Skip to content
Snippets Groups Projects
Commit eb40ecc2 authored by anzhengqi's avatar anzhengqi
Browse files

remove modelzoo some warnings

parent 272db35c
No related branches found
No related tags found
No related merge requests found
......@@ -121,14 +121,14 @@ def default_recurisive_init(custom_cell):
for _, cell in custom_cell.cells_and_names():
if isinstance(cell, nn.Conv2d):
cell.weight.set_data(init.initializer(KaimingUniform(a=math.sqrt(5.0)), cell.weight.data.shape,
cell.weight.data.dtype).to_tensor())
cell.weight.data.dtype).init_data())
if cell.bias is not None:
fan_in, _ = _calculate_in_and_out(cell.weight.data.asnumpy())
bound = 1 / math.sqrt(fan_in)
cell.bias.set_data(Tensor(np.random.uniform(-bound, bound, cell.bias.data.shape), cell.bias.data.dtype))
elif isinstance(cell, nn.Dense):
cell.weight.set_data(init.initializer(KaimingUniform(a=math.sqrt(5)), cell.weight.data.shape,
cell.weight.data.dtype).to_tensor())
cell.weight.data.dtype).init_data())
if cell.bias is not None:
fan_in, _ = _calculate_in_and_out(cell.weight.data.asnumpy())
bound = 1 / math.sqrt(fan_in)
......
......@@ -68,9 +68,6 @@ After dataset preparation, you can start training and evaluation as follows:
cd ./scripts
bash run_standalone_train.sh [TRAIN_DATASET] [DEVICEID] [DATANAME]
# run distributed training example
bash run_distribute_train.sh [TRAIN_DATASET] [RANK_TABLE_PATH] [DATANAME]
# run evaluation example
bash run_eval.sh [EVAL_DATASET_PATH] [DATASET_NAME] [MODEL_CKPT] [DEVICEID]
```
......@@ -220,13 +217,6 @@ Parameters for both training and evaluation can be set in config.py. All the dat
bash run_standalone_train.sh [DATASET_PATH] [DEVICE_ID] [DATANAME]
```
- Running scripts for distributed training of FastText. Task training on multiple device and run the following command in bash to be executed in `scripts/`:
```bash
cd ./scripts
bash run_distributed_train.sh [DATASET_PATH] [RANK_TABLE_PATH] [DATANAME]
```
- Running on GPU
- Start task training on a single device and run the shell script
......
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the script as: "
echo "sh run_distributed_train.sh DATASET_PATH RANK_TABLE_PATH"
echo "for example: sh run_distributed_train.sh /home/workspace/ag /home/workspace/rank_table_file.json ag"
echo "It is better to use absolute path."
echo "Please pay attention that the dataset should corresponds to dataset_name"
echo "=============================================================================================================="
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
if [ $3 != "ag" ] && [ $3 != "dbpedia" ] && [ $3 != "yelp_p" ]
then
echo "Unrecognized dataset name, the name can choose from [ag, dbpedia, yelp_p]"
exit 1
fi
DATASET=$(get_real_path $1)
echo $DATASET
RANK_TABLE_PATH=$(get_real_path $2)
if [ ! -d $DATASET ]
then
echo "Error: DATA_PATH=$DATASET is not a file"
exit 1
fi
current_exec_path=$(pwd)
echo ${current_exec_path}
export RANK_TABLE_FILE=$RANK_TABLE_PATH
echo $RANK_TABLE_FILE
export RANK_SIZE=8
export DEVICE_NUM=8
if [ $# -ge 1 ]; then
if [ $3 == 'ag' ]; then
DATANAME='ag'
elif [ $3 == 'dbpedia' ]; then
DATANAME='dbpedia'
elif [ $3 == 'yelp_p' ]; then
DATANAME='yelp_p'
else
echo "Unrecognized dataset name,he name can choose from [ag, dbpedia, yelp_p]"
exit 1
fi
fi
config_path="./${DATANAME}_config.yaml"
echo "config path is : ${config_path}"
for((i=0;i<=7;i++));
do
rm -rf ${current_exec_path}/device$i
mkdir ${current_exec_path}/device$i
cd ${current_exec_path}/device$i || exit
cp ../../*.py ./
cp ../../*.yaml ./
cp -r ../../src ./
cp -r ../../model_utils ./
cp -r ../*.sh ./
export RANK_ID=$i
export DEVICE_ID=$i
echo "start training for rank $i, device $DEVICE_ID"
python ../../train.py --config_path $config_path --dataset_path $DATASET --data_name $DATANAME > log_fasttext.log 2>&1 &
cd ${current_exec_path} || exit
done
cd ${current_exec_path} || exit
......@@ -113,7 +113,6 @@ def train_wide_and_deep():
enable_graph_kernel=_enable_graph_kernel, device_target=cfg.device_target)
if _enable_graph_kernel:
context.set_context(graph_kernel_flags="--enable_cluster_ops=MatMul")
context.set_context(enable_sparse=cfg.sparse)
test_train_eval(cfg)
if __name__ == "__main__":
......
......@@ -154,7 +154,6 @@ def train_wide_and_deep():
if cfg.device_target == "GPU":
context.set_context(enable_graph_kernel=True)
context.set_context(variable_memory_max_size="24GB")
context.set_context(enable_sparse=True)
init()
context.set_context(save_graphs_path='./graphs_of_device_id_' + str(get_rank()), save_graphs=True)
if cfg.sparse:
......
......@@ -130,7 +130,6 @@ def train_wide_and_deep():
context.set_context(enable_graph_kernel=True)
context.set_context(graph_kernel_flags="--enable_cluster_ops=MatMul")
context.set_context(enable_sparse=cfg.sparse)
init()
context.set_context(save_graphs_path='./graphs_of_device_id_'+str(get_rank()))
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
......
......@@ -167,8 +167,6 @@ def train_wide_and_deep():
device_num=get_group_size())
cfg.sparse = True
if cfg.sparse:
context.set_context(enable_sparse=True)
if cfg.device_target == "GPU":
context.set_context(enable_graph_kernel=True)
context.set_context(graph_kernel_flags="--enable_cluster_ops=MatMul")
......
......@@ -127,8 +127,6 @@ def train_wide_and_deep():
""" train_wide_and_deep """
if not cache_enable:
cfg.sparse = True
if cfg.sparse:
context.set_context(enable_sparse=True)
if cfg.device_target == "GPU":
context.set_context(enable_graph_kernel=True)
context.set_context(graph_kernel_flags="--enable_cluster_ops=MatMul")
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment