pretrain_epochs=config.pretrain_epoch_size,
steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode)
lr = Tensor(lr)
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
loss_scale = FixedLossScaleManager(config.loss_scale,
drop_overflow_update=False)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
lr,
config.momentum,
config.weight_decay,
config.loss_scale,
use_nesterov=True)
model = Model(net,
loss_fn=loss,
optimizer=opt,
loss_scale_manager=loss_scale,
metrics={'acc'},
amp_level="O2",
keep_batchnorm_fp32=False)
# Set callbacks
config_ck = CheckpointConfig(
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
time_cb = TimeMonitor(data_size=step_size)
ckpt_cb = ModelCheckpoint(prefix=config.net_name + '_' + config.dataset,
directory=ckpt_save_dir,
config=config_ck)
loss_cb = LossMonitor()
# Start training
model.train(config.epoch_size - config.pretrain_epoch_size, dataset,
callbacks=[time_cb, ckpt_cb, loss_cb])
print("train success")
```
### Transfer Learning
To be added.
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/models).
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train squeezenet."""
import os
import sys
import argparse
import numpy as np
import moxing as mox
from mindspore import context
from mindspore import Tensor
from mindspore import export
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.common import set_seed
from model_utils.moxing_adapter import moxing_wrapper
from model_utils.device_adapter import get_device_id
from src.lr_generator import get_lr
from src.CrossEntropySmooth import CrossEntropySmooth
set_seed(1)
_CACHE_DATA_URL = "./cache/data"
_CACHE_TRAIN_URL = "./cache/train"
_CACHE_LOAD_URL = "./cache/checkpoint_path"
_CACHE_PRETRAIN_URL = "./cache/res/tmp.ckpt"
_NONE = "none"
# Transfer learning parameter
parser = argparse.ArgumentParser('mindspore squeezenet_residual training')
parser.add_argument('--train_url', type=str, default='obs://neu-base/squeezenet/cache/train',
help='where training log and ckpts saved')
parser.add_argument('--data_url', type=str, default='obs://neu-base/squeezenet/cache/data',
help='path of dataset')
parser.add_argument('--dataset', type=str, default='imagenet', help='Dataset.')
parser.add_argument('--batch_size', type=int, default=8,
help='batch size')
parser.add_argument('--file_format', type=str, default="AIR",
help='output model formats')
parser.add_argument('--pre_trained', type=str,
default='obs://neu-base/squeezenet/suqeezenet_residual_imagenet-50_3.ckpt',
help='pretrained model')
parser.add_argument('--epoch_size', type=int, default=1,
help='epoch num')
parser.add_argument('--save_checkpoint_epochs', type=int, default=1,
help='how many epochs to save ckpt once')
parser.add_argument('--device_target', type=str, default='Ascend',
choices=['Ascend', 'CPU', 'GPU'],
help='device where the code will be implemented. '
'(Default: Ascend)')
parser.add_argument('--file_name', type=str, default="squeezenet_residual",
help='output file name')
parser.add_argument('--lr_max', type=float, default=0.01,
help='lr_max')
args, _ = parser.parse_known_args()
os.makedirs(_CACHE_TRAIN_URL, exist_ok=True)
os.makedirs(_CACHE_DATA_URL, exist_ok=True)
os.makedirs(_CACHE_LOAD_URL, exist_ok=True)
mox.file.copy_parallel(args.data_url, _CACHE_DATA_URL)
train_url = _CACHE_TRAIN_URL
data_url = _CACHE_DATA_URL
load_url = _CACHE_LOAD_URL
if args.dataset == "cifar10":
from src.config import config_cifar as config
else:
from src.config import config_imagenet as config
print("Dataset: ", config.dataset)
#train
if config.net_name == "squeezenet":
from src.squeezenet import SqueezeNet as squeezenet
if config.dataset == "cifar10":
from src.dataset import create_dataset_cifar as create_dataset
else:
from src.dataset import create_dataset_imagenet as create_dataset
else:
from src.squeezenet import SqueezeNet_Residual as squeezenet
if config.dataset == "cifar10":
from src.dataset import create_dataset_cifar as create_dataset
