Skip to content
Snippets Groups Projects
Select Git revision
  • 00147a73cdbd89484c119517071eea50b3e3280c
  • master default protected
  • 3.0
  • develop
  • revert-2069-tripleVersion
  • 3.1
  • rest-protocol
  • feat/remoting_rocketmq
  • dapr-support
  • 1.5
  • 1.4
  • 1.3
  • 1.2
  • 1.1
  • v3.0.3-rc2
  • v3.0.3-rc1
  • v3.0.2
  • v1.5.8
  • v1.5.9-rc1
  • v3.0.1
  • v1.5.8-rc1
  • v3.0.0
  • v3.0.0-rc4-1
  • v3.0.0-rc4
  • v3.0.0-rc3
  • v1.5.7
  • v1.5.7-rc2
  • v3.0.0-rc2
  • remove
  • v1.5.7-rc1
  • v3.0.0-rc1
  • v1.5.7-rc1-tmp
  • 1.5.6
  • v1.5.6
34 results

http.go

Blame
  • mvpp2.c 254.83 KiB
    /*
     * Driver for Marvell PPv2 network controller for Armada 375 SoC.
     *
     * Copyright (C) 2014 Marvell
     *
     * Marcin Wojtas <mw@semihalf.com>
     *
     * This file is licensed under the terms of the GNU General Public
     * License version 2. This program is licensed "as is" without any
     * warranty of any kind, whether express or implied.
     */
    
    #include <linux/acpi.h>
    #include <linux/kernel.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/platform_device.h>
    #include <linux/skbuff.h>
    #include <linux/inetdevice.h>
    #include <linux/mbus.h>
    #include <linux/module.h>
    #include <linux/mfd/syscon.h>
    #include <linux/interrupt.h>
    #include <linux/cpumask.h>
    #include <linux/of.h>
    #include <linux/of_irq.h>
    #include <linux/of_mdio.h>
    #include <linux/of_net.h>
    #include <linux/of_address.h>
    #include <linux/of_device.h>
    #include <linux/phy.h>
    #include <linux/phylink.h>
    #include <linux/phy/phy.h>
    #include <linux/clk.h>
    #include <linux/hrtimer.h>
    #include <linux/ktime.h>
    #include <linux/regmap.h>
    #include <uapi/linux/ppp_defs.h>
    #include <net/ip.h>
    #include <net/ipv6.h>
    #include <net/tso.h>
    
    /* Fifo Registers */
    #define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
    #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
    #define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
    #define MVPP2_RX_FIFO_INIT_REG			0x64
    #define MVPP22_TX_FIFO_THRESH_REG(port)		(0x8840 + 4 * (port))
    #define MVPP22_TX_FIFO_SIZE_REG(port)		(0x8860 + 4 * (port))
    
    /* RX DMA Top Registers */
    #define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
    #define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
    #define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
    #define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
    #define     MVPP2_POOL_BUF_SIZE_OFFSET		5
    #define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
    #define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
    #define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
    #define     MVPP2_RXQ_POOL_SHORT_OFFS		20
    #define     MVPP21_RXQ_POOL_SHORT_MASK		0x700000
    #define     MVPP22_RXQ_POOL_SHORT_MASK		0xf00000
    #define     MVPP2_RXQ_POOL_LONG_OFFS		24
    #define     MVPP21_RXQ_POOL_LONG_MASK		0x7000000
    #define     MVPP22_RXQ_POOL_LONG_MASK		0xf000000
    #define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
    #define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
    #define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
    
    /* Top Registers */
    #define MVPP2_MH_REG(port)			(0x5040 + 4 * (port))
    #define MVPP2_DSA_EXTENDED			BIT(5)
    
    /* Parser Registers */
    #define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
    #define     MVPP2_PRS_PORT_LU_MAX		0xf
    #define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
    #define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
    #define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
    #define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
    #define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
    #define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
    #define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
    #define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
    #define MVPP2_PRS_TCAM_IDX_REG			0x1100
    #define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
    #define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
    #define MVPP2_PRS_SRAM_IDX_REG			0x1200
    #define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
    #define MVPP2_PRS_TCAM_CTRL_REG			0x1230
    #define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
    
    /* RSS Registers */
    #define MVPP22_RSS_INDEX			0x1500
    #define     MVPP22_RSS_INDEX_TABLE_ENTRY(idx)	(idx)
    #define     MVPP22_RSS_INDEX_TABLE(idx)		((idx) << 8)
    #define     MVPP22_RSS_INDEX_QUEUE(idx)		((idx) << 16)
    #define MVPP22_RSS_TABLE_ENTRY			0x1508
    #define MVPP22_RSS_TABLE			0x1510
    #define     MVPP22_RSS_TABLE_POINTER(p)		(p)
    #define MVPP22_RSS_WIDTH			0x150c
    
    /* Classifier Registers */
    #define MVPP2_CLS_MODE_REG			0x1800
    #define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
    #define MVPP2_CLS_PORT_WAY_REG			0x1810
    #define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
    #define MVPP2_CLS_LKP_INDEX_REG			0x1814
    #define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
    #define MVPP2_CLS_LKP_TBL_REG			0x1818
    #define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
    #define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
    #define MVPP2_CLS_FLOW_INDEX_REG		0x1820
    #define MVPP2_CLS_FLOW_TBL0_REG			0x1824
    #define MVPP2_CLS_FLOW_TBL1_REG			0x1828
    #define MVPP2_CLS_FLOW_TBL2_REG			0x182c
    #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
    #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
    #define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
    #define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
    #define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
    #define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
    
    /* Descriptor Manager Top Registers */
    #define MVPP2_RXQ_NUM_REG			0x2040
    #define MVPP2_RXQ_DESC_ADDR_REG			0x2044
    #define     MVPP22_DESC_ADDR_OFFS		8
    #define MVPP2_RXQ_DESC_SIZE_REG			0x2048
    #define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
    #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
    #define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
    #define     MVPP2_RXQ_NUM_NEW_OFFSET		16
    #define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
    #define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
    #define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
    #define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
    #define MVPP2_RXQ_THRESH_REG			0x204c
    #define     MVPP2_OCCUPIED_THRESH_OFFSET	0
    #define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
    #define MVPP2_RXQ_INDEX_REG			0x2050
    #define MVPP2_TXQ_NUM_REG			0x2080
    #define MVPP2_TXQ_DESC_ADDR_REG			0x2084
    #define MVPP2_TXQ_DESC_SIZE_REG			0x2088
    #define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
    #define MVPP2_TXQ_THRESH_REG			0x2094
    #define	    MVPP2_TXQ_THRESH_OFFSET		16
    #define	    MVPP2_TXQ_THRESH_MASK		0x3fff
    #define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
    #define MVPP2_TXQ_INDEX_REG			0x2098
    #define MVPP2_TXQ_PREF_BUF_REG			0x209c
    #define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
    #define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
    #define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
    #define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
    #define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
    #define MVPP2_TXQ_PENDING_REG			0x20a0
    #define     MVPP2_TXQ_PENDING_MASK		0x3fff
    #define MVPP2_TXQ_INT_STATUS_REG		0x20a4
    #define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
    #define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
    #define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
    #define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
    #define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
    #define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
    #define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
    #define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
    #define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
    #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
    #define     MVPP22_AGGR_TXQ_DESC_ADDR_OFFS	8
    #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
    #define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
    #define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
    #define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
    #define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
    
    /* MBUS bridge registers */
    #define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
    #define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
    #define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
    #define MVPP2_BASE_ADDR_ENABLE			0x4060
    
    /* AXI Bridge Registers */
    #define MVPP22_AXI_BM_WR_ATTR_REG		0x4100
    #define MVPP22_AXI_BM_RD_ATTR_REG		0x4104
    #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG	0x4110
    #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG	0x4114
    #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG	0x4118
    #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG	0x411c
    #define MVPP22_AXI_RX_DATA_WR_ATTR_REG		0x4120
    #define MVPP22_AXI_TX_DATA_RD_ATTR_REG		0x4130
    #define MVPP22_AXI_RD_NORMAL_CODE_REG		0x4150
    #define MVPP22_AXI_RD_SNOOP_CODE_REG		0x4154
    #define MVPP22_AXI_WR_NORMAL_CODE_REG		0x4160
    #define MVPP22_AXI_WR_SNOOP_CODE_REG		0x4164
    
    /* Values for AXI Bridge registers */
    #define MVPP22_AXI_ATTR_CACHE_OFFS		0
    #define MVPP22_AXI_ATTR_DOMAIN_OFFS		12
    
    #define MVPP22_AXI_CODE_CACHE_OFFS		0
    #define MVPP22_AXI_CODE_DOMAIN_OFFS		4
    
    #define MVPP22_AXI_CODE_CACHE_NON_CACHE		0x3
    #define MVPP22_AXI_CODE_CACHE_WR_CACHE		0x7
    #define MVPP22_AXI_CODE_CACHE_RD_CACHE		0xb
    
    #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM	2
    #define MVPP22_AXI_CODE_DOMAIN_SYSTEM		3
    
    /* Interrupt Cause and Mask registers */
    #define MVPP2_ISR_TX_THRESHOLD_REG(port)	(0x5140 + 4 * (port))
    #define     MVPP2_MAX_ISR_TX_THRESHOLD		0xfffff0
    
    #define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
    #define     MVPP2_MAX_ISR_RX_THRESHOLD		0xfffff0
    #define MVPP21_ISR_RXQ_GROUP_REG(port)		(0x5400 + 4 * (port))
    
    #define MVPP22_ISR_RXQ_GROUP_INDEX_REG		0x5400
    #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
    #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK	0x380
    #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET	7
    
    #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
    #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK	0x380
    
    #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG	0x5404
    #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK	0x1f
    #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK	0xf00
    #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET	8
    
    #define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
    #define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
    #define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
    #define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
    #define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
    #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
    #define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET	16
    #define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
    #define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
    #define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
    #define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
    #define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
    #define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
    #define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
    #define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
    #define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
    #define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
    #define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
    #define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
    
    /* Buffer Manager registers */
    #define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
    #define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
    #define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
    #define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
    #define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
    #define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
    #define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
    #define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
    #define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
    #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
    #define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
    #define MVPP22_BM_POOL_PTRS_NUM_MASK		0xfff8
    #define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
    #define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
    #define     MVPP2_BM_START_MASK			BIT(0)
    #define     MVPP2_BM_STOP_MASK			BIT(1)
    #define     MVPP2_BM_STATE_MASK			BIT(4)
    #define     MVPP2_BM_LOW_THRESH_OFFS		8
    #define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
    #define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
    						MVPP2_BM_LOW_THRESH_OFFS)
    #define     MVPP2_BM_HIGH_THRESH_OFFS		16
    #define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
    #define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
    						MVPP2_BM_HIGH_THRESH_OFFS)
    #define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
    #define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
    #define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
    #define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
    #define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
    #define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
    #define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
    #define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
    #define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
    #define MVPP2_BM_VIRT_ALLOC_REG			0x6440
    #define MVPP22_BM_ADDR_HIGH_ALLOC		0x6444
    #define     MVPP22_BM_ADDR_HIGH_PHYS_MASK	0xff
    #define     MVPP22_BM_ADDR_HIGH_VIRT_MASK	0xff00
    #define     MVPP22_BM_ADDR_HIGH_VIRT_SHIFT	8
    #define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
    #define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
    #define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
    #define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
    #define MVPP2_BM_VIRT_RLS_REG			0x64c0
    #define MVPP22_BM_ADDR_HIGH_RLS_REG		0x64c4
    #define     MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK	0xff
    #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK	0xff00
    #define     MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT	8
    
    /* TX Scheduler registers */
    #define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
    #define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
    #define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
    #define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
    #define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
    #define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
    #define MVPP2_TXP_SCHED_MTU_REG			0x801c
    #define     MVPP2_TXP_MTU_MAX			0x7FFFF
    #define MVPP2_TXP_SCHED_REFILL_REG		0x8020
    #define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
    #define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
    #define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
    #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
    #define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
    #define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
    #define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
    #define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
    #define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
    #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
    #define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
    #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
    #define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
    
    /* TX general registers */
    #define MVPP2_TX_SNOOP_REG			0x8800
    #define MVPP2_TX_PORT_FLUSH_REG			0x8810
    #define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
    
    /* LMS registers */
    #define MVPP2_SRC_ADDR_MIDDLE			0x24
    #define MVPP2_SRC_ADDR_HIGH			0x28
    #define MVPP2_PHY_AN_CFG0_REG			0x34
    #define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
    #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
    #define     MVPP2_EXT_GLOBAL_CTRL_DEFAULT	0x27
    
    /* Per-port registers */
    #define MVPP2_GMAC_CTRL_0_REG			0x0
    #define     MVPP2_GMAC_PORT_EN_MASK		BIT(0)
    #define     MVPP2_GMAC_PORT_TYPE_MASK		BIT(1)
    #define     MVPP2_GMAC_MAX_RX_SIZE_OFFS		2
    #define     MVPP2_GMAC_MAX_RX_SIZE_MASK		0x7ffc
    #define     MVPP2_GMAC_MIB_CNTR_EN_MASK		BIT(15)
    #define MVPP2_GMAC_CTRL_1_REG			0x4
    #define     MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
    #define     MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
    #define     MVPP2_GMAC_PCS_LB_EN_BIT		6
    #define     MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
    #define     MVPP2_GMAC_SA_LOW_OFFS		7
    #define MVPP2_GMAC_CTRL_2_REG			0x8
    #define     MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
    #define     MVPP2_GMAC_FLOW_CTRL_MASK		GENMASK(2, 1)
    #define     MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
    #define     MVPP2_GMAC_INTERNAL_CLK_MASK	BIT(4)
    #define     MVPP2_GMAC_DISABLE_PADDING		BIT(5)
    #define     MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
    #define MVPP2_GMAC_AUTONEG_CONFIG		0xc
    #define     MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
    #define     MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
    #define     MVPP2_GMAC_IN_BAND_AUTONEG		BIT(2)
    #define     MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS	BIT(3)
    #define     MVPP2_GMAC_IN_BAND_RESTART_AN	BIT(4)
    #define     MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
    #define     MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
    #define     MVPP2_GMAC_AN_SPEED_EN		BIT(7)
    #define     MVPP2_GMAC_FC_ADV_EN		BIT(9)
    #define     MVPP2_GMAC_FC_ADV_ASM_EN		BIT(10)
    #define     MVPP2_GMAC_FLOW_CTRL_AUTONEG	BIT(11)
    #define     MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
    #define     MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
    #define MVPP2_GMAC_STATUS0			0x10
    #define     MVPP2_GMAC_STATUS0_LINK_UP		BIT(0)
    #define     MVPP2_GMAC_STATUS0_GMII_SPEED	BIT(1)
    #define     MVPP2_GMAC_STATUS0_MII_SPEED	BIT(2)
    #define     MVPP2_GMAC_STATUS0_FULL_DUPLEX	BIT(3)
    #define     MVPP2_GMAC_STATUS0_RX_PAUSE		BIT(6)
    #define     MVPP2_GMAC_STATUS0_TX_PAUSE		BIT(7)
    #define     MVPP2_GMAC_STATUS0_AN_COMPLETE	BIT(11)
    #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
    #define     MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
    #define     MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
    #define     MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
    					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
    #define MVPP22_GMAC_INT_STAT			0x20
    #define     MVPP22_GMAC_INT_STAT_LINK		BIT(1)
    #define MVPP22_GMAC_INT_MASK			0x24
    #define     MVPP22_GMAC_INT_MASK_LINK_STAT	BIT(1)
    #define MVPP22_GMAC_CTRL_4_REG			0x90
    #define     MVPP22_CTRL4_EXT_PIN_GMII_SEL	BIT(0)
    #define     MVPP22_CTRL4_RX_FC_EN		BIT(3)
    #define     MVPP22_CTRL4_TX_FC_EN		BIT(4)
    #define     MVPP22_CTRL4_DP_CLK_SEL		BIT(5)
    #define     MVPP22_CTRL4_SYNC_BYPASS_DIS	BIT(6)
    #define     MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE	BIT(7)
    #define MVPP22_GMAC_INT_SUM_MASK		0xa4
    #define     MVPP22_GMAC_INT_SUM_MASK_LINK_STAT	BIT(1)
    
    /* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
     * relative to port->base.
     */
    #define MVPP22_XLG_CTRL0_REG			0x100
    #define     MVPP22_XLG_CTRL0_PORT_EN		BIT(0)
    #define     MVPP22_XLG_CTRL0_MAC_RESET_DIS	BIT(1)
    #define     MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN	BIT(7)
    #define     MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN	BIT(8)
    #define     MVPP22_XLG_CTRL0_MIB_CNT_DIS	BIT(14)
    #define MVPP22_XLG_CTRL1_REG			0x104
    #define     MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS	0
    #define     MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK	0x1fff
    #define MVPP22_XLG_STATUS			0x10c
    #define     MVPP22_XLG_STATUS_LINK_UP		BIT(0)
    #define MVPP22_XLG_INT_STAT			0x114
    #define     MVPP22_XLG_INT_STAT_LINK		BIT(1)
    #define MVPP22_XLG_INT_MASK			0x118
    #define     MVPP22_XLG_INT_MASK_LINK		BIT(1)
    #define MVPP22_XLG_CTRL3_REG			0x11c
    #define     MVPP22_XLG_CTRL3_MACMODESELECT_MASK	(7 << 13)
    #define     MVPP22_XLG_CTRL3_MACMODESELECT_GMAC	(0 << 13)
    #define     MVPP22_XLG_CTRL3_MACMODESELECT_10G	(1 << 13)
    #define MVPP22_XLG_EXT_INT_MASK			0x15c
    #define     MVPP22_XLG_EXT_INT_MASK_XLG		BIT(1)
    #define     MVPP22_XLG_EXT_INT_MASK_GIG		BIT(2)
    #define MVPP22_XLG_CTRL4_REG			0x184
    #define     MVPP22_XLG_CTRL4_FWD_FC		BIT(5)
    #define     MVPP22_XLG_CTRL4_FWD_PFC		BIT(6)
    #define     MVPP22_XLG_CTRL4_MACMODSELECT_GMAC	BIT(12)
    #define     MVPP22_XLG_CTRL4_EN_IDLE_CHECK	BIT(14)
    
    /* SMI registers. PPv2.2 only, relative to priv->iface_base. */
    #define MVPP22_SMI_MISC_CFG_REG			0x1204
    #define     MVPP22_SMI_POLLING_EN		BIT(10)
    
    #define MVPP22_GMAC_BASE(port)		(0x7000 + (port) * 0x1000 + 0xe00)
    
    #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
    
    /* Descriptor ring Macros */
    #define MVPP2_QUEUE_NEXT_DESC(q, index) \
    	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
    
    /* XPCS registers. PPv2.2 only */
    #define MVPP22_MPCS_BASE(port)			(0x7000 + (port) * 0x1000)
    #define MVPP22_MPCS_CTRL			0x14
    #define     MVPP22_MPCS_CTRL_FWD_ERR_CONN	BIT(10)
    #define MVPP22_MPCS_CLK_RESET			0x14c
    #define     MAC_CLK_RESET_SD_TX			BIT(0)
    #define     MAC_CLK_RESET_SD_RX			BIT(1)
    #define     MAC_CLK_RESET_MAC			BIT(2)
    #define     MVPP22_MPCS_CLK_RESET_DIV_RATIO(n)	((n) << 4)
    #define     MVPP22_MPCS_CLK_RESET_DIV_SET	BIT(11)
    
    /* XPCS registers. PPv2.2 only */
    #define MVPP22_XPCS_BASE(port)			(0x7400 + (port) * 0x1000)
    #define MVPP22_XPCS_CFG0			0x0
    #define     MVPP22_XPCS_CFG0_PCS_MODE(n)	((n) << 3)
    #define     MVPP22_XPCS_CFG0_ACTIVE_LANE(n)	((n) << 5)
    
    /* System controller registers. Accessed through a regmap. */
    #define GENCONF_SOFT_RESET1				0x1108
    #define     GENCONF_SOFT_RESET1_GOP			BIT(6)
    #define GENCONF_PORT_CTRL0				0x1110
    #define     GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT		BIT(1)
    #define     GENCONF_PORT_CTRL0_RX_DATA_SAMPLE		BIT(29)
    #define     GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR	BIT(31)
    #define GENCONF_PORT_CTRL1				0x1114
    #define     GENCONF_PORT_CTRL1_EN(p)			BIT(p)
    #define     GENCONF_PORT_CTRL1_RESET(p)			(BIT(p) << 28)
    #define GENCONF_CTRL0					0x1120
    #define     GENCONF_CTRL0_PORT0_RGMII			BIT(0)
    #define     GENCONF_CTRL0_PORT1_RGMII_MII		BIT(1)
    #define     GENCONF_CTRL0_PORT1_RGMII			BIT(2)
    
    /* Various constants */
    
    /* Coalescing */
    #define MVPP2_TXDONE_COAL_PKTS_THRESH	64
    #define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
    #define MVPP2_TXDONE_COAL_USEC		1000
    #define MVPP2_RX_COAL_PKTS		32
    #define MVPP2_RX_COAL_USEC		64
    
    /* The two bytes Marvell header. Either contains a special value used
     * by Marvell switches when a specific hardware mode is enabled (not
     * supported by this driver) or is filled automatically by zeroes on
     * the RX side. Those two bytes being at the front of the Ethernet
     * header, they allow to have the IP header aligned on a 4 bytes
     * boundary automatically: the hardware skips those two bytes on its
     * own.
     */
    #define MVPP2_MH_SIZE			2
    #define MVPP2_ETH_TYPE_LEN		2
    #define MVPP2_PPPOE_HDR_SIZE		8
    #define MVPP2_VLAN_TAG_LEN		4
    #define MVPP2_VLAN_TAG_EDSA_LEN		8
    
    /* Lbtd 802.3 type */
    #define MVPP2_IP_LBDT_TYPE		0xfffa
    
    #define MVPP2_TX_CSUM_MAX_SIZE		9800
    
    /* Timeout constants */
    #define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
    #define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
    
    #define MVPP2_TX_MTU_MAX		0x7ffff
    
    /* Maximum number of T-CONTs of PON port */
    #define MVPP2_MAX_TCONT			16
    
    /* Maximum number of supported ports */
    #define MVPP2_MAX_PORTS			4
    
    /* Maximum number of TXQs used by single port */
    #define MVPP2_MAX_TXQ			8
    
    /* MVPP2_MAX_TSO_SEGS is the maximum number of fragments to allow in the GSO
     * skb. As we need a maxium of two descriptors per fragments (1 header, 1 data),
     * multiply this value by two to count the maximum number of skb descs needed.
     */
    #define MVPP2_MAX_TSO_SEGS		300
    #define MVPP2_MAX_SKB_DESCS		(MVPP2_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
    
    /* Dfault number of RXQs in use */
    #define MVPP2_DEFAULT_RXQ		4
    
    /* Max number of Rx descriptors */
    #define MVPP2_MAX_RXD_MAX		1024
    #define MVPP2_MAX_RXD_DFLT		128
    
    /* Max number of Tx descriptors */
    #define MVPP2_MAX_TXD_MAX		2048
    #define MVPP2_MAX_TXD_DFLT		1024
    
    /* Amount of Tx descriptors that can be reserved at once by CPU */
    #define MVPP2_CPU_DESC_CHUNK		64
    
    /* Max number of Tx descriptors in each aggregated queue */
    #define MVPP2_AGGR_TXQ_SIZE		256
    
    /* Descriptor aligned size */
    #define MVPP2_DESC_ALIGNED_SIZE		32
    
    /* Descriptor alignment mask */
    #define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
    
    /* RX FIFO constants */
    #define MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB	0x8000
    #define MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB	0x2000
    #define MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB	0x1000
    #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB	0x200
    #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB	0x80
    #define MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB	0x40
    #define MVPP2_RX_FIFO_PORT_MIN_PKT		0x80
    
    /* TX FIFO constants */
    #define MVPP22_TX_FIFO_DATA_SIZE_10KB		0xa
    #define MVPP22_TX_FIFO_DATA_SIZE_3KB		0x3
    #define MVPP2_TX_FIFO_THRESHOLD_MIN		256
    #define MVPP2_TX_FIFO_THRESHOLD_10KB	\
    	(MVPP22_TX_FIFO_DATA_SIZE_10KB * 1024 - MVPP2_TX_FIFO_THRESHOLD_MIN)
    #define MVPP2_TX_FIFO_THRESHOLD_3KB	\
    	(MVPP22_TX_FIFO_DATA_SIZE_3KB * 1024 - MVPP2_TX_FIFO_THRESHOLD_MIN)
    
    /* RX buffer constants */
    #define MVPP2_SKB_SHINFO_SIZE \
    	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
    
    #define MVPP2_RX_PKT_SIZE(mtu) \
    	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
    	      ETH_HLEN + ETH_FCS_LEN, cache_line_size())
    
    #define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
    #define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
    #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
    	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
    
    #define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
    
    /* IPv6 max L3 address size */
    #define MVPP2_MAX_L3_ADDR_SIZE		16
    
    /* Port flags */
    #define MVPP2_F_LOOPBACK		BIT(0)
    
    /* Marvell tag types */
    enum mvpp2_tag_type {
    	MVPP2_TAG_TYPE_NONE = 0,
    	MVPP2_TAG_TYPE_MH   = 1,
    	MVPP2_TAG_TYPE_DSA  = 2,
    	MVPP2_TAG_TYPE_EDSA = 3,
    	MVPP2_TAG_TYPE_VLAN = 4,
    	MVPP2_TAG_TYPE_LAST = 5
    };
    
    /* Parser constants */
    #define MVPP2_PRS_TCAM_SRAM_SIZE	256
    #define MVPP2_PRS_TCAM_WORDS		6
    #define MVPP2_PRS_SRAM_WORDS		4
    #define MVPP2_PRS_FLOW_ID_SIZE		64
    #define MVPP2_PRS_FLOW_ID_MASK		0x3f
    #define MVPP2_PRS_TCAM_ENTRY_INVALID	1
    #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
    #define MVPP2_PRS_IPV4_HEAD		0x40
    #define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
    #define MVPP2_PRS_IPV4_MC		0xe0
    #define MVPP2_PRS_IPV4_MC_MASK		0xf0
    #define MVPP2_PRS_IPV4_BC_MASK		0xff
    #define MVPP2_PRS_IPV4_IHL		0x5
    #define MVPP2_PRS_IPV4_IHL_MASK		0xf
    #define MVPP2_PRS_IPV6_MC		0xff
    #define MVPP2_PRS_IPV6_MC_MASK		0xff
    #define MVPP2_PRS_IPV6_HOP_MASK		0xff
    #define MVPP2_PRS_TCAM_PROTO_MASK	0xff
    #define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
    #define MVPP2_PRS_DBL_VLANS_MAX		100
    #define MVPP2_PRS_CAST_MASK		BIT(0)
    #define MVPP2_PRS_MCAST_VAL		BIT(0)
    #define MVPP2_PRS_UCAST_VAL		0x0
    
    /* Tcam structure:
     * - lookup ID - 4 bits
     * - port ID - 1 byte
     * - additional information - 1 byte
     * - header data - 8 bytes
     * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
     */
    #define MVPP2_PRS_AI_BITS			8
    #define MVPP2_PRS_PORT_MASK			0xff
    #define MVPP2_PRS_LU_MASK			0xf
    #define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
    				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
    #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
    					      (((offs) * 2) - ((offs) % 2)  + 2)
    #define MVPP2_PRS_TCAM_AI_BYTE			16
    #define MVPP2_PRS_TCAM_PORT_BYTE		17
    #define MVPP2_PRS_TCAM_LU_BYTE			20
    #define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
    #define MVPP2_PRS_TCAM_INV_WORD			5
    
    #define MVPP2_PRS_VID_TCAM_BYTE         2
    
    /* TCAM range for unicast and multicast filtering. We have 25 entries per port,
     * with 4 dedicated to UC filtering and the rest to multicast filtering.
     * Additionnally we reserve one entry for the broadcast address, and one for
     * each port's own address.
     */
    #define MVPP2_PRS_MAC_UC_MC_FILT_MAX	25
    #define MVPP2_PRS_MAC_RANGE_SIZE	80
    
    /* Number of entries per port dedicated to UC and MC filtering */
    #define MVPP2_PRS_MAC_UC_FILT_MAX	4
    #define MVPP2_PRS_MAC_MC_FILT_MAX	(MVPP2_PRS_MAC_UC_MC_FILT_MAX - \
    					 MVPP2_PRS_MAC_UC_FILT_MAX)
    
    /* There is a TCAM range reserved for VLAN filtering entries, range size is 33
     * 10 VLAN ID filter entries per port
     * 1 default VLAN filter entry per port
     * It is assumed that there are 3 ports for filter, not including loopback port
     */
    #define MVPP2_PRS_VLAN_FILT_MAX		11
    #define MVPP2_PRS_VLAN_FILT_RANGE_SIZE	33
    
    #define MVPP2_PRS_VLAN_FILT_MAX_ENTRY   (MVPP2_PRS_VLAN_FILT_MAX - 2)
    #define MVPP2_PRS_VLAN_FILT_DFLT_ENTRY  (MVPP2_PRS_VLAN_FILT_MAX - 1)
    
    /* Tcam entries ID */
    #define MVPP2_PE_DROP_ALL		0
    #define MVPP2_PE_FIRST_FREE_TID		1
    
    /* MAC filtering range */
    #define MVPP2_PE_MAC_RANGE_END		(MVPP2_PE_VID_FILT_RANGE_START - 1)
    #define MVPP2_PE_MAC_RANGE_START	(MVPP2_PE_MAC_RANGE_END - \
    						MVPP2_PRS_MAC_RANGE_SIZE + 1)
    /* VLAN filtering range */
    #define MVPP2_PE_VID_FILT_RANGE_END     (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
    #define MVPP2_PE_VID_FILT_RANGE_START   (MVPP2_PE_VID_FILT_RANGE_END - \
    					 MVPP2_PRS_VLAN_FILT_RANGE_SIZE + 1)
    #define MVPP2_PE_LAST_FREE_TID          (MVPP2_PE_MAC_RANGE_START - 1)
    #define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
    #define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
    #define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
    #define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
    #define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 22)
    #define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 21)
    #define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 20)
    #define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
    #define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
    #define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
    #define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
    #define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
    #define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
    #define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
    #define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
    #define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
    #define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
    #define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
    #define MVPP2_PE_VID_FLTR_DEFAULT	(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
    #define MVPP2_PE_VID_EDSA_FLTR_DEFAULT	(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
    #define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
    #define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
    /* reserved */
    #define MVPP2_PE_MAC_MC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
    #define MVPP2_PE_MAC_UC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
    #define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
    
    #define MVPP2_PRS_VID_PORT_FIRST(port)	(MVPP2_PE_VID_FILT_RANGE_START + \
    					 ((port) * MVPP2_PRS_VLAN_FILT_MAX))
    #define MVPP2_PRS_VID_PORT_LAST(port)	(MVPP2_PRS_VID_PORT_FIRST(port) \
    					 + MVPP2_PRS_VLAN_FILT_MAX_ENTRY)
    /* Index of default vid filter for given port */
    #define MVPP2_PRS_VID_PORT_DFLT(port)	(MVPP2_PRS_VID_PORT_FIRST(port) \
    					 + MVPP2_PRS_VLAN_FILT_DFLT_ENTRY)
    
    /* Sram structure
     * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
     */
    #define MVPP2_PRS_SRAM_RI_OFFS			0
    #define MVPP2_PRS_SRAM_RI_WORD			0
    #define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
    #define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
    #define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
    #define MVPP2_PRS_SRAM_SHIFT_OFFS		64
    #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
    #define MVPP2_PRS_SRAM_UDF_OFFS			73
    #define MVPP2_PRS_SRAM_UDF_BITS			8
    #define MVPP2_PRS_SRAM_UDF_MASK			0xff
    #define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
    #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
    #define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
    #define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
    #define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
    #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
    #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
    #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
    #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
    #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
    #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
    #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
    #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
    #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
    #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
    #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
    #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
    #define MVPP2_PRS_SRAM_AI_OFFS			90
    #define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
    #define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
    #define MVPP2_PRS_SRAM_AI_MASK			0xff
    #define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
    #define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
    #define MVPP2_PRS_SRAM_LU_DONE_BIT		110
    #define MVPP2_PRS_SRAM_LU_GEN_BIT		111
    
    /* Sram result info bits assignment */
    #define MVPP2_PRS_RI_MAC_ME_MASK		0x1
    #define MVPP2_PRS_RI_DSA_MASK			0x2
    #define MVPP2_PRS_RI_VLAN_MASK			(BIT(2) | BIT(3))
    #define MVPP2_PRS_RI_VLAN_NONE			0x0
    #define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
    #define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
    #define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
    #define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
    #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
    #define MVPP2_PRS_RI_L2_CAST_MASK		(BIT(9) | BIT(10))
    #define MVPP2_PRS_RI_L2_UCAST			0x0
    #define MVPP2_PRS_RI_L2_MCAST			BIT(9)
    #define MVPP2_PRS_RI_L2_BCAST			BIT(10)
    #define MVPP2_PRS_RI_PPPOE_MASK			0x800
    #define MVPP2_PRS_RI_L3_PROTO_MASK		(BIT(12) | BIT(13) | BIT(14))
    #define MVPP2_PRS_RI_L3_UN			0x0
    #define MVPP2_PRS_RI_L3_IP4			BIT(12)
    #define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
    #define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
    #define MVPP2_PRS_RI_L3_IP6			BIT(14)
    #define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
    #define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
    #define MVPP2_PRS_RI_L3_ADDR_MASK		(BIT(15) | BIT(16))
    #define MVPP2_PRS_RI_L3_UCAST			0x0
    #define MVPP2_PRS_RI_L3_MCAST			BIT(15)
    #define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
    #define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
    #define MVPP2_PRS_RI_IP_FRAG_TRUE		BIT(17)
    #define MVPP2_PRS_RI_UDF3_MASK			0x300000
    #define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
    #define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
    #define MVPP2_PRS_RI_L4_TCP			BIT(22)
    #define MVPP2_PRS_RI_L4_UDP			BIT(23)
    #define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
    #define MVPP2_PRS_RI_UDF7_MASK			0x60000000
    #define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
    #define MVPP2_PRS_RI_DROP_MASK			0x80000000
    
    /* Sram additional info bits assignment */
    #define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
    #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
    #define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
    #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
    #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
    #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
    #define MVPP2_PRS_SINGLE_VLAN_AI		0
    #define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
    #define MVPP2_PRS_EDSA_VID_AI_BIT		BIT(0)
    
    /* DSA/EDSA type */
    #define MVPP2_PRS_TAGGED		true
    #define MVPP2_PRS_UNTAGGED		false
    #define MVPP2_PRS_EDSA			true
    #define MVPP2_PRS_DSA			false
    
    /* MAC entries, shadow udf */
    enum mvpp2_prs_udf {
    	MVPP2_PRS_UDF_MAC_DEF,
    	MVPP2_PRS_UDF_MAC_RANGE,
    	MVPP2_PRS_UDF_L2_DEF,
    	MVPP2_PRS_UDF_L2_DEF_COPY,
    	MVPP2_PRS_UDF_L2_USER,
    };
    
    /* Lookup ID */
    enum mvpp2_prs_lookup {
    	MVPP2_PRS_LU_MH,
    	MVPP2_PRS_LU_MAC,
    	MVPP2_PRS_LU_DSA,
    	MVPP2_PRS_LU_VLAN,
    	MVPP2_PRS_LU_VID,
    	MVPP2_PRS_LU_L2,
    	MVPP2_PRS_LU_PPPOE,
    	MVPP2_PRS_LU_IP4,
    	MVPP2_PRS_LU_IP6,
    	MVPP2_PRS_LU_FLOWS,
    	MVPP2_PRS_LU_LAST,
    };
    
    /* L2 cast enum */
    enum mvpp2_prs_l2_cast {
    	MVPP2_PRS_L2_UNI_CAST,
    	MVPP2_PRS_L2_MULTI_CAST,
    };
    
    /* L3 cast enum */
    enum mvpp2_prs_l3_cast {
    	MVPP2_PRS_L3_UNI_CAST,
    	MVPP2_PRS_L3_MULTI_CAST,
    	MVPP2_PRS_L3_BROAD_CAST
    };
    
    /* Classifier constants */
    #define MVPP2_CLS_FLOWS_TBL_SIZE	512
    #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
    #define MVPP2_CLS_LKP_TBL_SIZE		64
    #define MVPP2_CLS_RX_QUEUES		256
    
    /* RSS constants */
    #define MVPP22_RSS_TABLE_ENTRIES	32
    
    /* BM constants */
    #define MVPP2_BM_JUMBO_BUF_NUM		512
    #define MVPP2_BM_LONG_BUF_NUM		1024
    #define MVPP2_BM_SHORT_BUF_NUM		2048
    #define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
    #define MVPP2_BM_POOL_PTR_ALIGN		128
    
    /* BM cookie (32 bits) definition */
    #define MVPP2_BM_COOKIE_POOL_OFFS	8
    #define MVPP2_BM_COOKIE_CPU_OFFS	24
    
    #define MVPP2_BM_SHORT_FRAME_SIZE		512
    #define MVPP2_BM_LONG_FRAME_SIZE		2048
    #define MVPP2_BM_JUMBO_FRAME_SIZE		10240
    /* BM short pool packet size
     * These value assure that for SWF the total number
     * of bytes allocated for each buffer will be 512
     */
    #define MVPP2_BM_SHORT_PKT_SIZE	MVPP2_RX_MAX_PKT_SIZE(MVPP2_BM_SHORT_FRAME_SIZE)
    #define MVPP2_BM_LONG_PKT_SIZE	MVPP2_RX_MAX_PKT_SIZE(MVPP2_BM_LONG_FRAME_SIZE)
    #define MVPP2_BM_JUMBO_PKT_SIZE	MVPP2_RX_MAX_PKT_SIZE(MVPP2_BM_JUMBO_FRAME_SIZE)
    
    #define MVPP21_ADDR_SPACE_SZ		0
    #define MVPP22_ADDR_SPACE_SZ		SZ_64K
    
    #define MVPP2_MAX_THREADS		8
    #define MVPP2_MAX_QVECS			MVPP2_MAX_THREADS
    
    enum mvpp2_bm_pool_log_num {
    	MVPP2_BM_SHORT,
    	MVPP2_BM_LONG,
    	MVPP2_BM_JUMBO,
    	MVPP2_BM_POOLS_NUM
    };
    
    static struct {
    	int pkt_size;
    	int buf_num;
    } mvpp2_pools[MVPP2_BM_POOLS_NUM];
    
    /* GMAC MIB Counters register definitions */
    #define MVPP21_MIB_COUNTERS_OFFSET		0x1000
    #define MVPP21_MIB_COUNTERS_PORT_SZ		0x400
    #define MVPP22_MIB_COUNTERS_OFFSET		0x0
    #define MVPP22_MIB_COUNTERS_PORT_SZ		0x100
    
    #define MVPP2_MIB_GOOD_OCTETS_RCVD		0x0
    #define MVPP2_MIB_BAD_OCTETS_RCVD		0x8
    #define MVPP2_MIB_CRC_ERRORS_SENT		0xc
    #define MVPP2_MIB_UNICAST_FRAMES_RCVD		0x10
    #define MVPP2_MIB_BROADCAST_FRAMES_RCVD		0x18
    #define MVPP2_MIB_MULTICAST_FRAMES_RCVD		0x1c
    #define MVPP2_MIB_FRAMES_64_OCTETS		0x20
    #define MVPP2_MIB_FRAMES_65_TO_127_OCTETS	0x24
    #define MVPP2_MIB_FRAMES_128_TO_255_OCTETS	0x28
    #define MVPP2_MIB_FRAMES_256_TO_511_OCTETS	0x2c
    #define MVPP2_MIB_FRAMES_512_TO_1023_OCTETS	0x30
    #define MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS	0x34
    #define MVPP2_MIB_GOOD_OCTETS_SENT		0x38
    #define MVPP2_MIB_UNICAST_FRAMES_SENT		0x40
    #define MVPP2_MIB_MULTICAST_FRAMES_SENT		0x48
    #define MVPP2_MIB_BROADCAST_FRAMES_SENT		0x4c
    #define MVPP2_MIB_FC_SENT			0x54
    #define MVPP2_MIB_FC_RCVD			0x58
    #define MVPP2_MIB_RX_FIFO_OVERRUN		0x5c
    #define MVPP2_MIB_UNDERSIZE_RCVD		0x60
    #define MVPP2_MIB_FRAGMENTS_RCVD		0x64
    #define MVPP2_MIB_OVERSIZE_RCVD			0x68
    #define MVPP2_MIB_JABBER_RCVD			0x6c
    #define MVPP2_MIB_MAC_RCV_ERROR			0x70
    #define MVPP2_MIB_BAD_CRC_EVENT			0x74
    #define MVPP2_MIB_COLLISION			0x78
    #define MVPP2_MIB_LATE_COLLISION		0x7c
    
    #define MVPP2_MIB_COUNTERS_STATS_DELAY		(1 * HZ)
    
    #define MVPP2_DESC_DMA_MASK	DMA_BIT_MASK(40)
    
    /* Definitions */
    
    /* Shared Packet Processor resources */
    struct mvpp2 {
    	/* Shared registers' base addresses */
    	void __iomem *lms_base;
    	void __iomem *iface_base;
    
    	/* On PPv2.2, each "software thread" can access the base
    	 * register through a separate address space, each 64 KB apart
    	 * from each other. Typically, such address spaces will be
    	 * used per CPU.
    	 */
    	void __iomem *swth_base[MVPP2_MAX_THREADS];
    
    	/* On PPv2.2, some port control registers are located into the system
    	 * controller space. These registers are accessible through a regmap.
    	 */
    	struct regmap *sysctrl_base;
    
    	/* Common clocks */
    	struct clk *pp_clk;
    	struct clk *gop_clk;
    	struct clk *mg_clk;
    	struct clk *mg_core_clk;
    	struct clk *axi_clk;
    
    	/* List of pointers to port structures */
    	int port_count;
    	struct mvpp2_port *port_list[MVPP2_MAX_PORTS];
    
    	/* Aggregated TXQs */
    	struct mvpp2_tx_queue *aggr_txqs;
    
    	/* BM pools */
    	struct mvpp2_bm_pool *bm_pools;
    
    	/* PRS shadow table */
    	struct mvpp2_prs_shadow *prs_shadow;
    	/* PRS auxiliary table for double vlan entries control */
    	bool *prs_double_vlans;
    
    	/* Tclk value */
    	u32 tclk;
    
    	/* HW version */
    	enum { MVPP21, MVPP22 } hw_version;
    
    	/* Maximum number of RXQs per port */
    	unsigned int max_port_rxqs;
    
    	/* Workqueue to gather hardware statistics */
    	char queue_name[30];
    	struct workqueue_struct *stats_queue;
    };
    
    struct mvpp2_pcpu_stats {
    	struct	u64_stats_sync syncp;
    	u64	rx_packets;
    	u64	rx_bytes;
    	u64	tx_packets;
    	u64	tx_bytes;
    };
    
    /* Per-CPU port control */
    struct mvpp2_port_pcpu {
    	struct hrtimer tx_done_timer;
    	bool timer_scheduled;
    	/* Tasklet for egress finalization */
    	struct tasklet_struct tx_done_tasklet;
    };
    
    struct mvpp2_queue_vector {
    	int irq;
    	struct napi_struct napi;
    	enum { MVPP2_QUEUE_VECTOR_SHARED, MVPP2_QUEUE_VECTOR_PRIVATE } type;
    	int sw_thread_id;
    	u16 sw_thread_mask;
    	int first_rxq;
    	int nrxqs;
    	u32 pending_cause_rx;
    	struct mvpp2_port *port;
    };
    
    struct mvpp2_port {
    	u8 id;
    
    	/* Index of the port from the "group of ports" complex point
    	 * of view
    	 */
    	int gop_id;
    
    	int link_irq;
    
    	struct mvpp2 *priv;
    
    	/* Firmware node associated to the port */
    	struct fwnode_handle *fwnode;
    
    	/* Is a PHY always connected to the port */
    	bool has_phy;
    
    	/* Per-port registers' base address */
    	void __iomem *base;
    	void __iomem *stats_base;
    
    	struct mvpp2_rx_queue **rxqs;
    	unsigned int nrxqs;
    	struct mvpp2_tx_queue **txqs;
    	unsigned int ntxqs;
    	struct net_device *dev;
    
    	int pkt_size;
    
    	/* Per-CPU port control */
    	struct mvpp2_port_pcpu __percpu *pcpu;
    
    	/* Flags */
    	unsigned long flags;
    
    	u16 tx_ring_size;
    	u16 rx_ring_size;
    	struct mvpp2_pcpu_stats __percpu *stats;
    	u64 *ethtool_stats;
    
    	/* Per-port work and its lock to gather hardware statistics */
    	struct mutex gather_stats_lock;
    	struct delayed_work stats_work;
    
    	struct device_node *of_node;
    
    	phy_interface_t phy_interface;
    	struct phylink *phylink;
    	struct phy *comphy;
    
    	struct mvpp2_bm_pool *pool_long;
    	struct mvpp2_bm_pool *pool_short;
    
    	/* Index of first port's physical RXQ */
    	u8 first_rxq;
    
    	struct mvpp2_queue_vector qvecs[MVPP2_MAX_QVECS];
    	unsigned int nqvecs;
    	bool has_tx_irqs;
    
    	u32 tx_time_coal;
    };
    
    /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
     * layout of the transmit and reception DMA descriptors, and their
     * layout is therefore defined by the hardware design
     */
    
    #define MVPP2_TXD_L3_OFF_SHIFT		0
    #define MVPP2_TXD_IP_HLEN_SHIFT		8
    #define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
    #define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
    #define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
    #define MVPP2_TXD_PADDING_DISABLE	BIT(23)
    #define MVPP2_TXD_L4_UDP		BIT(24)
    #define MVPP2_TXD_L3_IP6		BIT(26)
    #define MVPP2_TXD_L_DESC		BIT(28)
    #define MVPP2_TXD_F_DESC		BIT(29)
    
    #define MVPP2_RXD_ERR_SUMMARY		BIT(15)
    #define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
    #define MVPP2_RXD_ERR_CRC		0x0
    #define MVPP2_RXD_ERR_OVERRUN		BIT(13)
    #define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
    #define MVPP2_RXD_BM_POOL_ID_OFFS	16
    #define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
    #define MVPP2_RXD_HWF_SYNC		BIT(21)
    #define MVPP2_RXD_L4_CSUM_OK		BIT(22)
    #define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
    #define MVPP2_RXD_L4_TCP		BIT(25)
    #define MVPP2_RXD_L4_UDP		BIT(26)
    #define MVPP2_RXD_L3_IP4		BIT(28)
    #define MVPP2_RXD_L3_IP6		BIT(30)
    #define MVPP2_RXD_BUF_HDR		BIT(31)
    
    /* HW TX descriptor for PPv2.1 */
    struct mvpp21_tx_desc {
    	u32 command;		/* Options used by HW for packet transmitting.*/
    	u8  packet_offset;	/* the offset from the buffer beginning	*/
    	u8  phys_txq;		/* destination queue ID			*/
    	u16 data_size;		/* data size of transmitted packet in bytes */
    	u32 buf_dma_addr;	/* physical addr of transmitted buffer	*/
    	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
    	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
    	u32 reserved2;		/* reserved (for future use)		*/
    };
    
    /* HW RX descriptor for PPv2.1 */
    struct mvpp21_rx_desc {
    	u32 status;		/* info about received packet		*/
    	u16 reserved1;		/* parser_info (for future use, PnC)	*/
    	u16 data_size;		/* size of received packet in bytes	*/
    	u32 buf_dma_addr;	/* physical address of the buffer	*/
    	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
    	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
    	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
    	u8  reserved4;		/* bm_qset (for future use, BM)		*/
    	u8  reserved5;
    	u16 reserved6;		/* classify_info (for future use, PnC)	*/
    	u32 reserved7;		/* flow_id (for future use, PnC) */
    	u32 reserved8;
    };
    
    /* HW TX descriptor for PPv2.2 */
    struct mvpp22_tx_desc {
    	u32 command;
    	u8  packet_offset;
    	u8  phys_txq;
    	u16 data_size;
    	u64 reserved1;
    	u64 buf_dma_addr_ptp;
    	u64 buf_cookie_misc;
    };
    
    /* HW RX descriptor for PPv2.2 */
    struct mvpp22_rx_desc {
    	u32 status;
    	u16 reserved1;
    	u16 data_size;
    	u32 reserved2;
    	u32 reserved3;
    	u64 buf_dma_addr_key_hash;
    	u64 buf_cookie_misc;
    };
    
    /* Opaque type used by the driver to manipulate the HW TX and RX
     * descriptors
     */
    struct mvpp2_tx_desc {
    	union {
    		struct mvpp21_tx_desc pp21;
    		struct mvpp22_tx_desc pp22;
    	};
    };
    
    struct mvpp2_rx_desc {
    	union {
    		struct mvpp21_rx_desc pp21;
    		struct mvpp22_rx_desc pp22;
    	};
    };
    
    struct mvpp2_txq_pcpu_buf {
    	/* Transmitted SKB */
    	struct sk_buff *skb;
    
    	/* Physical address of transmitted buffer */
    	dma_addr_t dma;
    
    	/* Size transmitted */
    	size_t size;
    };
    
    /* Per-CPU Tx queue control */
    struct mvpp2_txq_pcpu {
    	int cpu;
    
    	/* Number of Tx DMA descriptors in the descriptor ring */
    	int size;
    
    	/* Number of currently used Tx DMA descriptor in the
    	 * descriptor ring
    	 */
    	int count;
    
    	int wake_threshold;
    	int stop_threshold;
    
    	/* Number of Tx DMA descriptors reserved for each CPU */
    	int reserved_num;
    
    	/* Infos about transmitted buffers */
    	struct mvpp2_txq_pcpu_buf *buffs;
    
    	/* Index of last TX DMA descriptor that was inserted */
    	int txq_put_index;
    
    	/* Index of the TX DMA descriptor to be cleaned up */
    	int txq_get_index;
    
    	/* DMA buffer for TSO headers */
    	char *tso_headers;
    	dma_addr_t tso_headers_dma;
    };
    
    struct mvpp2_tx_queue {
    	/* Physical number of this Tx queue */
    	u8 id;
    
    	/* Logical number of this Tx queue */
    	u8 log_id;
    
    	/* Number of Tx DMA descriptors in the descriptor ring */
    	int size;
    
    	/* Number of currently used Tx DMA descriptor in the descriptor ring */
    	int count;
    
    	/* Per-CPU control of physical Tx queues */
    	struct mvpp2_txq_pcpu __percpu *pcpu;
    
    	u32 done_pkts_coal;
    
    	/* Virtual address of thex Tx DMA descriptors array */
    	struct mvpp2_tx_desc *descs;
    
    	/* DMA address of the Tx DMA descriptors array */
    	dma_addr_t descs_dma;
    
    	/* Index of the last Tx DMA descriptor */
    	int last_desc;
    
    	/* Index of the next Tx DMA descriptor to process */
    	int next_desc_to_proc;
    };
    
    struct mvpp2_rx_queue {
    	/* RX queue number, in the range 0-31 for physical RXQs */
    	u8 id;
    
    	/* Num of rx descriptors in the rx descriptor ring */
    	int size;
    
    	u32 pkts_coal;
    	u32 time_coal;
    
    	/* Virtual address of the RX DMA descriptors array */
    	struct mvpp2_rx_desc *descs;
    
    	/* DMA address of the RX DMA descriptors array */
    	dma_addr_t descs_dma;
    
    	/* Index of the last RX DMA descriptor */
    	int last_desc;
    
    	/* Index of the next RX DMA descriptor to process */
    	int next_desc_to_proc;
    
    	/* ID of port to which physical RXQ is mapped */
    	int port;
    
    	/* Port's logic RXQ number to which physical RXQ is mapped */
    	int logic_rxq;
    };
    
    union mvpp2_prs_tcam_entry {
    	u32 word[MVPP2_PRS_TCAM_WORDS];
    	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
    };
    
    union mvpp2_prs_sram_entry {
    	u32 word[MVPP2_PRS_SRAM_WORDS];
    	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
    };
    
    struct mvpp2_prs_entry {
    	u32 index;
    	union mvpp2_prs_tcam_entry tcam;
    	union mvpp2_prs_sram_entry sram;
    };
    
    struct mvpp2_prs_shadow {
    	bool valid;
    	bool finish;
    
    	/* Lookup ID */
    	int lu;
    
    	/* User defined offset */
    	int udf;
    
    	/* Result info */
    	u32 ri;
    	u32 ri_mask;
    };
    
    struct mvpp2_cls_flow_entry {
    	u32 index;
    	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
    };
    
    struct mvpp2_cls_lookup_entry {
    	u32 lkpid;
    	u32 way;
    	u32 data;
    };
    
    struct mvpp2_bm_pool {
    	/* Pool number in the range 0-7 */
    	int id;
    
    	/* Buffer Pointers Pool External (BPPE) size */
    	int size;
    	/* BPPE size in bytes */
    	int size_bytes;
    	/* Number of buffers for this pool */
    	int buf_num;
    	/* Pool buffer size */
    	int buf_size;
    	/* Packet size */
    	int pkt_size;
    	int frag_size;
    
    	/* BPPE virtual base address */
    	u32 *virt_addr;
    	/* BPPE DMA base address */
    	dma_addr_t dma_addr;
    
    	/* Ports using BM pool */
    	u32 port_map;
    };
    
    #define IS_TSO_HEADER(txq_pcpu, addr) \
    	((addr) >= (txq_pcpu)->tso_headers_dma && \
    	 (addr) < (txq_pcpu)->tso_headers_dma + \
    	 (txq_pcpu)->size * TSO_HEADER_SIZE)
    
    /* The prototype is added here to be used in start_dev when using ACPI. This
     * will be removed once phylink is used for all modes (dt+ACPI).
     */
    static void mvpp2_mac_config(struct net_device *dev, unsigned int mode,
    			     const struct phylink_link_state *state);
    
    /* Queue modes */
    #define MVPP2_QDIST_SINGLE_MODE	0
    #define MVPP2_QDIST_MULTI_MODE	1
    
    static int queue_mode = MVPP2_QDIST_SINGLE_MODE;
    
    module_param(queue_mode, int, 0444);
    MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");
    
    #define MVPP2_DRIVER_NAME "mvpp2"
    #define MVPP2_DRIVER_VERSION "1.0"
    
    /* Utility/helper methods */
    
    static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
    {
    	writel(data, priv->swth_base[0] + offset);
    }
    
    static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
    {
    	return readl(priv->swth_base[0] + offset);
    }
    
    static u32 mvpp2_read_relaxed(struct mvpp2 *priv, u32 offset)
    {
    	return readl_relaxed(priv->swth_base[0] + offset);
    }
    /* These accessors should be used to access:
     *
     * - per-CPU registers, where each CPU has its own copy of the
     *   register.
     *
     *   MVPP2_BM_VIRT_ALLOC_REG
     *   MVPP2_BM_ADDR_HIGH_ALLOC
     *   MVPP22_BM_ADDR_HIGH_RLS_REG
     *   MVPP2_BM_VIRT_RLS_REG
     *   MVPP2_ISR_RX_TX_CAUSE_REG
     *   MVPP2_ISR_RX_TX_MASK_REG
     *   MVPP2_TXQ_NUM_REG
     *   MVPP2_AGGR_TXQ_UPDATE_REG
     *   MVPP2_TXQ_RSVD_REQ_REG
     *   MVPP2_TXQ_RSVD_RSLT_REG
     *   MVPP2_TXQ_SENT_REG
     *   MVPP2_RXQ_NUM_REG
     *
     * - global registers that must be accessed through a specific CPU
     *   window, because they are related to an access to a per-CPU
     *   register
     *
     *   MVPP2_BM_PHY_ALLOC_REG    (related to MVPP2_BM_VIRT_ALLOC_REG)
     *   MVPP2_BM_PHY_RLS_REG      (related to MVPP2_BM_VIRT_RLS_REG)
     *   MVPP2_RXQ_THRESH_REG      (related to MVPP2_RXQ_NUM_REG)
     *   MVPP2_RXQ_DESC_ADDR_REG   (related to MVPP2_RXQ_NUM_REG)
     *   MVPP2_RXQ_DESC_SIZE_REG   (related to MVPP2_RXQ_NUM_REG)
     *   MVPP2_RXQ_INDEX_REG       (related to MVPP2_RXQ_NUM_REG)
     *   MVPP2_TXQ_PENDING_REG     (related to MVPP2_TXQ_NUM_REG)
     *   MVPP2_TXQ_DESC_ADDR_REG   (related to MVPP2_TXQ_NUM_REG)
     *   MVPP2_TXQ_DESC_SIZE_REG   (related to MVPP2_TXQ_NUM_REG)
     *   MVPP2_TXQ_INDEX_REG       (related to MVPP2_TXQ_NUM_REG)
     *   MVPP2_TXQ_PENDING_REG     (related to MVPP2_TXQ_NUM_REG)
     *   MVPP2_TXQ_PREF_BUF_REG    (related to MVPP2_TXQ_NUM_REG)
     *   MVPP2_TXQ_PREF_BUF_REG    (related to MVPP2_TXQ_NUM_REG)
     */
    static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
    			       u32 offset, u32 data)
    {
    	writel(data, priv->swth_base[cpu] + offset);
    }
    
    static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
    			     u32 offset)
    {
    	return readl(priv->swth_base[cpu] + offset);
    }
    
    static void mvpp2_percpu_write_relaxed(struct mvpp2 *priv, int cpu,
    				       u32 offset, u32 data)
    {
    	writel_relaxed(data, priv->swth_base[cpu] + offset);
    }
    
    static u32 mvpp2_percpu_read_relaxed(struct mvpp2 *priv, int cpu,
    				     u32 offset)
    {
    	return readl_relaxed(priv->swth_base[cpu] + offset);
    }
    
    static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
    					    struct mvpp2_tx_desc *tx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return tx_desc->pp21.buf_dma_addr;
    	else
    		return tx_desc->pp22.buf_dma_addr_ptp & MVPP2_DESC_DMA_MASK;
    }
    
    static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
    				      struct mvpp2_tx_desc *tx_desc,
    				      dma_addr_t dma_addr)
    {
    	dma_addr_t addr, offset;
    
    	addr = dma_addr & ~MVPP2_TX_DESC_ALIGN;
    	offset = dma_addr & MVPP2_TX_DESC_ALIGN;
    
    	if (port->priv->hw_version == MVPP21) {
    		tx_desc->pp21.buf_dma_addr = addr;
    		tx_desc->pp21.packet_offset = offset;
    	} else {
    		u64 val = (u64)addr;
    
    		tx_desc->pp22.buf_dma_addr_ptp &= ~MVPP2_DESC_DMA_MASK;
    		tx_desc->pp22.buf_dma_addr_ptp |= val;
    		tx_desc->pp22.packet_offset = offset;
    	}
    }
    
    static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
    				    struct mvpp2_tx_desc *tx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return tx_desc->pp21.data_size;
    	else
    		return tx_desc->pp22.data_size;
    }
    
    static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
    				  struct mvpp2_tx_desc *tx_desc,
    				  size_t size)
    {
    	if (port->priv->hw_version == MVPP21)
    		tx_desc->pp21.data_size = size;
    	else
    		tx_desc->pp22.data_size = size;
    }
    
    static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
    				 struct mvpp2_tx_desc *tx_desc,
    				 unsigned int txq)
    {
    	if (port->priv->hw_version == MVPP21)
    		tx_desc->pp21.phys_txq = txq;
    	else
    		tx_desc->pp22.phys_txq = txq;
    }
    
    static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
    				 struct mvpp2_tx_desc *tx_desc,
    				 unsigned int command)
    {
    	if (port->priv->hw_version == MVPP21)
    		tx_desc->pp21.command = command;
    	else
    		tx_desc->pp22.command = command;
    }
    
    static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
    					    struct mvpp2_tx_desc *tx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return tx_desc->pp21.packet_offset;
    	else
    		return tx_desc->pp22.packet_offset;
    }
    
    static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
    					    struct mvpp2_rx_desc *rx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return rx_desc->pp21.buf_dma_addr;
    	else
    		return rx_desc->pp22.buf_dma_addr_key_hash & MVPP2_DESC_DMA_MASK;
    }
    
    static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
    					     struct mvpp2_rx_desc *rx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return rx_desc->pp21.buf_cookie;
    	else
    		return rx_desc->pp22.buf_cookie_misc & MVPP2_DESC_DMA_MASK;
    }
    
    static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
    				    struct mvpp2_rx_desc *rx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return rx_desc->pp21.data_size;
    	else
    		return rx_desc->pp22.data_size;
    }
    
    static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
    				   struct mvpp2_rx_desc *rx_desc)
    {
    	if (port->priv->hw_version == MVPP21)
    		return rx_desc->pp21.status;
    	else
    		return rx_desc->pp22.status;
    }
    
    static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
    {
    	txq_pcpu->txq_get_index++;
    	if (txq_pcpu->txq_get_index == txq_pcpu->size)
    		txq_pcpu->txq_get_index = 0;
    }
    
    static void mvpp2_txq_inc_put(struct mvpp2_port *port,
    			      struct mvpp2_txq_pcpu *txq_pcpu,
    			      struct sk_buff *skb,
    			      struct mvpp2_tx_desc *tx_desc)
    {
    	struct mvpp2_txq_pcpu_buf *tx_buf =
    		txq_pcpu->buffs + txq_pcpu->txq_put_index;
    	tx_buf->skb = skb;
    	tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
    	tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
    		mvpp2_txdesc_offset_get(port, tx_desc);
    	txq_pcpu->txq_put_index++;
    	if (txq_pcpu->txq_put_index == txq_pcpu->size)
    		txq_pcpu->txq_put_index = 0;
    }
    
    /* Get number of physical egress port */
    static inline int mvpp2_egress_port(struct mvpp2_port *port)
    {
    	return MVPP2_MAX_TCONT + port->id;
    }
    
    /* Get number of physical TXQ */
    static inline int mvpp2_txq_phys(int port, int txq)
    {
    	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
    }
    
    /* Parser configuration routines */
    
    /* Update parser tcam and sram hw entries */
    static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
    {
    	int i;
    
    	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
    		return -EINVAL;
    
    	/* Clear entry invalidation bit */
    	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
    
    	/* Write tcam index - indirect access */
    	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
    	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
    		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
    
    	/* Write sram index - indirect access */
    	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
    	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
    		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
    
    	return 0;
    }
    
    /* Initialize tcam entry from hw */
    static int mvpp2_prs_init_from_hw(struct mvpp2 *priv,
    				  struct mvpp2_prs_entry *pe, int tid)
    {
    	int i;
    
    	if (tid > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
    		return -EINVAL;
    
    	memset(pe, 0, sizeof(*pe));
    	pe->index = tid;
    
    	/* Write tcam index - indirect access */
    	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
    
    	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
    			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
    	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
    		return MVPP2_PRS_TCAM_ENTRY_INVALID;
    
    	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
    		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
    
    	/* Write sram index - indirect access */
    	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
    	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
    		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
    
    	return 0;
    }
    
    /* Invalidate tcam hw entry */
    static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
    {
    	/* Write index - indirect access */
    	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
    	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
    		    MVPP2_PRS_TCAM_INV_MASK);
    }
    
    /* Enable shadow table entry and set its lookup ID */
    static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
    {
    	priv->prs_shadow[index].valid = true;
    	priv->prs_shadow[index].lu = lu;
    }
    
    /* Update ri fields in shadow table entry */
    static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
    				    unsigned int ri, unsigned int ri_mask)
    {
    	priv->prs_shadow[index].ri_mask = ri_mask;
    	priv->prs_shadow[index].ri = ri;
    }
    
    /* Update lookup field in tcam sw entry */
    static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
    {
    	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
    
    	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
    	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
    }
    
    /* Update mask for single port in tcam sw entry */
    static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
    				    unsigned int port, bool add)
    {
    	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
    
    	if (add)
    		pe->tcam.byte[enable_off] &= ~(1 << port);
    	else
    		pe->tcam.byte[enable_off] |= 1 << port;
    }
    
    /* Update port map in tcam sw entry */
    static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
    					unsigned int ports)
    {
    	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
    	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
    
    	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
    	pe->tcam.byte[enable_off] &= ~port_mask;
    	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
    }
    
    /* Obtain port map from tcam sw entry */
    static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
    {
    	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
    
    	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
    }
    
    /* Set byte of data and its enable bits in tcam sw entry */
    static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
    					 unsigned int offs, unsigned char byte,
    					 unsigned char enable)
    {
    	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
    	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
    }
    
    /* Get byte of data and its enable bits from tcam sw entry */
    static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
    					 unsigned int offs, unsigned char *byte,
    					 unsigned char *enable)
    {
    	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
    	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
    }
    
    /* Compare tcam data bytes with a pattern */
    static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
    				    u16 data)
    {
    	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
    	u16 tcam_data;
    
    	tcam_data = (pe->tcam.byte[off + 1] << 8) | pe->tcam.byte[off];
    	if (tcam_data != data)
    		return false;
    	return true;
    }
    
    /* Update ai bits in tcam sw entry */
    static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
    				     unsigned int bits, unsigned int enable)
    {
    	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
    
    	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
    
    		if (!(enable & BIT(i)))
    			continue;
    
    		if (bits & BIT(i))
    			pe->tcam.byte[ai_idx] |= 1 << i;
    		else
    			pe->tcam.byte[ai_idx] &= ~(1 << i);
    	}
    
    	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
    }
    
    /* Get ai bits from tcam sw entry */
    static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
    {
    	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
    }
    
    /* Set ethertype in tcam sw entry */
    static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
    				  unsigned short ethertype)
    {
    	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
    	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
    }
    
    /* Set vid in tcam sw entry */
    static void mvpp2_prs_match_vid(struct mvpp2_prs_entry *pe, int offset,
    				unsigned short vid)
    {
    	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, (vid & 0xf00) >> 8, 0xf);
    	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, vid & 0xff, 0xff);
    }
    
    /* Set bits in sram sw entry */
    static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
    				    int val)
    {
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
    }
    
    /* Clear bits in sram sw entry */
    static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
    				      int val)
    {
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
    }
    
    /* Update ri bits in sram sw entry */
    static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
    				     unsigned int bits, unsigned int mask)
    {
    	unsigned int i;
    
    	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
    		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
    
    		if (!(mask & BIT(i)))
    			continue;
    
    		if (bits & BIT(i))
    			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
    		else
    			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
    
    		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
    	}
    }
    
    /* Obtain ri bits from sram sw entry */
    static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
    {
    	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
    }
    
    /* Update ai bits in sram sw entry */
    static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
    				     unsigned int bits, unsigned int mask)
    {
    	unsigned int i;
    	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
    
    	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
    
    		if (!(mask & BIT(i)))
    			continue;
    
    		if (bits & BIT(i))
    			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
    		else
    			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
    
    		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
    	}
    }
    
    /* Read ai bits from sram sw entry */
    static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
    {
    	u8 bits;
    	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
    	int ai_en_off = ai_off + 1;
    	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
    
    	bits = (pe->sram.byte[ai_off] >> ai_shift) |
    	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
    
    	return bits;
    }
    
    /* In sram sw entry set lookup ID field of the tcam key to be used in the next
     * lookup interation
     */
    static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
    				       unsigned int lu)
    {
    	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
    
    	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
    				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
    	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
    }
    
    /* In the sram sw entry set sign and value of the next lookup offset
     * and the offset value generated to the classifier
     */
    static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
    				     unsigned int op)
    {
    	/* Set sign */
    	if (shift < 0) {
    		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
    		shift = 0 - shift;
    	} else {
    		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
    	}
    
    	/* Set value */
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
    							   (unsigned char)shift;
    
    	/* Reset and set operation */
    	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
    				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
    	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
    
    	/* Set base offset as current */
    	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
    }
    
    /* In the sram sw entry set sign and value of the user defined offset
     * generated to the classifier
     */
    static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
    				      unsigned int type, int offset,
    				      unsigned int op)
    {
    	/* Set sign */
    	if (offset < 0) {
    		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
    		offset = 0 - offset;
    	} else {
    		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
    	}
    
    	/* Set value */
    	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
    				  MVPP2_PRS_SRAM_UDF_MASK);
    	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
    					MVPP2_PRS_SRAM_UDF_BITS)] &=
    	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
    					MVPP2_PRS_SRAM_UDF_BITS)] |=
    				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
    
    	/* Set offset type */
    	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
    				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
    	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
    
    	/* Set offset operation */
    	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
    	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
    
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
    					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
    					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
    				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
    
    	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
    					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
    			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
    
    	/* Set base offset as current */
    	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
    }
    
    /* Find parser flow entry */
    static int mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
    	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
    		u8 bits;
    
    		if (!priv->prs_shadow[tid].valid ||
    		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
    			continue;
    
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    		bits = mvpp2_prs_sram_ai_get(&pe);
    
    		/* Sram store classification lookup ID in AI bits [5:0] */
    		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
    			return tid;
    	}
    
    	return -ENOENT;
    }
    
    /* Return first free tcam index, seeking from start to end */
    static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
    				     unsigned char end)
    {
    	int tid;
    
    	if (start > end)
    		swap(start, end);
    
    	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
    		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
    
    	for (tid = start; tid <= end; tid++) {
    		if (!priv->prs_shadow[tid].valid)
    			return tid;
    	}
    
    	return -EINVAL;
    }
    
    /* Enable/disable dropping all mac da's */
    static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
    {
    	struct mvpp2_prs_entry pe;
    
    	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
    		/* Entry exist - update port only */
    		mvpp2_prs_init_from_hw(priv, &pe, MVPP2_PE_DROP_ALL);
    	} else {
    		/* Entry doesn't exist - create new */
    		memset(&pe, 0, sizeof(pe));
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
    		pe.index = MVPP2_PE_DROP_ALL;
    
    		/* Non-promiscuous mode for all ports - DROP unknown packets */
    		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
    					 MVPP2_PRS_RI_DROP_MASK);
    
    		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    
    		/* Update shadow table */
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
    
    		/* Mask all ports */
    		mvpp2_prs_tcam_port_map_set(&pe, 0);
    	}
    
    	/* Update port mask */
    	mvpp2_prs_tcam_port_set(&pe, port, add);
    
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Set port to unicast or multicast promiscuous mode */
    static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port,
    				      enum mvpp2_prs_l2_cast l2_cast, bool add)
    {
    	struct mvpp2_prs_entry pe;
    	unsigned char cast_match;
    	unsigned int ri;
    	int tid;
    
    	if (l2_cast == MVPP2_PRS_L2_UNI_CAST) {
    		cast_match = MVPP2_PRS_UCAST_VAL;
    		tid = MVPP2_PE_MAC_UC_PROMISCUOUS;
    		ri = MVPP2_PRS_RI_L2_UCAST;
    	} else {
    		cast_match = MVPP2_PRS_MCAST_VAL;
    		tid = MVPP2_PE_MAC_MC_PROMISCUOUS;
    		ri = MVPP2_PRS_RI_L2_MCAST;
    	}
    
    	/* promiscuous mode - Accept unknown unicast or multicast packets */
    	if (priv->prs_shadow[tid].valid) {
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	} else {
    		memset(&pe, 0, sizeof(pe));
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
    		pe.index = tid;
    
    		/* Continue - set next lookup */
    		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
    
    		/* Set result info bits */
    		mvpp2_prs_sram_ri_update(&pe, ri, MVPP2_PRS_RI_L2_CAST_MASK);
    
    		/* Match UC or MC addresses */
    		mvpp2_prs_tcam_data_byte_set(&pe, 0, cast_match,
    					     MVPP2_PRS_CAST_MASK);
    
    		/* Shift to ethertype */
    		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
    					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    		/* Mask all ports */
    		mvpp2_prs_tcam_port_map_set(&pe, 0);
    
    		/* Update shadow table */
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
    	}
    
    	/* Update port mask */
    	mvpp2_prs_tcam_port_set(&pe, port, add);
    
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Set entry for dsa packets */
    static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
    				  bool tagged, bool extend)
    {
    	struct mvpp2_prs_entry pe;
    	int tid, shift;
    
    	if (extend) {
    		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
    		shift = 8;
    	} else {
    		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
    		shift = 4;
    	}
    
    	if (priv->prs_shadow[tid].valid) {
    		/* Entry exist - update port only */
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	} else {
    		/* Entry doesn't exist - create new */
    		memset(&pe, 0, sizeof(pe));
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
    		pe.index = tid;
    
    		/* Update shadow table */
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
    
    		if (tagged) {
    			/* Set tagged bit in DSA tag */
    			mvpp2_prs_tcam_data_byte_set(&pe, 0,
    					     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
    					     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
    
    			/* Set ai bits for next iteration */
    			if (extend)
    				mvpp2_prs_sram_ai_update(&pe, 1,
    							MVPP2_PRS_SRAM_AI_MASK);
    			else
    				mvpp2_prs_sram_ai_update(&pe, 0,
    							MVPP2_PRS_SRAM_AI_MASK);
    
    			/* If packet is tagged continue check vid filtering */
    			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VID);
    		} else {
    			/* Shift 4 bytes for DSA tag or 8 bytes for EDSA tag*/
    			mvpp2_prs_sram_shift_set(&pe, shift,
    					MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    			/* Set result info bits to 'no vlans' */
    			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
    						 MVPP2_PRS_RI_VLAN_MASK);
    			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    		}
    
    		/* Mask all ports */
    		mvpp2_prs_tcam_port_map_set(&pe, 0);
    	}
    
    	/* Update port mask */
    	mvpp2_prs_tcam_port_set(&pe, port, add);
    
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Set entry for dsa ethertype */
    static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
    					    bool add, bool tagged, bool extend)
    {
    	struct mvpp2_prs_entry pe;
    	int tid, shift, port_mask;
    
    	if (extend) {
    		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
    		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
    		port_mask = 0;
    		shift = 8;
    	} else {
    		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
    		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
    		port_mask = MVPP2_PRS_PORT_MASK;
    		shift = 4;
    	}
    
    	if (priv->prs_shadow[tid].valid) {
    		/* Entry exist - update port only */
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	} else {
    		/* Entry doesn't exist - create new */
    		memset(&pe, 0, sizeof(pe));
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
    		pe.index = tid;
    
    		/* Set ethertype */
    		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
    		mvpp2_prs_match_etype(&pe, 2, 0);
    
    		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
    					 MVPP2_PRS_RI_DSA_MASK);
    		/* Shift ethertype + 2 byte reserved + tag*/
    		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
    					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    		/* Update shadow table */
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
    
    		if (tagged) {
    			/* Set tagged bit in DSA tag */
    			mvpp2_prs_tcam_data_byte_set(&pe,
    						     MVPP2_ETH_TYPE_LEN + 2 + 3,
    						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
    						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
    			/* Clear all ai bits for next iteration */
    			mvpp2_prs_sram_ai_update(&pe, 0,
    						 MVPP2_PRS_SRAM_AI_MASK);
    			/* If packet is tagged continue check vlans */
    			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    		} else {
    			/* Set result info bits to 'no vlans' */
    			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
    						 MVPP2_PRS_RI_VLAN_MASK);
    			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    		}
    		/* Mask/unmask all ports, depending on dsa type */
    		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
    	}
    
    	/* Update port mask */
    	mvpp2_prs_tcam_port_set(&pe, port, add);
    
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Search for existing single/triple vlan entry */
    static int mvpp2_prs_vlan_find(struct mvpp2 *priv, unsigned short tpid, int ai)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
    	for (tid = MVPP2_PE_FIRST_FREE_TID;
    	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
    		unsigned int ri_bits, ai_bits;
    		bool match;
    
    		if (!priv->prs_shadow[tid].valid ||
    		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
    			continue;
    
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    		match = mvpp2_prs_tcam_data_cmp(&pe, 0, swab16(tpid));
    		if (!match)
    			continue;
    
    		/* Get vlan type */
    		ri_bits = mvpp2_prs_sram_ri_get(&pe);
    		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
    
    		/* Get current ai value from tcam */
    		ai_bits = mvpp2_prs_tcam_ai_get(&pe);
    		/* Clear double vlan bit */
    		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
    
    		if (ai != ai_bits)
    			continue;
    
    		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
    		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
    			return tid;
    	}
    
    	return -ENOENT;
    }
    
    /* Add/update single/triple vlan entry */
    static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
    			      unsigned int port_map)
    {
    	struct mvpp2_prs_entry pe;
    	int tid_aux, tid;
    	int ret = 0;
    
    	memset(&pe, 0, sizeof(pe));
    
    	tid = mvpp2_prs_vlan_find(priv, tpid, ai);
    
    	if (tid < 0) {
    		/* Create new tcam entry */
    		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
    						MVPP2_PE_FIRST_FREE_TID);
    		if (tid < 0)
    			return tid;
    
    		/* Get last double vlan tid */
    		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
    		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
    			unsigned int ri_bits;
    
    			if (!priv->prs_shadow[tid_aux].valid ||
    			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
    				continue;
    
    			mvpp2_prs_init_from_hw(priv, &pe, tid_aux);
    			ri_bits = mvpp2_prs_sram_ri_get(&pe);
    			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
    			    MVPP2_PRS_RI_VLAN_DOUBLE)
    				break;
    		}
    
    		if (tid <= tid_aux)
    			return -EINVAL;
    
    		memset(&pe, 0, sizeof(pe));
    		pe.index = tid;
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    
    		mvpp2_prs_match_etype(&pe, 0, tpid);
    
    		/* VLAN tag detected, proceed with VID filtering */
    		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VID);
    
    		/* Clear all ai bits for next iteration */
    		mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    
    		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
    			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_SINGLE,
    						 MVPP2_PRS_RI_VLAN_MASK);
    		} else {
    			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
    			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_TRIPLE,
    						 MVPP2_PRS_RI_VLAN_MASK);
    		}
    		mvpp2_prs_tcam_ai_update(&pe, ai, MVPP2_PRS_SRAM_AI_MASK);
    
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
    	} else {
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	}
    	/* Update ports' mask */
    	mvpp2_prs_tcam_port_map_set(&pe, port_map);
    
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return ret;
    }
    
    /* Get first free double vlan ai number */
    static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
    {
    	int i;
    
    	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
    		if (!priv->prs_double_vlans[i])
    			return i;
    	}
    
    	return -EINVAL;
    }
    
    /* Search for existing double vlan entry */
    static int mvpp2_prs_double_vlan_find(struct mvpp2 *priv, unsigned short tpid1,
    				      unsigned short tpid2)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
    	for (tid = MVPP2_PE_FIRST_FREE_TID;
    	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
    		unsigned int ri_mask;
    		bool match;
    
    		if (!priv->prs_shadow[tid].valid ||
    		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
    			continue;
    
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    
    		match = mvpp2_prs_tcam_data_cmp(&pe, 0, swab16(tpid1)) &&
    			mvpp2_prs_tcam_data_cmp(&pe, 4, swab16(tpid2));
    
    		if (!match)
    			continue;
    
    		ri_mask = mvpp2_prs_sram_ri_get(&pe) & MVPP2_PRS_RI_VLAN_MASK;
    		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
    			return tid;
    	}
    
    	return -ENOENT;
    }
    
    /* Add or update double vlan entry */
    static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
    				     unsigned short tpid2,
    				     unsigned int port_map)
    {
    	int tid_aux, tid, ai, ret = 0;
    	struct mvpp2_prs_entry pe;
    
    	memset(&pe, 0, sizeof(pe));
    
    	tid = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
    
    	if (tid < 0) {
    		/* Create new tcam entry */
    		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    				MVPP2_PE_LAST_FREE_TID);
    		if (tid < 0)
    			return tid;
    
    		/* Set ai value for new double vlan entry */
    		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
    		if (ai < 0)
    			return ai;
    
    		/* Get first single/triple vlan tid */
    		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
    		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
    			unsigned int ri_bits;
    
    			if (!priv->prs_shadow[tid_aux].valid ||
    			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
    				continue;
    
    			mvpp2_prs_init_from_hw(priv, &pe, tid_aux);
    			ri_bits = mvpp2_prs_sram_ri_get(&pe);
    			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
    			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
    			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
    				break;
    		}
    
    		if (tid >= tid_aux)
    			return -ERANGE;
    
    		memset(&pe, 0, sizeof(pe));
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    		pe.index = tid;
    
    		priv->prs_double_vlans[ai] = true;
    
    		mvpp2_prs_match_etype(&pe, 0, tpid1);
    		mvpp2_prs_match_etype(&pe, 4, tpid2);
    
    		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    		/* Shift 4 bytes - skip outer vlan tag */
    		mvpp2_prs_sram_shift_set(&pe, MVPP2_VLAN_TAG_LEN,
    					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
    					 MVPP2_PRS_RI_VLAN_MASK);
    		mvpp2_prs_sram_ai_update(&pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
    					 MVPP2_PRS_SRAM_AI_MASK);
    
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
    	} else {
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	}
    
    	/* Update ports' mask */
    	mvpp2_prs_tcam_port_map_set(&pe, port_map);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return ret;
    }
    
    /* IPv4 header parsing for fragmentation and L4 offset */
    static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
    			       unsigned int ri, unsigned int ri_mask)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
    	    (proto != IPPROTO_IGMP))
    		return -EINVAL;
    
    	/* Not fragmented packet */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	pe.index = tid;
    
    	/* Set next lu to IPv4 */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	/* Set L4 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
    				  sizeof(struct iphdr) - 4,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
    				 MVPP2_PRS_IPV4_DIP_AI_BIT);
    	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
    
    	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00,
    				     MVPP2_PRS_TCAM_PROTO_MASK_L);
    	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00,
    				     MVPP2_PRS_TCAM_PROTO_MASK);
    
    	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
    	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Fragmented packet */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	pe.index = tid;
    	/* Clear ri before updating */
    	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
    	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
    	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
    
    	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_TRUE,
    				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
    
    	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, 0x0);
    	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, 0x0);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* IPv4 L3 multicast or broadcast */
    static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
    {
    	struct mvpp2_prs_entry pe;
    	int mask, tid;
    
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	pe.index = tid;
    
    	switch (l3_cast) {
    	case MVPP2_PRS_L3_MULTI_CAST:
    		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
    					     MVPP2_PRS_IPV4_MC_MASK);
    		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
    					 MVPP2_PRS_RI_L3_ADDR_MASK);
    		break;
    	case  MVPP2_PRS_L3_BROAD_CAST:
    		mask = MVPP2_PRS_IPV4_BC_MASK;
    		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
    		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
    		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
    		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
    		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
    					 MVPP2_PRS_RI_L3_ADDR_MASK);
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
    				 MVPP2_PRS_IPV4_DIP_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Set entries for protocols over IPv6  */
    static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
    			       unsigned int ri, unsigned int ri_mask)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
    	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
    		return -EINVAL;
    
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	pe.index = tid;
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
    				  sizeof(struct ipv6hdr) - 6,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
    				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Write HW */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* IPv6 L3 multicast entry */
    static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
    		return -EINVAL;
    
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	pe.index = tid;
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
    				 MVPP2_PRS_RI_L3_ADDR_MASK);
    	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
    				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    	/* Shift back to IPv6 NH */
    	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
    				     MVPP2_PRS_IPV6_MC_MASK);
    	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Parser per-port initialization */
    static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
    				   int lu_max, int offset)
    {
    	u32 val;
    
    	/* Set lookup ID */
    	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
    	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
    	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
    	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
    
    	/* Set maximum number of loops for packet received from port */
    	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
    	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
    	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
    	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
    
    	/* Set initial offset for packet header extraction for the first
    	 * searching loop
    	 */
    	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
    	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
    	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
    	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
    }
    
    /* Default flow entries initialization for all ports */
    static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    	int port;
    
    	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
    		memset(&pe, 0, sizeof(pe));
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
    
    		/* Mask all ports */
    		mvpp2_prs_tcam_port_map_set(&pe, 0);
    
    		/* Set flow ID*/
    		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
    		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
    
    		/* Update shadow table and hw entry */
    		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
    		mvpp2_prs_hw_write(priv, &pe);
    	}
    }
    
    /* Set default entry for Marvell Header field */
    static void mvpp2_prs_mh_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    
    	memset(&pe, 0, sizeof(pe));
    
    	pe.index = MVPP2_PE_MH_DEFAULT;
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Set default entires (place holder) for promiscuous, non-promiscuous and
     * multicast MAC addresses
     */
    static void mvpp2_prs_mac_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    
    	memset(&pe, 0, sizeof(pe));
    
    	/* Non-promiscuous mode for all ports - DROP unknown packets */
    	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
    
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
    				 MVPP2_PRS_RI_DROP_MASK);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Create dummy entries for drop all and promiscuous modes */
    	mvpp2_prs_mac_drop_all_set(priv, 0, false);
    	mvpp2_prs_mac_promisc_set(priv, 0, MVPP2_PRS_L2_UNI_CAST, false);
    	mvpp2_prs_mac_promisc_set(priv, 0, MVPP2_PRS_L2_MULTI_CAST, false);
    }
    
    /* Set default entries for various types of dsa packets */
    static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    
    	/* None tagged EDSA entry - place holder */
    	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
    			      MVPP2_PRS_EDSA);
    
    	/* Tagged EDSA entry - place holder */
    	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
    
    	/* None tagged DSA entry - place holder */
    	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
    			      MVPP2_PRS_DSA);
    
    	/* Tagged DSA entry - place holder */
    	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
    
    	/* None tagged EDSA ethertype entry - place holder*/
    	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
    					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
    
    	/* Tagged EDSA ethertype entry - place holder*/
    	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
    					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
    
    	/* None tagged DSA ethertype entry */
    	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
    					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
    
    	/* Tagged DSA ethertype entry */
    	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
    					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
    
    	/* Set default entry, in case DSA or EDSA tag not found */
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
    	pe.index = MVPP2_PE_DSA_DEFAULT;
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    
    	/* Shift 0 bytes */
    	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
    
    	/* Clear all sram ai bits for next iteration */
    	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Initialize parser entries for VID filtering */
    static void mvpp2_prs_vid_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    
    	memset(&pe, 0, sizeof(pe));
    
    	/* Set default vid entry */
    	pe.index = MVPP2_PE_VID_FLTR_DEFAULT;
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VID);
    
    	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_EDSA_VID_AI_BIT);
    
    	/* Skip VLAN header - Set offset to 4 bytes */
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_VLAN_TAG_LEN,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	/* Clear all ai bits for next iteration */
    	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VID);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Set default vid entry for extended DSA*/
    	memset(&pe, 0, sizeof(pe));
    
    	/* Set default vid entry */
    	pe.index = MVPP2_PE_VID_EDSA_FLTR_DEFAULT;
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VID);
    
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_EDSA_VID_AI_BIT,
    				 MVPP2_PRS_EDSA_VID_AI_BIT);
    
    	/* Skip VLAN header - Set offset to 8 bytes */
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_VLAN_TAG_EDSA_LEN,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	/* Clear all ai bits for next iteration */
    	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VID);
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Match basic ethertypes */
    static int mvpp2_prs_etype_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	/* Ethertype: PPPoE */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
    
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
    				 MVPP2_PRS_RI_PPPOE_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = false;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
    				MVPP2_PRS_RI_PPPOE_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Ethertype: ARP */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
    
    	/* Generate flow in the next iteration*/
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    	/* Set L3 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = true;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
    				MVPP2_PRS_RI_L3_PROTO_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Ethertype: LBTD */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
    
    	/* Generate flow in the next iteration*/
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
    				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
    				 MVPP2_PRS_RI_CPU_CODE_MASK |
    				 MVPP2_PRS_RI_UDF3_MASK);
    	/* Set L3 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = true;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
    				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
    				MVPP2_PRS_RI_CPU_CODE_MASK |
    				MVPP2_PRS_RI_UDF3_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Ethertype: IPv4 without options */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
    	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
    				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
    				     MVPP2_PRS_IPV4_HEAD_MASK |
    				     MVPP2_PRS_IPV4_IHL_MASK);
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    	/* Skip eth_type + 4 bytes of IP header */
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	/* Set L3 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = false;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
    				MVPP2_PRS_RI_L3_PROTO_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Ethertype: IPv4 with options */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	pe.index = tid;
    
    	/* Clear tcam data before updating */
    	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
    	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
    
    	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
    				     MVPP2_PRS_IPV4_HEAD,
    				     MVPP2_PRS_IPV4_HEAD_MASK);
    
    	/* Clear ri before updating */
    	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
    	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = false;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
    				MVPP2_PRS_RI_L3_PROTO_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Ethertype: IPv6 without options */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
    
    	/* Skip DIP of IPV6 header */
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
    				 MVPP2_MAX_L3_ADDR_SIZE,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    	/* Set L3 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = false;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
    				MVPP2_PRS_RI_L3_PROTO_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
    	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
    	pe.index = MVPP2_PE_ETH_TYPE_UN;
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Generate flow in the next iteration*/
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    	/* Set L3 offset even it's unknown L3 */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
    	priv->prs_shadow[pe.index].finish = true;
    	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
    				MVPP2_PRS_RI_L3_PROTO_MASK);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Configure vlan entries and detect up to 2 successive VLAN tags.
     * Possible options:
     * 0x8100, 0x88A8
     * 0x8100, 0x8100
     * 0x8100
     * 0x88A8
     */
    static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    	int err;
    
    	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
    					      MVPP2_PRS_DBL_VLANS_MAX,
    					      GFP_KERNEL);
    	if (!priv->prs_double_vlans)
    		return -ENOMEM;
    
    	/* Double VLAN: 0x8100, 0x88A8 */
    	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
    					MVPP2_PRS_PORT_MASK);
    	if (err)
    		return err;
    
    	/* Double VLAN: 0x8100, 0x8100 */
    	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
    					MVPP2_PRS_PORT_MASK);
    	if (err)
    		return err;
    
    	/* Single VLAN: 0x88a8 */
    	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
    				 MVPP2_PRS_PORT_MASK);
    	if (err)
    		return err;
    
    	/* Single VLAN: 0x8100 */
    	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
    				 MVPP2_PRS_PORT_MASK);
    	if (err)
    		return err;
    
    	/* Set default double vlan entry */
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    	pe.index = MVPP2_PE_VLAN_DBL;
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VID);
    
    	/* Clear ai for next iterations */
    	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
    				 MVPP2_PRS_RI_VLAN_MASK);
    
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
    				 MVPP2_PRS_DBL_VLAN_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Set default vlan none entry */
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
    	pe.index = MVPP2_PE_VLAN_NONE;
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
    				 MVPP2_PRS_RI_VLAN_MASK);
    
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Set entries for PPPoE ethertype */
    static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	/* IPv4 over PPPoE with options */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, PPP_IP);
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    	/* Skip eth_type + 4 bytes of IP header */
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	/* Set L3 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* IPv4 over PPPoE without options */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	pe.index = tid;
    
    	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
    				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
    				     MVPP2_PRS_IPV4_HEAD_MASK |
    				     MVPP2_PRS_IPV4_IHL_MASK);
    
    	/* Clear ri before updating */
    	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
    	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* IPv6 over PPPoE */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
    	pe.index = tid;
    
    	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
    
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    	/* Skip eth_type + 4 bytes of IPv6 header */
    	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	/* Set L3 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Non-IP over PPPoE */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
    	pe.index = tid;
    
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
    				 MVPP2_PRS_RI_L3_PROTO_MASK);
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	/* Set L3 offset even if it's unknown L3 */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
    				  MVPP2_ETH_TYPE_LEN,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Initialize entries for IPv4 */
    static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    	int err;
    
    	/* Set entries for TCP, UDP and IGMP over IPv4 */
    	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
    				  MVPP2_PRS_RI_L4_PROTO_MASK);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
    				  MVPP2_PRS_RI_L4_PROTO_MASK);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
    				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
    				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
    				  MVPP2_PRS_RI_CPU_CODE_MASK |
    				  MVPP2_PRS_RI_UDF3_MASK);
    	if (err)
    		return err;
    
    	/* IPv4 Broadcast */
    	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
    	if (err)
    		return err;
    
    	/* IPv4 Multicast */
    	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
    	if (err)
    		return err;
    
    	/* Default IPv4 entry for unknown protocols */
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	pe.index = MVPP2_PE_IP4_PROTO_UN;
    
    	/* Set next lu to IPv4 */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    	/* Set L4 offset */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
    				  sizeof(struct iphdr) - 4,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
    				 MVPP2_PRS_IPV4_DIP_AI_BIT);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
    				 MVPP2_PRS_RI_L4_PROTO_MASK);
    
    	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Default IPv4 entry for unicast address */
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
    	pe.index = MVPP2_PE_IP4_ADDR_UN;
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
    				 MVPP2_PRS_RI_L3_ADDR_MASK);
    
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
    				 MVPP2_PRS_IPV4_DIP_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Initialize entries for IPv6 */
    static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
    {
    	struct mvpp2_prs_entry pe;
    	int tid, err;
    
    	/* Set entries for TCP, UDP and ICMP over IPv6 */
    	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
    				  MVPP2_PRS_RI_L4_TCP,
    				  MVPP2_PRS_RI_L4_PROTO_MASK);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
    				  MVPP2_PRS_RI_L4_UDP,
    				  MVPP2_PRS_RI_L4_PROTO_MASK);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
    				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
    				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
    				  MVPP2_PRS_RI_CPU_CODE_MASK |
    				  MVPP2_PRS_RI_UDF3_MASK);
    	if (err)
    		return err;
    
    	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
    	/* Result Info: UDF7=1, DS lite */
    	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
    				  MVPP2_PRS_RI_UDF7_IP6_LITE,
    				  MVPP2_PRS_RI_UDF7_MASK);
    	if (err)
    		return err;
    
    	/* IPv6 multicast */
    	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
    	if (err)
    		return err;
    
    	/* Entry for checking hop limit */
    	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
    					MVPP2_PE_LAST_FREE_TID);
    	if (tid < 0)
    		return tid;
    
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	pe.index = tid;
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
    				 MVPP2_PRS_RI_DROP_MASK,
    				 MVPP2_PRS_RI_L3_PROTO_MASK |
    				 MVPP2_PRS_RI_DROP_MASK);
    
    	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
    				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Default IPv6 entry for unknown protocols */
    	memset(&pe, 0, sizeof(pe));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	pe.index = MVPP2_PE_IP6_PROTO_UN;
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
    				 MVPP2_PRS_RI_L4_PROTO_MASK);
    	/* Set L4 offset relatively to our current place */
    	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
    				  sizeof(struct ipv6hdr) - 4,
    				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
    
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
    				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Default IPv6 entry for unknown ext protocols */
    	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
    
    	/* Finished: go to flowid generation */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
    				 MVPP2_PRS_RI_L4_PROTO_MASK);
    
    	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
    				 MVPP2_PRS_IPV6_EXT_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	/* Default IPv6 entry for unicast address */
    	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	pe.index = MVPP2_PE_IP6_ADDR_UN;
    
    	/* Finished: go to IPv6 again */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
    				 MVPP2_PRS_RI_L3_ADDR_MASK);
    	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
    				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    	/* Shift back to IPV6 NH */
    	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
    	/* Unmask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
    
    	/* Update shadow table and hw entry */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Find tcam entry with matched pair <vid,port> */
    static int mvpp2_prs_vid_range_find(struct mvpp2 *priv, int pmap, u16 vid,
    				    u16 mask)
    {
    	unsigned char byte[2], enable[2];
    	struct mvpp2_prs_entry pe;
    	u16 rvid, rmask;
    	int tid;
    
    	/* Go through the all entries with MVPP2_PRS_LU_VID */
    	for (tid = MVPP2_PE_VID_FILT_RANGE_START;
    	     tid <= MVPP2_PE_VID_FILT_RANGE_END; tid++) {
    		if (!priv->prs_shadow[tid].valid ||
    		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VID)
    			continue;
    
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    
    		mvpp2_prs_tcam_data_byte_get(&pe, 2, &byte[0], &enable[0]);
    		mvpp2_prs_tcam_data_byte_get(&pe, 3, &byte[1], &enable[1]);
    
    		rvid = ((byte[0] & 0xf) << 8) + byte[1];
    		rmask = ((enable[0] & 0xf) << 8) + enable[1];
    
    		if (rvid != vid || rmask != mask)
    			continue;
    
    		return tid;
    	}
    
    	return -ENOENT;
    }
    
    /* Write parser entry for VID filtering */
    static int mvpp2_prs_vid_entry_add(struct mvpp2_port *port, u16 vid)
    {
    	unsigned int vid_start = MVPP2_PE_VID_FILT_RANGE_START +
    				 port->id * MVPP2_PRS_VLAN_FILT_MAX;
    	unsigned int mask = 0xfff, reg_val, shift;
    	struct mvpp2 *priv = port->priv;
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	memset(&pe, 0, sizeof(pe));
    
    	/* Scan TCAM and see if entry with this <vid,port> already exist */
    	tid = mvpp2_prs_vid_range_find(priv, (1 << port->id), vid, mask);
    
    	reg_val = mvpp2_read(priv, MVPP2_MH_REG(port->id));
    	if (reg_val & MVPP2_DSA_EXTENDED)
    		shift = MVPP2_VLAN_TAG_EDSA_LEN;
    	else
    		shift = MVPP2_VLAN_TAG_LEN;
    
    	/* No such entry */
    	if (tid < 0) {
    
    		/* Go through all entries from first to last in vlan range */
    		tid = mvpp2_prs_tcam_first_free(priv, vid_start,
    						vid_start +
    						MVPP2_PRS_VLAN_FILT_MAX_ENTRY);
    
    		/* There isn't room for a new VID filter */
    		if (tid < 0)
    			return tid;
    
    		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VID);
    		pe.index = tid;
    
    		/* Mask all ports */
    		mvpp2_prs_tcam_port_map_set(&pe, 0);
    	} else {
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	}
    
    	/* Enable the current port */
    	mvpp2_prs_tcam_port_set(&pe, port->id, true);
    
    	/* Continue - set next lookup */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    
    	/* Skip VLAN header - Set offset to 4 or 8 bytes */
    	mvpp2_prs_sram_shift_set(&pe, shift, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	/* Set match on VID */
    	mvpp2_prs_match_vid(&pe, MVPP2_PRS_VID_TCAM_BYTE, vid);
    
    	/* Clear all ai bits for next iteration */
    	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    
    	/* Update shadow table */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VID);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    /* Write parser entry for VID filtering */
    static void mvpp2_prs_vid_entry_remove(struct mvpp2_port *port, u16 vid)
    {
    	struct mvpp2 *priv = port->priv;
    	int tid;
    
    	/* Scan TCAM and see if entry with this <vid,port> already exist */
    	tid = mvpp2_prs_vid_range_find(priv, (1 << port->id), vid, 0xfff);
    
    	/* No such entry */
    	if (tid < 0)
    		return;
    
    	mvpp2_prs_hw_inv(priv, tid);
    	priv->prs_shadow[tid].valid = false;
    }
    
    /* Remove all existing VID filters on this port */
    static void mvpp2_prs_vid_remove_all(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	int tid;
    
    	for (tid = MVPP2_PRS_VID_PORT_FIRST(port->id);
    	     tid <= MVPP2_PRS_VID_PORT_LAST(port->id); tid++) {
    		if (priv->prs_shadow[tid].valid)
    			mvpp2_prs_vid_entry_remove(port, tid);
    	}
    }
    
    /* Remove VID filering entry for this port */
    static void mvpp2_prs_vid_disable_filtering(struct mvpp2_port *port)
    {
    	unsigned int tid = MVPP2_PRS_VID_PORT_DFLT(port->id);
    	struct mvpp2 *priv = port->priv;
    
    	/* Invalidate the guard entry */
    	mvpp2_prs_hw_inv(priv, tid);
    
    	priv->prs_shadow[tid].valid = false;
    }
    
    /* Add guard entry that drops packets when no VID is matched on this port */
    static void mvpp2_prs_vid_enable_filtering(struct mvpp2_port *port)
    {
    	unsigned int tid = MVPP2_PRS_VID_PORT_DFLT(port->id);
    	struct mvpp2 *priv = port->priv;
    	unsigned int reg_val, shift;
    	struct mvpp2_prs_entry pe;
    
    	if (priv->prs_shadow[tid].valid)
    		return;
    
    	memset(&pe, 0, sizeof(pe));
    
    	pe.index = tid;
    
    	reg_val = mvpp2_read(priv, MVPP2_MH_REG(port->id));
    	if (reg_val & MVPP2_DSA_EXTENDED)
    		shift = MVPP2_VLAN_TAG_EDSA_LEN;
    	else
    		shift = MVPP2_VLAN_TAG_LEN;
    
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VID);
    
    	/* Mask all ports */
    	mvpp2_prs_tcam_port_map_set(&pe, 0);
    
    	/* Update port mask */
    	mvpp2_prs_tcam_port_set(&pe, port->id, true);
    
    	/* Continue - set next lookup */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
    
    	/* Skip VLAN header - Set offset to 4 or 8 bytes */
    	mvpp2_prs_sram_shift_set(&pe, shift, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	/* Drop VLAN packets that don't belong to any VIDs on this port */
    	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
    				 MVPP2_PRS_RI_DROP_MASK);
    
    	/* Clear all ai bits for next iteration */
    	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
    
    	/* Update shadow table */
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VID);
    	mvpp2_prs_hw_write(priv, &pe);
    }
    
    /* Parser default initialization */
    static int mvpp2_prs_default_init(struct platform_device *pdev,
    				  struct mvpp2 *priv)
    {
    	int err, index, i;
    
    	/* Enable tcam table */
    	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
    
    	/* Clear all tcam and sram entries */
    	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
    		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
    		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
    			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
    
    		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
    		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
    			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
    	}
    
    	/* Invalidate all tcam entries */
    	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
    		mvpp2_prs_hw_inv(priv, index);
    
    	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
    					sizeof(*priv->prs_shadow),
    					GFP_KERNEL);
    	if (!priv->prs_shadow)
    		return -ENOMEM;
    
    	/* Always start from lookup = 0 */
    	for (index = 0; index < MVPP2_MAX_PORTS; index++)
    		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
    				       MVPP2_PRS_PORT_LU_MAX, 0);
    
    	mvpp2_prs_def_flow_init(priv);
    
    	mvpp2_prs_mh_init(priv);
    
    	mvpp2_prs_mac_init(priv);
    
    	mvpp2_prs_dsa_init(priv);
    
    	mvpp2_prs_vid_init(priv);
    
    	err = mvpp2_prs_etype_init(priv);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_vlan_init(pdev, priv);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_pppoe_init(priv);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_ip6_init(priv);
    	if (err)
    		return err;
    
    	err = mvpp2_prs_ip4_init(priv);
    	if (err)
    		return err;
    
    	return 0;
    }
    
    /* Compare MAC DA with tcam entry data */
    static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
    				       const u8 *da, unsigned char *mask)
    {
    	unsigned char tcam_byte, tcam_mask;
    	int index;
    
    	for (index = 0; index < ETH_ALEN; index++) {
    		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
    		if (tcam_mask != mask[index])
    			return false;
    
    		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
    			return false;
    	}
    
    	return true;
    }
    
    /* Find tcam entry with matched pair <MAC DA, port> */
    static int
    mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
    			    unsigned char *mask, int udf_type)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	/* Go through the all entires with MVPP2_PRS_LU_MAC */
    	for (tid = MVPP2_PE_MAC_RANGE_START;
    	     tid <= MVPP2_PE_MAC_RANGE_END; tid++) {
    		unsigned int entry_pmap;
    
    		if (!priv->prs_shadow[tid].valid ||
    		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
    		    (priv->prs_shadow[tid].udf != udf_type))
    			continue;
    
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    		entry_pmap = mvpp2_prs_tcam_port_map_get(&pe);
    
    		if (mvpp2_prs_mac_range_equals(&pe, da, mask) &&
    		    entry_pmap == pmap)
    			return tid;
    	}
    
    	return -ENOENT;
    }
    
    /* Update parser's mac da entry */
    static int mvpp2_prs_mac_da_accept(struct mvpp2_port *port, const u8 *da,
    				   bool add)
    {
    	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
    	struct mvpp2 *priv = port->priv;
    	unsigned int pmap, len, ri;
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	memset(&pe, 0, sizeof(pe));
    
    	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
    	tid = mvpp2_prs_mac_da_range_find(priv, BIT(port->id), da, mask,
    					  MVPP2_PRS_UDF_MAC_DEF);
    
    	/* No such entry */
    	if (tid < 0) {
    		if (!add)
    			return 0;
    
    		/* Create new TCAM entry */
    		/* Go through the all entries from first to last */
    		tid = mvpp2_prs_tcam_first_free(priv,
    						MVPP2_PE_MAC_RANGE_START,
    						MVPP2_PE_MAC_RANGE_END);
    		if (tid < 0)
    			return tid;
    
    		pe.index = tid;
    
    		/* Mask all ports */
    		mvpp2_prs_tcam_port_map_set(&pe, 0);
    	} else {
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    	}
    
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
    
    	/* Update port mask */
    	mvpp2_prs_tcam_port_set(&pe, port->id, add);
    
    	/* Invalidate the entry if no ports are left enabled */
    	pmap = mvpp2_prs_tcam_port_map_get(&pe);
    	if (pmap == 0) {
    		if (add)
    			return -EINVAL;
    
    		mvpp2_prs_hw_inv(priv, pe.index);
    		priv->prs_shadow[pe.index].valid = false;
    		return 0;
    	}
    
    	/* Continue - set next lookup */
    	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
    
    	/* Set match on DA */
    	len = ETH_ALEN;
    	while (len--)
    		mvpp2_prs_tcam_data_byte_set(&pe, len, da[len], 0xff);
    
    	/* Set result info bits */
    	if (is_broadcast_ether_addr(da)) {
    		ri = MVPP2_PRS_RI_L2_BCAST;
    	} else if (is_multicast_ether_addr(da)) {
    		ri = MVPP2_PRS_RI_L2_MCAST;
    	} else {
    		ri = MVPP2_PRS_RI_L2_UCAST;
    
    		if (ether_addr_equal(da, port->dev->dev_addr))
    			ri |= MVPP2_PRS_RI_MAC_ME_MASK;
    	}
    
    	mvpp2_prs_sram_ri_update(&pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
    				 MVPP2_PRS_RI_MAC_ME_MASK);
    	mvpp2_prs_shadow_ri_set(priv, pe.index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
    				MVPP2_PRS_RI_MAC_ME_MASK);
    
    	/* Shift to ethertype */
    	mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
    				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
    
    	/* Update shadow table and hw entry */
    	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_MAC_DEF;
    	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
    	mvpp2_prs_hw_write(priv, &pe);
    
    	return 0;
    }
    
    static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	int err;
    
    	/* Remove old parser entry */
    	err = mvpp2_prs_mac_da_accept(port, dev->dev_addr, false);
    	if (err)
    		return err;
    
    	/* Add new parser entry */
    	err = mvpp2_prs_mac_da_accept(port, da, true);
    	if (err)
    		return err;
    
    	/* Set addr in the device */
    	ether_addr_copy(dev->dev_addr, da);
    
    	return 0;
    }
    
    static void mvpp2_prs_mac_del_all(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	struct mvpp2_prs_entry pe;
    	unsigned long pmap;
    	int index, tid;
    
    	for (tid = MVPP2_PE_MAC_RANGE_START;
    	     tid <= MVPP2_PE_MAC_RANGE_END; tid++) {
    		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
    
    		if (!priv->prs_shadow[tid].valid ||
    		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
    		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
    			continue;
    
    		mvpp2_prs_init_from_hw(priv, &pe, tid);
    
    		pmap = mvpp2_prs_tcam_port_map_get(&pe);
    
    		/* We only want entries active on this port */
    		if (!test_bit(port->id, &pmap))
    			continue;
    
    		/* Read mac addr from entry */
    		for (index = 0; index < ETH_ALEN; index++)
    			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
    						     &da_mask[index]);
    
    		/* Special cases : Don't remove broadcast and port's own
    		 * address
    		 */
    		if (is_broadcast_ether_addr(da) ||
    		    ether_addr_equal(da, port->dev->dev_addr))
    			continue;
    
    		/* Remove entry from TCAM */
    		mvpp2_prs_mac_da_accept(port, da, false);
    	}
    }
    
    static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
    {
    	switch (type) {
    	case MVPP2_TAG_TYPE_EDSA:
    		/* Add port to EDSA entries */
    		mvpp2_prs_dsa_tag_set(priv, port, true,
    				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
    		mvpp2_prs_dsa_tag_set(priv, port, true,
    				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
    		/* Remove port from DSA entries */
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
    		break;
    
    	case MVPP2_TAG_TYPE_DSA:
    		/* Add port to DSA entries */
    		mvpp2_prs_dsa_tag_set(priv, port, true,
    				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
    		mvpp2_prs_dsa_tag_set(priv, port, true,
    				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
    		/* Remove port from EDSA entries */
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
    		break;
    
    	case MVPP2_TAG_TYPE_MH:
    	case MVPP2_TAG_TYPE_NONE:
    		/* Remove port form EDSA and DSA entries */
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
    		mvpp2_prs_dsa_tag_set(priv, port, false,
    				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
    		break;
    
    	default:
    		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
    			return -EINVAL;
    	}
    
    	return 0;
    }
    
    /* Set prs flow for the port */
    static int mvpp2_prs_def_flow(struct mvpp2_port *port)
    {
    	struct mvpp2_prs_entry pe;
    	int tid;
    
    	memset(&pe, 0, sizeof(pe));
    
    	tid = mvpp2_prs_flow_find(port->priv, port->id);
    
    	/* Such entry not exist */
    	if (tid < 0) {
    		/* Go through the all entires from last to first */
    		tid = mvpp2_prs_tcam_first_free(port->priv,
    						MVPP2_PE_LAST_FREE_TID,
    					       MVPP2_PE_FIRST_FREE_TID);
    		if (tid < 0)
    			return tid;
    
    		pe.index = tid;
    
    		/* Set flow ID*/
    		mvpp2_prs_sram_ai_update(&pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
    		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
    
    		/* Update shadow table */
    		mvpp2_prs_shadow_set(port->priv, pe.index, MVPP2_PRS_LU_FLOWS);
    	} else {
    		mvpp2_prs_init_from_hw(port->priv, &pe, tid);
    	}
    
    	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
    	mvpp2_prs_tcam_port_map_set(&pe, (1 << port->id));
    	mvpp2_prs_hw_write(port->priv, &pe);
    
    	return 0;
    }
    
    /* Classifier configuration routines */
    
    /* Update classification flow table registers */
    static void mvpp2_cls_flow_write(struct mvpp2 *priv,
    				 struct mvpp2_cls_flow_entry *fe)
    {
    	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
    	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
    	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
    	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
    }
    
    /* Update classification lookup table register */
    static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
    				   struct mvpp2_cls_lookup_entry *le)
    {
    	u32 val;
    
    	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
    	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
    	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
    }
    
    /* Classifier default initialization */
    static void mvpp2_cls_init(struct mvpp2 *priv)
    {
    	struct mvpp2_cls_lookup_entry le;
    	struct mvpp2_cls_flow_entry fe;
    	int index;
    
    	/* Enable classifier */
    	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
    
    	/* Clear classifier flow table */
    	memset(&fe.data, 0, sizeof(fe.data));
    	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
    		fe.index = index;
    		mvpp2_cls_flow_write(priv, &fe);
    	}
    
    	/* Clear classifier lookup table */
    	le.data = 0;
    	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
    		le.lkpid = index;
    		le.way = 0;
    		mvpp2_cls_lookup_write(priv, &le);
    
    		le.way = 1;
    		mvpp2_cls_lookup_write(priv, &le);
    	}
    }
    
    static void mvpp2_cls_port_config(struct mvpp2_port *port)
    {
    	struct mvpp2_cls_lookup_entry le;
    	u32 val;
    
    	/* Set way for the port */
    	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
    	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
    	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
    
    	/* Pick the entry to be accessed in lookup ID decoding table
    	 * according to the way and lkpid.
    	 */
    	le.lkpid = port->id;
    	le.way = 0;
    	le.data = 0;
    
    	/* Set initial CPU queue for receiving packets */
    	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
    	le.data |= port->first_rxq;
    
    	/* Disable classification engines */
    	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
    
    	/* Update lookup ID table entry */
    	mvpp2_cls_lookup_write(port->priv, &le);
    }
    
    /* Set CPU queue number for oversize packets */
    static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
    {
    	u32 val;
    
    	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
    		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
    
    	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
    		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
    
    	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
    	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
    	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
    }
    
    static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
    {
    	if (likely(pool->frag_size <= PAGE_SIZE))
    		return netdev_alloc_frag(pool->frag_size);
    	else
    		return kmalloc(pool->frag_size, GFP_ATOMIC);
    }
    
    static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
    {
    	if (likely(pool->frag_size <= PAGE_SIZE))
    		skb_free_frag(data);
    	else
    		kfree(data);
    }
    
    /* Buffer Manager configuration routines */
    
    /* Create pool */
    static int mvpp2_bm_pool_create(struct platform_device *pdev,
    				struct mvpp2 *priv,
    				struct mvpp2_bm_pool *bm_pool, int size)
    {
    	u32 val;
    
    	/* Number of buffer pointers must be a multiple of 16, as per
    	 * hardware constraints
    	 */
    	if (!IS_ALIGNED(size, 16))
    		return -EINVAL;
    
    	/* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
    	 * bytes per buffer pointer
    	 */
    	if (priv->hw_version == MVPP21)
    		bm_pool->size_bytes = 2 * sizeof(u32) * size;
    	else
    		bm_pool->size_bytes = 2 * sizeof(u64) * size;
    
    	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
    						&bm_pool->dma_addr,
    						GFP_KERNEL);
    	if (!bm_pool->virt_addr)
    		return -ENOMEM;
    
    	if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
    			MVPP2_BM_POOL_PTR_ALIGN)) {
    		dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
    				  bm_pool->virt_addr, bm_pool->dma_addr);
    		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
    			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
    		return -ENOMEM;
    	}
    
    	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
    		    lower_32_bits(bm_pool->dma_addr));
    	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
    
    	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
    	val |= MVPP2_BM_START_MASK;
    	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
    
    	bm_pool->size = size;
    	bm_pool->pkt_size = 0;
    	bm_pool->buf_num = 0;
    
    	return 0;
    }
    
    /* Set pool buffer size */
    static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
    				      struct mvpp2_bm_pool *bm_pool,
    				      int buf_size)
    {
    	u32 val;
    
    	bm_pool->buf_size = buf_size;
    
    	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
    	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
    }
    
    static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
    				    struct mvpp2_bm_pool *bm_pool,
    				    dma_addr_t *dma_addr,
    				    phys_addr_t *phys_addr)
    {
    	int cpu = get_cpu();
    
    	*dma_addr = mvpp2_percpu_read(priv, cpu,
    				      MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
    	*phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
    
    	if (priv->hw_version == MVPP22) {
    		u32 val;
    		u32 dma_addr_highbits, phys_addr_highbits;
    
    		val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
    		dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
    		phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
    			MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
    
    		if (sizeof(dma_addr_t) == 8)
    			*dma_addr |= (u64)dma_addr_highbits << 32;
    
    		if (sizeof(phys_addr_t) == 8)
    			*phys_addr |= (u64)phys_addr_highbits << 32;
    	}
    
    	put_cpu();
    }
    
    /* Free all buffers from the pool */
    static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
    			       struct mvpp2_bm_pool *bm_pool, int buf_num)
    {
    	int i;
    
    	if (buf_num > bm_pool->buf_num) {
    		WARN(1, "Pool does not have so many bufs pool(%d) bufs(%d)\n",
    		     bm_pool->id, buf_num);
    		buf_num = bm_pool->buf_num;
    	}
    
    	for (i = 0; i < buf_num; i++) {
    		dma_addr_t buf_dma_addr;
    		phys_addr_t buf_phys_addr;
    		void *data;
    
    		mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
    					&buf_dma_addr, &buf_phys_addr);
    
    		dma_unmap_single(dev, buf_dma_addr,
    				 bm_pool->buf_size, DMA_FROM_DEVICE);
    
    		data = (void *)phys_to_virt(buf_phys_addr);
    		if (!data)
    			break;
    
    		mvpp2_frag_free(bm_pool, data);
    	}
    
    	/* Update BM driver with number of buffers removed from pool */
    	bm_pool->buf_num -= i;
    }
    
    /* Check number of buffers in BM pool */
    static int mvpp2_check_hw_buf_num(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool)
    {
    	int buf_num = 0;
    
    	buf_num += mvpp2_read(priv, MVPP2_BM_POOL_PTRS_NUM_REG(bm_pool->id)) &
    				    MVPP22_BM_POOL_PTRS_NUM_MASK;
    	buf_num += mvpp2_read(priv, MVPP2_BM_BPPI_PTRS_NUM_REG(bm_pool->id)) &
    				    MVPP2_BM_BPPI_PTR_NUM_MASK;
    
    	/* HW has one buffer ready which is not reflected in the counters */
    	if (buf_num)
    		buf_num += 1;
    
    	return buf_num;
    }
    
    /* Cleanup pool */
    static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
    				 struct mvpp2 *priv,
    				 struct mvpp2_bm_pool *bm_pool)
    {
    	int buf_num;
    	u32 val;
    
    	buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
    	mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool, buf_num);
    
    	/* Check buffer counters after free */
    	buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
    	if (buf_num) {
    		WARN(1, "cannot free all buffers in pool %d, buf_num left %d\n",
    		     bm_pool->id, bm_pool->buf_num);
    		return 0;
    	}
    
    	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
    	val |= MVPP2_BM_STOP_MASK;
    	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
    
    	dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
    			  bm_pool->virt_addr,
    			  bm_pool->dma_addr);
    	return 0;
    }
    
    static int mvpp2_bm_pools_init(struct platform_device *pdev,
    			       struct mvpp2 *priv)
    {
    	int i, err, size;
    	struct mvpp2_bm_pool *bm_pool;
    
    	/* Create all pools with maximum size */
    	size = MVPP2_BM_POOL_SIZE_MAX;
    	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
    		bm_pool = &priv->bm_pools[i];
    		bm_pool->id = i;
    		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
    		if (err)
    			goto err_unroll_pools;
    		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
    	}
    	return 0;
    
    err_unroll_pools:
    	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
    	for (i = i - 1; i >= 0; i--)
    		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
    	return err;
    }
    
    static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
    {
    	int i, err;
    
    	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
    		/* Mask BM all interrupts */
    		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
    		/* Clear BM cause register */
    		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
    	}
    
    	/* Allocate and initialize BM pools */
    	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
    				      sizeof(*priv->bm_pools), GFP_KERNEL);
    	if (!priv->bm_pools)
    		return -ENOMEM;
    
    	err = mvpp2_bm_pools_init(pdev, priv);
    	if (err < 0)
    		return err;
    	return 0;
    }
    
    static void mvpp2_setup_bm_pool(void)
    {
    	/* Short pool */
    	mvpp2_pools[MVPP2_BM_SHORT].buf_num  = MVPP2_BM_SHORT_BUF_NUM;
    	mvpp2_pools[MVPP2_BM_SHORT].pkt_size = MVPP2_BM_SHORT_PKT_SIZE;
    
    	/* Long pool */
    	mvpp2_pools[MVPP2_BM_LONG].buf_num  = MVPP2_BM_LONG_BUF_NUM;
    	mvpp2_pools[MVPP2_BM_LONG].pkt_size = MVPP2_BM_LONG_PKT_SIZE;
    
    	/* Jumbo pool */
    	mvpp2_pools[MVPP2_BM_JUMBO].buf_num  = MVPP2_BM_JUMBO_BUF_NUM;
    	mvpp2_pools[MVPP2_BM_JUMBO].pkt_size = MVPP2_BM_JUMBO_PKT_SIZE;
    }
    
    /* Attach long pool to rxq */
    static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
    				    int lrxq, int long_pool)
    {
    	u32 val, mask;
    	int prxq;
    
    	/* Get queue physical ID */
    	prxq = port->rxqs[lrxq]->id;
    
    	if (port->priv->hw_version == MVPP21)
    		mask = MVPP21_RXQ_POOL_LONG_MASK;
    	else
    		mask = MVPP22_RXQ_POOL_LONG_MASK;
    
    	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
    	val &= ~mask;
    	val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
    	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
    }
    
    /* Attach short pool to rxq */
    static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
    				     int lrxq, int short_pool)
    {
    	u32 val, mask;
    	int prxq;
    
    	/* Get queue physical ID */
    	prxq = port->rxqs[lrxq]->id;
    
    	if (port->priv->hw_version == MVPP21)
    		mask = MVPP21_RXQ_POOL_SHORT_MASK;
    	else
    		mask = MVPP22_RXQ_POOL_SHORT_MASK;
    
    	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
    	val &= ~mask;
    	val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
    	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
    }
    
    static void *mvpp2_buf_alloc(struct mvpp2_port *port,
    			     struct mvpp2_bm_pool *bm_pool,
    			     dma_addr_t *buf_dma_addr,
    			     phys_addr_t *buf_phys_addr,
    			     gfp_t gfp_mask)
    {
    	dma_addr_t dma_addr;
    	void *data;
    
    	data = mvpp2_frag_alloc(bm_pool);
    	if (!data)
    		return NULL;
    
    	dma_addr = dma_map_single(port->dev->dev.parent, data,
    				  MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
    				  DMA_FROM_DEVICE);
    	if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
    		mvpp2_frag_free(bm_pool, data);
    		return NULL;
    	}
    	*buf_dma_addr = dma_addr;
    	*buf_phys_addr = virt_to_phys(data);
    
    	return data;
    }
    
    /* Release buffer to BM */
    static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
    				     dma_addr_t buf_dma_addr,
    				     phys_addr_t buf_phys_addr)
    {
    	int cpu = get_cpu();
    
    	if (port->priv->hw_version == MVPP22) {
    		u32 val = 0;
    
    		if (sizeof(dma_addr_t) == 8)
    			val |= upper_32_bits(buf_dma_addr) &
    				MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
    
    		if (sizeof(phys_addr_t) == 8)
    			val |= (upper_32_bits(buf_phys_addr)
    				<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
    				MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
    
    		mvpp2_percpu_write_relaxed(port->priv, cpu,
    					   MVPP22_BM_ADDR_HIGH_RLS_REG, val);
    	}
    
    	/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
    	 * returned in the "cookie" field of the RX
    	 * descriptor. Instead of storing the virtual address, we
    	 * store the physical address
    	 */
    	mvpp2_percpu_write_relaxed(port->priv, cpu,
    				   MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
    	mvpp2_percpu_write_relaxed(port->priv, cpu,
    				   MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
    
    	put_cpu();
    }
    
    /* Allocate buffers for the pool */
    static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
    			     struct mvpp2_bm_pool *bm_pool, int buf_num)
    {
    	int i, buf_size, total_size;
    	dma_addr_t dma_addr;
    	phys_addr_t phys_addr;
    	void *buf;
    
    	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
    	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
    
    	if (buf_num < 0 ||
    	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
    		netdev_err(port->dev,
    			   "cannot allocate %d buffers for pool %d\n",
    			   buf_num, bm_pool->id);
    		return 0;
    	}
    
    	for (i = 0; i < buf_num; i++) {
    		buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
    				      &phys_addr, GFP_KERNEL);
    		if (!buf)
    			break;
    
    		mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
    				  phys_addr);
    	}
    
    	/* Update BM driver with number of buffers added to pool */
    	bm_pool->buf_num += i;
    
    	netdev_dbg(port->dev,
    		   "pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
    		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
    
    	netdev_dbg(port->dev,
    		   "pool %d: %d of %d buffers added\n",
    		   bm_pool->id, i, buf_num);
    	return i;
    }
    
    /* Notify the driver that BM pool is being used as specific type and return the
     * pool pointer on success
     */
    static struct mvpp2_bm_pool *
    mvpp2_bm_pool_use(struct mvpp2_port *port, unsigned pool, int pkt_size)
    {
    	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
    	int num;
    
    	if (pool >= MVPP2_BM_POOLS_NUM) {
    		netdev_err(port->dev, "Invalid pool %d\n", pool);
    		return NULL;
    	}
    
    	/* Allocate buffers in case BM pool is used as long pool, but packet
    	 * size doesn't match MTU or BM pool hasn't being used yet
    	 */
    	if (new_pool->pkt_size == 0) {
    		int pkts_num;
    
    		/* Set default buffer number or free all the buffers in case
    		 * the pool is not empty
    		 */
    		pkts_num = new_pool->buf_num;
    		if (pkts_num == 0)
    			pkts_num = mvpp2_pools[pool].buf_num;
    		else
    			mvpp2_bm_bufs_free(port->dev->dev.parent,
    					   port->priv, new_pool, pkts_num);
    
    		new_pool->pkt_size = pkt_size;
    		new_pool->frag_size =
    			SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
    			MVPP2_SKB_SHINFO_SIZE;
    
    		/* Allocate buffers for this pool */
    		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
    		if (num != pkts_num) {
    			WARN(1, "pool %d: %d of %d allocated\n",
    			     new_pool->id, num, pkts_num);
    			return NULL;
    		}
    	}
    
    	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
    				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
    
    	return new_pool;
    }
    
    /* Initialize pools for swf */
    static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
    {
    	int rxq;
    	enum mvpp2_bm_pool_log_num long_log_pool, short_log_pool;
    
    	/* If port pkt_size is higher than 1518B:
    	 * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
    	 * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
    	 */
    	if (port->pkt_size > MVPP2_BM_LONG_PKT_SIZE) {
    		long_log_pool = MVPP2_BM_JUMBO;
    		short_log_pool = MVPP2_BM_LONG;
    	} else {
    		long_log_pool = MVPP2_BM_LONG;
    		short_log_pool = MVPP2_BM_SHORT;
    	}
    
    	if (!port->pool_long) {
    		port->pool_long =
    			mvpp2_bm_pool_use(port, long_log_pool,
    					  mvpp2_pools[long_log_pool].pkt_size);
    		if (!port->pool_long)
    			return -ENOMEM;
    
    		port->pool_long->port_map |= BIT(port->id);
    
    		for (rxq = 0; rxq < port->nrxqs; rxq++)
    			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
    	}
    
    	if (!port->pool_short) {
    		port->pool_short =
    			mvpp2_bm_pool_use(port, short_log_pool,
    					  mvpp2_pools[short_log_pool].pkt_size);
    		if (!port->pool_short)
    			return -ENOMEM;
    
    		port->pool_short->port_map |= BIT(port->id);
    
    		for (rxq = 0; rxq < port->nrxqs; rxq++)
    			mvpp2_rxq_short_pool_set(port, rxq,
    						 port->pool_short->id);
    	}
    
    	return 0;
    }
    
    static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	enum mvpp2_bm_pool_log_num new_long_pool;
    	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
    
    	/* If port MTU is higher than 1518B:
    	 * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
    	 * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
    	 */
    	if (pkt_size > MVPP2_BM_LONG_PKT_SIZE)
    		new_long_pool = MVPP2_BM_JUMBO;
    	else
    		new_long_pool = MVPP2_BM_LONG;
    
    	if (new_long_pool != port->pool_long->id) {
    		/* Remove port from old short & long pool */
    		port->pool_long = mvpp2_bm_pool_use(port, port->pool_long->id,
    						    port->pool_long->pkt_size);
    		port->pool_long->port_map &= ~BIT(port->id);
    		port->pool_long = NULL;
    
    		port->pool_short = mvpp2_bm_pool_use(port, port->pool_short->id,
    						     port->pool_short->pkt_size);
    		port->pool_short->port_map &= ~BIT(port->id);
    		port->pool_short = NULL;
    
    		port->pkt_size =  pkt_size;
    
    		/* Add port to new short & long pool */
    		mvpp2_swf_bm_pool_init(port);
    
    		/* Update L4 checksum when jumbo enable/disable on port */
    		if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) {
    			dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
    			dev->hw_features &= ~(NETIF_F_IP_CSUM |
    					      NETIF_F_IPV6_CSUM);
    		} else {
    			dev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
    			dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
    		}
    	}
    
    	dev->mtu = mtu;
    	dev->wanted_features = dev->features;
    
    	netdev_update_features(dev);
    	return 0;
    }
    
    static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
    {
    	int i, sw_thread_mask = 0;
    
    	for (i = 0; i < port->nqvecs; i++)
    		sw_thread_mask |= port->qvecs[i].sw_thread_mask;
    
    	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
    		    MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
    }
    
    static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
    {
    	int i, sw_thread_mask = 0;
    
    	for (i = 0; i < port->nqvecs; i++)
    		sw_thread_mask |= port->qvecs[i].sw_thread_mask;
    
    	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
    		    MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
    }
    
    static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
    {
    	struct mvpp2_port *port = qvec->port;
    
    	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
    		    MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
    }
    
    static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
    {
    	struct mvpp2_port *port = qvec->port;
    
    	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
    		    MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
    }
    
    /* Mask the current CPU's Rx/Tx interrupts
     * Called by on_each_cpu(), guaranteed to run with migration disabled,
     * using smp_processor_id() is OK.
     */
    static void mvpp2_interrupts_mask(void *arg)
    {
    	struct mvpp2_port *port = arg;
    
    	mvpp2_percpu_write(port->priv, smp_processor_id(),
    			   MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
    }
    
    /* Unmask the current CPU's Rx/Tx interrupts.
     * Called by on_each_cpu(), guaranteed to run with migration disabled,
     * using smp_processor_id() is OK.
     */
    static void mvpp2_interrupts_unmask(void *arg)
    {
    	struct mvpp2_port *port = arg;
    	u32 val;
    
    	val = MVPP2_CAUSE_MISC_SUM_MASK |
    		MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
    	if (port->has_tx_irqs)
    		val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
    
    	mvpp2_percpu_write(port->priv, smp_processor_id(),
    			   MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
    }
    
    static void
    mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
    {
    	u32 val;
    	int i;
    
    	if (port->priv->hw_version != MVPP22)
    		return;
    
    	if (mask)
    		val = 0;
    	else
    		val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
    
    	for (i = 0; i < port->nqvecs; i++) {
    		struct mvpp2_queue_vector *v = port->qvecs + i;
    
    		if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
    			continue;
    
    		mvpp2_percpu_write(port->priv, v->sw_thread_id,
    				   MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
    	}
    }
    
    /* Port configuration routines */
    
    static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	u32 val;
    
    	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
    	val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
    	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
    
    	regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
    	if (port->gop_id == 2)
    		val |= GENCONF_CTRL0_PORT0_RGMII | GENCONF_CTRL0_PORT1_RGMII;
    	else if (port->gop_id == 3)
    		val |= GENCONF_CTRL0_PORT1_RGMII_MII;
    	regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
    }
    
    static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	u32 val;
    
    	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
    	val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
    	       GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
    	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
    
    	if (port->gop_id > 1) {
    		regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
    		if (port->gop_id == 2)
    			val &= ~GENCONF_CTRL0_PORT0_RGMII;
    		else if (port->gop_id == 3)
    			val &= ~GENCONF_CTRL0_PORT1_RGMII_MII;
    		regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
    	}
    }
    
    static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
    	void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
    	u32 val;
    
    	/* XPCS */
    	val = readl(xpcs + MVPP22_XPCS_CFG0);
    	val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
    		 MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
    	val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
    	writel(val, xpcs + MVPP22_XPCS_CFG0);
    
    	/* MPCS */
    	val = readl(mpcs + MVPP22_MPCS_CTRL);
    	val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
    	writel(val, mpcs + MVPP22_MPCS_CTRL);
    
    	val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
    	val &= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC |
    		 MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
    	val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
    	writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
    
    	val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
    	val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX;
    	writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
    }
    
    static int mvpp22_gop_init(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	u32 val;
    
    	if (!priv->sysctrl_base)
    		return 0;
    
    	switch (port->phy_interface) {
    	case PHY_INTERFACE_MODE_RGMII:
    	case PHY_INTERFACE_MODE_RGMII_ID:
    	case PHY_INTERFACE_MODE_RGMII_RXID:
    	case PHY_INTERFACE_MODE_RGMII_TXID:
    		if (port->gop_id == 0)
    			goto invalid_conf;
    		mvpp22_gop_init_rgmii(port);
    		break;
    	case PHY_INTERFACE_MODE_SGMII:
    		mvpp22_gop_init_sgmii(port);
    		break;
    	case PHY_INTERFACE_MODE_10GKR:
    		if (port->gop_id != 0)
    			goto invalid_conf;
    		mvpp22_gop_init_10gkr(port);
    		break;
    	default:
    		goto unsupported_conf;
    	}
    
    	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
    	val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
    	       GENCONF_PORT_CTRL1_EN(port->gop_id);
    	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);
    
    	regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
    	val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
    	regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
    
    	regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
    	val |= GENCONF_SOFT_RESET1_GOP;
    	regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);
    
    unsupported_conf:
    	return 0;
    
    invalid_conf:
    	netdev_err(port->dev, "Invalid port configuration\n");
    	return -EINVAL;
    }
    
    static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
    {
    	u32 val;
    
    	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
    	    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
    		/* Enable the GMAC link status irq for this port */
    		val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
    		val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
    		writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
    	}
    
    	if (port->gop_id == 0) {
    		/* Enable the XLG/GIG irqs for this port */
    		val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
    		if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
    			val |= MVPP22_XLG_EXT_INT_MASK_XLG;
    		else
    			val |= MVPP22_XLG_EXT_INT_MASK_GIG;
    		writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
    	}
    }
    
    static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
    {
    	u32 val;
    
    	if (port->gop_id == 0) {
    		val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
    		val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
    		         MVPP22_XLG_EXT_INT_MASK_GIG);
    		writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
    	}
    
    	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
    	    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
    		val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
    		val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
    		writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
    	}
    }
    
    static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
    {
    	u32 val;
    
    	if (phy_interface_mode_is_rgmii(port->phy_interface) ||
    	    port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
    		val = readl(port->base + MVPP22_GMAC_INT_MASK);
    		val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
    		writel(val, port->base + MVPP22_GMAC_INT_MASK);
    	}
    
    	if (port->gop_id == 0) {
    		val = readl(port->base + MVPP22_XLG_INT_MASK);
    		val |= MVPP22_XLG_INT_MASK_LINK;
    		writel(val, port->base + MVPP22_XLG_INT_MASK);
    	}
    
    	mvpp22_gop_unmask_irq(port);
    }
    
    static int mvpp22_comphy_init(struct mvpp2_port *port)
    {
    	enum phy_mode mode;
    	int ret;
    
    	if (!port->comphy)
    		return 0;
    
    	switch (port->phy_interface) {
    	case PHY_INTERFACE_MODE_SGMII:
    		mode = PHY_MODE_SGMII;
    		break;
    	case PHY_INTERFACE_MODE_10GKR:
    		mode = PHY_MODE_10GKR;
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	ret = phy_set_mode(port->comphy, mode);
    	if (ret)
    		return ret;
    
    	return phy_power_on(port->comphy);
    }
    
    static void mvpp2_port_enable(struct mvpp2_port *port)
    {
    	u32 val;
    
    	/* Only GOP port 0 has an XLG MAC */
    	if (port->gop_id == 0 &&
    	    (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
    	     port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
    		val = readl(port->base + MVPP22_XLG_CTRL0_REG);
    		val |= MVPP22_XLG_CTRL0_PORT_EN |
    		       MVPP22_XLG_CTRL0_MAC_RESET_DIS;
    		val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
    		writel(val, port->base + MVPP22_XLG_CTRL0_REG);
    	} else {
    		val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
    		val |= MVPP2_GMAC_PORT_EN_MASK;
    		val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
    		writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
    	}
    }
    
    static void mvpp2_port_disable(struct mvpp2_port *port)
    {
    	u32 val;
    
    	/* Only GOP port 0 has an XLG MAC */
    	if (port->gop_id == 0 &&
    	    (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
    	     port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
    		val = readl(port->base + MVPP22_XLG_CTRL0_REG);
    		val &= ~MVPP22_XLG_CTRL0_PORT_EN;
    		writel(val, port->base + MVPP22_XLG_CTRL0_REG);
    
    		/* Disable & reset should be done separately */
    		val &= ~MVPP22_XLG_CTRL0_MAC_RESET_DIS;
    		writel(val, port->base + MVPP22_XLG_CTRL0_REG);
    	} else {
    		val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
    		val &= ~(MVPP2_GMAC_PORT_EN_MASK);
    		writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
    	}
    }
    
    /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
    static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
    {
    	u32 val;
    
    	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
    		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
    	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
    }
    
    /* Configure loopback port */
    static void mvpp2_port_loopback_set(struct mvpp2_port *port,
    				    const struct phylink_link_state *state)
    {
    	u32 val;
    
    	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
    
    	if (state->speed == 1000)
    		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
    	else
    		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
    
    	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
    		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
    	else
    		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
    
    	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
    }
    
    struct mvpp2_ethtool_counter {
    	unsigned int offset;
    	const char string[ETH_GSTRING_LEN];
    	bool reg_is_64b;
    };
    
    static u64 mvpp2_read_count(struct mvpp2_port *port,
    			    const struct mvpp2_ethtool_counter *counter)
    {
    	u64 val;
    
    	val = readl(port->stats_base + counter->offset);
    	if (counter->reg_is_64b)
    		val += (u64)readl(port->stats_base + counter->offset + 4) << 32;
    
    	return val;
    }
    
    /* Due to the fact that software statistics and hardware statistics are, by
     * design, incremented at different moments in the chain of packet processing,
     * it is very likely that incoming packets could have been dropped after being
     * counted by hardware but before reaching software statistics (most probably
     * multicast packets), and in the oppposite way, during transmission, FCS bytes
     * are added in between as well as TSO skb will be split and header bytes added.
     * Hence, statistics gathered from userspace with ifconfig (software) and
     * ethtool (hardware) cannot be compared.
     */
    static const struct mvpp2_ethtool_counter mvpp2_ethtool_regs[] = {
    	{ MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true },
    	{ MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" },
    	{ MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" },
    	{ MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" },
    	{ MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" },
    	{ MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" },
    	{ MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" },
    	{ MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" },
    	{ MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" },
    	{ MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" },
    	{ MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" },
    	{ MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" },
    	{ MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true },
    	{ MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" },
    	{ MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" },
    	{ MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" },
    	{ MVPP2_MIB_FC_SENT, "fc_sent" },
    	{ MVPP2_MIB_FC_RCVD, "fc_received" },
    	{ MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" },
    	{ MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" },
    	{ MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" },
    	{ MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" },
    	{ MVPP2_MIB_JABBER_RCVD, "jabber_received" },
    	{ MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" },
    	{ MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" },
    	{ MVPP2_MIB_COLLISION, "collision" },
    	{ MVPP2_MIB_LATE_COLLISION, "late_collision" },
    };
    
    static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset,
    				      u8 *data)
    {
    	if (sset == ETH_SS_STATS) {
    		int i;
    
    		for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
    			memcpy(data + i * ETH_GSTRING_LEN,
    			       &mvpp2_ethtool_regs[i].string, ETH_GSTRING_LEN);
    	}
    }
    
    static void mvpp2_gather_hw_statistics(struct work_struct *work)
    {
    	struct delayed_work *del_work = to_delayed_work(work);
    	struct mvpp2_port *port = container_of(del_work, struct mvpp2_port,
    					       stats_work);
    	u64 *pstats;
    	int i;
    
    	mutex_lock(&port->gather_stats_lock);
    
    	pstats = port->ethtool_stats;
    	for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
    		*pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
    
    	/* No need to read again the counters right after this function if it
    	 * was called asynchronously by the user (ie. use of ethtool).
    	 */
    	cancel_delayed_work(&port->stats_work);
    	queue_delayed_work(port->priv->stats_queue, &port->stats_work,
    			   MVPP2_MIB_COUNTERS_STATS_DELAY);
    
    	mutex_unlock(&port->gather_stats_lock);
    }
    
    static void mvpp2_ethtool_get_stats(struct net_device *dev,
    				    struct ethtool_stats *stats, u64 *data)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	/* Update statistics for the given port, then take the lock to avoid
    	 * concurrent accesses on the ethtool_stats structure during its copy.
    	 */
    	mvpp2_gather_hw_statistics(&port->stats_work.work);
    
    	mutex_lock(&port->gather_stats_lock);
    	memcpy(data, port->ethtool_stats,
    	       sizeof(u64) * ARRAY_SIZE(mvpp2_ethtool_regs));
    	mutex_unlock(&port->gather_stats_lock);
    }
    
    static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset)
    {
    	if (sset == ETH_SS_STATS)
    		return ARRAY_SIZE(mvpp2_ethtool_regs);
    
    	return -EOPNOTSUPP;
    }
    
    static void mvpp2_port_reset(struct mvpp2_port *port)
    {
    	u32 val;
    	unsigned int i;
    
    	/* Read the GOP statistics to reset the hardware counters */
    	for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
    		mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
    
    	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
    		    ~MVPP2_GMAC_PORT_RESET_MASK;
    	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
    
    	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
    	       MVPP2_GMAC_PORT_RESET_MASK)
    		continue;
    }
    
    /* Change maximum receive size of the port */
    static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
    {
    	u32 val;
    
    	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
    	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
    	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
    		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
    	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
    }
    
    /* Change maximum receive size of the port */
    static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
    {
    	u32 val;
    
    	val =  readl(port->base + MVPP22_XLG_CTRL1_REG);
    	val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
    	val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
    	       MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
    	writel(val, port->base + MVPP22_XLG_CTRL1_REG);
    }
    
    /* Set defaults to the MVPP2 port */
    static void mvpp2_defaults_set(struct mvpp2_port *port)
    {
    	int tx_port_num, val, queue, ptxq, lrxq;
    
    	if (port->priv->hw_version == MVPP21) {
    		/* Update TX FIFO MIN Threshold */
    		val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
    		val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
    		/* Min. TX threshold must be less than minimal packet length */
    		val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
    		writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
    	}
    
    	/* Disable Legacy WRR, Disable EJP, Release from reset */
    	tx_port_num = mvpp2_egress_port(port);
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
    		    tx_port_num);
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
    
    	/* Close bandwidth for all queues */
    	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
    		ptxq = mvpp2_txq_phys(port->id, queue);
    		mvpp2_write(port->priv,
    			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
    	}
    
    	/* Set refill period to 1 usec, refill tokens
    	 * and bucket size to maximum
    	 */
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
    		    port->priv->tclk / USEC_PER_SEC);
    	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
    	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
    	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
    	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
    	val = MVPP2_TXP_TOKEN_SIZE_MAX;
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
    
    	/* Set MaximumLowLatencyPacketSize value to 256 */
    	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
    		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
    		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
    
    	/* Enable Rx cache snoop */
    	for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
    		queue = port->rxqs[lrxq]->id;
    		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
    		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
    			   MVPP2_SNOOP_BUF_HDR_MASK;
    		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
    	}
    
    	/* At default, mask all interrupts to all present cpus */
    	mvpp2_interrupts_disable(port);
    }
    
    /* Enable/disable receiving packets */
    static void mvpp2_ingress_enable(struct mvpp2_port *port)
    {
    	u32 val;
    	int lrxq, queue;
    
    	for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
    		queue = port->rxqs[lrxq]->id;
    		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
    		val &= ~MVPP2_RXQ_DISABLE_MASK;
    		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
    	}
    }
    
    static void mvpp2_ingress_disable(struct mvpp2_port *port)
    {
    	u32 val;
    	int lrxq, queue;
    
    	for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
    		queue = port->rxqs[lrxq]->id;
    		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
    		val |= MVPP2_RXQ_DISABLE_MASK;
    		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
    	}
    }
    
    /* Enable transmit via physical egress queue
     * - HW starts take descriptors from DRAM
     */
    static void mvpp2_egress_enable(struct mvpp2_port *port)
    {
    	u32 qmap;
    	int queue;
    	int tx_port_num = mvpp2_egress_port(port);
    
    	/* Enable all initialized TXs. */
    	qmap = 0;
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		struct mvpp2_tx_queue *txq = port->txqs[queue];
    
    		if (txq->descs)
    			qmap |= (1 << queue);
    	}
    
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
    }
    
    /* Disable transmit via physical egress queue
     * - HW doesn't take descriptors from DRAM
     */
    static void mvpp2_egress_disable(struct mvpp2_port *port)
    {
    	u32 reg_data;
    	int delay;
    	int tx_port_num = mvpp2_egress_port(port);
    
    	/* Issue stop command for active channels only */
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
    	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
    		    MVPP2_TXP_SCHED_ENQ_MASK;
    	if (reg_data != 0)
    		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
    			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
    
    	/* Wait for all Tx activity to terminate. */
    	delay = 0;
    	do {
    		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
    			netdev_warn(port->dev,
    				    "Tx stop timed out, status=0x%08x\n",
    				    reg_data);
    			break;
    		}
    		mdelay(1);
    		delay++;
    
    		/* Check port TX Command register that all
    		 * Tx queues are stopped
    		 */
    		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
    	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
    }
    
    /* Rx descriptors helper methods */
    
    /* Get number of Rx descriptors occupied by received packets */
    static inline int
    mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
    {
    	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
    
    	return val & MVPP2_RXQ_OCCUPIED_MASK;
    }
    
    /* Update Rx queue status with the number of occupied and available
     * Rx descriptor slots.
     */
    static inline void
    mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
    			int used_count, int free_count)
    {
    	/* Decrement the number of used descriptors and increment count
    	 * increment the number of free descriptors.
    	 */
    	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
    
    	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
    }
    
    /* Get pointer to next RX descriptor to be processed by SW */
    static inline struct mvpp2_rx_desc *
    mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
    {
    	int rx_desc = rxq->next_desc_to_proc;
    
    	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
    	prefetch(rxq->descs + rxq->next_desc_to_proc);
    	return rxq->descs + rx_desc;
    }
    
    /* Set rx queue offset */
    static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
    				 int prxq, int offset)
    {
    	u32 val;
    
    	/* Convert offset from bytes to units of 32 bytes */
    	offset = offset >> 5;
    
    	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
    	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
    
    	/* Offset is in */
    	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
    		    MVPP2_RXQ_PACKET_OFFSET_MASK);
    
    	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
    }
    
    /* Tx descriptors helper methods */
    
    /* Get pointer to next Tx descriptor to be processed (send) by HW */
    static struct mvpp2_tx_desc *
    mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
    {
    	int tx_desc = txq->next_desc_to_proc;
    
    	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
    	return txq->descs + tx_desc;
    }
    
    /* Update HW with number of aggregated Tx descriptors to be sent
     *
     * Called only from mvpp2_tx(), so migration is disabled, using
     * smp_processor_id() is OK.
     */
    static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
    {
    	/* aggregated access - relevant TXQ number is written in TX desc */
    	mvpp2_percpu_write(port->priv, smp_processor_id(),
    			   MVPP2_AGGR_TXQ_UPDATE_REG, pending);
    }
    
    
    /* Check if there are enough free descriptors in aggregated txq.
     * If not, update the number of occupied descriptors and repeat the check.
     *
     * Called only from mvpp2_tx(), so migration is disabled, using
     * smp_processor_id() is OK.
     */
    static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
    				     struct mvpp2_tx_queue *aggr_txq, int num)
    {
    	if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) {
    		/* Update number of occupied aggregated Tx descriptors */
    		int cpu = smp_processor_id();
    		u32 val = mvpp2_read_relaxed(priv,
    					     MVPP2_AGGR_TXQ_STATUS_REG(cpu));
    
    		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
    	}
    
    	if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE)
    		return -ENOMEM;
    
    	return 0;
    }
    
    /* Reserved Tx descriptors allocation request
     *
     * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
     * only by mvpp2_tx(), so migration is disabled, using
     * smp_processor_id() is OK.
     */
    static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
    					 struct mvpp2_tx_queue *txq, int num)
    {
    	u32 val;
    	int cpu = smp_processor_id();
    
    	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
    	mvpp2_percpu_write_relaxed(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
    
    	val = mvpp2_percpu_read_relaxed(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
    
    	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
    }
    
    /* Check if there are enough reserved descriptors for transmission.
     * If not, request chunk of reserved descriptors and check again.
     */
    static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
    					    struct mvpp2_tx_queue *txq,
    					    struct mvpp2_txq_pcpu *txq_pcpu,
    					    int num)
    {
    	int req, cpu, desc_count;
    
    	if (txq_pcpu->reserved_num >= num)
    		return 0;
    
    	/* Not enough descriptors reserved! Update the reserved descriptor
    	 * count and check again.
    	 */
    
    	desc_count = 0;
    	/* Compute total of used descriptors */
    	for_each_present_cpu(cpu) {
    		struct mvpp2_txq_pcpu *txq_pcpu_aux;
    
    		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
    		desc_count += txq_pcpu_aux->count;
    		desc_count += txq_pcpu_aux->reserved_num;
    	}
    
    	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
    	desc_count += req;
    
    	if (desc_count >
    	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
    		return -ENOMEM;
    
    	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
    
    	/* OK, the descriptor cound has been updated: check again. */
    	if (txq_pcpu->reserved_num < num)
    		return -ENOMEM;
    	return 0;
    }
    
    /* Release the last allocated Tx descriptor. Useful to handle DMA
     * mapping failures in the Tx path.
     */
    static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
    {
    	if (txq->next_desc_to_proc == 0)
    		txq->next_desc_to_proc = txq->last_desc - 1;
    	else
    		txq->next_desc_to_proc--;
    }
    
    /* Set Tx descriptors fields relevant for CSUM calculation */
    static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
    			       int ip_hdr_len, int l4_proto)
    {
    	u32 command;
    
    	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
    	 * G_L4_chk, L4_type required only for checksum calculation
    	 */
    	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
    	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
    	command |= MVPP2_TXD_IP_CSUM_DISABLE;
    
    	if (l3_proto == swab16(ETH_P_IP)) {
    		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
    		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
    	} else {
    		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
    	}
    
    	if (l4_proto == IPPROTO_TCP) {
    		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
    		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
    	} else if (l4_proto == IPPROTO_UDP) {
    		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
    		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
    	} else {
    		command |= MVPP2_TXD_L4_CSUM_NOT;
    	}
    
    	return command;
    }
    
    /* Get number of sent descriptors and decrement counter.
     * The number of sent descriptors is returned.
     * Per-CPU access
     *
     * Called only from mvpp2_txq_done(), called from mvpp2_tx()
     * (migration disabled) and from the TX completion tasklet (migration
     * disabled) so using smp_processor_id() is OK.
     */
    static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
    					   struct mvpp2_tx_queue *txq)
    {
    	u32 val;
    
    	/* Reading status reg resets transmitted descriptor counter */
    	val = mvpp2_percpu_read_relaxed(port->priv, smp_processor_id(),
    					MVPP2_TXQ_SENT_REG(txq->id));
    
    	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
    		MVPP2_TRANSMITTED_COUNT_OFFSET;
    }
    
    /* Called through on_each_cpu(), so runs on all CPUs, with migration
     * disabled, therefore using smp_processor_id() is OK.
     */
    static void mvpp2_txq_sent_counter_clear(void *arg)
    {
    	struct mvpp2_port *port = arg;
    	int queue;
    
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		int id = port->txqs[queue]->id;
    
    		mvpp2_percpu_read(port->priv, smp_processor_id(),
    				  MVPP2_TXQ_SENT_REG(id));
    	}
    }
    
    /* Set max sizes for Tx queues */
    static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
    {
    	u32	val, size, mtu;
    	int	txq, tx_port_num;
    
    	mtu = port->pkt_size * 8;
    	if (mtu > MVPP2_TXP_MTU_MAX)
    		mtu = MVPP2_TXP_MTU_MAX;
    
    	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
    	mtu = 3 * mtu;
    
    	/* Indirect access to registers */
    	tx_port_num = mvpp2_egress_port(port);
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
    
    	/* Set MTU */
    	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
    	val &= ~MVPP2_TXP_MTU_MAX;
    	val |= mtu;
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
    
    	/* TXP token size and all TXQs token size must be larger that MTU */
    	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
    	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
    	if (size < mtu) {
    		size = mtu;
    		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
    		val |= size;
    		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
    	}
    
    	for (txq = 0; txq < port->ntxqs; txq++) {
    		val = mvpp2_read(port->priv,
    				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
    		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
    
    		if (size < mtu) {
    			size = mtu;
    			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
    			val |= size;
    			mvpp2_write(port->priv,
    				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
    				    val);
    		}
    	}
    }
    
    /* Set the number of packets that will be received before Rx interrupt
     * will be generated by HW.
     */
    static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
    				   struct mvpp2_rx_queue *rxq)
    {
    	int cpu = get_cpu();
    
    	if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
    		rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
    
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
    			   rxq->pkts_coal);
    
    	put_cpu();
    }
    
    /* For some reason in the LSP this is done on each CPU. Why ? */
    static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
    				   struct mvpp2_tx_queue *txq)
    {
    	int cpu = get_cpu();
    	u32 val;
    
    	if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
    		txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;
    
    	val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_THRESH_REG, val);
    
    	put_cpu();
    }
    
    static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
    {
    	u64 tmp = (u64)clk_hz * usec;
    
    	do_div(tmp, USEC_PER_SEC);
    
    	return tmp > U32_MAX ? U32_MAX : tmp;
    }
    
    static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
    {
    	u64 tmp = (u64)cycles * USEC_PER_SEC;
    
    	do_div(tmp, clk_hz);
    
    	return tmp > U32_MAX ? U32_MAX : tmp;
    }
    
    /* Set the time delay in usec before Rx interrupt */
    static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
    				   struct mvpp2_rx_queue *rxq)
    {
    	unsigned long freq = port->priv->tclk;
    	u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
    
    	if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
    		rxq->time_coal =
    			mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
    
    		/* re-evaluate to get actual register value */
    		val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
    	}
    
    	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
    }
    
    static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
    {
    	unsigned long freq = port->priv->tclk;
    	u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
    
    	if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
    		port->tx_time_coal =
    			mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);
    
    		/* re-evaluate to get actual register value */
    		val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
    	}
    
    	mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
    }
    
    /* Free Tx queue skbuffs */
    static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
    				struct mvpp2_tx_queue *txq,
    				struct mvpp2_txq_pcpu *txq_pcpu, int num)
    {
    	int i;
    
    	for (i = 0; i < num; i++) {
    		struct mvpp2_txq_pcpu_buf *tx_buf =
    			txq_pcpu->buffs + txq_pcpu->txq_get_index;
    
    		if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma))
    			dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
    					 tx_buf->size, DMA_TO_DEVICE);
    		if (tx_buf->skb)
    			dev_kfree_skb_any(tx_buf->skb);
    
    		mvpp2_txq_inc_get(txq_pcpu);
    	}
    }
    
    static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
    							u32 cause)
    {
    	int queue = fls(cause) - 1;
    
    	return port->rxqs[queue];
    }
    
    static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
    							u32 cause)
    {
    	int queue = fls(cause) - 1;
    
    	return port->txqs[queue];
    }
    
    /* Handle end of transmission */
    static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
    			   struct mvpp2_txq_pcpu *txq_pcpu)
    {
    	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
    	int tx_done;
    
    	if (txq_pcpu->cpu != smp_processor_id())
    		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
    
    	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
    	if (!tx_done)
    		return;
    	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
    
    	txq_pcpu->count -= tx_done;
    
    	if (netif_tx_queue_stopped(nq))
    		if (txq_pcpu->count <= txq_pcpu->wake_threshold)
    			netif_tx_wake_queue(nq);
    }
    
    static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
    				  int cpu)
    {
    	struct mvpp2_tx_queue *txq;
    	struct mvpp2_txq_pcpu *txq_pcpu;
    	unsigned int tx_todo = 0;
    
    	while (cause) {
    		txq = mvpp2_get_tx_queue(port, cause);
    		if (!txq)
    			break;
    
    		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
    
    		if (txq_pcpu->count) {
    			mvpp2_txq_done(port, txq, txq_pcpu);
    			tx_todo += txq_pcpu->count;
    		}
    
    		cause &= ~(1 << txq->log_id);
    	}
    	return tx_todo;
    }
    
    /* Rx/Tx queue initialization/cleanup methods */
    
    /* Allocate and initialize descriptors for aggr TXQ */
    static int mvpp2_aggr_txq_init(struct platform_device *pdev,
    			       struct mvpp2_tx_queue *aggr_txq, int cpu,
    			       struct mvpp2 *priv)
    {
    	u32 txq_dma;
    
    	/* Allocate memory for TX descriptors */
    	aggr_txq->descs = dma_zalloc_coherent(&pdev->dev,
    				MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
    				&aggr_txq->descs_dma, GFP_KERNEL);
    	if (!aggr_txq->descs)
    		return -ENOMEM;
    
    	aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1;
    
    	/* Aggr TXQ no reset WA */
    	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
    						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
    
    	/* Set Tx descriptors queue starting address indirect
    	 * access
    	 */
    	if (priv->hw_version == MVPP21)
    		txq_dma = aggr_txq->descs_dma;
    	else
    		txq_dma = aggr_txq->descs_dma >>
    			MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
    
    	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
    	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu),
    		    MVPP2_AGGR_TXQ_SIZE);
    
    	return 0;
    }
    
    /* Create a specified Rx queue */
    static int mvpp2_rxq_init(struct mvpp2_port *port,
    			  struct mvpp2_rx_queue *rxq)
    
    {
    	u32 rxq_dma;
    	int cpu;
    
    	rxq->size = port->rx_ring_size;
    
    	/* Allocate memory for RX descriptors */
    	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
    					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
    					&rxq->descs_dma, GFP_KERNEL);
    	if (!rxq->descs)
    		return -ENOMEM;
    
    	rxq->last_desc = rxq->size - 1;
    
    	/* Zero occupied and non-occupied counters - direct access */
    	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
    
    	/* Set Rx descriptors queue starting address - indirect access */
    	cpu = get_cpu();
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
    	if (port->priv->hw_version == MVPP21)
    		rxq_dma = rxq->descs_dma;
    	else
    		rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
    	put_cpu();
    
    	/* Set Offset */
    	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
    
    	/* Set coalescing pkts and time */
    	mvpp2_rx_pkts_coal_set(port, rxq);
    	mvpp2_rx_time_coal_set(port, rxq);
    
    	/* Add number of descriptors ready for receiving packets */
    	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
    
    	return 0;
    }
    
    /* Push packets received by the RXQ to BM pool */
    static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
    				struct mvpp2_rx_queue *rxq)
    {
    	int rx_received, i;
    
    	rx_received = mvpp2_rxq_received(port, rxq->id);
    	if (!rx_received)
    		return;
    
    	for (i = 0; i < rx_received; i++) {
    		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
    		u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
    		int pool;
    
    		pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
    			MVPP2_RXD_BM_POOL_ID_OFFS;
    
    		mvpp2_bm_pool_put(port, pool,
    				  mvpp2_rxdesc_dma_addr_get(port, rx_desc),
    				  mvpp2_rxdesc_cookie_get(port, rx_desc));
    	}
    	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
    }
    
    /* Cleanup Rx queue */
    static void mvpp2_rxq_deinit(struct mvpp2_port *port,
    			     struct mvpp2_rx_queue *rxq)
    {
    	int cpu;
    
    	mvpp2_rxq_drop_pkts(port, rxq);
    
    	if (rxq->descs)
    		dma_free_coherent(port->dev->dev.parent,
    				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
    				  rxq->descs,
    				  rxq->descs_dma);
    
    	rxq->descs             = NULL;
    	rxq->last_desc         = 0;
    	rxq->next_desc_to_proc = 0;
    	rxq->descs_dma         = 0;
    
    	/* Clear Rx descriptors queue starting address and size;
    	 * free descriptor number
    	 */
    	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
    	cpu = get_cpu();
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
    	put_cpu();
    }
    
    /* Create and initialize a Tx queue */
    static int mvpp2_txq_init(struct mvpp2_port *port,
    			  struct mvpp2_tx_queue *txq)
    {
    	u32 val;
    	int cpu, desc, desc_per_txq, tx_port_num;
    	struct mvpp2_txq_pcpu *txq_pcpu;
    
    	txq->size = port->tx_ring_size;
    
    	/* Allocate memory for Tx descriptors */
    	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
    				txq->size * MVPP2_DESC_ALIGNED_SIZE,
    				&txq->descs_dma, GFP_KERNEL);
    	if (!txq->descs)
    		return -ENOMEM;
    
    	txq->last_desc = txq->size - 1;
    
    	/* Set Tx descriptors queue starting address - indirect access */
    	cpu = get_cpu();
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
    			   txq->descs_dma);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
    			   txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
    			   txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
    	val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
    	val &= ~MVPP2_TXQ_PENDING_MASK;
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
    
    	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
    	 * for each existing TXQ.
    	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
    	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
    	 */
    	desc_per_txq = 16;
    	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
    	       (txq->log_id * desc_per_txq);
    
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
    			   MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
    			   MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
    	put_cpu();
    
    	/* WRR / EJP configuration - indirect access */
    	tx_port_num = mvpp2_egress_port(port);
    	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
    
    	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
    	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
    	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
    	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
    	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
    
    	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
    	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
    		    val);
    
    	for_each_present_cpu(cpu) {
    		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
    		txq_pcpu->size = txq->size;
    		txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
    						sizeof(*txq_pcpu->buffs),
    						GFP_KERNEL);
    		if (!txq_pcpu->buffs)
    			return -ENOMEM;
    
    		txq_pcpu->count = 0;
    		txq_pcpu->reserved_num = 0;
    		txq_pcpu->txq_put_index = 0;
    		txq_pcpu->txq_get_index = 0;
    		txq_pcpu->tso_headers = NULL;
    
    		txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS;
    		txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2;
    
    		txq_pcpu->tso_headers =
    			dma_alloc_coherent(port->dev->dev.parent,
    					   txq_pcpu->size * TSO_HEADER_SIZE,
    					   &txq_pcpu->tso_headers_dma,
    					   GFP_KERNEL);
    		if (!txq_pcpu->tso_headers)
    			return -ENOMEM;
    	}
    
    	return 0;
    }
    
    /* Free allocated TXQ resources */
    static void mvpp2_txq_deinit(struct mvpp2_port *port,
    			     struct mvpp2_tx_queue *txq)
    {
    	struct mvpp2_txq_pcpu *txq_pcpu;
    	int cpu;
    
    	for_each_present_cpu(cpu) {
    		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
    		kfree(txq_pcpu->buffs);
    
    		if (txq_pcpu->tso_headers)
    			dma_free_coherent(port->dev->dev.parent,
    					  txq_pcpu->size * TSO_HEADER_SIZE,
    					  txq_pcpu->tso_headers,
    					  txq_pcpu->tso_headers_dma);
    
    		txq_pcpu->tso_headers = NULL;
    	}
    
    	if (txq->descs)
    		dma_free_coherent(port->dev->dev.parent,
    				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
    				  txq->descs, txq->descs_dma);
    
    	txq->descs             = NULL;
    	txq->last_desc         = 0;
    	txq->next_desc_to_proc = 0;
    	txq->descs_dma         = 0;
    
    	/* Set minimum bandwidth for disabled TXQs */
    	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
    
    	/* Set Tx descriptors queue starting address and size */
    	cpu = get_cpu();
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
    	put_cpu();
    }
    
    /* Cleanup Tx ports */
    static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
    {
    	struct mvpp2_txq_pcpu *txq_pcpu;
    	int delay, pending, cpu;
    	u32 val;
    
    	cpu = get_cpu();
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
    	val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
    	val |= MVPP2_TXQ_DRAIN_EN_MASK;
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
    
    	/* The napi queue has been stopped so wait for all packets
    	 * to be transmitted.
    	 */
    	delay = 0;
    	do {
    		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
    			netdev_warn(port->dev,
    				    "port %d: cleaning queue %d timed out\n",
    				    port->id, txq->log_id);
    			break;
    		}
    		mdelay(1);
    		delay++;
    
    		pending = mvpp2_percpu_read(port->priv, cpu,
    					    MVPP2_TXQ_PENDING_REG);
    		pending &= MVPP2_TXQ_PENDING_MASK;
    	} while (pending);
    
    	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
    	mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
    	put_cpu();
    
    	for_each_present_cpu(cpu) {
    		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
    
    		/* Release all packets */
    		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
    
    		/* Reset queue */
    		txq_pcpu->count = 0;
    		txq_pcpu->txq_put_index = 0;
    		txq_pcpu->txq_get_index = 0;
    	}
    }
    
    /* Cleanup all Tx queues */
    static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
    {
    	struct mvpp2_tx_queue *txq;
    	int queue;
    	u32 val;
    
    	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
    
    	/* Reset Tx ports and delete Tx queues */
    	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
    	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
    
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		txq = port->txqs[queue];
    		mvpp2_txq_clean(port, txq);
    		mvpp2_txq_deinit(port, txq);
    	}
    
    	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
    
    	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
    	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
    }
    
    /* Cleanup all Rx queues */
    static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
    {
    	int queue;
    
    	for (queue = 0; queue < port->nrxqs; queue++)
    		mvpp2_rxq_deinit(port, port->rxqs[queue]);
    }
    
    /* Init all Rx queues for port */
    static int mvpp2_setup_rxqs(struct mvpp2_port *port)
    {
    	int queue, err;
    
    	for (queue = 0; queue < port->nrxqs; queue++) {
    		err = mvpp2_rxq_init(port, port->rxqs[queue]);
    		if (err)
    			goto err_cleanup;
    	}
    	return 0;
    
    err_cleanup:
    	mvpp2_cleanup_rxqs(port);
    	return err;
    }
    
    /* Init all tx queues for port */
    static int mvpp2_setup_txqs(struct mvpp2_port *port)
    {
    	struct mvpp2_tx_queue *txq;
    	int queue, err;
    
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		txq = port->txqs[queue];
    		err = mvpp2_txq_init(port, txq);
    		if (err)
    			goto err_cleanup;
    	}
    
    	if (port->has_tx_irqs) {
    		mvpp2_tx_time_coal_set(port);
    		for (queue = 0; queue < port->ntxqs; queue++) {
    			txq = port->txqs[queue];
    			mvpp2_tx_pkts_coal_set(port, txq);
    		}
    	}
    
    	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
    	return 0;
    
    err_cleanup:
    	mvpp2_cleanup_txqs(port);
    	return err;
    }
    
    /* The callback for per-port interrupt */
    static irqreturn_t mvpp2_isr(int irq, void *dev_id)
    {
    	struct mvpp2_queue_vector *qv = dev_id;
    
    	mvpp2_qvec_interrupt_disable(qv);
    
    	napi_schedule(&qv->napi);
    
    	return IRQ_HANDLED;
    }
    
    /* Per-port interrupt for link status changes */
    static irqreturn_t mvpp2_link_status_isr(int irq, void *dev_id)
    {
    	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
    	struct net_device *dev = port->dev;
    	bool event = false, link = false;
    	u32 val;
    
    	mvpp22_gop_mask_irq(port);
    
    	if (port->gop_id == 0 &&
    	    port->phy_interface == PHY_INTERFACE_MODE_10GKR) {
    		val = readl(port->base + MVPP22_XLG_INT_STAT);
    		if (val & MVPP22_XLG_INT_STAT_LINK) {
    			event = true;
    			val = readl(port->base + MVPP22_XLG_STATUS);
    			if (val & MVPP22_XLG_STATUS_LINK_UP)
    				link = true;
    		}
    	} else if (phy_interface_mode_is_rgmii(port->phy_interface) ||
    		   port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
    		val = readl(port->base + MVPP22_GMAC_INT_STAT);
    		if (val & MVPP22_GMAC_INT_STAT_LINK) {
    			event = true;
    			val = readl(port->base + MVPP2_GMAC_STATUS0);
    			if (val & MVPP2_GMAC_STATUS0_LINK_UP)
    				link = true;
    		}
    	}
    
    	if (port->phylink) {
    		phylink_mac_change(port->phylink, link);
    		goto handled;
    	}
    
    	if (!netif_running(dev) || !event)
    		goto handled;
    
    	if (link) {
    		mvpp2_interrupts_enable(port);
    
    		mvpp2_egress_enable(port);
    		mvpp2_ingress_enable(port);
    		netif_carrier_on(dev);
    		netif_tx_wake_all_queues(dev);
    	} else {
    		netif_tx_stop_all_queues(dev);
    		netif_carrier_off(dev);
    		mvpp2_ingress_disable(port);
    		mvpp2_egress_disable(port);
    
    		mvpp2_interrupts_disable(port);
    	}
    
    handled:
    	mvpp22_gop_unmask_irq(port);
    	return IRQ_HANDLED;
    }
    
    static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
    {
    	ktime_t interval;
    
    	if (!port_pcpu->timer_scheduled) {
    		port_pcpu->timer_scheduled = true;
    		interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
    		hrtimer_start(&port_pcpu->tx_done_timer, interval,
    			      HRTIMER_MODE_REL_PINNED);
    	}
    }
    
    static void mvpp2_tx_proc_cb(unsigned long data)
    {
    	struct net_device *dev = (struct net_device *)data;
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
    	unsigned int tx_todo, cause;
    
    	if (!netif_running(dev))
    		return;
    	port_pcpu->timer_scheduled = false;
    
    	/* Process all the Tx queues */
    	cause = (1 << port->ntxqs) - 1;
    	tx_todo = mvpp2_tx_done(port, cause, smp_processor_id());
    
    	/* Set the timer in case not all the packets were processed */
    	if (tx_todo)
    		mvpp2_timer_set(port_pcpu);
    }
    
    static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
    {
    	struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
    							 struct mvpp2_port_pcpu,
    							 tx_done_timer);
    
    	tasklet_schedule(&port_pcpu->tx_done_tasklet);
    
    	return HRTIMER_NORESTART;
    }
    
    /* Main RX/TX processing routines */
    
    /* Display more error info */
    static void mvpp2_rx_error(struct mvpp2_port *port,
    			   struct mvpp2_rx_desc *rx_desc)
    {
    	u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
    	size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
    
    	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
    	case MVPP2_RXD_ERR_CRC:
    		netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
    			   status, sz);
    		break;
    	case MVPP2_RXD_ERR_OVERRUN:
    		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
    			   status, sz);
    		break;
    	case MVPP2_RXD_ERR_RESOURCE:
    		netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
    			   status, sz);
    		break;
    	}
    }
    
    /* Handle RX checksum offload */
    static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
    			  struct sk_buff *skb)
    {
    	if (((status & MVPP2_RXD_L3_IP4) &&
    	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
    	    (status & MVPP2_RXD_L3_IP6))
    		if (((status & MVPP2_RXD_L4_UDP) ||
    		     (status & MVPP2_RXD_L4_TCP)) &&
    		     (status & MVPP2_RXD_L4_CSUM_OK)) {
    			skb->csum = 0;
    			skb->ip_summed = CHECKSUM_UNNECESSARY;
    			return;
    		}
    
    	skb->ip_summed = CHECKSUM_NONE;
    }
    
    /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
    static int mvpp2_rx_refill(struct mvpp2_port *port,
    			   struct mvpp2_bm_pool *bm_pool, int pool)
    {
    	dma_addr_t dma_addr;
    	phys_addr_t phys_addr;
    	void *buf;
    
    	/* No recycle or too many buffers are in use, so allocate a new skb */
    	buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
    			      GFP_ATOMIC);
    	if (!buf)
    		return -ENOMEM;
    
    	mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
    
    	return 0;
    }
    
    /* Handle tx checksum */
    static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
    {
    	if (skb->ip_summed == CHECKSUM_PARTIAL) {
    		int ip_hdr_len = 0;
    		u8 l4_proto;
    
    		if (skb->protocol == htons(ETH_P_IP)) {
    			struct iphdr *ip4h = ip_hdr(skb);
    
    			/* Calculate IPv4 checksum and L4 checksum */
    			ip_hdr_len = ip4h->ihl;
    			l4_proto = ip4h->protocol;
    		} else if (skb->protocol == htons(ETH_P_IPV6)) {
    			struct ipv6hdr *ip6h = ipv6_hdr(skb);
    
    			/* Read l4_protocol from one of IPv6 extra headers */
    			if (skb_network_header_len(skb) > 0)
    				ip_hdr_len = (skb_network_header_len(skb) >> 2);
    			l4_proto = ip6h->nexthdr;
    		} else {
    			return MVPP2_TXD_L4_CSUM_NOT;
    		}
    
    		return mvpp2_txq_desc_csum(skb_network_offset(skb),
    				skb->protocol, ip_hdr_len, l4_proto);
    	}
    
    	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
    }
    
    /* Main rx processing */
    static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
    		    int rx_todo, struct mvpp2_rx_queue *rxq)
    {
    	struct net_device *dev = port->dev;
    	int rx_received;
    	int rx_done = 0;
    	u32 rcvd_pkts = 0;
    	u32 rcvd_bytes = 0;
    
    	/* Get number of received packets and clamp the to-do */
    	rx_received = mvpp2_rxq_received(port, rxq->id);
    	if (rx_todo > rx_received)
    		rx_todo = rx_received;
    
    	while (rx_done < rx_todo) {
    		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
    		struct mvpp2_bm_pool *bm_pool;
    		struct sk_buff *skb;
    		unsigned int frag_size;
    		dma_addr_t dma_addr;
    		phys_addr_t phys_addr;
    		u32 rx_status;
    		int pool, rx_bytes, err;
    		void *data;
    
    		rx_done++;
    		rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
    		rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
    		rx_bytes -= MVPP2_MH_SIZE;
    		dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
    		phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
    		data = (void *)phys_to_virt(phys_addr);
    
    		pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
    			MVPP2_RXD_BM_POOL_ID_OFFS;
    		bm_pool = &port->priv->bm_pools[pool];
    
    		/* In case of an error, release the requested buffer pointer
    		 * to the Buffer Manager. This request process is controlled
    		 * by the hardware, and the information about the buffer is
    		 * comprised by the RX descriptor.
    		 */
    		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
    err_drop_frame:
    			dev->stats.rx_errors++;
    			mvpp2_rx_error(port, rx_desc);
    			/* Return the buffer to the pool */
    			mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
    			continue;
    		}
    
    		if (bm_pool->frag_size > PAGE_SIZE)
    			frag_size = 0;
    		else
    			frag_size = bm_pool->frag_size;
    
    		skb = build_skb(data, frag_size);
    		if (!skb) {
    			netdev_warn(port->dev, "skb build failed\n");
    			goto err_drop_frame;
    		}
    
    		err = mvpp2_rx_refill(port, bm_pool, pool);
    		if (err) {
    			netdev_err(port->dev, "failed to refill BM pools\n");
    			goto err_drop_frame;
    		}
    
    		dma_unmap_single(dev->dev.parent, dma_addr,
    				 bm_pool->buf_size, DMA_FROM_DEVICE);
    
    		rcvd_pkts++;
    		rcvd_bytes += rx_bytes;
    
    		skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
    		skb_put(skb, rx_bytes);
    		skb->protocol = eth_type_trans(skb, dev);
    		mvpp2_rx_csum(port, rx_status, skb);
    
    		napi_gro_receive(napi, skb);
    	}
    
    	if (rcvd_pkts) {
    		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
    
    		u64_stats_update_begin(&stats->syncp);
    		stats->rx_packets += rcvd_pkts;
    		stats->rx_bytes   += rcvd_bytes;
    		u64_stats_update_end(&stats->syncp);
    	}
    
    	/* Update Rx queue management counters */
    	wmb();
    	mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
    
    	return rx_todo;
    }
    
    static inline void
    tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
    		  struct mvpp2_tx_desc *desc)
    {
    	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
    
    	dma_addr_t buf_dma_addr =
    		mvpp2_txdesc_dma_addr_get(port, desc);
    	size_t buf_sz =
    		mvpp2_txdesc_size_get(port, desc);
    	if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
    		dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
    				 buf_sz, DMA_TO_DEVICE);
    	mvpp2_txq_desc_put(txq);
    }
    
    /* Handle tx fragmentation processing */
    static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
    				 struct mvpp2_tx_queue *aggr_txq,
    				 struct mvpp2_tx_queue *txq)
    {
    	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
    	struct mvpp2_tx_desc *tx_desc;
    	int i;
    	dma_addr_t buf_dma_addr;
    
    	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
    		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
    		void *addr = page_address(frag->page.p) + frag->page_offset;
    
    		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
    		mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
    		mvpp2_txdesc_size_set(port, tx_desc, frag->size);
    
    		buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
    					       frag->size,
    					       DMA_TO_DEVICE);
    		if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
    			mvpp2_txq_desc_put(txq);
    			goto cleanup;
    		}
    
    		mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
    
    		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
    			/* Last descriptor */
    			mvpp2_txdesc_cmd_set(port, tx_desc,
    					     MVPP2_TXD_L_DESC);
    			mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
    		} else {
    			/* Descriptor in the middle: Not First, Not Last */
    			mvpp2_txdesc_cmd_set(port, tx_desc, 0);
    			mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
    		}
    	}
    
    	return 0;
    cleanup:
    	/* Release all descriptors that were used to map fragments of
    	 * this packet, as well as the corresponding DMA mappings
    	 */
    	for (i = i - 1; i >= 0; i--) {
    		tx_desc = txq->descs + i;
    		tx_desc_unmap_put(port, txq, tx_desc);
    	}
    
    	return -ENOMEM;
    }
    
    static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
    				     struct net_device *dev,
    				     struct mvpp2_tx_queue *txq,
    				     struct mvpp2_tx_queue *aggr_txq,
    				     struct mvpp2_txq_pcpu *txq_pcpu,
    				     int hdr_sz)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
    	dma_addr_t addr;
    
    	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
    	mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);
    
    	addr = txq_pcpu->tso_headers_dma +
    	       txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
    	mvpp2_txdesc_dma_addr_set(port, tx_desc, addr);
    
    	mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
    					    MVPP2_TXD_F_DESC |
    					    MVPP2_TXD_PADDING_DISABLE);
    	mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
    }
    
    static inline int mvpp2_tso_put_data(struct sk_buff *skb,
    				     struct net_device *dev, struct tso_t *tso,
    				     struct mvpp2_tx_queue *txq,
    				     struct mvpp2_tx_queue *aggr_txq,
    				     struct mvpp2_txq_pcpu *txq_pcpu,
    				     int sz, bool left, bool last)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
    	dma_addr_t buf_dma_addr;
    
    	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
    	mvpp2_txdesc_size_set(port, tx_desc, sz);
    
    	buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
    				      DMA_TO_DEVICE);
    	if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
    		mvpp2_txq_desc_put(txq);
    		return -ENOMEM;
    	}
    
    	mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
    
    	if (!left) {
    		mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
    		if (last) {
    			mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
    			return 0;
    		}
    	} else {
    		mvpp2_txdesc_cmd_set(port, tx_desc, 0);
    	}
    
    	mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
    	return 0;
    }
    
    static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
    			struct mvpp2_tx_queue *txq,
    			struct mvpp2_tx_queue *aggr_txq,
    			struct mvpp2_txq_pcpu *txq_pcpu)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct tso_t tso;
    	int hdr_sz = skb_transport_offset(skb) + tcp_hdrlen(skb);
    	int i, len, descs = 0;
    
    	/* Check number of available descriptors */
    	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq,
    				      tso_count_descs(skb)) ||
    	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq, txq_pcpu,
    					     tso_count_descs(skb)))
    		return 0;
    
    	tso_start(skb, &tso);
    	len = skb->len - hdr_sz;
    	while (len > 0) {
    		int left = min_t(int, skb_shinfo(skb)->gso_size, len);
    		char *hdr = txq_pcpu->tso_headers +
    			    txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
    
    		len -= left;
    		descs++;
    
    		tso_build_hdr(skb, hdr, &tso, left, len == 0);
    		mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);
    
    		while (left > 0) {
    			int sz = min_t(int, tso.size, left);
    			left -= sz;
    			descs++;
    
    			if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
    					       txq_pcpu, sz, left, len == 0))
    				goto release;
    			tso_build_data(skb, &tso, sz);
    		}
    	}
    
    	return descs;
    
    release:
    	for (i = descs - 1; i >= 0; i--) {
    		struct mvpp2_tx_desc *tx_desc = txq->descs + i;
    		tx_desc_unmap_put(port, txq, tx_desc);
    	}
    	return 0;
    }
    
    /* Main tx processing */
    static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct mvpp2_tx_queue *txq, *aggr_txq;
    	struct mvpp2_txq_pcpu *txq_pcpu;
    	struct mvpp2_tx_desc *tx_desc;
    	dma_addr_t buf_dma_addr;
    	int frags = 0;
    	u16 txq_id;
    	u32 tx_cmd;
    
    	txq_id = skb_get_queue_mapping(skb);
    	txq = port->txqs[txq_id];
    	txq_pcpu = this_cpu_ptr(txq->pcpu);
    	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
    
    	if (skb_is_gso(skb)) {
    		frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
    		goto out;
    	}
    	frags = skb_shinfo(skb)->nr_frags + 1;
    
    	/* Check number of available descriptors */
    	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
    	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
    					     txq_pcpu, frags)) {
    		frags = 0;
    		goto out;
    	}
    
    	/* Get a descriptor for the first part of the packet */
    	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
    	mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
    	mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
    
    	buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
    				      skb_headlen(skb), DMA_TO_DEVICE);
    	if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
    		mvpp2_txq_desc_put(txq);
    		frags = 0;
    		goto out;
    	}
    
    	mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
    
    	tx_cmd = mvpp2_skb_tx_csum(port, skb);
    
    	if (frags == 1) {
    		/* First and Last descriptor */
    		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
    		mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
    		mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
    	} else {
    		/* First but not Last */
    		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
    		mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
    		mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
    
    		/* Continue with other skb fragments */
    		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
    			tx_desc_unmap_put(port, txq, tx_desc);
    			frags = 0;
    		}
    	}
    
    out:
    	if (frags > 0) {
    		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
    		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
    
    		txq_pcpu->reserved_num -= frags;
    		txq_pcpu->count += frags;
    		aggr_txq->count += frags;
    
    		/* Enable transmit */
    		wmb();
    		mvpp2_aggr_txq_pend_desc_add(port, frags);
    
    		if (txq_pcpu->count >= txq_pcpu->stop_threshold)
    			netif_tx_stop_queue(nq);
    
    		u64_stats_update_begin(&stats->syncp);
    		stats->tx_packets++;
    		stats->tx_bytes += skb->len;
    		u64_stats_update_end(&stats->syncp);
    	} else {
    		dev->stats.tx_dropped++;
    		dev_kfree_skb_any(skb);
    	}
    
    	/* Finalize TX processing */
    	if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
    		mvpp2_txq_done(port, txq, txq_pcpu);
    
    	/* Set the timer in case not all frags were processed */
    	if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
    	    txq_pcpu->count > 0) {
    		struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
    
    		mvpp2_timer_set(port_pcpu);
    	}
    
    	return NETDEV_TX_OK;
    }
    
    static inline void mvpp2_cause_error(struct net_device *dev, int cause)
    {
    	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
    		netdev_err(dev, "FCS error\n");
    	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
    		netdev_err(dev, "rx fifo overrun error\n");
    	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
    		netdev_err(dev, "tx fifo underrun error\n");
    }
    
    static int mvpp2_poll(struct napi_struct *napi, int budget)
    {
    	u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
    	int rx_done = 0;
    	struct mvpp2_port *port = netdev_priv(napi->dev);
    	struct mvpp2_queue_vector *qv;
    	int cpu = smp_processor_id();
    
    	qv = container_of(napi, struct mvpp2_queue_vector, napi);
    
    	/* Rx/Tx cause register
    	 *
    	 * Bits 0-15: each bit indicates received packets on the Rx queue
    	 * (bit 0 is for Rx queue 0).
    	 *
    	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
    	 * (bit 16 is for Tx queue 0).
    	 *
    	 * Each CPU has its own Rx/Tx cause register
    	 */
    	cause_rx_tx = mvpp2_percpu_read_relaxed(port->priv, qv->sw_thread_id,
    						MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
    
    	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
    	if (cause_misc) {
    		mvpp2_cause_error(port->dev, cause_misc);
    
    		/* Clear the cause register */
    		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
    		mvpp2_percpu_write(port->priv, cpu,
    				   MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
    				   cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
    	}
    
    	cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
    	if (cause_tx) {
    		cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
    		mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
    	}
    
    	/* Process RX packets */
    	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
    	cause_rx <<= qv->first_rxq;
    	cause_rx |= qv->pending_cause_rx;
    	while (cause_rx && budget > 0) {
    		int count;
    		struct mvpp2_rx_queue *rxq;
    
    		rxq = mvpp2_get_rx_queue(port, cause_rx);
    		if (!rxq)
    			break;
    
    		count = mvpp2_rx(port, napi, budget, rxq);
    		rx_done += count;
    		budget -= count;
    		if (budget > 0) {
    			/* Clear the bit associated to this Rx queue
    			 * so that next iteration will continue from
    			 * the next Rx queue.
    			 */
    			cause_rx &= ~(1 << rxq->logic_rxq);
    		}
    	}
    
    	if (budget > 0) {
    		cause_rx = 0;
    		napi_complete_done(napi, rx_done);
    
    		mvpp2_qvec_interrupt_enable(qv);
    	}
    	qv->pending_cause_rx = cause_rx;
    	return rx_done;
    }
    
    static void mvpp22_mode_reconfigure(struct mvpp2_port *port)
    {
    	u32 ctrl3;
    
    	/* comphy reconfiguration */
    	mvpp22_comphy_init(port);
    
    	/* gop reconfiguration */
    	mvpp22_gop_init(port);
    
    	/* Only GOP port 0 has an XLG MAC */
    	if (port->gop_id == 0) {
    		ctrl3 = readl(port->base + MVPP22_XLG_CTRL3_REG);
    		ctrl3 &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
    
    		if (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
    		    port->phy_interface == PHY_INTERFACE_MODE_10GKR)
    			ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
    		else
    			ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
    
    		writel(ctrl3, port->base + MVPP22_XLG_CTRL3_REG);
    	}
    
    	if (port->gop_id == 0 &&
    	    (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
    	     port->phy_interface == PHY_INTERFACE_MODE_10GKR))
    		mvpp2_xlg_max_rx_size_set(port);
    	else
    		mvpp2_gmac_max_rx_size_set(port);
    }
    
    /* Set hw internals when starting port */
    static void mvpp2_start_dev(struct mvpp2_port *port)
    {
    	int i;
    
    	mvpp2_txp_max_tx_size_set(port);
    
    	for (i = 0; i < port->nqvecs; i++)
    		napi_enable(&port->qvecs[i].napi);
    
    	/* Enable interrupts on all CPUs */
    	mvpp2_interrupts_enable(port);
    
    	if (port->priv->hw_version == MVPP22)
    		mvpp22_mode_reconfigure(port);
    
    	if (port->phylink) {
    		phylink_start(port->phylink);
    	} else {
    		/* Phylink isn't used as of now for ACPI, so the MAC has to be
    		 * configured manually when the interface is started. This will
    		 * be removed as soon as the phylink ACPI support lands in.
    		 */
    		struct phylink_link_state state = {
    			.interface = port->phy_interface,
    			.link = 1,
    		};
    		mvpp2_mac_config(port->dev, MLO_AN_INBAND, &state);
    	}
    
    	netif_tx_start_all_queues(port->dev);
    }
    
    /* Set hw internals when stopping port */
    static void mvpp2_stop_dev(struct mvpp2_port *port)
    {
    	int i;
    
    	/* Disable interrupts on all CPUs */
    	mvpp2_interrupts_disable(port);
    
    	for (i = 0; i < port->nqvecs; i++)
    		napi_disable(&port->qvecs[i].napi);
    
    	if (port->phylink)
    		phylink_stop(port->phylink);
    	phy_power_off(port->comphy);
    }
    
    static int mvpp2_check_ringparam_valid(struct net_device *dev,
    				       struct ethtool_ringparam *ring)
    {
    	u16 new_rx_pending = ring->rx_pending;
    	u16 new_tx_pending = ring->tx_pending;
    
    	if (ring->rx_pending == 0 || ring->tx_pending == 0)
    		return -EINVAL;
    
    	if (ring->rx_pending > MVPP2_MAX_RXD_MAX)
    		new_rx_pending = MVPP2_MAX_RXD_MAX;
    	else if (!IS_ALIGNED(ring->rx_pending, 16))
    		new_rx_pending = ALIGN(ring->rx_pending, 16);
    
    	if (ring->tx_pending > MVPP2_MAX_TXD_MAX)
    		new_tx_pending = MVPP2_MAX_TXD_MAX;
    	else if (!IS_ALIGNED(ring->tx_pending, 32))
    		new_tx_pending = ALIGN(ring->tx_pending, 32);
    
    	/* The Tx ring size cannot be smaller than the minimum number of
    	 * descriptors needed for TSO.
    	 */
    	if (new_tx_pending < MVPP2_MAX_SKB_DESCS)
    		new_tx_pending = ALIGN(MVPP2_MAX_SKB_DESCS, 32);
    
    	if (ring->rx_pending != new_rx_pending) {
    		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
    			    ring->rx_pending, new_rx_pending);
    		ring->rx_pending = new_rx_pending;
    	}
    
    	if (ring->tx_pending != new_tx_pending) {
    		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
    			    ring->tx_pending, new_tx_pending);
    		ring->tx_pending = new_tx_pending;
    	}
    
    	return 0;
    }
    
    static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
    {
    	u32 mac_addr_l, mac_addr_m, mac_addr_h;
    
    	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
    	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
    	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
    	addr[0] = (mac_addr_h >> 24) & 0xFF;
    	addr[1] = (mac_addr_h >> 16) & 0xFF;
    	addr[2] = (mac_addr_h >> 8) & 0xFF;
    	addr[3] = mac_addr_h & 0xFF;
    	addr[4] = mac_addr_m & 0xFF;
    	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
    }
    
    static int mvpp2_irqs_init(struct mvpp2_port *port)
    {
    	int err, i;
    
    	for (i = 0; i < port->nqvecs; i++) {
    		struct mvpp2_queue_vector *qv = port->qvecs + i;
    
    		if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
    			irq_set_status_flags(qv->irq, IRQ_NO_BALANCING);
    
    		err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
    		if (err)
    			goto err;
    
    		if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
    			irq_set_affinity_hint(qv->irq,
    					      cpumask_of(qv->sw_thread_id));
    	}
    
    	return 0;
    err:
    	for (i = 0; i < port->nqvecs; i++) {
    		struct mvpp2_queue_vector *qv = port->qvecs + i;
    
    		irq_set_affinity_hint(qv->irq, NULL);
    		free_irq(qv->irq, qv);
    	}
    
    	return err;
    }
    
    static void mvpp2_irqs_deinit(struct mvpp2_port *port)
    {
    	int i;
    
    	for (i = 0; i < port->nqvecs; i++) {
    		struct mvpp2_queue_vector *qv = port->qvecs + i;
    
    		irq_set_affinity_hint(qv->irq, NULL);
    		irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING);
    		free_irq(qv->irq, qv);
    	}
    }
    
    static void mvpp22_init_rss(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	int i;
    
    	/* Set the table width: replace the whole classifier Rx queue number
    	 * with the ones configured in RSS table entries.
    	 */
    	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(0));
    	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
    
    	/* Loop through the classifier Rx Queues and map them to a RSS table.
    	 * Map them all to the first table (0) by default.
    	 */
    	for (i = 0; i < MVPP2_CLS_RX_QUEUES; i++) {
    		mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(i));
    		mvpp2_write(priv, MVPP22_RSS_TABLE,
    			    MVPP22_RSS_TABLE_POINTER(0));
    	}
    
    	/* Configure the first table to evenly distribute the packets across
    	 * real Rx Queues. The table entries map a hash to an port Rx Queue.
    	 */
    	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
    		u32 sel = MVPP22_RSS_INDEX_TABLE(0) |
    			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
    		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
    
    		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY, i % port->nrxqs);
    	}
    
    }
    
    static int mvpp2_open(struct net_device *dev)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct mvpp2 *priv = port->priv;
    	unsigned char mac_bcast[ETH_ALEN] = {
    			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
    	bool valid = false;
    	int err;
    
    	err = mvpp2_prs_mac_da_accept(port, mac_bcast, true);
    	if (err) {
    		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
    		return err;
    	}
    	err = mvpp2_prs_mac_da_accept(port, dev->dev_addr, true);
    	if (err) {
    		netdev_err(dev, "mvpp2_prs_mac_da_accept own addr failed\n");
    		return err;
    	}
    	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
    	if (err) {
    		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
    		return err;
    	}
    	err = mvpp2_prs_def_flow(port);
    	if (err) {
    		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
    		return err;
    	}
    
    	/* Allocate the Rx/Tx queues */
    	err = mvpp2_setup_rxqs(port);
    	if (err) {
    		netdev_err(port->dev, "cannot allocate Rx queues\n");
    		return err;
    	}
    
    	err = mvpp2_setup_txqs(port);
    	if (err) {
    		netdev_err(port->dev, "cannot allocate Tx queues\n");
    		goto err_cleanup_rxqs;
    	}
    
    	err = mvpp2_irqs_init(port);
    	if (err) {
    		netdev_err(port->dev, "cannot init IRQs\n");
    		goto err_cleanup_txqs;
    	}
    
    	/* Phylink isn't supported yet in ACPI mode */
    	if (port->of_node) {
    		err = phylink_of_phy_connect(port->phylink, port->of_node, 0);
    		if (err) {
    			netdev_err(port->dev, "could not attach PHY (%d)\n",
    				   err);
    			goto err_free_irq;
    		}
    
    		valid = true;
    	}
    
    	if (priv->hw_version == MVPP22 && port->link_irq && !port->phylink) {
    		err = request_irq(port->link_irq, mvpp2_link_status_isr, 0,
    				  dev->name, port);
    		if (err) {
    			netdev_err(port->dev, "cannot request link IRQ %d\n",
    				   port->link_irq);
    			goto err_free_irq;
    		}
    
    		mvpp22_gop_setup_irq(port);
    
    		/* In default link is down */
    		netif_carrier_off(port->dev);
    
    		valid = true;
    	} else {
    		port->link_irq = 0;
    	}
    
    	if (!valid) {
    		netdev_err(port->dev,
    			   "invalid configuration: no dt or link IRQ");
    		goto err_free_irq;
    	}
    
    	/* Unmask interrupts on all CPUs */
    	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
    	mvpp2_shared_interrupt_mask_unmask(port, false);
    
    	mvpp2_start_dev(port);
    
    	if (priv->hw_version == MVPP22)
    		mvpp22_init_rss(port);
    
    	/* Start hardware statistics gathering */
    	queue_delayed_work(priv->stats_queue, &port->stats_work,
    			   MVPP2_MIB_COUNTERS_STATS_DELAY);
    
    	return 0;
    
    err_free_irq:
    	mvpp2_irqs_deinit(port);
    err_cleanup_txqs:
    	mvpp2_cleanup_txqs(port);
    err_cleanup_rxqs:
    	mvpp2_cleanup_rxqs(port);
    	return err;
    }
    
    static int mvpp2_stop(struct net_device *dev)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	struct mvpp2_port_pcpu *port_pcpu;
    	int cpu;
    
    	mvpp2_stop_dev(port);
    
    	/* Mask interrupts on all CPUs */
    	on_each_cpu(mvpp2_interrupts_mask, port, 1);
    	mvpp2_shared_interrupt_mask_unmask(port, true);
    
    	if (port->phylink)
    		phylink_disconnect_phy(port->phylink);
    	if (port->link_irq)
    		free_irq(port->link_irq, port);
    
    	mvpp2_irqs_deinit(port);
    	if (!port->has_tx_irqs) {
    		for_each_present_cpu(cpu) {
    			port_pcpu = per_cpu_ptr(port->pcpu, cpu);
    
    			hrtimer_cancel(&port_pcpu->tx_done_timer);
    			port_pcpu->timer_scheduled = false;
    			tasklet_kill(&port_pcpu->tx_done_tasklet);
    		}
    	}
    	mvpp2_cleanup_rxqs(port);
    	mvpp2_cleanup_txqs(port);
    
    	cancel_delayed_work_sync(&port->stats_work);
    
    	return 0;
    }
    
    static int mvpp2_prs_mac_da_accept_list(struct mvpp2_port *port,
    					struct netdev_hw_addr_list *list)
    {
    	struct netdev_hw_addr *ha;
    	int ret;
    
    	netdev_hw_addr_list_for_each(ha, list) {
    		ret = mvpp2_prs_mac_da_accept(port, ha->addr, true);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static void mvpp2_set_rx_promisc(struct mvpp2_port *port, bool enable)
    {
    	if (!enable && (port->dev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
    		mvpp2_prs_vid_enable_filtering(port);
    	else
    		mvpp2_prs_vid_disable_filtering(port);
    
    	mvpp2_prs_mac_promisc_set(port->priv, port->id,
    				  MVPP2_PRS_L2_UNI_CAST, enable);
    
    	mvpp2_prs_mac_promisc_set(port->priv, port->id,
    				  MVPP2_PRS_L2_MULTI_CAST, enable);
    }
    
    static void mvpp2_set_rx_mode(struct net_device *dev)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	/* Clear the whole UC and MC list */
    	mvpp2_prs_mac_del_all(port);
    
    	if (dev->flags & IFF_PROMISC) {
    		mvpp2_set_rx_promisc(port, true);
    		return;
    	}
    
    	mvpp2_set_rx_promisc(port, false);
    
    	if (netdev_uc_count(dev) > MVPP2_PRS_MAC_UC_FILT_MAX ||
    	    mvpp2_prs_mac_da_accept_list(port, &dev->uc))
    		mvpp2_prs_mac_promisc_set(port->priv, port->id,
    					  MVPP2_PRS_L2_UNI_CAST, true);
    
    	if (dev->flags & IFF_ALLMULTI) {
    		mvpp2_prs_mac_promisc_set(port->priv, port->id,
    					  MVPP2_PRS_L2_MULTI_CAST, true);
    		return;
    	}
    
    	if (netdev_mc_count(dev) > MVPP2_PRS_MAC_MC_FILT_MAX ||
    	    mvpp2_prs_mac_da_accept_list(port, &dev->mc))
    		mvpp2_prs_mac_promisc_set(port->priv, port->id,
    					  MVPP2_PRS_L2_MULTI_CAST, true);
    }
    
    static int mvpp2_set_mac_address(struct net_device *dev, void *p)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	const struct sockaddr *addr = p;
    	int err;
    
    	if (!is_valid_ether_addr(addr->sa_data)) {
    		err = -EADDRNOTAVAIL;
    		goto log_error;
    	}
    
    	if (!netif_running(dev)) {
    		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
    		if (!err)
    			return 0;
    		/* Reconfigure parser to accept the original MAC address */
    		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
    		if (err)
    			goto log_error;
    	}
    
    	mvpp2_stop_dev(port);
    
    	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
    	if (!err)
    		goto out_start;
    
    	/* Reconfigure parser accept the original MAC address */
    	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
    	if (err)
    		goto log_error;
    out_start:
    	mvpp2_start_dev(port);
    	mvpp2_egress_enable(port);
    	mvpp2_ingress_enable(port);
    	return 0;
    log_error:
    	netdev_err(dev, "failed to change MAC address\n");
    	return err;
    }
    
    static int mvpp2_change_mtu(struct net_device *dev, int mtu)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	int err;
    
    	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
    		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
    			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
    		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
    	}
    
    	if (!netif_running(dev)) {
    		err = mvpp2_bm_update_mtu(dev, mtu);
    		if (!err) {
    			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
    			return 0;
    		}
    
    		/* Reconfigure BM to the original MTU */
    		err = mvpp2_bm_update_mtu(dev, dev->mtu);
    		if (err)
    			goto log_error;
    	}
    
    	mvpp2_stop_dev(port);
    
    	err = mvpp2_bm_update_mtu(dev, mtu);
    	if (!err) {
    		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
    		goto out_start;
    	}
    
    	/* Reconfigure BM to the original MTU */
    	err = mvpp2_bm_update_mtu(dev, dev->mtu);
    	if (err)
    		goto log_error;
    
    out_start:
    	mvpp2_start_dev(port);
    	mvpp2_egress_enable(port);
    	mvpp2_ingress_enable(port);
    
    	return 0;
    log_error:
    	netdev_err(dev, "failed to change MTU\n");
    	return err;
    }
    
    static void
    mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	unsigned int start;
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		struct mvpp2_pcpu_stats *cpu_stats;
    		u64 rx_packets;
    		u64 rx_bytes;
    		u64 tx_packets;
    		u64 tx_bytes;
    
    		cpu_stats = per_cpu_ptr(port->stats, cpu);
    		do {
    			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
    			rx_packets = cpu_stats->rx_packets;
    			rx_bytes   = cpu_stats->rx_bytes;
    			tx_packets = cpu_stats->tx_packets;
    			tx_bytes   = cpu_stats->tx_bytes;
    		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
    
    		stats->rx_packets += rx_packets;
    		stats->rx_bytes   += rx_bytes;
    		stats->tx_packets += tx_packets;
    		stats->tx_bytes   += tx_bytes;
    	}
    
    	stats->rx_errors	= dev->stats.rx_errors;
    	stats->rx_dropped	= dev->stats.rx_dropped;
    	stats->tx_dropped	= dev->stats.tx_dropped;
    }
    
    static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (!port->phylink)
    		return -ENOTSUPP;
    
    	return phylink_mii_ioctl(port->phylink, ifr, cmd);
    }
    
    static int mvpp2_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	int ret;
    
    	ret = mvpp2_prs_vid_entry_add(port, vid);
    	if (ret)
    		netdev_err(dev, "rx-vlan-filter offloading cannot accept more than %d VIDs per port\n",
    			   MVPP2_PRS_VLAN_FILT_MAX - 1);
    	return ret;
    }
    
    static int mvpp2_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	mvpp2_prs_vid_entry_remove(port, vid);
    	return 0;
    }
    
    static int mvpp2_set_features(struct net_device *dev,
    			      netdev_features_t features)
    {
    	netdev_features_t changed = dev->features ^ features;
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
    		if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
    			mvpp2_prs_vid_enable_filtering(port);
    		} else {
    			/* Invalidate all registered VID filters for this
    			 * port
    			 */
    			mvpp2_prs_vid_remove_all(port);
    
    			mvpp2_prs_vid_disable_filtering(port);
    		}
    	}
    
    	return 0;
    }
    
    /* Ethtool methods */
    
    static int mvpp2_ethtool_nway_reset(struct net_device *dev)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (!port->phylink)
    		return -ENOTSUPP;
    
    	return phylink_ethtool_nway_reset(port->phylink);
    }
    
    /* Set interrupt coalescing for ethtools */
    static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
    				      struct ethtool_coalesce *c)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	int queue;
    
    	for (queue = 0; queue < port->nrxqs; queue++) {
    		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
    
    		rxq->time_coal = c->rx_coalesce_usecs;
    		rxq->pkts_coal = c->rx_max_coalesced_frames;
    		mvpp2_rx_pkts_coal_set(port, rxq);
    		mvpp2_rx_time_coal_set(port, rxq);
    	}
    
    	if (port->has_tx_irqs) {
    		port->tx_time_coal = c->tx_coalesce_usecs;
    		mvpp2_tx_time_coal_set(port);
    	}
    
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		struct mvpp2_tx_queue *txq = port->txqs[queue];
    
    		txq->done_pkts_coal = c->tx_max_coalesced_frames;
    
    		if (port->has_tx_irqs)
    			mvpp2_tx_pkts_coal_set(port, txq);
    	}
    
    	return 0;
    }
    
    /* get coalescing for ethtools */
    static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
    				      struct ethtool_coalesce *c)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	c->rx_coalesce_usecs       = port->rxqs[0]->time_coal;
    	c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
    	c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
    	c->tx_coalesce_usecs       = port->tx_time_coal;
    	return 0;
    }
    
    static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
    				      struct ethtool_drvinfo *drvinfo)
    {
    	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
    		sizeof(drvinfo->driver));
    	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
    		sizeof(drvinfo->version));
    	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
    		sizeof(drvinfo->bus_info));
    }
    
    static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
    					struct ethtool_ringparam *ring)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	ring->rx_max_pending = MVPP2_MAX_RXD_MAX;
    	ring->tx_max_pending = MVPP2_MAX_TXD_MAX;
    	ring->rx_pending = port->rx_ring_size;
    	ring->tx_pending = port->tx_ring_size;
    }
    
    static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
    				       struct ethtool_ringparam *ring)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	u16 prev_rx_ring_size = port->rx_ring_size;
    	u16 prev_tx_ring_size = port->tx_ring_size;
    	int err;
    
    	err = mvpp2_check_ringparam_valid(dev, ring);
    	if (err)
    		return err;
    
    	if (!netif_running(dev)) {
    		port->rx_ring_size = ring->rx_pending;
    		port->tx_ring_size = ring->tx_pending;
    		return 0;
    	}
    
    	/* The interface is running, so we have to force a
    	 * reallocation of the queues
    	 */
    	mvpp2_stop_dev(port);
    	mvpp2_cleanup_rxqs(port);
    	mvpp2_cleanup_txqs(port);
    
    	port->rx_ring_size = ring->rx_pending;
    	port->tx_ring_size = ring->tx_pending;
    
    	err = mvpp2_setup_rxqs(port);
    	if (err) {
    		/* Reallocate Rx queues with the original ring size */
    		port->rx_ring_size = prev_rx_ring_size;
    		ring->rx_pending = prev_rx_ring_size;
    		err = mvpp2_setup_rxqs(port);
    		if (err)
    			goto err_out;
    	}
    	err = mvpp2_setup_txqs(port);
    	if (err) {
    		/* Reallocate Tx queues with the original ring size */
    		port->tx_ring_size = prev_tx_ring_size;
    		ring->tx_pending = prev_tx_ring_size;
    		err = mvpp2_setup_txqs(port);
    		if (err)
    			goto err_clean_rxqs;
    	}
    
    	mvpp2_start_dev(port);
    	mvpp2_egress_enable(port);
    	mvpp2_ingress_enable(port);
    
    	return 0;
    
    err_clean_rxqs:
    	mvpp2_cleanup_rxqs(port);
    err_out:
    	netdev_err(dev, "failed to change ring parameters");
    	return err;
    }
    
    static void mvpp2_ethtool_get_pause_param(struct net_device *dev,
    					  struct ethtool_pauseparam *pause)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (!port->phylink)
    		return;
    
    	phylink_ethtool_get_pauseparam(port->phylink, pause);
    }
    
    static int mvpp2_ethtool_set_pause_param(struct net_device *dev,
    					 struct ethtool_pauseparam *pause)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (!port->phylink)
    		return -ENOTSUPP;
    
    	return phylink_ethtool_set_pauseparam(port->phylink, pause);
    }
    
    static int mvpp2_ethtool_get_link_ksettings(struct net_device *dev,
    					    struct ethtool_link_ksettings *cmd)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (!port->phylink)
    		return -ENOTSUPP;
    
    	return phylink_ethtool_ksettings_get(port->phylink, cmd);
    }
    
    static int mvpp2_ethtool_set_link_ksettings(struct net_device *dev,
    					    const struct ethtool_link_ksettings *cmd)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (!port->phylink)
    		return -ENOTSUPP;
    
    	return phylink_ethtool_ksettings_set(port->phylink, cmd);
    }
    
    /* Device ops */
    
    static const struct net_device_ops mvpp2_netdev_ops = {
    	.ndo_open		= mvpp2_open,
    	.ndo_stop		= mvpp2_stop,
    	.ndo_start_xmit		= mvpp2_tx,
    	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
    	.ndo_set_mac_address	= mvpp2_set_mac_address,
    	.ndo_change_mtu		= mvpp2_change_mtu,
    	.ndo_get_stats64	= mvpp2_get_stats64,
    	.ndo_do_ioctl		= mvpp2_ioctl,
    	.ndo_vlan_rx_add_vid	= mvpp2_vlan_rx_add_vid,
    	.ndo_vlan_rx_kill_vid	= mvpp2_vlan_rx_kill_vid,
    	.ndo_set_features	= mvpp2_set_features,
    };
    
    static const struct ethtool_ops mvpp2_eth_tool_ops = {
    	.nway_reset		= mvpp2_ethtool_nway_reset,
    	.get_link		= ethtool_op_get_link,
    	.set_coalesce		= mvpp2_ethtool_set_coalesce,
    	.get_coalesce		= mvpp2_ethtool_get_coalesce,
    	.get_drvinfo		= mvpp2_ethtool_get_drvinfo,
    	.get_ringparam		= mvpp2_ethtool_get_ringparam,
    	.set_ringparam		= mvpp2_ethtool_set_ringparam,
    	.get_strings		= mvpp2_ethtool_get_strings,
    	.get_ethtool_stats	= mvpp2_ethtool_get_stats,
    	.get_sset_count		= mvpp2_ethtool_get_sset_count,
    	.get_pauseparam		= mvpp2_ethtool_get_pause_param,
    	.set_pauseparam		= mvpp2_ethtool_set_pause_param,
    	.get_link_ksettings	= mvpp2_ethtool_get_link_ksettings,
    	.set_link_ksettings	= mvpp2_ethtool_set_link_ksettings,
    };
    
    /* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
     * had a single IRQ defined per-port.
     */
    static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
    					   struct device_node *port_node)
    {
    	struct mvpp2_queue_vector *v = &port->qvecs[0];
    
    	v->first_rxq = 0;
    	v->nrxqs = port->nrxqs;
    	v->type = MVPP2_QUEUE_VECTOR_SHARED;
    	v->sw_thread_id = 0;
    	v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
    	v->port = port;
    	v->irq = irq_of_parse_and_map(port_node, 0);
    	if (v->irq <= 0)
    		return -EINVAL;
    	netif_napi_add(port->dev, &v->napi, mvpp2_poll,
    		       NAPI_POLL_WEIGHT);
    
    	port->nqvecs = 1;
    
    	return 0;
    }
    
    static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
    					  struct device_node *port_node)
    {
    	struct mvpp2_queue_vector *v;
    	int i, ret;
    
    	port->nqvecs = num_possible_cpus();
    	if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
    		port->nqvecs += 1;
    
    	for (i = 0; i < port->nqvecs; i++) {
    		char irqname[16];
    
    		v = port->qvecs + i;
    
    		v->port = port;
    		v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
    		v->sw_thread_id = i;
    		v->sw_thread_mask = BIT(i);
    
    		snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);
    
    		if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
    			v->first_rxq = i * MVPP2_DEFAULT_RXQ;
    			v->nrxqs = MVPP2_DEFAULT_RXQ;
    		} else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
    			   i == (port->nqvecs - 1)) {
    			v->first_rxq = 0;
    			v->nrxqs = port->nrxqs;
    			v->type = MVPP2_QUEUE_VECTOR_SHARED;
    			strncpy(irqname, "rx-shared", sizeof(irqname));
    		}
    
    		if (port_node)
    			v->irq = of_irq_get_byname(port_node, irqname);
    		else
    			v->irq = fwnode_irq_get(port->fwnode, i);
    		if (v->irq <= 0) {
    			ret = -EINVAL;
    			goto err;
    		}
    
    		netif_napi_add(port->dev, &v->napi, mvpp2_poll,
    			       NAPI_POLL_WEIGHT);
    	}
    
    	return 0;
    
    err:
    	for (i = 0; i < port->nqvecs; i++)
    		irq_dispose_mapping(port->qvecs[i].irq);
    	return ret;
    }
    
    static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
    				    struct device_node *port_node)
    {
    	if (port->has_tx_irqs)
    		return mvpp2_multi_queue_vectors_init(port, port_node);
    	else
    		return mvpp2_simple_queue_vectors_init(port, port_node);
    }
    
    static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
    {
    	int i;
    
    	for (i = 0; i < port->nqvecs; i++)
    		irq_dispose_mapping(port->qvecs[i].irq);
    }
    
    /* Configure Rx queue group interrupt for this port */
    static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
    {
    	struct mvpp2 *priv = port->priv;
    	u32 val;
    	int i;
    
    	if (priv->hw_version == MVPP21) {
    		mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
    			    port->nrxqs);
    		return;
    	}
    
    	/* Handle the more complicated PPv2.2 case */
    	for (i = 0; i < port->nqvecs; i++) {
    		struct mvpp2_queue_vector *qv = port->qvecs + i;
    
    		if (!qv->nrxqs)
    			continue;
    
    		val = qv->sw_thread_id;
    		val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
    		mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
    
    		val = qv->first_rxq;
    		val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
    		mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
    	}
    }
    
    /* Initialize port HW */
    static int mvpp2_port_init(struct mvpp2_port *port)
    {
    	struct device *dev = port->dev->dev.parent;
    	struct mvpp2 *priv = port->priv;
    	struct mvpp2_txq_pcpu *txq_pcpu;
    	int queue, cpu, err;
    
    	/* Checks for hardware constraints */
    	if (port->first_rxq + port->nrxqs >
    	    MVPP2_MAX_PORTS * priv->max_port_rxqs)
    		return -EINVAL;
    
    	if (port->nrxqs % 4 || (port->nrxqs > priv->max_port_rxqs) ||
    	    (port->ntxqs > MVPP2_MAX_TXQ))
    		return -EINVAL;
    
    	/* Disable port */
    	mvpp2_egress_disable(port);
    	mvpp2_port_disable(port);
    
    	port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;
    
    	port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
    				  GFP_KERNEL);
    	if (!port->txqs)
    		return -ENOMEM;
    
    	/* Associate physical Tx queues to this port and initialize.
    	 * The mapping is predefined.
    	 */
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
    		struct mvpp2_tx_queue *txq;
    
    		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
    		if (!txq) {
    			err = -ENOMEM;
    			goto err_free_percpu;
    		}
    
    		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
    		if (!txq->pcpu) {
    			err = -ENOMEM;
    			goto err_free_percpu;
    		}
    
    		txq->id = queue_phy_id;
    		txq->log_id = queue;
    		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
    		for_each_present_cpu(cpu) {
    			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
    			txq_pcpu->cpu = cpu;
    		}
    
    		port->txqs[queue] = txq;
    	}
    
    	port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
    				  GFP_KERNEL);
    	if (!port->rxqs) {
    		err = -ENOMEM;
    		goto err_free_percpu;
    	}
    
    	/* Allocate and initialize Rx queue for this port */
    	for (queue = 0; queue < port->nrxqs; queue++) {
    		struct mvpp2_rx_queue *rxq;
    
    		/* Map physical Rx queue to port's logical Rx queue */
    		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
    		if (!rxq) {
    			err = -ENOMEM;
    			goto err_free_percpu;
    		}
    		/* Map this Rx queue to a physical queue */
    		rxq->id = port->first_rxq + queue;
    		rxq->port = port->id;
    		rxq->logic_rxq = queue;
    
    		port->rxqs[queue] = rxq;
    	}
    
    	mvpp2_rx_irqs_setup(port);
    
    	/* Create Rx descriptor rings */
    	for (queue = 0; queue < port->nrxqs; queue++) {
    		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
    
    		rxq->size = port->rx_ring_size;
    		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
    		rxq->time_coal = MVPP2_RX_COAL_USEC;
    	}
    
    	mvpp2_ingress_disable(port);
    
    	/* Port default configuration */
    	mvpp2_defaults_set(port);
    
    	/* Port's classifier configuration */
    	mvpp2_cls_oversize_rxq_set(port);
    	mvpp2_cls_port_config(port);
    
    	/* Provide an initial Rx packet size */
    	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
    
    	/* Initialize pools for swf */
    	err = mvpp2_swf_bm_pool_init(port);
    	if (err)
    		goto err_free_percpu;
    
    	return 0;
    
    err_free_percpu:
    	for (queue = 0; queue < port->ntxqs; queue++) {
    		if (!port->txqs[queue])
    			continue;
    		free_percpu(port->txqs[queue]->pcpu);
    	}
    	return err;
    }
    
    /* Checks if the port DT description has the TX interrupts
     * described. On PPv2.1, there are no such interrupts. On PPv2.2,
     * there are available, but we need to keep support for old DTs.
     */
    static bool mvpp2_port_has_tx_irqs(struct mvpp2 *priv,
    				   struct device_node *port_node)
    {
    	char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
    			  "tx-cpu2", "tx-cpu3" };
    	int ret, i;
    
    	if (priv->hw_version == MVPP21)
    		return false;
    
    	for (i = 0; i < 5; i++) {
    		ret = of_property_match_string(port_node, "interrupt-names",
    					       irqs[i]);
    		if (ret < 0)
    			return false;
    	}
    
    	return true;
    }
    
    static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
    				     struct fwnode_handle *fwnode,
    				     char **mac_from)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	char hw_mac_addr[ETH_ALEN] = {0};
    	char fw_mac_addr[ETH_ALEN];
    
    	if (fwnode_get_mac_address(fwnode, fw_mac_addr, ETH_ALEN)) {
    		*mac_from = "firmware node";
    		ether_addr_copy(dev->dev_addr, fw_mac_addr);
    		return;
    	}
    
    	if (priv->hw_version == MVPP21) {
    		mvpp21_get_mac_address(port, hw_mac_addr);
    		if (is_valid_ether_addr(hw_mac_addr)) {
    			*mac_from = "hardware";
    			ether_addr_copy(dev->dev_addr, hw_mac_addr);
    			return;
    		}
    	}
    
    	*mac_from = "random";
    	eth_hw_addr_random(dev);
    }
    
    static void mvpp2_phylink_validate(struct net_device *dev,
    				   unsigned long *supported,
    				   struct phylink_link_state *state)
    {
    	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
    
    	phylink_set(mask, Autoneg);
    	phylink_set_port_modes(mask);
    	phylink_set(mask, Pause);
    	phylink_set(mask, Asym_Pause);
    
    	phylink_set(mask, 10baseT_Half);
    	phylink_set(mask, 10baseT_Full);
    	phylink_set(mask, 100baseT_Half);
    	phylink_set(mask, 100baseT_Full);
    	phylink_set(mask, 1000baseT_Full);
    	phylink_set(mask, 10000baseT_Full);
    
    	if (state->interface == PHY_INTERFACE_MODE_10GKR) {
    		phylink_set(mask, 10000baseCR_Full);
    		phylink_set(mask, 10000baseSR_Full);
    		phylink_set(mask, 10000baseLR_Full);
    		phylink_set(mask, 10000baseLRM_Full);
    		phylink_set(mask, 10000baseER_Full);
    		phylink_set(mask, 10000baseKR_Full);
    	}
    
    	bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
    	bitmap_and(state->advertising, state->advertising, mask,
    		   __ETHTOOL_LINK_MODE_MASK_NBITS);
    }
    
    static void mvpp22_xlg_link_state(struct mvpp2_port *port,
    				  struct phylink_link_state *state)
    {
    	u32 val;
    
    	state->speed = SPEED_10000;
    	state->duplex = 1;
    	state->an_complete = 1;
    
    	val = readl(port->base + MVPP22_XLG_STATUS);
    	state->link = !!(val & MVPP22_XLG_STATUS_LINK_UP);
    
    	state->pause = 0;
    	val = readl(port->base + MVPP22_XLG_CTRL0_REG);
    	if (val & MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN)
    		state->pause |= MLO_PAUSE_TX;
    	if (val & MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN)
    		state->pause |= MLO_PAUSE_RX;
    }
    
    static void mvpp2_gmac_link_state(struct mvpp2_port *port,
    				  struct phylink_link_state *state)
    {
    	u32 val;
    
    	val = readl(port->base + MVPP2_GMAC_STATUS0);
    
    	state->an_complete = !!(val & MVPP2_GMAC_STATUS0_AN_COMPLETE);
    	state->link = !!(val & MVPP2_GMAC_STATUS0_LINK_UP);
    	state->duplex = !!(val & MVPP2_GMAC_STATUS0_FULL_DUPLEX);
    
    	if (val & MVPP2_GMAC_STATUS0_GMII_SPEED)
    		state->speed = SPEED_1000;
    	else if (val & MVPP2_GMAC_STATUS0_MII_SPEED)
    		state->speed = SPEED_100;
    	else
    		state->speed = SPEED_10;
    
    	state->pause = 0;
    	if (val & MVPP2_GMAC_STATUS0_RX_PAUSE)
    		state->pause |= MLO_PAUSE_RX;
    	if (val & MVPP2_GMAC_STATUS0_TX_PAUSE)
    		state->pause |= MLO_PAUSE_TX;
    }
    
    static int mvpp2_phylink_mac_link_state(struct net_device *dev,
    					struct phylink_link_state *state)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	if (port->priv->hw_version == MVPP22 && port->gop_id == 0) {
    		u32 mode = readl(port->base + MVPP22_XLG_CTRL3_REG);
    		mode &= MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
    
    		if (mode == MVPP22_XLG_CTRL3_MACMODESELECT_10G) {
    			mvpp22_xlg_link_state(port, state);
    			return 1;
    		}
    	}
    
    	mvpp2_gmac_link_state(port, state);
    	return 1;
    }
    
    static void mvpp2_mac_an_restart(struct net_device *dev)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	u32 val;
    
    	if (port->phy_interface != PHY_INTERFACE_MODE_SGMII)
    		return;
    
    	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    	/* The RESTART_AN bit is cleared by the h/w after restarting the AN
    	 * process.
    	 */
    	val |= MVPP2_GMAC_IN_BAND_RESTART_AN | MVPP2_GMAC_IN_BAND_AUTONEG;
    	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    }
    
    static void mvpp2_xlg_config(struct mvpp2_port *port, unsigned int mode,
    			     const struct phylink_link_state *state)
    {
    	u32 ctrl0, ctrl4;
    
    	ctrl0 = readl(port->base + MVPP22_XLG_CTRL0_REG);
    	ctrl4 = readl(port->base + MVPP22_XLG_CTRL4_REG);
    
    	if (state->pause & MLO_PAUSE_TX)
    		ctrl0 |= MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN;
    	if (state->pause & MLO_PAUSE_RX)
    		ctrl0 |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
    
    	ctrl4 &= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC;
    	ctrl4 |= MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC |
    		 MVPP22_XLG_CTRL4_EN_IDLE_CHECK;
    
    	writel(ctrl0, port->base + MVPP22_XLG_CTRL0_REG);
    	writel(ctrl4, port->base + MVPP22_XLG_CTRL4_REG);
    }
    
    static void mvpp2_gmac_config(struct mvpp2_port *port, unsigned int mode,
    			      const struct phylink_link_state *state)
    {
    	u32 an, ctrl0, ctrl2, ctrl4;
    
    	an = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    	ctrl0 = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
    	ctrl2 = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
    	ctrl4 = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
    
    	/* Force link down */
    	an &= ~MVPP2_GMAC_FORCE_LINK_PASS;
    	an |= MVPP2_GMAC_FORCE_LINK_DOWN;
    	writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    
    	/* Set the GMAC in a reset state */
    	ctrl2 |= MVPP2_GMAC_PORT_RESET_MASK;
    	writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
    
    	an &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED |
    		MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FC_ADV_EN |
    		MVPP2_GMAC_FC_ADV_ASM_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG |
    		MVPP2_GMAC_CONFIG_FULL_DUPLEX | MVPP2_GMAC_AN_DUPLEX_EN |
    		MVPP2_GMAC_FORCE_LINK_DOWN);
    	ctrl0 &= ~MVPP2_GMAC_PORT_TYPE_MASK;
    	ctrl2 &= ~(MVPP2_GMAC_PORT_RESET_MASK | MVPP2_GMAC_PCS_ENABLE_MASK);
    
    	if (!phy_interface_mode_is_rgmii(state->interface))
    		an |= MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG;
    
    	if (state->duplex)
    		an |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
    	if (phylink_test(state->advertising, Pause))
    		an |= MVPP2_GMAC_FC_ADV_EN;
    	if (phylink_test(state->advertising, Asym_Pause))
    		an |= MVPP2_GMAC_FC_ADV_ASM_EN;
    
    	if (state->interface == PHY_INTERFACE_MODE_SGMII) {
    		an |= MVPP2_GMAC_IN_BAND_AUTONEG;
    		ctrl2 |= MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK;
    
    		ctrl4 &= ~(MVPP22_CTRL4_EXT_PIN_GMII_SEL |
    			   MVPP22_CTRL4_RX_FC_EN | MVPP22_CTRL4_TX_FC_EN);
    		ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS |
    			 MVPP22_CTRL4_DP_CLK_SEL |
    			 MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
    
    		if (state->pause & MLO_PAUSE_TX)
    			ctrl4 |= MVPP22_CTRL4_TX_FC_EN;
    		if (state->pause & MLO_PAUSE_RX)
    			ctrl4 |= MVPP22_CTRL4_RX_FC_EN;
    	} else if (phy_interface_mode_is_rgmii(state->interface)) {
    		an |= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS;
    
    		if (state->speed == SPEED_1000)
    			an |= MVPP2_GMAC_CONFIG_GMII_SPEED;
    		else if (state->speed == SPEED_100)
    			an |= MVPP2_GMAC_CONFIG_MII_SPEED;
    
    		ctrl4 &= ~MVPP22_CTRL4_DP_CLK_SEL;
    		ctrl4 |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
    			 MVPP22_CTRL4_SYNC_BYPASS_DIS |
    			 MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
    	}
    
    	writel(ctrl0, port->base + MVPP2_GMAC_CTRL_0_REG);
    	writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
    	writel(ctrl4, port->base + MVPP22_GMAC_CTRL_4_REG);
    	writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    }
    
    static void mvpp2_mac_config(struct net_device *dev, unsigned int mode,
    			     const struct phylink_link_state *state)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    
    	/* Check for invalid configuration */
    	if (state->interface == PHY_INTERFACE_MODE_10GKR && port->gop_id != 0) {
    		netdev_err(dev, "Invalid mode on %s\n", dev->name);
    		return;
    	}
    
    	netif_tx_stop_all_queues(port->dev);
    	if (!port->has_phy)
    		netif_carrier_off(port->dev);
    
    	/* Make sure the port is disabled when reconfiguring the mode */
    	mvpp2_port_disable(port);
    
    	if (port->priv->hw_version == MVPP22 &&
    	    port->phy_interface != state->interface) {
    		port->phy_interface = state->interface;
    
    		/* Reconfigure the serdes lanes */
    		phy_power_off(port->comphy);
    		mvpp22_mode_reconfigure(port);
    	}
    
    	/* mac (re)configuration */
    	if (state->interface == PHY_INTERFACE_MODE_10GKR)
    		mvpp2_xlg_config(port, mode, state);
    	else if (phy_interface_mode_is_rgmii(state->interface) ||
    		 state->interface == PHY_INTERFACE_MODE_SGMII)
    		mvpp2_gmac_config(port, mode, state);
    
    	if (port->priv->hw_version == MVPP21 && port->flags & MVPP2_F_LOOPBACK)
    		mvpp2_port_loopback_set(port, state);
    
    	/* If the port already was up, make sure it's still in the same state */
    	if (state->link || !port->has_phy) {
    		mvpp2_port_enable(port);
    
    		mvpp2_egress_enable(port);
    		mvpp2_ingress_enable(port);
    		if (!port->has_phy)
    			netif_carrier_on(dev);
    		netif_tx_wake_all_queues(dev);
    	}
    }
    
    static void mvpp2_mac_link_up(struct net_device *dev, unsigned int mode,
    			      phy_interface_t interface, struct phy_device *phy)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	u32 val;
    
    	if (!phylink_autoneg_inband(mode) &&
    	    interface != PHY_INTERFACE_MODE_10GKR) {
    		val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    		val &= ~MVPP2_GMAC_FORCE_LINK_DOWN;
    		if (phy_interface_mode_is_rgmii(interface))
    			val |= MVPP2_GMAC_FORCE_LINK_PASS;
    		writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    	}
    
    	mvpp2_port_enable(port);
    
    	mvpp2_egress_enable(port);
    	mvpp2_ingress_enable(port);
    	netif_tx_wake_all_queues(dev);
    }
    
    static void mvpp2_mac_link_down(struct net_device *dev, unsigned int mode,
    				phy_interface_t interface)
    {
    	struct mvpp2_port *port = netdev_priv(dev);
    	u32 val;
    
    	if (!phylink_autoneg_inband(mode) &&
    	    interface != PHY_INTERFACE_MODE_10GKR) {
    		val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    		val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
    		val |= MVPP2_GMAC_FORCE_LINK_DOWN;
    		writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
    	}
    
    	netif_tx_stop_all_queues(dev);
    	mvpp2_egress_disable(port);
    	mvpp2_ingress_disable(port);
    
    	/* When using link interrupts to notify phylink of a MAC state change,
    	 * we do not want the port to be disabled (we want to receive further
    	 * interrupts, to be notified when the port will have a link later).
    	 */
    	if (!port->has_phy)
    		return;
    
    	mvpp2_port_disable(port);
    }
    
    static const struct phylink_mac_ops mvpp2_phylink_ops = {
    	.validate = mvpp2_phylink_validate,
    	.mac_link_state = mvpp2_phylink_mac_link_state,
    	.mac_an_restart = mvpp2_mac_an_restart,
    	.mac_config = mvpp2_mac_config,
    	.mac_link_up = mvpp2_mac_link_up,
    	.mac_link_down = mvpp2_mac_link_down,
    };
    
    /* Ports initialization */
    static int mvpp2_port_probe(struct platform_device *pdev,
    			    struct fwnode_handle *port_fwnode,
    			    struct mvpp2 *priv)
    {
    	struct phy *comphy = NULL;
    	struct mvpp2_port *port;
    	struct mvpp2_port_pcpu *port_pcpu;
    	struct device_node *port_node = to_of_node(port_fwnode);
    	struct net_device *dev;
    	struct resource *res;
    	struct phylink *phylink;
    	char *mac_from = "";
    	unsigned int ntxqs, nrxqs;
    	bool has_tx_irqs;
    	u32 id;
    	int features;
    	int phy_mode;
    	int err, i, cpu;
    
    	if (port_node) {
    		has_tx_irqs = mvpp2_port_has_tx_irqs(priv, port_node);
    	} else {
    		has_tx_irqs = true;
    		queue_mode = MVPP2_QDIST_MULTI_MODE;
    	}
    
    	if (!has_tx_irqs)
    		queue_mode = MVPP2_QDIST_SINGLE_MODE;
    
    	ntxqs = MVPP2_MAX_TXQ;
    	if (priv->hw_version == MVPP22 && queue_mode == MVPP2_QDIST_MULTI_MODE)
    		nrxqs = MVPP2_DEFAULT_RXQ * num_possible_cpus();
    	else
    		nrxqs = MVPP2_DEFAULT_RXQ;
    
    	dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
    	if (!dev)
    		return -ENOMEM;
    
    	phy_mode = fwnode_get_phy_mode(port_fwnode);
    	if (phy_mode < 0) {
    		dev_err(&pdev->dev, "incorrect phy mode\n");
    		err = phy_mode;
    		goto err_free_netdev;
    	}
    
    	if (port_node) {
    		comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
    		if (IS_ERR(comphy)) {
    			if (PTR_ERR(comphy) == -EPROBE_DEFER) {
    				err = -EPROBE_DEFER;
    				goto err_free_netdev;
    			}
    			comphy = NULL;
    		}
    	}
    
    	if (fwnode_property_read_u32(port_fwnode, "port-id", &id)) {
    		err = -EINVAL;
    		dev_err(&pdev->dev, "missing port-id value\n");
    		goto err_free_netdev;
    	}
    
    	dev->tx_queue_len = MVPP2_MAX_TXD_MAX;
    	dev->watchdog_timeo = 5 * HZ;
    	dev->netdev_ops = &mvpp2_netdev_ops;
    	dev->ethtool_ops = &mvpp2_eth_tool_ops;
    
    	port = netdev_priv(dev);
    	port->dev = dev;
    	port->fwnode = port_fwnode;
    	port->has_phy = !!of_find_property(port_node, "phy", NULL);
    	port->ntxqs = ntxqs;
    	port->nrxqs = nrxqs;
    	port->priv = priv;
    	port->has_tx_irqs = has_tx_irqs;
    
    	err = mvpp2_queue_vectors_init(port, port_node);
    	if (err)
    		goto err_free_netdev;
    
    	if (port_node)
    		port->link_irq = of_irq_get_byname(port_node, "link");
    	else
    		port->link_irq = fwnode_irq_get(port_fwnode, port->nqvecs + 1);
    	if (port->link_irq == -EPROBE_DEFER) {
    		err = -EPROBE_DEFER;
    		goto err_deinit_qvecs;
    	}
    	if (port->link_irq <= 0)
    		/* the link irq is optional */
    		port->link_irq = 0;
    
    	if (fwnode_property_read_bool(port_fwnode, "marvell,loopback"))
    		port->flags |= MVPP2_F_LOOPBACK;
    
    	port->id = id;
    	if (priv->hw_version == MVPP21)
    		port->first_rxq = port->id * port->nrxqs;
    	else
    		port->first_rxq = port->id * priv->max_port_rxqs;
    
    	port->of_node = port_node;
    	port->phy_interface = phy_mode;
    	port->comphy = comphy;
    
    	if (priv->hw_version == MVPP21) {
    		res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
    		port->base = devm_ioremap_resource(&pdev->dev, res);
    		if (IS_ERR(port->base)) {
    			err = PTR_ERR(port->base);
    			goto err_free_irq;
    		}
    
    		port->stats_base = port->priv->lms_base +
    				   MVPP21_MIB_COUNTERS_OFFSET +
    				   port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ;
    	} else {
    		if (fwnode_property_read_u32(port_fwnode, "gop-port-id",
    					     &port->gop_id)) {
    			err = -EINVAL;
    			dev_err(&pdev->dev, "missing gop-port-id value\n");
    			goto err_deinit_qvecs;
    		}
    
    		port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
    		port->stats_base = port->priv->iface_base +
    				   MVPP22_MIB_COUNTERS_OFFSET +
    				   port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ;
    	}
    
    	/* Alloc per-cpu and ethtool stats */
    	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
    	if (!port->stats) {
    		err = -ENOMEM;
    		goto err_free_irq;
    	}
    
    	port->ethtool_stats = devm_kcalloc(&pdev->dev,
    					   ARRAY_SIZE(mvpp2_ethtool_regs),
    					   sizeof(u64), GFP_KERNEL);
    	if (!port->ethtool_stats) {
    		err = -ENOMEM;
    		goto err_free_stats;
    	}
    
    	mutex_init(&port->gather_stats_lock);
    	INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics);
    
    	mvpp2_port_copy_mac_addr(dev, priv, port_fwnode, &mac_from);
    
    	port->tx_ring_size = MVPP2_MAX_TXD_DFLT;
    	port->rx_ring_size = MVPP2_MAX_RXD_DFLT;
    	SET_NETDEV_DEV(dev, &pdev->dev);
    
    	err = mvpp2_port_init(port);
    	if (err < 0) {
    		dev_err(&pdev->dev, "failed to init port %d\n", id);
    		goto err_free_stats;
    	}
    
    	mvpp2_port_periodic_xon_disable(port);
    
    	mvpp2_port_reset(port);
    
    	port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
    	if (!port->pcpu) {
    		err = -ENOMEM;
    		goto err_free_txq_pcpu;
    	}
    
    	if (!port->has_tx_irqs) {
    		for_each_present_cpu(cpu) {
    			port_pcpu = per_cpu_ptr(port->pcpu, cpu);
    
    			hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
    				     HRTIMER_MODE_REL_PINNED);
    			port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
    			port_pcpu->timer_scheduled = false;
    
    			tasklet_init(&port_pcpu->tx_done_tasklet,
    				     mvpp2_tx_proc_cb,
    				     (unsigned long)dev);
    		}
    	}
    
    	features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
    		   NETIF_F_TSO;
    	dev->features = features | NETIF_F_RXCSUM;
    	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO |
    			    NETIF_F_HW_VLAN_CTAG_FILTER;
    
    	if (port->pool_long->id == MVPP2_BM_JUMBO && port->id != 0) {
    		dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
    		dev->hw_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
    	}
    
    	dev->vlan_features |= features;
    	dev->gso_max_segs = MVPP2_MAX_TSO_SEGS;
    	dev->priv_flags |= IFF_UNICAST_FLT;
    
    	/* MTU range: 68 - 9704 */
    	dev->min_mtu = ETH_MIN_MTU;
    	/* 9704 == 9728 - 20 and rounding to 8 */
    	dev->max_mtu = MVPP2_BM_JUMBO_PKT_SIZE;
    
    	/* Phylink isn't used w/ ACPI as of now */
    	if (port_node) {
    		phylink = phylink_create(dev, port_fwnode, phy_mode,
    					 &mvpp2_phylink_ops);
    		if (IS_ERR(phylink)) {
    			err = PTR_ERR(phylink);
    			goto err_free_port_pcpu;
    		}
    		port->phylink = phylink;
    	} else {
    		port->phylink = NULL;
    	}
    
    	err = register_netdev(dev);
    	if (err < 0) {
    		dev_err(&pdev->dev, "failed to register netdev\n");
    		goto err_phylink;
    	}
    	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
    
    	priv->port_list[priv->port_count++] = port;
    
    	return 0;
    
    err_phylink:
    	if (port->phylink)
    		phylink_destroy(port->phylink);
    err_free_port_pcpu:
    	free_percpu(port->pcpu);
    err_free_txq_pcpu:
    	for (i = 0; i < port->ntxqs; i++)
    		free_percpu(port->txqs[i]->pcpu);
    err_free_stats:
    	free_percpu(port->stats);
    err_free_irq:
    	if (port->link_irq)
    		irq_dispose_mapping(port->link_irq);
    err_deinit_qvecs:
    	mvpp2_queue_vectors_deinit(port);
    err_free_netdev:
    	free_netdev(dev);
    	return err;
    }
    
    /* Ports removal routine */
    static void mvpp2_port_remove(struct mvpp2_port *port)
    {
    	int i;
    
    	unregister_netdev(port->dev);
    	if (port->phylink)
    		phylink_destroy(port->phylink);
    	free_percpu(port->pcpu);
    	free_percpu(port->stats);
    	for (i = 0; i < port->ntxqs; i++)
    		free_percpu(port->txqs[i]->pcpu);
    	mvpp2_queue_vectors_deinit(port);
    	if (port->link_irq)
    		irq_dispose_mapping(port->link_irq);
    	free_netdev(port->dev);
    }
    
    /* Initialize decoding windows */
    static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
    				    struct mvpp2 *priv)
    {
    	u32 win_enable;
    	int i;
    
    	for (i = 0; i < 6; i++) {
    		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
    		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
    
    		if (i < 4)
    			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
    	}
    
    	win_enable = 0;
    
    	for (i = 0; i < dram->num_cs; i++) {
    		const struct mbus_dram_window *cs = dram->cs + i;
    
    		mvpp2_write(priv, MVPP2_WIN_BASE(i),
    			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
    			    dram->mbus_dram_target_id);
    
    		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
    			    (cs->size - 1) & 0xffff0000);
    
    		win_enable |= (1 << i);
    	}
    
    	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
    }
    
    /* Initialize Rx FIFO's */
    static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
    {
    	int port;
    
    	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
    		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
    			    MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
    		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
    			    MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
    	}
    
    	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
    		    MVPP2_RX_FIFO_PORT_MIN_PKT);
    	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
    }
    
    static void mvpp22_rx_fifo_init(struct mvpp2 *priv)
    {
    	int port;
    
    	/* The FIFO size parameters are set depending on the maximum speed a
    	 * given port can handle:
    	 * - Port 0: 10Gbps
    	 * - Port 1: 2.5Gbps
    	 * - Ports 2 and 3: 1Gbps
    	 */
    
    	mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(0),
    		    MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB);
    	mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(0),
    		    MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB);
    
    	mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(1),
    		    MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB);
    	mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(1),
    		    MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB);
    
    	for (port = 2; port < MVPP2_MAX_PORTS; port++) {
    		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
    			    MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
    		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
    			    MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
    	}
    
    	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
    		    MVPP2_RX_FIFO_PORT_MIN_PKT);
    	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
    }
    
    /* Initialize Tx FIFO's: the total FIFO size is 19kB on PPv2.2 and 10G
     * interfaces must have a Tx FIFO size of 10kB. As only port 0 can do 10G,
     * configure its Tx FIFO size to 10kB and the others ports Tx FIFO size to 3kB.
     */
    static void mvpp22_tx_fifo_init(struct mvpp2 *priv)
    {
    	int port, size, thrs;
    
    	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
    		if (port == 0) {
    			size = MVPP22_TX_FIFO_DATA_SIZE_10KB;
    			thrs = MVPP2_TX_FIFO_THRESHOLD_10KB;
    		} else {
    			size = MVPP22_TX_FIFO_DATA_SIZE_3KB;
    			thrs = MVPP2_TX_FIFO_THRESHOLD_3KB;
    		}
    		mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), size);
    		mvpp2_write(priv, MVPP22_TX_FIFO_THRESH_REG(port), thrs);
    	}
    }
    
    static void mvpp2_axi_init(struct mvpp2 *priv)
    {
    	u32 val, rdval, wrval;
    
    	mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
    
    	/* AXI Bridge Configuration */
    
    	rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
    		<< MVPP22_AXI_ATTR_CACHE_OFFS;
    	rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
    		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
    
    	wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
    		<< MVPP22_AXI_ATTR_CACHE_OFFS;
    	wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
    		<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
    
    	/* BM */
    	mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
    	mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
    
    	/* Descriptors */
    	mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
    	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
    	mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
    	mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
    
    	/* Buffer Data */
    	mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
    	mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
    
    	val = MVPP22_AXI_CODE_CACHE_NON_CACHE
    		<< MVPP22_AXI_CODE_CACHE_OFFS;
    	val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
    		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
    	mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
    	mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
    
    	val = MVPP22_AXI_CODE_CACHE_RD_CACHE
    		<< MVPP22_AXI_CODE_CACHE_OFFS;
    	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
    		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
    
    	mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
    
    	val = MVPP22_AXI_CODE_CACHE_WR_CACHE
    		<< MVPP22_AXI_CODE_CACHE_OFFS;
    	val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
    		<< MVPP22_AXI_CODE_DOMAIN_OFFS;
    
    	mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
    }
    
    /* Initialize network controller common part HW */
    static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
    {
    	const struct mbus_dram_target_info *dram_target_info;
    	int err, i;
    	u32 val;
    
    	/* MBUS windows configuration */
    	dram_target_info = mv_mbus_dram_info();
    	if (dram_target_info)
    		mvpp2_conf_mbus_windows(dram_target_info, priv);
    
    	if (priv->hw_version == MVPP22)
    		mvpp2_axi_init(priv);
    
    	/* Disable HW PHY polling */
    	if (priv->hw_version == MVPP21) {
    		val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
    		val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
    		writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
    	} else {
    		val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
    		val &= ~MVPP22_SMI_POLLING_EN;
    		writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
    	}
    
    	/* Allocate and initialize aggregated TXQs */
    	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
    				       sizeof(*priv->aggr_txqs),
    				       GFP_KERNEL);
    	if (!priv->aggr_txqs)
    		return -ENOMEM;
    
    	for_each_present_cpu(i) {
    		priv->aggr_txqs[i].id = i;
    		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
    		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
    		if (err < 0)
    			return err;
    	}
    
    	/* Fifo Init */
    	if (priv->hw_version == MVPP21) {
    		mvpp2_rx_fifo_init(priv);
    	} else {
    		mvpp22_rx_fifo_init(priv);
    		mvpp22_tx_fifo_init(priv);
    	}
    
    	if (priv->hw_version == MVPP21)
    		writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
    		       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
    
    	/* Allow cache snoop when transmiting packets */
    	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
    
    	/* Buffer Manager initialization */
    	err = mvpp2_bm_init(pdev, priv);
    	if (err < 0)
    		return err;
    
    	/* Parser default initialization */
    	err = mvpp2_prs_default_init(pdev, priv);
    	if (err < 0)
    		return err;
    
    	/* Classifier default initialization */
    	mvpp2_cls_init(priv);
    
    	return 0;
    }
    
    static int mvpp2_probe(struct platform_device *pdev)
    {
    	const struct acpi_device_id *acpi_id;
    	struct fwnode_handle *fwnode = pdev->dev.fwnode;
    	struct fwnode_handle *port_fwnode;
    	struct mvpp2 *priv;
    	struct resource *res;
    	void __iomem *base;
    	int i;
    	int err;
    
    	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
    	if (!priv)
    		return -ENOMEM;
    
    	if (has_acpi_companion(&pdev->dev)) {
    		acpi_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
    					    &pdev->dev);
    		priv->hw_version = (unsigned long)acpi_id->driver_data;
    	} else {
    		priv->hw_version =
    			(unsigned long)of_device_get_match_data(&pdev->dev);
    	}
    
    	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	base = devm_ioremap_resource(&pdev->dev, res);
    	if (IS_ERR(base))
    		return PTR_ERR(base);
    
    	if (priv->hw_version == MVPP21) {
    		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
    		priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
    		if (IS_ERR(priv->lms_base))
    			return PTR_ERR(priv->lms_base);
    	} else {
    		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
    		if (has_acpi_companion(&pdev->dev)) {
    			/* In case the MDIO memory region is declared in
    			 * the ACPI, it can already appear as 'in-use'
    			 * in the OS. Because it is overlapped by second
    			 * region of the network controller, make
    			 * sure it is released, before requesting it again.
    			 * The care is taken by mvpp2 driver to avoid
    			 * concurrent access to this memory region.
    			 */
    			release_resource(res);
    		}
    		priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
    		if (IS_ERR(priv->iface_base))
    			return PTR_ERR(priv->iface_base);
    	}
    
    	if (priv->hw_version == MVPP22 && dev_of_node(&pdev->dev)) {
    		priv->sysctrl_base =
    			syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
    							"marvell,system-controller");
    		if (IS_ERR(priv->sysctrl_base))
    			/* The system controller regmap is optional for dt
    			 * compatibility reasons. When not provided, the
    			 * configuration of the GoP relies on the
    			 * firmware/bootloader.
    			 */
    			priv->sysctrl_base = NULL;
    	}
    
    	mvpp2_setup_bm_pool();
    
    	for (i = 0; i < MVPP2_MAX_THREADS; i++) {
    		u32 addr_space_sz;
    
    		addr_space_sz = (priv->hw_version == MVPP21 ?
    				 MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
    		priv->swth_base[i] = base + i * addr_space_sz;
    	}
    
    	if (priv->hw_version == MVPP21)
    		priv->max_port_rxqs = 8;
    	else
    		priv->max_port_rxqs = 32;
    
    	if (dev_of_node(&pdev->dev)) {
    		priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
    		if (IS_ERR(priv->pp_clk))
    			return PTR_ERR(priv->pp_clk);
    		err = clk_prepare_enable(priv->pp_clk);
    		if (err < 0)
    			return err;
    
    		priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
    		if (IS_ERR(priv->gop_clk)) {
    			err = PTR_ERR(priv->gop_clk);
    			goto err_pp_clk;
    		}
    		err = clk_prepare_enable(priv->gop_clk);
    		if (err < 0)
    			goto err_pp_clk;
    
    		if (priv->hw_version == MVPP22) {
    			priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
    			if (IS_ERR(priv->mg_clk)) {
    				err = PTR_ERR(priv->mg_clk);
    				goto err_gop_clk;
    			}
    
    			err = clk_prepare_enable(priv->mg_clk);
    			if (err < 0)
    				goto err_gop_clk;
    
    			priv->mg_core_clk = devm_clk_get(&pdev->dev, "mg_core_clk");
    			if (IS_ERR(priv->mg_core_clk)) {
    				priv->mg_core_clk = NULL;
    			} else {
    				err = clk_prepare_enable(priv->mg_core_clk);
    				if (err < 0)
    					goto err_mg_clk;
    			}
    		}
    
    		priv->axi_clk = devm_clk_get(&pdev->dev, "axi_clk");
    		if (IS_ERR(priv->axi_clk)) {
    			err = PTR_ERR(priv->axi_clk);
    			if (err == -EPROBE_DEFER)
    				goto err_mg_core_clk;
    			priv->axi_clk = NULL;
    		} else {
    			err = clk_prepare_enable(priv->axi_clk);
    			if (err < 0)
    				goto err_mg_core_clk;
    		}
    
    		/* Get system's tclk rate */
    		priv->tclk = clk_get_rate(priv->pp_clk);
    	} else if (device_property_read_u32(&pdev->dev, "clock-frequency",
    					    &priv->tclk)) {
    		dev_err(&pdev->dev, "missing clock-frequency value\n");
    		return -EINVAL;
    	}
    
    	if (priv->hw_version == MVPP22) {
    		err = dma_set_mask(&pdev->dev, MVPP2_DESC_DMA_MASK);
    		if (err)
    			goto err_axi_clk;
    		/* Sadly, the BM pools all share the same register to
    		 * store the high 32 bits of their address. So they
    		 * must all have the same high 32 bits, which forces
    		 * us to restrict coherent memory to DMA_BIT_MASK(32).
    		 */
    		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
    		if (err)
    			goto err_axi_clk;
    	}
    
    	/* Initialize network controller */
    	err = mvpp2_init(pdev, priv);
    	if (err < 0) {
    		dev_err(&pdev->dev, "failed to initialize controller\n");
    		goto err_axi_clk;
    	}
    
    	/* Initialize ports */
    	fwnode_for_each_available_child_node(fwnode, port_fwnode) {
    		err = mvpp2_port_probe(pdev, port_fwnode, priv);
    		if (err < 0)
    			goto err_port_probe;
    	}
    
    	if (priv->port_count == 0) {
    		dev_err(&pdev->dev, "no ports enabled\n");
    		err = -ENODEV;
    		goto err_axi_clk;
    	}
    
    	/* Statistics must be gathered regularly because some of them (like
    	 * packets counters) are 32-bit registers and could overflow quite
    	 * quickly. For instance, a 10Gb link used at full bandwidth with the
    	 * smallest packets (64B) will overflow a 32-bit counter in less than
    	 * 30 seconds. Then, use a workqueue to fill 64-bit counters.
    	 */
    	snprintf(priv->queue_name, sizeof(priv->queue_name),
    		 "stats-wq-%s%s", netdev_name(priv->port_list[0]->dev),
    		 priv->port_count > 1 ? "+" : "");
    	priv->stats_queue = create_singlethread_workqueue(priv->queue_name);
    	if (!priv->stats_queue) {
    		err = -ENOMEM;
    		goto err_port_probe;
    	}
    
    	platform_set_drvdata(pdev, priv);
    	return 0;
    
    err_port_probe:
    	i = 0;
    	fwnode_for_each_available_child_node(fwnode, port_fwnode) {
    		if (priv->port_list[i])
    			mvpp2_port_remove(priv->port_list[i]);
    		i++;
    	}
    err_axi_clk:
    	clk_disable_unprepare(priv->axi_clk);
    
    err_mg_core_clk:
    	if (priv->hw_version == MVPP22)
    		clk_disable_unprepare(priv->mg_core_clk);
    err_mg_clk:
    	if (priv->hw_version == MVPP22)
    		clk_disable_unprepare(priv->mg_clk);
    err_gop_clk:
    	clk_disable_unprepare(priv->gop_clk);
    err_pp_clk:
    	clk_disable_unprepare(priv->pp_clk);
    	return err;
    }
    
    static int mvpp2_remove(struct platform_device *pdev)
    {
    	struct mvpp2 *priv = platform_get_drvdata(pdev);
    	struct fwnode_handle *fwnode = pdev->dev.fwnode;
    	struct fwnode_handle *port_fwnode;
    	int i = 0;
    
    	flush_workqueue(priv->stats_queue);
    	destroy_workqueue(priv->stats_queue);
    
    	fwnode_for_each_available_child_node(fwnode, port_fwnode) {
    		if (priv->port_list[i]) {
    			mutex_destroy(&priv->port_list[i]->gather_stats_lock);
    			mvpp2_port_remove(priv->port_list[i]);
    		}
    		i++;
    	}
    
    	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
    		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
    
    		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
    	}
    
    	for_each_present_cpu(i) {
    		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
    
    		dma_free_coherent(&pdev->dev,
    				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
    				  aggr_txq->descs,
    				  aggr_txq->descs_dma);
    	}
    
    	if (is_acpi_node(port_fwnode))
    		return 0;
    
    	clk_disable_unprepare(priv->axi_clk);
    	clk_disable_unprepare(priv->mg_core_clk);
    	clk_disable_unprepare(priv->mg_clk);
    	clk_disable_unprepare(priv->pp_clk);
    	clk_disable_unprepare(priv->gop_clk);
    
    	return 0;
    }
    
    static const struct of_device_id mvpp2_match[] = {
    	{
    		.compatible = "marvell,armada-375-pp2",
    		.data = (void *)MVPP21,
    	},
    	{
    		.compatible = "marvell,armada-7k-pp22",
    		.data = (void *)MVPP22,
    	},
    	{ }
    };
    MODULE_DEVICE_TABLE(of, mvpp2_match);
    
    static const struct acpi_device_id mvpp2_acpi_match[] = {
    	{ "MRVL0110", MVPP22 },
    	{ },
    };
    MODULE_DEVICE_TABLE(acpi, mvpp2_acpi_match);
    
    static struct platform_driver mvpp2_driver = {
    	.probe = mvpp2_probe,
    	.remove = mvpp2_remove,
    	.driver = {
    		.name = MVPP2_DRIVER_NAME,
    		.of_match_table = mvpp2_match,
    		.acpi_match_table = ACPI_PTR(mvpp2_acpi_match),
    	},
    };
    
    module_platform_driver(mvpp2_driver);
    
    MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
    MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
    MODULE_LICENSE("GPL v2");