Skip to content
Snippets Groups Projects
Select Git revision
  • 49a2ca3175b00e817727c11cfb4d0550c10b1dc0
  • master default protected
  • 3.0
  • develop
  • revert-2069-tripleVersion
  • 3.1
  • rest-protocol
  • feat/remoting_rocketmq
  • dapr-support
  • 1.5
  • 1.4
  • 1.3
  • 1.2
  • 1.1
  • v3.0.3-rc2
  • v3.0.3-rc1
  • v3.0.2
  • v1.5.8
  • v1.5.9-rc1
  • v3.0.1
  • v1.5.8-rc1
  • v3.0.0
  • v3.0.0-rc4-1
  • v3.0.0-rc4
  • v3.0.0-rc3
  • v1.5.7
  • v1.5.7-rc2
  • v3.0.0-rc2
  • remove
  • v1.5.7-rc1
  • v3.0.0-rc1
  • v1.5.7-rc1-tmp
  • 1.5.6
  • v1.5.6
34 results

json.go

Blame
  • file.c 48.17 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/fs.h>
    #include <linux/pagemap.h>
    #include <linux/highmem.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/string.h>
    #include <linux/backing-dev.h>
    #include <linux/mpage.h>
    #include <linux/falloc.h>
    #include <linux/swap.h>
    #include <linux/writeback.h>
    #include <linux/statfs.h>
    #include <linux/compat.h>
    #include <linux/slab.h>
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "ioctl.h"
    #include "print-tree.h"
    #include "tree-log.h"
    #include "locking.h"
    #include "compat.h"
    
    /*
     * when auto defrag is enabled we
     * queue up these defrag structs to remember which
     * inodes need defragging passes
     */
    struct inode_defrag {
    	struct rb_node rb_node;
    	/* objectid */
    	u64 ino;
    	/*
    	 * transid where the defrag was added, we search for
    	 * extents newer than this
    	 */
    	u64 transid;
    
    	/* root objectid */
    	u64 root;
    
    	/* last offset we were able to defrag */
    	u64 last_offset;
    
    	/* if we've wrapped around back to zero once already */
    	int cycled;
    };
    
    /* pop a record for an inode into the defrag tree.  The lock
     * must be held already
     *
     * If you're inserting a record for an older transid than an
     * existing record, the transid already in the tree is lowered
     *
     * If an existing record is found the defrag item you
     * pass in is freed
     */
    static void __btrfs_add_inode_defrag(struct inode *inode,
    				    struct inode_defrag *defrag)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct inode_defrag *entry;
    	struct rb_node **p;
    	struct rb_node *parent = NULL;
    
    	p = &root->fs_info->defrag_inodes.rb_node;
    	while (*p) {
    		parent = *p;
    		entry = rb_entry(parent, struct inode_defrag, rb_node);
    
    		if (defrag->ino < entry->ino)
    			p = &parent->rb_left;
    		else if (defrag->ino > entry->ino)
    			p = &parent->rb_right;
    		else {
    			/* if we're reinserting an entry for
    			 * an old defrag run, make sure to
    			 * lower the transid of our existing record
    			 */
    			if (defrag->transid < entry->transid)
    				entry->transid = defrag->transid;
    			if (defrag->last_offset > entry->last_offset)
    				entry->last_offset = defrag->last_offset;
    			goto exists;
    		}
    	}
    	BTRFS_I(inode)->in_defrag = 1;
    	rb_link_node(&defrag->rb_node, parent, p);
    	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
    	return;
    
    exists:
    	kfree(defrag);
    	return;
    
    }
    
    /*
     * insert a defrag record for this inode if auto defrag is
     * enabled
     */
    int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
    			   struct inode *inode)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct inode_defrag *defrag;
    	u64 transid;
    
    	if (!btrfs_test_opt(root, AUTO_DEFRAG))
    		return 0;
    
    	if (btrfs_fs_closing(root->fs_info))
    		return 0;
    
    	if (BTRFS_I(inode)->in_defrag)
    		return 0;
    
    	if (trans)
    		transid = trans->transid;
    	else
    		transid = BTRFS_I(inode)->root->last_trans;
    
    	defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
    	if (!defrag)
    		return -ENOMEM;
    
    	defrag->ino = btrfs_ino(inode);
    	defrag->transid = transid;
    	defrag->root = root->root_key.objectid;
    
    	spin_lock(&root->fs_info->defrag_inodes_lock);
    	if (!BTRFS_I(inode)->in_defrag)
    		__btrfs_add_inode_defrag(inode, defrag);
    	else
    		kfree(defrag);
    	spin_unlock(&root->fs_info->defrag_inodes_lock);
    	return 0;
    }
    
    /*
     * must be called with the defrag_inodes lock held
     */
    struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
    					     struct rb_node **next)
    {
    	struct inode_defrag *entry = NULL;
    	struct rb_node *p;
    	struct rb_node *parent = NULL;
    
    	p = info->defrag_inodes.rb_node;
    	while (p) {
    		parent = p;
    		entry = rb_entry(parent, struct inode_defrag, rb_node);
    
    		if (ino < entry->ino)
    			p = parent->rb_left;
    		else if (ino > entry->ino)
    			p = parent->rb_right;
    		else
    			return entry;
    	}
    
    	if (next) {
    		while (parent && ino > entry->ino) {
    			parent = rb_next(parent);
    			entry = rb_entry(parent, struct inode_defrag, rb_node);
    		}
    		*next = parent;
    	}
    	return NULL;
    }
    
    /*
     * run through the list of inodes in the FS that need
     * defragging
     */
    int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
    {
    	struct inode_defrag *defrag;
    	struct btrfs_root *inode_root;
    	struct inode *inode;
    	struct rb_node *n;
    	struct btrfs_key key;
    	struct btrfs_ioctl_defrag_range_args range;
    	u64 first_ino = 0;
    	int num_defrag;
    	int defrag_batch = 1024;
    
    	memset(&range, 0, sizeof(range));
    	range.len = (u64)-1;
    
    	atomic_inc(&fs_info->defrag_running);
    	spin_lock(&fs_info->defrag_inodes_lock);
    	while(1) {
    		n = NULL;
    
    		/* find an inode to defrag */
    		defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
    		if (!defrag) {
    			if (n)
    				defrag = rb_entry(n, struct inode_defrag, rb_node);
    			else if (first_ino) {
    				first_ino = 0;
    				continue;
    			} else {
    				break;
    			}
    		}
    
    		/* remove it from the rbtree */
    		first_ino = defrag->ino + 1;
    		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
    
    		if (btrfs_fs_closing(fs_info))
    			goto next_free;
    
    		spin_unlock(&fs_info->defrag_inodes_lock);
    
    		/* get the inode */
    		key.objectid = defrag->root;
    		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
    		key.offset = (u64)-1;
    		inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
    		if (IS_ERR(inode_root))
    			goto next;
    
    		key.objectid = defrag->ino;
    		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
    		key.offset = 0;
    
    		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
    		if (IS_ERR(inode))
    			goto next;
    
    		/* do a chunk of defrag */
    		BTRFS_I(inode)->in_defrag = 0;
    		range.start = defrag->last_offset;
    		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
    					       defrag_batch);
    		/*
    		 * if we filled the whole defrag batch, there
    		 * must be more work to do.  Queue this defrag
    		 * again
    		 */
    		if (num_defrag == defrag_batch) {
    			defrag->last_offset = range.start;
    			__btrfs_add_inode_defrag(inode, defrag);
    			/*
    			 * we don't want to kfree defrag, we added it back to
    			 * the rbtree
    			 */
    			defrag = NULL;
    		} else if (defrag->last_offset && !defrag->cycled) {
    			/*
    			 * we didn't fill our defrag batch, but
    			 * we didn't start at zero.  Make sure we loop
    			 * around to the start of the file.
    			 */
    			defrag->last_offset = 0;
    			defrag->cycled = 1;
    			__btrfs_add_inode_defrag(inode, defrag);
    			defrag = NULL;
    		}
    
    		iput(inode);
    next:
    		spin_lock(&fs_info->defrag_inodes_lock);
    next_free:
    		kfree(defrag);
    	}
    	spin_unlock(&fs_info->defrag_inodes_lock);
    
    	atomic_dec(&fs_info->defrag_running);
    
    	/*
    	 * during unmount, we use the transaction_wait queue to
    	 * wait for the defragger to stop
    	 */
    	wake_up(&fs_info->transaction_wait);
    	return 0;
    }
    
    /* simple helper to fault in pages and copy.  This should go away
     * and be replaced with calls into generic code.
     */
    static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
    					 size_t write_bytes,
    					 struct page **prepared_pages,
    					 struct iov_iter *i)
    {
    	size_t copied = 0;
    	size_t total_copied = 0;
    	int pg = 0;
    	int offset = pos & (PAGE_CACHE_SIZE - 1);
    
    	while (write_bytes > 0) {
    		size_t count = min_t(size_t,
    				     PAGE_CACHE_SIZE - offset, write_bytes);
    		struct page *page = prepared_pages[pg];
    		/*
    		 * Copy data from userspace to the current page
    		 *
    		 * Disable pagefault to avoid recursive lock since
    		 * the pages are already locked
    		 */
    		pagefault_disable();
    		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
    		pagefault_enable();
    
    		/* Flush processor's dcache for this page */
    		flush_dcache_page(page);
    
    		/*
    		 * if we get a partial write, we can end up with
    		 * partially up to date pages.  These add
    		 * a lot of complexity, so make sure they don't
    		 * happen by forcing this copy to be retried.
    		 *
    		 * The rest of the btrfs_file_write code will fall
    		 * back to page at a time copies after we return 0.
    		 */
    		if (!PageUptodate(page) && copied < count)
    			copied = 0;
    
    		iov_iter_advance(i, copied);
    		write_bytes -= copied;
    		total_copied += copied;
    
    		/* Return to btrfs_file_aio_write to fault page */
    		if (unlikely(copied == 0))
    			break;
    
    		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
    			offset += copied;
    		} else {
    			pg++;
    			offset = 0;
    		}
    	}
    	return total_copied;
    }
    
    /*
     * unlocks pages after btrfs_file_write is done with them
     */
    void btrfs_drop_pages(struct page **pages, size_t num_pages)
    {
    	size_t i;
    	for (i = 0; i < num_pages; i++) {
    		/* page checked is some magic around finding pages that
    		 * have been modified without going through btrfs_set_page_dirty
    		 * clear it here
    		 */
    		ClearPageChecked(pages[i]);
    		unlock_page(pages[i]);
    		mark_page_accessed(pages[i]);
    		page_cache_release(pages[i]);
    	}
    }
    
    /*
     * after copy_from_user, pages need to be dirtied and we need to make
     * sure holes are created between the current EOF and the start of
     * any next extents (if required).
     *
     * this also makes the decision about creating an inline extent vs
     * doing real data extents, marking pages dirty and delalloc as required.
     */
    int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
    		      struct page **pages, size_t num_pages,
    		      loff_t pos, size_t write_bytes,
    		      struct extent_state **cached)
    {
    	int err = 0;
    	int i;
    	u64 num_bytes;
    	u64 start_pos;
    	u64 end_of_last_block;
    	u64 end_pos = pos + write_bytes;
    	loff_t isize = i_size_read(inode);
    
    	start_pos = pos & ~((u64)root->sectorsize - 1);
    	num_bytes = (write_bytes + pos - start_pos +
    		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
    
    	end_of_last_block = start_pos + num_bytes - 1;
    	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
    					cached);
    	if (err)
    		return err;
    
    	for (i = 0; i < num_pages; i++) {
    		struct page *p = pages[i];
    		SetPageUptodate(p);
    		ClearPageChecked(p);
    		set_page_dirty(p);
    	}
    
    	/*
    	 * we've only changed i_size in ram, and we haven't updated
    	 * the disk i_size.  There is no need to log the inode
    	 * at this time.
    	 */
    	if (end_pos > isize)
    		i_size_write(inode, end_pos);
    	return 0;
    }
    
    /*
     * this drops all the extents in the cache that intersect the range
     * [start, end].  Existing extents are split as required.
     */
    int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
    			    int skip_pinned)
    {
    	struct extent_map *em;
    	struct extent_map *split = NULL;
    	struct extent_map *split2 = NULL;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	u64 len = end - start + 1;
    	int ret;
    	int testend = 1;
    	unsigned long flags;
    	int compressed = 0;
    
    	WARN_ON(end < start);
    	if (end == (u64)-1) {
    		len = (u64)-1;
    		testend = 0;
    	}
    	while (1) {
    		if (!split)
    			split = alloc_extent_map();
    		if (!split2)
    			split2 = alloc_extent_map();
    		BUG_ON(!split || !split2); /* -ENOMEM */
    
    		write_lock(&em_tree->lock);
    		em = lookup_extent_mapping(em_tree, start, len);
    		if (!em) {
    			write_unlock(&em_tree->lock);
    			break;
    		}
    		flags = em->flags;
    		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
    			if (testend && em->start + em->len >= start + len) {
    				free_extent_map(em);
    				write_unlock(&em_tree->lock);
    				break;
    			}
    			start = em->start + em->len;
    			if (testend)
    				len = start + len - (em->start + em->len);
    			free_extent_map(em);
    			write_unlock(&em_tree->lock);
    			continue;
    		}
    		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
    		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
    		remove_extent_mapping(em_tree, em);
    
    		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
    		    em->start < start) {
    			split->start = em->start;
    			split->len = start - em->start;
    			split->orig_start = em->orig_start;
    			split->block_start = em->block_start;
    
    			if (compressed)
    				split->block_len = em->block_len;
    			else
    				split->block_len = split->len;
    
    			split->bdev = em->bdev;
    			split->flags = flags;
    			split->compress_type = em->compress_type;
    			ret = add_extent_mapping(em_tree, split);
    			BUG_ON(ret); /* Logic error */
    			free_extent_map(split);
    			split = split2;
    			split2 = NULL;
    		}
    		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
    		    testend && em->start + em->len > start + len) {
    			u64 diff = start + len - em->start;
    
    			split->start = start + len;
    			split->len = em->start + em->len - (start + len);
    			split->bdev = em->bdev;
    			split->flags = flags;
    			split->compress_type = em->compress_type;
    
    			if (compressed) {
    				split->block_len = em->block_len;
    				split->block_start = em->block_start;
    				split->orig_start = em->orig_start;
    			} else {
    				split->block_len = split->len;
    				split->block_start = em->block_start + diff;
    				split->orig_start = split->start;
    			}
    
    			ret = add_extent_mapping(em_tree, split);
    			BUG_ON(ret); /* Logic error */
    			free_extent_map(split);
    			split = NULL;
    		}
    		write_unlock(&em_tree->lock);
    
    		/* once for us */
    		free_extent_map(em);
    		/* once for the tree*/
    		free_extent_map(em);
    	}
    	if (split)
    		free_extent_map(split);
    	if (split2)
    		free_extent_map(split2);
    	return 0;
    }
    
    /*
     * this is very complex, but the basic idea is to drop all extents
     * in the range start - end.  hint_block is filled in with a block number
     * that would be a good hint to the block allocator for this file.
     *
     * If an extent intersects the range but is not entirely inside the range
     * it is either truncated or split.  Anything entirely inside the range
     * is deleted from the tree.
     */
    int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
    		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_buffer *leaf;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_path *path;
    	struct btrfs_key key;
    	struct btrfs_key new_key;
    	u64 ino = btrfs_ino(inode);
    	u64 search_start = start;
    	u64 disk_bytenr = 0;
    	u64 num_bytes = 0;
    	u64 extent_offset = 0;
    	u64 extent_end = 0;
    	int del_nr = 0;
    	int del_slot = 0;
    	int extent_type;
    	int recow;
    	int ret;
    	int modify_tree = -1;
    
    	if (drop_cache)
    		btrfs_drop_extent_cache(inode, start, end - 1, 0);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	if (start >= BTRFS_I(inode)->disk_i_size)
    		modify_tree = 0;
    
    	while (1) {
    		recow = 0;
    		ret = btrfs_lookup_file_extent(trans, root, path, ino,
    					       search_start, modify_tree);
    		if (ret < 0)
    			break;
    		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
    			leaf = path->nodes[0];
    			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
    			if (key.objectid == ino &&
    			    key.type == BTRFS_EXTENT_DATA_KEY)
    				path->slots[0]--;
    		}
    		ret = 0;
    next_slot:
    		leaf = path->nodes[0];
    		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
    			BUG_ON(del_nr > 0);
    			ret = btrfs_next_leaf(root, path);
    			if (ret < 0)
    				break;
    			if (ret > 0) {
    				ret = 0;
    				break;
    			}
    			leaf = path->nodes[0];
    			recow = 1;
    		}
    
    		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    		if (key.objectid > ino ||
    		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
    			break;
    
    		fi = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_file_extent_item);
    		extent_type = btrfs_file_extent_type(leaf, fi);
    
    		if (extent_type == BTRFS_FILE_EXTENT_REG ||
    		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
    			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
    			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
    			extent_offset = btrfs_file_extent_offset(leaf, fi);
    			extent_end = key.offset +
    				btrfs_file_extent_num_bytes(leaf, fi);
    		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
    			extent_end = key.offset +
    				btrfs_file_extent_inline_len(leaf, fi);
    		} else {
    			WARN_ON(1);
    			extent_end = search_start;
    		}
    
    		if (extent_end <= search_start) {
    			path->slots[0]++;
    			goto next_slot;
    		}
    
    		search_start = max(key.offset, start);
    		if (recow || !modify_tree) {
    			modify_tree = -1;
    			btrfs_release_path(path);
    			continue;
    		}
    
    		/*
    		 *     | - range to drop - |
    		 *  | -------- extent -------- |
    		 */
    		if (start > key.offset && end < extent_end) {
    			BUG_ON(del_nr > 0);
    			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
    
    			memcpy(&new_key, &key, sizeof(new_key));
    			new_key.offset = start;
    			ret = btrfs_duplicate_item(trans, root, path,
    						   &new_key);
    			if (ret == -EAGAIN) {
    				btrfs_release_path(path);
    				continue;
    			}
    			if (ret < 0)
    				break;
    
    			leaf = path->nodes[0];
    			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
    					    struct btrfs_file_extent_item);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							start - key.offset);
    
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    
    			extent_offset += start - key.offset;
    			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							extent_end - start);
    			btrfs_mark_buffer_dirty(leaf);
    
    			if (disk_bytenr > 0) {
    				ret = btrfs_inc_extent_ref(trans, root,
    						disk_bytenr, num_bytes, 0,
    						root->root_key.objectid,
    						new_key.objectid,
    						start - extent_offset, 0);
    				BUG_ON(ret); /* -ENOMEM */
    				*hint_byte = disk_bytenr;
    			}
    			key.offset = start;
    		}
    		/*
    		 *  | ---- range to drop ----- |
    		 *      | -------- extent -------- |
    		 */
    		if (start <= key.offset && end < extent_end) {
    			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
    
    			memcpy(&new_key, &key, sizeof(new_key));
    			new_key.offset = end;
    			btrfs_set_item_key_safe(trans, root, path, &new_key);
    
    			extent_offset += end - key.offset;
    			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							extent_end - end);
    			btrfs_mark_buffer_dirty(leaf);
    			if (disk_bytenr > 0) {
    				inode_sub_bytes(inode, end - key.offset);
    				*hint_byte = disk_bytenr;
    			}
    			break;
    		}
    
    		search_start = extent_end;
    		/*
    		 *       | ---- range to drop ----- |
    		 *  | -------- extent -------- |
    		 */
    		if (start > key.offset && end >= extent_end) {
    			BUG_ON(del_nr > 0);
    			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
    
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							start - key.offset);
    			btrfs_mark_buffer_dirty(leaf);
    			if (disk_bytenr > 0) {
    				inode_sub_bytes(inode, extent_end - start);
    				*hint_byte = disk_bytenr;
    			}
    			if (end == extent_end)
    				break;
    
    			path->slots[0]++;
    			goto next_slot;
    		}
    
    		/*
    		 *  | ---- range to drop ----- |
    		 *    | ------ extent ------ |
    		 */
    		if (start <= key.offset && end >= extent_end) {
    			if (del_nr == 0) {
    				del_slot = path->slots[0];
    				del_nr = 1;
    			} else {
    				BUG_ON(del_slot + del_nr != path->slots[0]);
    				del_nr++;
    			}
    
    			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
    				inode_sub_bytes(inode,
    						extent_end - key.offset);
    				extent_end = ALIGN(extent_end,
    						   root->sectorsize);
    			} else if (disk_bytenr > 0) {
    				ret = btrfs_free_extent(trans, root,
    						disk_bytenr, num_bytes, 0,
    						root->root_key.objectid,
    						key.objectid, key.offset -
    						extent_offset, 0);
    				BUG_ON(ret); /* -ENOMEM */
    				inode_sub_bytes(inode,
    						extent_end - key.offset);
    				*hint_byte = disk_bytenr;
    			}
    
    			if (end == extent_end)
    				break;
    
    			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
    				path->slots[0]++;
    				goto next_slot;
    			}
    
    			ret = btrfs_del_items(trans, root, path, del_slot,
    					      del_nr);
    			if (ret) {
    				btrfs_abort_transaction(trans, root, ret);
    				goto out;
    			}
    
    			del_nr = 0;
    			del_slot = 0;
    
    			btrfs_release_path(path);
    			continue;
    		}
    
    		BUG_ON(1);
    	}
    
    	if (!ret && del_nr > 0) {
    		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
    		if (ret)
    			btrfs_abort_transaction(trans, root, ret);
    	}
    
    out:
    	btrfs_free_path(path);
    	return ret;
    }
    
    static int extent_mergeable(struct extent_buffer *leaf, int slot,
    			    u64 objectid, u64 bytenr, u64 orig_offset,
    			    u64 *start, u64 *end)
    {
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key key;
    	u64 extent_end;
    
    	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
    		return 0;
    
    	btrfs_item_key_to_cpu(leaf, &key, slot);
    	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
    		return 0;
    
    	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
    	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
    	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
    	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
    	    btrfs_file_extent_compression(leaf, fi) ||
    	    btrfs_file_extent_encryption(leaf, fi) ||
    	    btrfs_file_extent_other_encoding(leaf, fi))
    		return 0;
    
    	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
    	if ((*start && *start != key.offset) || (*end && *end != extent_end))
    		return 0;
    
    	*start = key.offset;
    	*end = extent_end;
    	return 1;
    }
    
    /*
     * Mark extent in the range start - end as written.
     *
     * This changes extent type from 'pre-allocated' to 'regular'. If only
     * part of extent is marked as written, the extent will be split into
     * two or three.
     */
    int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
    			      struct inode *inode, u64 start, u64 end)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_buffer *leaf;
    	struct btrfs_path *path;
    	struct btrfs_file_extent_item *fi;
    	struct btrfs_key key;
    	struct btrfs_key new_key;
    	u64 bytenr;
    	u64 num_bytes;
    	u64 extent_end;
    	u64 orig_offset;
    	u64 other_start;
    	u64 other_end;
    	u64 split;
    	int del_nr = 0;
    	int del_slot = 0;
    	int recow;
    	int ret;
    	u64 ino = btrfs_ino(inode);
    
    	btrfs_drop_extent_cache(inode, start, end - 1, 0);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    again:
    	recow = 0;
    	split = start;
    	key.objectid = ino;
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	key.offset = split;
    
    	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
    	if (ret < 0)
    		goto out;
    	if (ret > 0 && path->slots[0] > 0)
    		path->slots[0]--;
    
    	leaf = path->nodes[0];
    	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
    	fi = btrfs_item_ptr(leaf, path->slots[0],
    			    struct btrfs_file_extent_item);
    	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
    	       BTRFS_FILE_EXTENT_PREALLOC);
    	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
    	BUG_ON(key.offset > start || extent_end < end);
    
    	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
    	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
    	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
    	memcpy(&new_key, &key, sizeof(new_key));
    
    	if (start == key.offset && end < extent_end) {
    		other_start = 0;
    		other_end = start;
    		if (extent_mergeable(leaf, path->slots[0] - 1,
    				     ino, bytenr, orig_offset,
    				     &other_start, &other_end)) {
    			new_key.offset = end;
    			btrfs_set_item_key_safe(trans, root, path, &new_key);
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							extent_end - end);
    			btrfs_set_file_extent_offset(leaf, fi,
    						     end - orig_offset);
    			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
    					    struct btrfs_file_extent_item);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							end - other_start);
    			btrfs_mark_buffer_dirty(leaf);
    			goto out;
    		}
    	}
    
    	if (start > key.offset && end == extent_end) {
    		other_start = end;
    		other_end = 0;
    		if (extent_mergeable(leaf, path->slots[0] + 1,
    				     ino, bytenr, orig_offset,
    				     &other_start, &other_end)) {
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							start - key.offset);
    			path->slots[0]++;
    			new_key.offset = start;
    			btrfs_set_item_key_safe(trans, root, path, &new_key);
    
    			fi = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_file_extent_item);
    			btrfs_set_file_extent_num_bytes(leaf, fi,
    							other_end - start);
    			btrfs_set_file_extent_offset(leaf, fi,
    						     start - orig_offset);
    			btrfs_mark_buffer_dirty(leaf);
    			goto out;
    		}
    	}
    
    	while (start > key.offset || end < extent_end) {
    		if (key.offset == start)
    			split = end;
    
    		new_key.offset = split;
    		ret = btrfs_duplicate_item(trans, root, path, &new_key);
    		if (ret == -EAGAIN) {
    			btrfs_release_path(path);
    			goto again;
    		}
    		if (ret < 0) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto out;
    		}
    
    		leaf = path->nodes[0];
    		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
    				    struct btrfs_file_extent_item);
    		btrfs_set_file_extent_num_bytes(leaf, fi,
    						split - key.offset);
    
    		fi = btrfs_item_ptr(leaf, path->slots[0],
    				    struct btrfs_file_extent_item);
    
    		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
    		btrfs_set_file_extent_num_bytes(leaf, fi,
    						extent_end - split);
    		btrfs_mark_buffer_dirty(leaf);
    
    		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
    					   root->root_key.objectid,
    					   ino, orig_offset, 0);
    		BUG_ON(ret); /* -ENOMEM */
    
    		if (split == start) {
    			key.offset = start;
    		} else {
    			BUG_ON(start != key.offset);
    			path->slots[0]--;
    			extent_end = end;
    		}
    		recow = 1;
    	}
    
    	other_start = end;
    	other_end = 0;
    	if (extent_mergeable(leaf, path->slots[0] + 1,
    			     ino, bytenr, orig_offset,
    			     &other_start, &other_end)) {
    		if (recow) {
    			btrfs_release_path(path);
    			goto again;
    		}
    		extent_end = other_end;
    		del_slot = path->slots[0] + 1;
    		del_nr++;
    		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
    					0, root->root_key.objectid,
    					ino, orig_offset, 0);
    		BUG_ON(ret); /* -ENOMEM */
    	}
    	other_start = 0;
    	other_end = start;
    	if (extent_mergeable(leaf, path->slots[0] - 1,
    			     ino, bytenr, orig_offset,
    			     &other_start, &other_end)) {
    		if (recow) {
    			btrfs_release_path(path);
    			goto again;
    		}
    		key.offset = other_start;
    		del_slot = path->slots[0];
    		del_nr++;
    		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
    					0, root->root_key.objectid,
    					ino, orig_offset, 0);
    		BUG_ON(ret); /* -ENOMEM */
    	}
    	if (del_nr == 0) {
    		fi = btrfs_item_ptr(leaf, path->slots[0],
    			   struct btrfs_file_extent_item);
    		btrfs_set_file_extent_type(leaf, fi,
    					   BTRFS_FILE_EXTENT_REG);
    		btrfs_mark_buffer_dirty(leaf);
    	} else {
    		fi = btrfs_item_ptr(leaf, del_slot - 1,
    			   struct btrfs_file_extent_item);
    		btrfs_set_file_extent_type(leaf, fi,
    					   BTRFS_FILE_EXTENT_REG);
    		btrfs_set_file_extent_num_bytes(leaf, fi,
    						extent_end - key.offset);
    		btrfs_mark_buffer_dirty(leaf);
    
    		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
    		if (ret < 0) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto out;
    		}
    	}
    out:
    	btrfs_free_path(path);
    	return 0;
    }
    
    /*
     * on error we return an unlocked page and the error value
     * on success we return a locked page and 0
     */
    static int prepare_uptodate_page(struct page *page, u64 pos,
    				 bool force_uptodate)
    {
    	int ret = 0;
    
    	if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
    	    !PageUptodate(page)) {
    		ret = btrfs_readpage(NULL, page);
    		if (ret)
    			return ret;
    		lock_page(page);
    		if (!PageUptodate(page)) {
    			unlock_page(page);
    			return -EIO;
    		}
    	}
    	return 0;
    }
    
    /*
     * this gets pages into the page cache and locks them down, it also properly
     * waits for data=ordered extents to finish before allowing the pages to be
     * modified.
     */
    static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
    			 struct page **pages, size_t num_pages,
    			 loff_t pos, unsigned long first_index,
    			 size_t write_bytes, bool force_uptodate)
    {
    	struct extent_state *cached_state = NULL;
    	int i;
    	unsigned long index = pos >> PAGE_CACHE_SHIFT;
    	struct inode *inode = fdentry(file)->d_inode;
    	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
    	int err = 0;
    	int faili = 0;
    	u64 start_pos;
    	u64 last_pos;
    
    	start_pos = pos & ~((u64)root->sectorsize - 1);
    	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
    
    again:
    	for (i = 0; i < num_pages; i++) {
    		pages[i] = find_or_create_page(inode->i_mapping, index + i,
    					       mask | __GFP_WRITE);
    		if (!pages[i]) {
    			faili = i - 1;
    			err = -ENOMEM;
    			goto fail;
    		}
    
    		if (i == 0)
    			err = prepare_uptodate_page(pages[i], pos,
    						    force_uptodate);
    		if (i == num_pages - 1)
    			err = prepare_uptodate_page(pages[i],
    						    pos + write_bytes, false);
    		if (err) {
    			page_cache_release(pages[i]);
    			faili = i - 1;
    			goto fail;
    		}
    		wait_on_page_writeback(pages[i]);
    	}
    	err = 0;
    	if (start_pos < inode->i_size) {
    		struct btrfs_ordered_extent *ordered;
    		lock_extent_bits(&BTRFS_I(inode)->io_tree,
    				 start_pos, last_pos - 1, 0, &cached_state);
    		ordered = btrfs_lookup_first_ordered_extent(inode,
    							    last_pos - 1);
    		if (ordered &&
    		    ordered->file_offset + ordered->len > start_pos &&
    		    ordered->file_offset < last_pos) {
    			btrfs_put_ordered_extent(ordered);
    			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
    					     start_pos, last_pos - 1,
    					     &cached_state, GFP_NOFS);
    			for (i = 0; i < num_pages; i++) {
    				unlock_page(pages[i]);
    				page_cache_release(pages[i]);
    			}
    			btrfs_wait_ordered_range(inode, start_pos,
    						 last_pos - start_pos);
    			goto again;
    		}
    		if (ordered)
    			btrfs_put_ordered_extent(ordered);
    
    		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
    				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
    				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
    				  GFP_NOFS);
    		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
    				     start_pos, last_pos - 1, &cached_state,
    				     GFP_NOFS);
    	}
    	for (i = 0; i < num_pages; i++) {
    		if (clear_page_dirty_for_io(pages[i]))
    			account_page_redirty(pages[i]);
    		set_page_extent_mapped(pages[i]);
    		WARN_ON(!PageLocked(pages[i]));
    	}
    	return 0;
    fail:
    	while (faili >= 0) {
    		unlock_page(pages[faili]);
    		page_cache_release(pages[faili]);
    		faili--;
    	}
    	return err;
    
    }
    
    static noinline ssize_t __btrfs_buffered_write(struct file *file,
    					       struct iov_iter *i,
    					       loff_t pos)
    {
    	struct inode *inode = fdentry(file)->d_inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct page **pages = NULL;
    	unsigned long first_index;
    	size_t num_written = 0;
    	int nrptrs;
    	int ret = 0;
    	bool force_page_uptodate = false;
    
    	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
    		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
    		     (sizeof(struct page *)));
    	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
    	nrptrs = max(nrptrs, 8);
    	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
    	if (!pages)
    		return -ENOMEM;
    
    	first_index = pos >> PAGE_CACHE_SHIFT;
    
    	while (iov_iter_count(i) > 0) {
    		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
    		size_t write_bytes = min(iov_iter_count(i),
    					 nrptrs * (size_t)PAGE_CACHE_SIZE -
    					 offset);
    		size_t num_pages = (write_bytes + offset +
    				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
    		size_t dirty_pages;
    		size_t copied;
    
    		WARN_ON(num_pages > nrptrs);
    
    		/*
    		 * Fault pages before locking them in prepare_pages
    		 * to avoid recursive lock
    		 */
    		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
    			ret = -EFAULT;
    			break;
    		}
    
    		ret = btrfs_delalloc_reserve_space(inode,
    					num_pages << PAGE_CACHE_SHIFT);
    		if (ret)
    			break;
    
    		/*
    		 * This is going to setup the pages array with the number of
    		 * pages we want, so we don't really need to worry about the
    		 * contents of pages from loop to loop
    		 */
    		ret = prepare_pages(root, file, pages, num_pages,
    				    pos, first_index, write_bytes,
    				    force_page_uptodate);
    		if (ret) {
    			btrfs_delalloc_release_space(inode,
    					num_pages << PAGE_CACHE_SHIFT);
    			break;
    		}
    
    		copied = btrfs_copy_from_user(pos, num_pages,
    					   write_bytes, pages, i);
    
    		/*
    		 * if we have trouble faulting in the pages, fall
    		 * back to one page at a time
    		 */
    		if (copied < write_bytes)
    			nrptrs = 1;
    
    		if (copied == 0) {
    			force_page_uptodate = true;
    			dirty_pages = 0;
    		} else {
    			force_page_uptodate = false;
    			dirty_pages = (copied + offset +
    				       PAGE_CACHE_SIZE - 1) >>
    				       PAGE_CACHE_SHIFT;
    		}
    
    		/*
    		 * If we had a short copy we need to release the excess delaloc
    		 * bytes we reserved.  We need to increment outstanding_extents
    		 * because btrfs_delalloc_release_space will decrement it, but
    		 * we still have an outstanding extent for the chunk we actually
    		 * managed to copy.
    		 */
    		if (num_pages > dirty_pages) {
    			if (copied > 0) {
    				spin_lock(&BTRFS_I(inode)->lock);
    				BTRFS_I(inode)->outstanding_extents++;
    				spin_unlock(&BTRFS_I(inode)->lock);
    			}
    			btrfs_delalloc_release_space(inode,
    					(num_pages - dirty_pages) <<
    					PAGE_CACHE_SHIFT);
    		}
    
    		if (copied > 0) {
    			ret = btrfs_dirty_pages(root, inode, pages,
    						dirty_pages, pos, copied,
    						NULL);
    			if (ret) {
    				btrfs_delalloc_release_space(inode,
    					dirty_pages << PAGE_CACHE_SHIFT);
    				btrfs_drop_pages(pages, num_pages);
    				break;
    			}
    		}
    
    		btrfs_drop_pages(pages, num_pages);
    
    		cond_resched();
    
    		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
    						   dirty_pages);
    		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
    			btrfs_btree_balance_dirty(root, 1);
    
    		pos += copied;
    		num_written += copied;
    	}
    
    	kfree(pages);
    
    	return num_written ? num_written : ret;
    }
    
    static ssize_t __btrfs_direct_write(struct kiocb *iocb,
    				    const struct iovec *iov,
    				    unsigned long nr_segs, loff_t pos,
    				    loff_t *ppos, size_t count, size_t ocount)
    {
    	struct file *file = iocb->ki_filp;
    	struct inode *inode = fdentry(file)->d_inode;
    	struct iov_iter i;
    	ssize_t written;
    	ssize_t written_buffered;
    	loff_t endbyte;
    	int err;
    
    	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
    					    count, ocount);
    
    	/*
    	 * the generic O_DIRECT will update in-memory i_size after the
    	 * DIOs are done.  But our endio handlers that update the on
    	 * disk i_size never update past the in memory i_size.  So we
    	 * need one more update here to catch any additions to the
    	 * file
    	 */
    	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
    		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
    		mark_inode_dirty(inode);
    	}
    
    	if (written < 0 || written == count)
    		return written;
    
    	pos += written;
    	count -= written;
    	iov_iter_init(&i, iov, nr_segs, count, written);
    	written_buffered = __btrfs_buffered_write(file, &i, pos);
    	if (written_buffered < 0) {
    		err = written_buffered;
    		goto out;
    	}
    	endbyte = pos + written_buffered - 1;
    	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
    	if (err)
    		goto out;
    	written += written_buffered;
    	*ppos = pos + written_buffered;
    	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
    				 endbyte >> PAGE_CACHE_SHIFT);
    out:
    	return written ? written : err;
    }
    
    static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
    				    const struct iovec *iov,
    				    unsigned long nr_segs, loff_t pos)
    {
    	struct file *file = iocb->ki_filp;
    	struct inode *inode = fdentry(file)->d_inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	loff_t *ppos = &iocb->ki_pos;
    	u64 start_pos;
    	ssize_t num_written = 0;
    	ssize_t err = 0;
    	size_t count, ocount;
    
    	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
    
    	mutex_lock(&inode->i_mutex);
    
    	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
    	if (err) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    	count = ocount;
    
    	current->backing_dev_info = inode->i_mapping->backing_dev_info;
    	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
    	if (err) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	if (count == 0) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	err = file_remove_suid(file);
    	if (err) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	/*
    	 * If BTRFS flips readonly due to some impossible error
    	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
    	 * although we have opened a file as writable, we have
    	 * to stop this write operation to ensure FS consistency.
    	 */
    	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
    		mutex_unlock(&inode->i_mutex);
    		err = -EROFS;
    		goto out;
    	}
    
    	err = btrfs_update_time(file);
    	if (err) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    	BTRFS_I(inode)->sequence++;
    
    	start_pos = round_down(pos, root->sectorsize);
    	if (start_pos > i_size_read(inode)) {
    		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
    		if (err) {
    			mutex_unlock(&inode->i_mutex);
    			goto out;
    		}
    	}
    
    	if (unlikely(file->f_flags & O_DIRECT)) {
    		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
    						   pos, ppos, count, ocount);
    	} else {
    		struct iov_iter i;
    
    		iov_iter_init(&i, iov, nr_segs, count, num_written);
    
    		num_written = __btrfs_buffered_write(file, &i, pos);
    		if (num_written > 0)
    			*ppos = pos + num_written;
    	}
    
    	mutex_unlock(&inode->i_mutex);
    
    	/*
    	 * we want to make sure fsync finds this change
    	 * but we haven't joined a transaction running right now.
    	 *
    	 * Later on, someone is sure to update the inode and get the
    	 * real transid recorded.
    	 *
    	 * We set last_trans now to the fs_info generation + 1,
    	 * this will either be one more than the running transaction
    	 * or the generation used for the next transaction if there isn't
    	 * one running right now.
    	 */
    	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
    	if (num_written > 0 || num_written == -EIOCBQUEUED) {
    		err = generic_write_sync(file, pos, num_written);
    		if (err < 0 && num_written > 0)
    			num_written = err;
    	}
    out:
    	current->backing_dev_info = NULL;
    	return num_written ? num_written : err;
    }
    
    int btrfs_release_file(struct inode *inode, struct file *filp)
    {
    	/*
    	 * ordered_data_close is set by settattr when we are about to truncate
    	 * a file from a non-zero size to a zero size.  This tries to
    	 * flush down new bytes that may have been written if the
    	 * application were using truncate to replace a file in place.
    	 */
    	if (BTRFS_I(inode)->ordered_data_close) {
    		BTRFS_I(inode)->ordered_data_close = 0;
    		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
    		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
    			filemap_flush(inode->i_mapping);
    	}
    	if (filp->private_data)
    		btrfs_ioctl_trans_end(filp);
    	return 0;
    }
    
    /*
     * fsync call for both files and directories.  This logs the inode into
     * the tree log instead of forcing full commits whenever possible.
     *
     * It needs to call filemap_fdatawait so that all ordered extent updates are
     * in the metadata btree are up to date for copying to the log.
     *
     * It drops the inode mutex before doing the tree log commit.  This is an
     * important optimization for directories because holding the mutex prevents
     * new operations on the dir while we write to disk.
     */
    int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
    {
    	struct dentry *dentry = file->f_path.dentry;
    	struct inode *inode = dentry->d_inode;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret = 0;
    	struct btrfs_trans_handle *trans;
    
    	trace_btrfs_sync_file(file, datasync);
    
    	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
    	if (ret)
    		return ret;
    	mutex_lock(&inode->i_mutex);
    
    	/* we wait first, since the writeback may change the inode */
    	root->log_batch++;
    	btrfs_wait_ordered_range(inode, 0, (u64)-1);
    	root->log_batch++;
    
    	/*
    	 * check the transaction that last modified this inode
    	 * and see if its already been committed
    	 */
    	if (!BTRFS_I(inode)->last_trans) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	/*
    	 * if the last transaction that changed this file was before
    	 * the current transaction, we can bail out now without any
    	 * syncing
    	 */
    	smp_mb();
    	if (BTRFS_I(inode)->last_trans <=
    	    root->fs_info->last_trans_committed) {
    		BTRFS_I(inode)->last_trans = 0;
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	/*
    	 * ok we haven't committed the transaction yet, lets do a commit
    	 */
    	if (file->private_data)
    		btrfs_ioctl_trans_end(file);
    
    	trans = btrfs_start_transaction(root, 0);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	ret = btrfs_log_dentry_safe(trans, root, dentry);
    	if (ret < 0) {
    		mutex_unlock(&inode->i_mutex);
    		goto out;
    	}
    
    	/* we've logged all the items and now have a consistent
    	 * version of the file in the log.  It is possible that
    	 * someone will come in and modify the file, but that's
    	 * fine because the log is consistent on disk, and we
    	 * have references to all of the file's extents
    	 *
    	 * It is possible that someone will come in and log the
    	 * file again, but that will end up using the synchronization
    	 * inside btrfs_sync_log to keep things safe.
    	 */
    	mutex_unlock(&inode->i_mutex);
    
    	if (ret != BTRFS_NO_LOG_SYNC) {
    		if (ret > 0) {
    			ret = btrfs_commit_transaction(trans, root);
    		} else {
    			ret = btrfs_sync_log(trans, root);
    			if (ret == 0)
    				ret = btrfs_end_transaction(trans, root);
    			else
    				ret = btrfs_commit_transaction(trans, root);
    		}
    	} else {
    		ret = btrfs_end_transaction(trans, root);
    	}
    out:
    	return ret > 0 ? -EIO : ret;
    }
    
    static const struct vm_operations_struct btrfs_file_vm_ops = {
    	.fault		= filemap_fault,
    	.page_mkwrite	= btrfs_page_mkwrite,
    };
    
    static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
    {
    	struct address_space *mapping = filp->f_mapping;
    
    	if (!mapping->a_ops->readpage)
    		return -ENOEXEC;
    
    	file_accessed(filp);
    	vma->vm_ops = &btrfs_file_vm_ops;
    	vma->vm_flags |= VM_CAN_NONLINEAR;
    
    	return 0;
    }
    
    static long btrfs_fallocate(struct file *file, int mode,
    			    loff_t offset, loff_t len)
    {
    	struct inode *inode = file->f_path.dentry->d_inode;
    	struct extent_state *cached_state = NULL;
    	u64 cur_offset;
    	u64 last_byte;
    	u64 alloc_start;
    	u64 alloc_end;
    	u64 alloc_hint = 0;
    	u64 locked_end;
    	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
    	struct extent_map *em;
    	int ret;
    
    	alloc_start = offset & ~mask;
    	alloc_end =  (offset + len + mask) & ~mask;
    
    	/* We only support the FALLOC_FL_KEEP_SIZE mode */
    	if (mode & ~FALLOC_FL_KEEP_SIZE)
    		return -EOPNOTSUPP;
    
    	/*
    	 * Make sure we have enough space before we do the
    	 * allocation.
    	 */
    	ret = btrfs_check_data_free_space(inode, len);
    	if (ret)
    		return ret;
    
    	/*
    	 * wait for ordered IO before we have any locks.  We'll loop again
    	 * below with the locks held.
    	 */
    	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
    
    	mutex_lock(&inode->i_mutex);
    	ret = inode_newsize_ok(inode, alloc_end);
    	if (ret)
    		goto out;
    
    	if (alloc_start > inode->i_size) {
    		ret = btrfs_cont_expand(inode, i_size_read(inode),
    					alloc_start);
    		if (ret)
    			goto out;
    	}
    
    	locked_end = alloc_end - 1;
    	while (1) {
    		struct btrfs_ordered_extent *ordered;
    
    		/* the extent lock is ordered inside the running
    		 * transaction
    		 */
    		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
    				 locked_end, 0, &cached_state);
    		ordered = btrfs_lookup_first_ordered_extent(inode,
    							    alloc_end - 1);
    		if (ordered &&
    		    ordered->file_offset + ordered->len > alloc_start &&
    		    ordered->file_offset < alloc_end) {
    			btrfs_put_ordered_extent(ordered);
    			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
    					     alloc_start, locked_end,
    					     &cached_state, GFP_NOFS);
    			/*
    			 * we can't wait on the range with the transaction
    			 * running or with the extent lock held
    			 */
    			btrfs_wait_ordered_range(inode, alloc_start,
    						 alloc_end - alloc_start);
    		} else {
    			if (ordered)
    				btrfs_put_ordered_extent(ordered);
    			break;
    		}
    	}
    
    	cur_offset = alloc_start;
    	while (1) {
    		u64 actual_end;
    
    		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
    				      alloc_end - cur_offset, 0);
    		if (IS_ERR_OR_NULL(em)) {
    			if (!em)
    				ret = -ENOMEM;
    			else
    				ret = PTR_ERR(em);
    			break;
    		}
    		last_byte = min(extent_map_end(em), alloc_end);
    		actual_end = min_t(u64, extent_map_end(em), offset + len);
    		last_byte = (last_byte + mask) & ~mask;
    
    		if (em->block_start == EXTENT_MAP_HOLE ||
    		    (cur_offset >= inode->i_size &&
    		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
    			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
    							last_byte - cur_offset,
    							1 << inode->i_blkbits,
    							offset + len,
    							&alloc_hint);
    
    			if (ret < 0) {
    				free_extent_map(em);
    				break;
    			}
    		} else if (actual_end > inode->i_size &&
    			   !(mode & FALLOC_FL_KEEP_SIZE)) {
    			/*
    			 * We didn't need to allocate any more space, but we
    			 * still extended the size of the file so we need to
    			 * update i_size.
    			 */
    			inode->i_ctime = CURRENT_TIME;
    			i_size_write(inode, actual_end);
    			btrfs_ordered_update_i_size(inode, actual_end, NULL);
    		}
    		free_extent_map(em);
    
    		cur_offset = last_byte;
    		if (cur_offset >= alloc_end) {
    			ret = 0;
    			break;
    		}
    	}
    	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
    			     &cached_state, GFP_NOFS);
    out:
    	mutex_unlock(&inode->i_mutex);
    	/* Let go of our reservation. */
    	btrfs_free_reserved_data_space(inode, len);
    	return ret;
    }
    
    static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_map *em;
    	struct extent_state *cached_state = NULL;
    	u64 lockstart = *offset;
    	u64 lockend = i_size_read(inode);
    	u64 start = *offset;
    	u64 orig_start = *offset;
    	u64 len = i_size_read(inode);
    	u64 last_end = 0;
    	int ret = 0;
    
    	lockend = max_t(u64, root->sectorsize, lockend);
    	if (lockend <= lockstart)
    		lockend = lockstart + root->sectorsize;
    
    	len = lockend - lockstart + 1;
    
    	len = max_t(u64, len, root->sectorsize);
    	if (inode->i_size == 0)
    		return -ENXIO;
    
    	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
    			 &cached_state);
    
    	/*
    	 * Delalloc is such a pain.  If we have a hole and we have pending
    	 * delalloc for a portion of the hole we will get back a hole that
    	 * exists for the entire range since it hasn't been actually written
    	 * yet.  So to take care of this case we need to look for an extent just
    	 * before the position we want in case there is outstanding delalloc
    	 * going on here.
    	 */
    	if (origin == SEEK_HOLE && start != 0) {
    		if (start <= root->sectorsize)
    			em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
    						     root->sectorsize, 0);
    		else
    			em = btrfs_get_extent_fiemap(inode, NULL, 0,
    						     start - root->sectorsize,
    						     root->sectorsize, 0);
    		if (IS_ERR(em)) {
    			ret = PTR_ERR(em);
    			goto out;
    		}
    		last_end = em->start + em->len;
    		if (em->block_start == EXTENT_MAP_DELALLOC)
    			last_end = min_t(u64, last_end, inode->i_size);
    		free_extent_map(em);
    	}
    
    	while (1) {
    		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
    		if (IS_ERR(em)) {
    			ret = PTR_ERR(em);
    			break;
    		}
    
    		if (em->block_start == EXTENT_MAP_HOLE) {
    			if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
    				if (last_end <= orig_start) {
    					free_extent_map(em);
    					ret = -ENXIO;
    					break;
    				}
    			}
    
    			if (origin == SEEK_HOLE) {
    				*offset = start;
    				free_extent_map(em);
    				break;
    			}
    		} else {
    			if (origin == SEEK_DATA) {
    				if (em->block_start == EXTENT_MAP_DELALLOC) {
    					if (start >= inode->i_size) {
    						free_extent_map(em);
    						ret = -ENXIO;
    						break;
    					}
    				}
    
    				*offset = start;
    				free_extent_map(em);
    				break;
    			}
    		}
    
    		start = em->start + em->len;
    		last_end = em->start + em->len;
    
    		if (em->block_start == EXTENT_MAP_DELALLOC)
    			last_end = min_t(u64, last_end, inode->i_size);
    
    		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
    			free_extent_map(em);
    			ret = -ENXIO;
    			break;
    		}
    		free_extent_map(em);
    		cond_resched();
    	}
    	if (!ret)
    		*offset = min(*offset, inode->i_size);
    out:
    	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
    			     &cached_state, GFP_NOFS);
    	return ret;
    }
    
    static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
    {
    	struct inode *inode = file->f_mapping->host;
    	int ret;
    
    	mutex_lock(&inode->i_mutex);
    	switch (origin) {
    	case SEEK_END:
    	case SEEK_CUR:
    		offset = generic_file_llseek(file, offset, origin);
    		goto out;
    	case SEEK_DATA:
    	case SEEK_HOLE:
    		if (offset >= i_size_read(inode)) {
    			mutex_unlock(&inode->i_mutex);
    			return -ENXIO;
    		}
    
    		ret = find_desired_extent(inode, &offset, origin);
    		if (ret) {
    			mutex_unlock(&inode->i_mutex);
    			return ret;
    		}
    	}
    
    	if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
    		offset = -EINVAL;
    		goto out;
    	}
    	if (offset > inode->i_sb->s_maxbytes) {
    		offset = -EINVAL;
    		goto out;
    	}
    
    	/* Special lock needed here? */
    	if (offset != file->f_pos) {
    		file->f_pos = offset;
    		file->f_version = 0;
    	}
    out:
    	mutex_unlock(&inode->i_mutex);
    	return offset;
    }
    
    const struct file_operations btrfs_file_operations = {
    	.llseek		= btrfs_file_llseek,
    	.read		= do_sync_read,
    	.write		= do_sync_write,
    	.aio_read       = generic_file_aio_read,
    	.splice_read	= generic_file_splice_read,
    	.aio_write	= btrfs_file_aio_write,
    	.mmap		= btrfs_file_mmap,
    	.open		= generic_file_open,
    	.release	= btrfs_release_file,
    	.fsync		= btrfs_sync_file,
    	.fallocate	= btrfs_fallocate,
    	.unlocked_ioctl	= btrfs_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl	= btrfs_ioctl,
    #endif
    };