else:
from src.dataset import create_dataset_imagenet as create_dataset
@moxing_wrapper()
def train_net():
"""train net"""
config.output_path = train_url
config.data_path = data_url
config.load_path = load_url
config.epoch_size = args.epoch_size
config.save_checkpoint_epochs = args.save_checkpoint_epochs
config.device_target = args.device_target
target = config.device_target
ckpt_save_dir = config.output_path
if args.pre_trained != _NONE:
mox.file.copy_parallel(args.pre_trained, _CACHE_PRETRAIN_URL)
else:
config.pre_trained = ""
# init context
context.set_context(mode=context.GRAPH_MODE,
device_target=target)
device_num = 1
if config.run_distribute:
if target == "Ascend":
device_id = get_device_id()
device_num = config.device_num
context.set_context(device_id=device_id)
context.set_auto_parallel_context(
device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
init()
# GPU target
else:
init()
device_num = get_group_size()
context.set_auto_parallel_context(
device_num=device_num,
parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
ckpt_save_dir = ckpt_save_dir + "/ckpt_" + str(
get_rank()) + "/"
# create dataset
dataset = create_dataset(dataset_path=config.data_path,
do_train=True,
repeat_num=1,
batch_size=config.batch_size,
run_distribute=config.run_distribute)
step_size = dataset.get_dataset_size()
# define net
net = squeezenet(num_classes=config.class_num)
# load checkpoint
if config.pre_trained:
param_dict = load_checkpoint(config.pre_trained)
load_param_into_net(net, param_dict)
# init lr
lr = get_lr(lr_init=config.lr_init,
lr_end=config.lr_end,
lr_max=config.lr_max,
total_epochs=args.epoch_size,
warmup_epochs=config.warmup_epochs,
pretrain_epochs=config.pretrain_epoch_size,
steps_per_epoch=step_size,
lr_decay_mode=config.lr_decay_mode)
lr = Tensor(lr)
# define loss
if config.dataset == "imagenet":
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropySmooth(sparse=True,
reduction='mean',
smooth_factor=config.label_smooth_factor,
num_classes=config.class_num)
else:
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# define opt, model
if target == "Ascend":
loss_scale = FixedLossScaleManager(config.loss_scale,
drop_overflow_update=False)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
lr,
config.momentum,
config.weight_decay,
config.loss_scale,
use_nesterov=True)
model = Model(net,
loss_fn=loss,
optimizer=opt,
loss_scale_manager=loss_scale,
metrics={'acc'},
amp_level="O2",
keep_batchnorm_fp32=False)
else:
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
lr,
config.momentum,
config.weight_decay,
use_nesterov=True)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
# define callbacks
time_cb = TimeMonitor(data_size=step_size)
loss_cb = LossMonitor()
cb = [time_cb, loss_cb]
if config.save_checkpoint:
config_ck = CheckpointConfig(
save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix=config.net_name + '_' + config.dataset,
directory=ckpt_save_dir,
config=config_ck)
cb += [ckpt_cb]
# train model
model.train(config.epoch_size - config.pretrain_epoch_size,
dataset,
callbacks=cb)
if config.net_name == "squeezenet":
from src.squeezenet import SqueezeNet as squeezenet
else:
from src.squeezenet import SqueezeNet_Residual as squeezenet
if config.dataset == "cifar10":
num_classes = 10
else:
num_classes = 1000
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
context.set_context(device_id=config.device_id)
def modelarts_pre_process():
'''modelarts pre process function.'''
config.file_name = os.path.join(config.output_path, config.file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_export():
#get_last_ckpt
ckpt_dir = train_url
file_dict = {}
lists = os.listdir(ckpt_dir)
for i in lists:
ctime = os.stat(os.path.join(ckpt_dir, i)).st_ctime
file_dict[ctime] = i
max_ctime = max(file_dict.keys())
ckpt_files = [ckpt_file for ckpt_file in os.listdir(ckpt_dir)
if ckpt_file.endswith(file_dict[max_ctime])]
if not ckpt_files:
print("No ckpt file found.")
