Skip to content
Snippets Groups Projects
Select Git revision
  • b513f2014b77c765eacab66aca72aff6f6056148
  • master default protected
  • 3.0
  • develop
  • revert-2069-tripleVersion
  • 3.1
  • rest-protocol
  • feat/remoting_rocketmq
  • dapr-support
  • 1.5
  • 1.4
  • 1.3
  • 1.2
  • 1.1
  • v3.0.3-rc2
  • v3.0.3-rc1
  • v3.0.2
  • v1.5.8
  • v1.5.9-rc1
  • v3.0.1
  • v1.5.8-rc1
  • v3.0.0
  • v3.0.0-rc4-1
  • v3.0.0-rc4
  • v3.0.0-rc3
  • v1.5.7
  • v1.5.7-rc2
  • v3.0.0-rc2
  • remove
  • v1.5.7-rc1
  • v3.0.0-rc1
  • v1.5.7-rc1-tmp
  • 1.5.6
  • v1.5.6
34 results

base_cluster_invoker.go

Blame
  • efi.c 16.17 KiB
    /*
     * efi.c - EFI subsystem
     *
     * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
     * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
     * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
     *
     * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
     * allowing the efivarfs to be mounted or the efivars module to be loaded.
     * The existance of /sys/firmware/efi may also be used by userspace to
     * determine that the system supports EFI.
     *
     * This file is released under the GPLv2.
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/kobject.h>
    #include <linux/module.h>
    #include <linux/init.h>
    #include <linux/device.h>
    #include <linux/efi.h>
    #include <linux/of.h>
    #include <linux/of_fdt.h>
    #include <linux/io.h>
    #include <linux/platform_device.h>
    
    #include <asm/early_ioremap.h>
    
    struct efi __read_mostly efi = {
    	.mps			= EFI_INVALID_TABLE_ADDR,
    	.acpi			= EFI_INVALID_TABLE_ADDR,
    	.acpi20			= EFI_INVALID_TABLE_ADDR,
    	.smbios			= EFI_INVALID_TABLE_ADDR,
    	.smbios3		= EFI_INVALID_TABLE_ADDR,
    	.sal_systab		= EFI_INVALID_TABLE_ADDR,
    	.boot_info		= EFI_INVALID_TABLE_ADDR,
    	.hcdp			= EFI_INVALID_TABLE_ADDR,
    	.uga			= EFI_INVALID_TABLE_ADDR,
    	.uv_systab		= EFI_INVALID_TABLE_ADDR,
    	.fw_vendor		= EFI_INVALID_TABLE_ADDR,
    	.runtime		= EFI_INVALID_TABLE_ADDR,
    	.config_table		= EFI_INVALID_TABLE_ADDR,
    	.esrt			= EFI_INVALID_TABLE_ADDR,
    	.properties_table	= EFI_INVALID_TABLE_ADDR,
    };
    EXPORT_SYMBOL(efi);
    
    static bool disable_runtime;
    static int __init setup_noefi(char *arg)
    {
    	disable_runtime = true;
    	return 0;
    }
    early_param("noefi", setup_noefi);
    
    bool efi_runtime_disabled(void)
    {
    	return disable_runtime;
    }
    
    static int __init parse_efi_cmdline(char *str)
    {
    	if (!str) {
    		pr_warn("need at least one option\n");
    		return -EINVAL;
    	}
    
    	if (parse_option_str(str, "debug"))
    		set_bit(EFI_DBG, &efi.flags);
    
    	if (parse_option_str(str, "noruntime"))
    		disable_runtime = true;
    
    	return 0;
    }
    early_param("efi", parse_efi_cmdline);
    
    struct kobject *efi_kobj;
    
    /*
     * Let's not leave out systab information that snuck into
     * the efivars driver
     */
    static ssize_t systab_show(struct kobject *kobj,
    			   struct kobj_attribute *attr, char *buf)
    {
    	char *str = buf;
    
    	if (!kobj || !buf)
    		return -EINVAL;
    
    	if (efi.mps != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "MPS=0x%lx\n", efi.mps);
    	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
    	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
    	/*
    	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
    	 * SMBIOS3 entry point shall be preferred, so we list it first to
    	 * let applications stop parsing after the first match.
    	 */
    	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
    	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
    	if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
    	if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
    	if (efi.uga != EFI_INVALID_TABLE_ADDR)
    		str += sprintf(str, "UGA=0x%lx\n", efi.uga);
    
    	return str - buf;
    }
    
    static struct kobj_attribute efi_attr_systab =
    			__ATTR(systab, 0400, systab_show, NULL);
    
    #define EFI_FIELD(var) efi.var
    
    #define EFI_ATTR_SHOW(name) \
    static ssize_t name##_show(struct kobject *kobj, \
    				struct kobj_attribute *attr, char *buf) \
    { \
    	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
    }
    
    EFI_ATTR_SHOW(fw_vendor);
    EFI_ATTR_SHOW(runtime);
    EFI_ATTR_SHOW(config_table);
    
    static ssize_t fw_platform_size_show(struct kobject *kobj,
    				     struct kobj_attribute *attr, char *buf)
    {
    	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
    }
    
    static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
    static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
    static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
    static struct kobj_attribute efi_attr_fw_platform_size =
    	__ATTR_RO(fw_platform_size);
    
    static struct attribute *efi_subsys_attrs[] = {
    	&efi_attr_systab.attr,
    	&efi_attr_fw_vendor.attr,
    	&efi_attr_runtime.attr,
    	&efi_attr_config_table.attr,
    	&efi_attr_fw_platform_size.attr,
    	NULL,
    };
    
    static umode_t efi_attr_is_visible(struct kobject *kobj,
    				   struct attribute *attr, int n)
    {
    	if (attr == &efi_attr_fw_vendor.attr) {
    		if (efi_enabled(EFI_PARAVIRT) ||
    				efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
    			return 0;
    	} else if (attr == &efi_attr_runtime.attr) {
    		if (efi.runtime == EFI_INVALID_TABLE_ADDR)
    			return 0;
    	} else if (attr == &efi_attr_config_table.attr) {
    		if (efi.config_table == EFI_INVALID_TABLE_ADDR)
    			return 0;
    	}
    
    	return attr->mode;
    }
    
    static struct attribute_group efi_subsys_attr_group = {
    	.attrs = efi_subsys_attrs,
    	.is_visible = efi_attr_is_visible,
    };
    
    static struct efivars generic_efivars;
    static struct efivar_operations generic_ops;
    
    static int generic_ops_register(void)
    {
    	generic_ops.get_variable = efi.get_variable;
    	generic_ops.set_variable = efi.set_variable;
    	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
    	generic_ops.get_next_variable = efi.get_next_variable;
    	generic_ops.query_variable_store = efi_query_variable_store;
    
    	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
    }
    
    static void generic_ops_unregister(void)
    {
    	efivars_unregister(&generic_efivars);
    }
    
    /*
     * We register the efi subsystem with the firmware subsystem and the
     * efivars subsystem with the efi subsystem, if the system was booted with
     * EFI.
     */
    static int __init efisubsys_init(void)
    {
    	int error;
    
    	if (!efi_enabled(EFI_BOOT))
    		return 0;
    
    	/* We register the efi directory at /sys/firmware/efi */
    	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
    	if (!efi_kobj) {
    		pr_err("efi: Firmware registration failed.\n");
    		return -ENOMEM;
    	}
    
    	error = generic_ops_register();
    	if (error)
    		goto err_put;
    
    	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
    	if (error) {
    		pr_err("efi: Sysfs attribute export failed with error %d.\n",
    		       error);
    		goto err_unregister;
    	}
    
    	error = efi_runtime_map_init(efi_kobj);
    	if (error)
    		goto err_remove_group;
    
    	/* and the standard mountpoint for efivarfs */
    	error = sysfs_create_mount_point(efi_kobj, "efivars");
    	if (error) {
    		pr_err("efivars: Subsystem registration failed.\n");
    		goto err_remove_group;
    	}
    
    	return 0;
    
    err_remove_group:
    	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
    err_unregister:
    	generic_ops_unregister();
    err_put:
    	kobject_put(efi_kobj);
    	return error;
    }
    
    subsys_initcall(efisubsys_init);
    
    /*
     * Find the efi memory descriptor for a given physical address.  Given a
     * physicall address, determine if it exists within an EFI Memory Map entry,
     * and if so, populate the supplied memory descriptor with the appropriate
     * data.
     */
    int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
    {
    	struct efi_memory_map *map = efi.memmap;
    	phys_addr_t p, e;
    
    	if (!efi_enabled(EFI_MEMMAP)) {
    		pr_err_once("EFI_MEMMAP is not enabled.\n");
    		return -EINVAL;
    	}
    
    	if (!map) {
    		pr_err_once("efi.memmap is not set.\n");
    		return -EINVAL;
    	}
    	if (!out_md) {
    		pr_err_once("out_md is null.\n");
    		return -EINVAL;
            }
    	if (WARN_ON_ONCE(!map->phys_map))
    		return -EINVAL;
    	if (WARN_ON_ONCE(map->nr_map == 0) || WARN_ON_ONCE(map->desc_size == 0))
    		return -EINVAL;
    
    	e = map->phys_map + map->nr_map * map->desc_size;
    	for (p = map->phys_map; p < e; p += map->desc_size) {
    		efi_memory_desc_t *md;
    		u64 size;
    		u64 end;
    
    		/*
    		 * If a driver calls this after efi_free_boot_services,
    		 * ->map will be NULL, and the target may also not be mapped.
    		 * So just always get our own virtual map on the CPU.
    		 *
    		 */
    		md = early_memremap(p, sizeof (*md));
    		if (!md) {
    			pr_err_once("early_memremap(%pa, %zu) failed.\n",
    				    &p, sizeof (*md));
    			return -ENOMEM;
    		}
    
    		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
    		    md->type != EFI_BOOT_SERVICES_DATA &&
    		    md->type != EFI_RUNTIME_SERVICES_DATA) {
    			early_memunmap(md, sizeof (*md));
    			continue;
    		}
    
    		size = md->num_pages << EFI_PAGE_SHIFT;
    		end = md->phys_addr + size;
    		if (phys_addr >= md->phys_addr && phys_addr < end) {
    			memcpy(out_md, md, sizeof(*out_md));
    			early_memunmap(md, sizeof (*md));
    			return 0;
    		}
    
    		early_memunmap(md, sizeof (*md));
    	}
    	pr_err_once("requested map not found.\n");
    	return -ENOENT;
    }
    
    /*
     * Calculate the highest address of an efi memory descriptor.
     */
    u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
    {
    	u64 size = md->num_pages << EFI_PAGE_SHIFT;
    	u64 end = md->phys_addr + size;
    	return end;
    }
    
    static __initdata efi_config_table_type_t common_tables[] = {
    	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
    	{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
    	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
    	{MPS_TABLE_GUID, "MPS", &efi.mps},
    	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
    	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
    	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
    	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
    	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
    	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
    	{NULL_GUID, NULL, NULL},
    };
    
    static __init int match_config_table(efi_guid_t *guid,
    				     unsigned long table,
    				     efi_config_table_type_t *table_types)
    {
    	int i;
    
    	if (table_types) {
    		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
    			if (!efi_guidcmp(*guid, table_types[i].guid)) {
    				*(table_types[i].ptr) = table;
    				pr_cont(" %s=0x%lx ",
    					table_types[i].name, table);
    				return 1;
    			}
    		}
    	}
    
    	return 0;
    }
    
    int __init efi_config_parse_tables(void *config_tables, int count, int sz,
    				   efi_config_table_type_t *arch_tables)
    {
    	void *tablep;
    	int i;
    
    	tablep = config_tables;
    	pr_info("");
    	for (i = 0; i < count; i++) {
    		efi_guid_t guid;
    		unsigned long table;
    
    		if (efi_enabled(EFI_64BIT)) {
    			u64 table64;
    			guid = ((efi_config_table_64_t *)tablep)->guid;
    			table64 = ((efi_config_table_64_t *)tablep)->table;
    			table = table64;
    #ifndef CONFIG_64BIT
    			if (table64 >> 32) {
    				pr_cont("\n");
    				pr_err("Table located above 4GB, disabling EFI.\n");
    				return -EINVAL;
    			}
    #endif
    		} else {
    			guid = ((efi_config_table_32_t *)tablep)->guid;
    			table = ((efi_config_table_32_t *)tablep)->table;
    		}
    
    		if (!match_config_table(&guid, table, common_tables))
    			match_config_table(&guid, table, arch_tables);
    
    		tablep += sz;
    	}
    	pr_cont("\n");
    	set_bit(EFI_CONFIG_TABLES, &efi.flags);
    
    	/* Parse the EFI Properties table if it exists */
    	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
    		efi_properties_table_t *tbl;
    
    		tbl = early_memremap(efi.properties_table, sizeof(*tbl));
    		if (tbl == NULL) {
    			pr_err("Could not map Properties table!\n");
    			return -ENOMEM;
    		}
    
    		if (tbl->memory_protection_attribute &
    		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
    			set_bit(EFI_NX_PE_DATA, &efi.flags);
    
    		early_memunmap(tbl, sizeof(*tbl));
    	}
    
    	return 0;
    }
    
    int __init efi_config_init(efi_config_table_type_t *arch_tables)
    {
    	void *config_tables;
    	int sz, ret;
    
    	if (efi_enabled(EFI_64BIT))
    		sz = sizeof(efi_config_table_64_t);
    	else
    		sz = sizeof(efi_config_table_32_t);
    
    	/*
    	 * Let's see what config tables the firmware passed to us.
    	 */
    	config_tables = early_memremap(efi.systab->tables,
    				       efi.systab->nr_tables * sz);
    	if (config_tables == NULL) {
    		pr_err("Could not map Configuration table!\n");
    		return -ENOMEM;
    	}
    
    	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
    				      arch_tables);
    
    	early_memunmap(config_tables, efi.systab->nr_tables * sz);
    	return ret;
    }
    
    #ifdef CONFIG_EFI_VARS_MODULE
    static int __init efi_load_efivars(void)
    {
    	struct platform_device *pdev;
    
    	if (!efi_enabled(EFI_RUNTIME_SERVICES))
    		return 0;
    
    	pdev = platform_device_register_simple("efivars", 0, NULL, 0);
    	return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
    }
    device_initcall(efi_load_efivars);
    #endif
    
    #ifdef CONFIG_EFI_PARAMS_FROM_FDT
    
    #define UEFI_PARAM(name, prop, field)			   \
    	{						   \
    		{ name },				   \
    		{ prop },				   \
    		offsetof(struct efi_fdt_params, field),    \
    		FIELD_SIZEOF(struct efi_fdt_params, field) \
    	}
    
    static __initdata struct {
    	const char name[32];
    	const char propname[32];
    	int offset;
    	int size;
    } dt_params[] = {
    	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
    	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
    	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
    	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
    	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
    };
    
    struct param_info {
    	int found;
    	void *params;
    };
    
    static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
    				       int depth, void *data)
    {
    	struct param_info *info = data;
    	const void *prop;
    	void *dest;
    	u64 val;
    	int i, len;
    
    	if (depth != 1 || strcmp(uname, "chosen") != 0)
    		return 0;
    
    	for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
    		prop = of_get_flat_dt_prop(node, dt_params[i].propname, &len);
    		if (!prop)
    			return 0;
    		dest = info->params + dt_params[i].offset;
    		info->found++;
    
    		val = of_read_number(prop, len / sizeof(u32));
    
    		if (dt_params[i].size == sizeof(u32))
    			*(u32 *)dest = val;
    		else
    			*(u64 *)dest = val;
    
    		if (efi_enabled(EFI_DBG))
    			pr_info("  %s: 0x%0*llx\n", dt_params[i].name,
    				dt_params[i].size * 2, val);
    	}
    	return 1;
    }
    
    int __init efi_get_fdt_params(struct efi_fdt_params *params)
    {
    	struct param_info info;
    	int ret;
    
    	pr_info("Getting EFI parameters from FDT:\n");
    
    	info.found = 0;
    	info.params = params;
    
    	ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
    	if (!info.found)
    		pr_info("UEFI not found.\n");
    	else if (!ret)
    		pr_err("Can't find '%s' in device tree!\n",
    		       dt_params[info.found].name);
    
    	return ret;
    }
    #endif /* CONFIG_EFI_PARAMS_FROM_FDT */
    
    static __initdata char memory_type_name[][20] = {
    	"Reserved",
    	"Loader Code",
    	"Loader Data",
    	"Boot Code",
    	"Boot Data",
    	"Runtime Code",
    	"Runtime Data",
    	"Conventional Memory",
    	"Unusable Memory",
    	"ACPI Reclaim Memory",
    	"ACPI Memory NVS",
    	"Memory Mapped I/O",
    	"MMIO Port Space",
    	"PAL Code",
    	"Persistent Memory",
    };
    
    char * __init efi_md_typeattr_format(char *buf, size_t size,
    				     const efi_memory_desc_t *md)
    {
    	char *pos;
    	int type_len;
    	u64 attr;
    
    	pos = buf;
    	if (md->type >= ARRAY_SIZE(memory_type_name))
    		type_len = snprintf(pos, size, "[type=%u", md->type);
    	else
    		type_len = snprintf(pos, size, "[%-*s",
    				    (int)(sizeof(memory_type_name[0]) - 1),
    				    memory_type_name[md->type]);
    	if (type_len >= size)
    		return buf;
    
    	pos += type_len;
    	size -= type_len;
    
    	attr = md->attribute;
    	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
    		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
    		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
    		     EFI_MEMORY_NV |
    		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
    		snprintf(pos, size, "|attr=0x%016llx]",
    			 (unsigned long long)attr);
    	else
    		snprintf(pos, size,
    			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
    			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
    			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
    			 attr & EFI_MEMORY_NV      ? "NV"  : "",
    			 attr & EFI_MEMORY_XP      ? "XP"  : "",
    			 attr & EFI_MEMORY_RP      ? "RP"  : "",
    			 attr & EFI_MEMORY_WP      ? "WP"  : "",
    			 attr & EFI_MEMORY_RO      ? "RO"  : "",
    			 attr & EFI_MEMORY_UCE     ? "UCE" : "",
    			 attr & EFI_MEMORY_WB      ? "WB"  : "",
    			 attr & EFI_MEMORY_WT      ? "WT"  : "",
    			 attr & EFI_MEMORY_WC      ? "WC"  : "",
    			 attr & EFI_MEMORY_UC      ? "UC"  : "");
    	return buf;
    }
    
    /*
     * efi_mem_attributes - lookup memmap attributes for physical address
     * @phys_addr: the physical address to lookup
     *
     * Search in the EFI memory map for the region covering
     * @phys_addr. Returns the EFI memory attributes if the region
     * was found in the memory map, 0 otherwise.
     *
     * Despite being marked __weak, most architectures should *not*
     * override this function. It is __weak solely for the benefit
     * of ia64 which has a funky EFI memory map that doesn't work
     * the same way as other architectures.
     */
    u64 __weak efi_mem_attributes(unsigned long phys_addr)
    {
    	efi_memory_desc_t *md;
    
    	if (!efi_enabled(EFI_MEMMAP))
    		return 0;
    
    	for_each_efi_memory_desc(md) {
    		if ((md->phys_addr <= phys_addr) &&
    		    (phys_addr < (md->phys_addr +
    		    (md->num_pages << EFI_PAGE_SHIFT))))
    			return md->attribute;
    	}
    	return 0;
    }