sys.exit(0)
ckpt_file = os.path.join(ckpt_dir, sorted(ckpt_files)[-1])
# export_air
if not ckpt_file:
sys.exit(0)
config.batch_size = args.batch_size
config.checkpoint_file_path = ckpt_file
config.file_name = os.path.join(_CACHE_TRAIN_URL, args.file_name)
print("\nStart exporting AIR.")
net = squeezenet(num_classes=num_classes)
param_dict = load_checkpoint(config.checkpoint_file_path)
load_param_into_net(net, param_dict)
input_data = Tensor(np.zeros([config.batch_size, 3, config.height, config.width], np.float32))
export(net, input_data, file_name=config.file_name, file_format=config.file_format)
print("\nStart uploading to obs.")
mox.file.copy_parallel(_CACHE_TRAIN_URL, args.train_url)
if __name__ == '__main__':
train_net()
run_export()
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py and eval.py
"""
from easydict import EasyDict as ed
# config for squeezenet, imagenet
config_imagenet = ed({
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
"enable_modelarts": False,
# Url for modelarts
"data_url": "",
"train_url": "",
"checkpoint_url": "",
# Path for local
"run_distribute": False,
"enable_profiling": False,
"data_path": "/cache/data",
"output_path": "/cache/train",
"load_path": "/cache/checkpoint_path/",
"device_num": 1,
"device_id": 0,
"device_target": "Ascend",
"checkpoint_path": "./checkpoint/",
"checkpoint_file_path": "suqeezenet_residual_imagenet-300_5004.ckpt",
# Training options
"net_name": "suqeezenet_residual",
"dataset": "imagenet",
"class_num": 1000,
"batch_size": 32,
"loss_scale": 1024,
"momentum": 0.9,
"weight_decay": 7e-5,
"epoch_size": 300,
"pretrain_epoch_size": 0,
"save_checkpoint": True,
"save_checkpoint_epochs": 1,
"keep_checkpoint_max": 10,
"save_checkpoint_path": "./",
"warmup_epochs": 0,
"lr_decay_mode": "cosine",
"use_label_smooth": True,
"label_smooth_factor": 0.1,
"lr_init": 0,
"lr_end": 0,
"lr_max": 0.01,
"pre_trained": "",
#export
"width": 227,
"height": 227,
"file_name": "squeezenet",
"file_format": "AIR"
})
# config for squeezenet, cifar10
config_cifar = ed({
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
"enable_modelarts": False,
# Url for modelarts
"data_url": "",
"train_url": "",
"checkpoint_url": "",
# Path for local
"run_distribute": False,
"enable_profiling": False,
"data_path": "/cache/data",
"output_path": "/cache/train",
"load_path": "/cache/checkpoint_path/",
"device_num": 1,
"device_id": 0,
"device_target": "Ascend",
"checkpoint_path": "./checkpoint/",
"checkpoint_file_path": "suqeezenet_residual_cifar10-150_195.ckpt",
# Training options
"net_name": "suqeezenet_residual",
"dataset": "cifar10",
"class_num": 10,
"batch_size": 32,
"loss_scale": 1024,
"momentum": 0.9,
"weight_decay": 1e-4,
"epoch_size": 150,
"pretrain_epoch_size": 0,
"save_checkpoint": True,
"save_checkpoint_epochs": 1,
"keep_checkpoint_max": 10,
"save_checkpoint_path": "./",
"warmup_epochs": 5,
"lr_decay_mode": "linear",
"lr_init": 0,
"lr_end": 0,
"lr_max": 0.01,
"pre_trained": "",
#export
"width": 227,
"height": 227,
"file_name": "squeezenet",
"file_format": "AIR"
})
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment