Skip to content
Snippets Groups Projects
Select Git revision
  • 69b5086b12cda645d95f00575c25f1dfd1e929ad
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS-Ascend
  • openEuler-22.03-LTS
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
  • 5.10.0-106.16.0
  • 5.10.0-106.15.0
  • 5.10.0-117.0.0
  • 5.10.0-60.57.0
33 results

memblock.c

Blame
  • memblock.c 50.72 KiB
    /*
     * Procedures for maintaining information about logical memory blocks.
     *
     * Peter Bergner, IBM Corp.	June 2001.
     * Copyright (C) 2001 Peter Bergner.
     *
     *      This program is free software; you can redistribute it and/or
     *      modify it under the terms of the GNU General Public License
     *      as published by the Free Software Foundation; either version
     *      2 of the License, or (at your option) any later version.
     */
    
    #include <linux/kernel.h>
    #include <linux/slab.h>
    #include <linux/init.h>
    #include <linux/bitops.h>
    #include <linux/poison.h>
    #include <linux/pfn.h>
    #include <linux/debugfs.h>
    #include <linux/kmemleak.h>
    #include <linux/seq_file.h>
    #include <linux/memblock.h>
    #include <linux/bootmem.h>
    
    #include <asm/sections.h>
    #include <linux/io.h>
    
    #include "internal.h"
    
    static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
    static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
    #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
    #endif
    
    struct memblock memblock __initdata_memblock = {
    	.memory.regions		= memblock_memory_init_regions,
    	.memory.cnt		= 1,	/* empty dummy entry */
    	.memory.max		= INIT_MEMBLOCK_REGIONS,
    	.memory.name		= "memory",
    
    	.reserved.regions	= memblock_reserved_init_regions,
    	.reserved.cnt		= 1,	/* empty dummy entry */
    	.reserved.max		= INIT_MEMBLOCK_REGIONS,
    	.reserved.name		= "reserved",
    
    #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    	.physmem.regions	= memblock_physmem_init_regions,
    	.physmem.cnt		= 1,	/* empty dummy entry */
    	.physmem.max		= INIT_PHYSMEM_REGIONS,
    	.physmem.name		= "physmem",
    #endif
    
    	.bottom_up		= false,
    	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
    };
    
    int memblock_debug __initdata_memblock;
    static bool system_has_some_mirror __initdata_memblock = false;
    static int memblock_can_resize __initdata_memblock;
    static int memblock_memory_in_slab __initdata_memblock = 0;
    static int memblock_reserved_in_slab __initdata_memblock = 0;
    
    ulong __init_memblock choose_memblock_flags(void)
    {
    	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
    }
    
    /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
    static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
    {
    	return *size = min(*size, PHYS_ADDR_MAX - base);
    }
    
    /*
     * Address comparison utilities
     */
    static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
    				       phys_addr_t base2, phys_addr_t size2)
    {
    	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
    }
    
    bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
    					phys_addr_t base, phys_addr_t size)
    {
    	unsigned long i;
    
    	for (i = 0; i < type->cnt; i++)
    		if (memblock_addrs_overlap(base, size, type->regions[i].base,
    					   type->regions[i].size))
    			break;
    	return i < type->cnt;
    }
    
    /*
     * __memblock_find_range_bottom_up - find free area utility in bottom-up
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @size: size of free area to find
     * @align: alignment of free area to find
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     * @flags: pick from blocks based on memory attributes
     *
     * Utility called from memblock_find_in_range_node(), find free area bottom-up.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    static phys_addr_t __init_memblock
    __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
    				phys_addr_t size, phys_addr_t align, int nid,
    				ulong flags)
    {
    	phys_addr_t this_start, this_end, cand;
    	u64 i;
    
    	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
    		this_start = clamp(this_start, start, end);
    		this_end = clamp(this_end, start, end);
    
    		cand = round_up(this_start, align);
    		if (cand < this_end && this_end - cand >= size)
    			return cand;
    	}
    
    	return 0;
    }
    
    /**
     * __memblock_find_range_top_down - find free area utility, in top-down
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @size: size of free area to find
     * @align: alignment of free area to find
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     * @flags: pick from blocks based on memory attributes
     *
     * Utility called from memblock_find_in_range_node(), find free area top-down.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    static phys_addr_t __init_memblock
    __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
    			       phys_addr_t size, phys_addr_t align, int nid,
    			       ulong flags)
    {
    	phys_addr_t this_start, this_end, cand;
    	u64 i;
    
    	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
    					NULL) {
    		this_start = clamp(this_start, start, end);
    		this_end = clamp(this_end, start, end);
    
    		if (this_end < size)
    			continue;
    
    		cand = round_down(this_end - size, align);
    		if (cand >= this_start)
    			return cand;
    	}
    
    	return 0;
    }
    
    /**
     * memblock_find_in_range_node - find free area in given range and node
     * @size: size of free area to find
     * @align: alignment of free area to find
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     * @flags: pick from blocks based on memory attributes
     *
     * Find @size free area aligned to @align in the specified range and node.
     *
     * When allocation direction is bottom-up, the @start should be greater
     * than the end of the kernel image. Otherwise, it will be trimmed. The
     * reason is that we want the bottom-up allocation just near the kernel
     * image so it is highly likely that the allocated memory and the kernel
     * will reside in the same node.
     *
     * If bottom-up allocation failed, will try to allocate memory top-down.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
    					phys_addr_t align, phys_addr_t start,
    					phys_addr_t end, int nid, ulong flags)
    {
    	phys_addr_t kernel_end, ret;
    
    	/* pump up @end */
    	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
    		end = memblock.current_limit;
    
    	/* avoid allocating the first page */
    	start = max_t(phys_addr_t, start, PAGE_SIZE);
    	end = max(start, end);
    	kernel_end = __pa_symbol(_end);
    
    	/*
    	 * try bottom-up allocation only when bottom-up mode
    	 * is set and @end is above the kernel image.
    	 */
    	if (memblock_bottom_up() && end > kernel_end) {
    		phys_addr_t bottom_up_start;
    
    		/* make sure we will allocate above the kernel */
    		bottom_up_start = max(start, kernel_end);
    
    		/* ok, try bottom-up allocation first */
    		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
    						      size, align, nid, flags);
    		if (ret)
    			return ret;
    
    		/*
    		 * we always limit bottom-up allocation above the kernel,
    		 * but top-down allocation doesn't have the limit, so
    		 * retrying top-down allocation may succeed when bottom-up
    		 * allocation failed.
    		 *
    		 * bottom-up allocation is expected to be fail very rarely,
    		 * so we use WARN_ONCE() here to see the stack trace if
    		 * fail happens.
    		 */
    		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
    	}
    
    	return __memblock_find_range_top_down(start, end, size, align, nid,
    					      flags);
    }
    
    /**
     * memblock_find_in_range - find free area in given range
     * @start: start of candidate range
     * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
     * @size: size of free area to find
     * @align: alignment of free area to find
     *
     * Find @size free area aligned to @align in the specified range.
     *
     * RETURNS:
     * Found address on success, 0 on failure.
     */
    phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
    					phys_addr_t end, phys_addr_t size,
    					phys_addr_t align)
    {
    	phys_addr_t ret;
    	ulong flags = choose_memblock_flags();
    
    again:
    	ret = memblock_find_in_range_node(size, align, start, end,
    					    NUMA_NO_NODE, flags);
    
    	if (!ret && (flags & MEMBLOCK_MIRROR)) {
    		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
    			&size);
    		flags &= ~MEMBLOCK_MIRROR;
    		goto again;
    	}
    
    	return ret;
    }
    
    static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
    {
    	type->total_size -= type->regions[r].size;
    	memmove(&type->regions[r], &type->regions[r + 1],
    		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
    	type->cnt--;
    
    	/* Special case for empty arrays */
    	if (type->cnt == 0) {
    		WARN_ON(type->total_size != 0);
    		type->cnt = 1;
    		type->regions[0].base = 0;
    		type->regions[0].size = 0;
    		type->regions[0].flags = 0;
    		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
    	}
    }
    
    #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
    /**
     * Discard memory and reserved arrays if they were allocated
     */
    void __init memblock_discard(void)
    {
    	phys_addr_t addr, size;
    
    	if (memblock.reserved.regions != memblock_reserved_init_regions) {
    		addr = __pa(memblock.reserved.regions);
    		size = PAGE_ALIGN(sizeof(struct memblock_region) *
    				  memblock.reserved.max);
    		__memblock_free_late(addr, size);
    	}
    
    	if (memblock.memory.regions != memblock_memory_init_regions) {
    		addr = __pa(memblock.memory.regions);
    		size = PAGE_ALIGN(sizeof(struct memblock_region) *
    				  memblock.memory.max);
    		__memblock_free_late(addr, size);
    	}
    }
    #endif
    
    /**
     * memblock_double_array - double the size of the memblock regions array
     * @type: memblock type of the regions array being doubled
     * @new_area_start: starting address of memory range to avoid overlap with
     * @new_area_size: size of memory range to avoid overlap with
     *
     * Double the size of the @type regions array. If memblock is being used to
     * allocate memory for a new reserved regions array and there is a previously
     * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
     * waiting to be reserved, ensure the memory used by the new array does
     * not overlap.
     *
     * RETURNS:
     * 0 on success, -1 on failure.
     */
    static int __init_memblock memblock_double_array(struct memblock_type *type,
    						phys_addr_t new_area_start,
    						phys_addr_t new_area_size)
    {
    	struct memblock_region *new_array, *old_array;
    	phys_addr_t old_alloc_size, new_alloc_size;
    	phys_addr_t old_size, new_size, addr;
    	int use_slab = slab_is_available();
    	int *in_slab;
    
    	/* We don't allow resizing until we know about the reserved regions
    	 * of memory that aren't suitable for allocation
    	 */
    	if (!memblock_can_resize)
    		return -1;
    
    	/* Calculate new doubled size */
    	old_size = type->max * sizeof(struct memblock_region);
    	new_size = old_size << 1;
    	/*
    	 * We need to allocated new one align to PAGE_SIZE,
    	 *   so we can free them completely later.
    	 */
    	old_alloc_size = PAGE_ALIGN(old_size);
    	new_alloc_size = PAGE_ALIGN(new_size);
    
    	/* Retrieve the slab flag */
    	if (type == &memblock.memory)
    		in_slab = &memblock_memory_in_slab;
    	else
    		in_slab = &memblock_reserved_in_slab;
    
    	/* Try to find some space for it.
    	 *
    	 * WARNING: We assume that either slab_is_available() and we use it or
    	 * we use MEMBLOCK for allocations. That means that this is unsafe to
    	 * use when bootmem is currently active (unless bootmem itself is
    	 * implemented on top of MEMBLOCK which isn't the case yet)
    	 *
    	 * This should however not be an issue for now, as we currently only
    	 * call into MEMBLOCK while it's still active, or much later when slab
    	 * is active for memory hotplug operations
    	 */
    	if (use_slab) {
    		new_array = kmalloc(new_size, GFP_KERNEL);
    		addr = new_array ? __pa(new_array) : 0;
    	} else {
    		/* only exclude range when trying to double reserved.regions */
    		if (type != &memblock.reserved)
    			new_area_start = new_area_size = 0;
    
    		addr = memblock_find_in_range(new_area_start + new_area_size,
    						memblock.current_limit,
    						new_alloc_size, PAGE_SIZE);
    		if (!addr && new_area_size)
    			addr = memblock_find_in_range(0,
    				min(new_area_start, memblock.current_limit),
    				new_alloc_size, PAGE_SIZE);
    
    		new_array = addr ? __va(addr) : NULL;
    	}
    	if (!addr) {
    		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
    		       type->name, type->max, type->max * 2);
    		return -1;
    	}
    
    	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
    			type->name, type->max * 2, (u64)addr,
    			(u64)addr + new_size - 1);
    
    	/*
    	 * Found space, we now need to move the array over before we add the
    	 * reserved region since it may be our reserved array itself that is
    	 * full.
    	 */
    	memcpy(new_array, type->regions, old_size);
    	memset(new_array + type->max, 0, old_size);
    	old_array = type->regions;
    	type->regions = new_array;
    	type->max <<= 1;
    
    	/* Free old array. We needn't free it if the array is the static one */
    	if (*in_slab)
    		kfree(old_array);
    	else if (old_array != memblock_memory_init_regions &&
    		 old_array != memblock_reserved_init_regions)
    		memblock_free(__pa(old_array), old_alloc_size);
    
    	/*
    	 * Reserve the new array if that comes from the memblock.  Otherwise, we
    	 * needn't do it
    	 */
    	if (!use_slab)
    		BUG_ON(memblock_reserve(addr, new_alloc_size));
    
    	/* Update slab flag */
    	*in_slab = use_slab;
    
    	return 0;
    }
    
    /**
     * memblock_merge_regions - merge neighboring compatible regions
     * @type: memblock type to scan
     *
     * Scan @type and merge neighboring compatible regions.
     */
    static void __init_memblock memblock_merge_regions(struct memblock_type *type)
    {
    	int i = 0;
    
    	/* cnt never goes below 1 */
    	while (i < type->cnt - 1) {
    		struct memblock_region *this = &type->regions[i];
    		struct memblock_region *next = &type->regions[i + 1];
    
    		if (this->base + this->size != next->base ||
    		    memblock_get_region_node(this) !=
    		    memblock_get_region_node(next) ||
    		    this->flags != next->flags) {
    			BUG_ON(this->base + this->size > next->base);
    			i++;
    			continue;
    		}
    
    		this->size += next->size;
    		/* move forward from next + 1, index of which is i + 2 */
    		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
    		type->cnt--;
    	}
    }
    
    /**
     * memblock_insert_region - insert new memblock region
     * @type:	memblock type to insert into
     * @idx:	index for the insertion point
     * @base:	base address of the new region
     * @size:	size of the new region
     * @nid:	node id of the new region
     * @flags:	flags of the new region
     *
     * Insert new memblock region [@base,@base+@size) into @type at @idx.
     * @type must already have extra room to accommodate the new region.
     */
    static void __init_memblock memblock_insert_region(struct memblock_type *type,
    						   int idx, phys_addr_t base,
    						   phys_addr_t size,
    						   int nid, unsigned long flags)
    {
    	struct memblock_region *rgn = &type->regions[idx];
    
    	BUG_ON(type->cnt >= type->max);
    	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
    	rgn->base = base;
    	rgn->size = size;
    	rgn->flags = flags;
    	memblock_set_region_node(rgn, nid);
    	type->cnt++;
    	type->total_size += size;
    }
    
    /**
     * memblock_add_range - add new memblock region
     * @type: memblock type to add new region into
     * @base: base address of the new region
     * @size: size of the new region
     * @nid: nid of the new region
     * @flags: flags of the new region
     *
     * Add new memblock region [@base,@base+@size) into @type.  The new region
     * is allowed to overlap with existing ones - overlaps don't affect already
     * existing regions.  @type is guaranteed to be minimal (all neighbouring
     * compatible regions are merged) after the addition.
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    int __init_memblock memblock_add_range(struct memblock_type *type,
    				phys_addr_t base, phys_addr_t size,
    				int nid, unsigned long flags)
    {
    	bool insert = false;
    	phys_addr_t obase = base;
    	phys_addr_t end = base + memblock_cap_size(base, &size);
    	int idx, nr_new;
    	struct memblock_region *rgn;
    
    	if (!size)
    		return 0;
    
    	/* special case for empty array */
    	if (type->regions[0].size == 0) {
    		WARN_ON(type->cnt != 1 || type->total_size);
    		type->regions[0].base = base;
    		type->regions[0].size = size;
    		type->regions[0].flags = flags;
    		memblock_set_region_node(&type->regions[0], nid);
    		type->total_size = size;
    		return 0;
    	}
    repeat:
    	/*
    	 * The following is executed twice.  Once with %false @insert and
    	 * then with %true.  The first counts the number of regions needed
    	 * to accommodate the new area.  The second actually inserts them.
    	 */
    	base = obase;
    	nr_new = 0;
    
    	for_each_memblock_type(idx, type, rgn) {
    		phys_addr_t rbase = rgn->base;
    		phys_addr_t rend = rbase + rgn->size;
    
    		if (rbase >= end)
    			break;
    		if (rend <= base)
    			continue;
    		/*
    		 * @rgn overlaps.  If it separates the lower part of new
    		 * area, insert that portion.
    		 */
    		if (rbase > base) {
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    			WARN_ON(nid != memblock_get_region_node(rgn));
    #endif
    			WARN_ON(flags != rgn->flags);
    			nr_new++;
    			if (insert)
    				memblock_insert_region(type, idx++, base,
    						       rbase - base, nid,
    						       flags);
    		}
    		/* area below @rend is dealt with, forget about it */
    		base = min(rend, end);
    	}
    
    	/* insert the remaining portion */
    	if (base < end) {
    		nr_new++;
    		if (insert)
    			memblock_insert_region(type, idx, base, end - base,
    					       nid, flags);
    	}
    
    	if (!nr_new)
    		return 0;
    
    	/*
    	 * If this was the first round, resize array and repeat for actual
    	 * insertions; otherwise, merge and return.
    	 */
    	if (!insert) {
    		while (type->cnt + nr_new > type->max)
    			if (memblock_double_array(type, obase, size) < 0)
    				return -ENOMEM;
    		insert = true;
    		goto repeat;
    	} else {
    		memblock_merge_regions(type);
    		return 0;
    	}
    }
    
    int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
    				       int nid)
    {
    	return memblock_add_range(&memblock.memory, base, size, nid, 0);
    }
    
    int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
    {
    	phys_addr_t end = base + size - 1;
    
    	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
    		     &base, &end, (void *)_RET_IP_);
    
    	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
    }
    
    /**
     * memblock_isolate_range - isolate given range into disjoint memblocks
     * @type: memblock type to isolate range for
     * @base: base of range to isolate
     * @size: size of range to isolate
     * @start_rgn: out parameter for the start of isolated region
     * @end_rgn: out parameter for the end of isolated region
     *
     * Walk @type and ensure that regions don't cross the boundaries defined by
     * [@base,@base+@size).  Crossing regions are split at the boundaries,
     * which may create at most two more regions.  The index of the first
     * region inside the range is returned in *@start_rgn and end in *@end_rgn.
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    static int __init_memblock memblock_isolate_range(struct memblock_type *type,
    					phys_addr_t base, phys_addr_t size,
    					int *start_rgn, int *end_rgn)
    {
    	phys_addr_t end = base + memblock_cap_size(base, &size);
    	int idx;
    	struct memblock_region *rgn;
    
    	*start_rgn = *end_rgn = 0;
    
    	if (!size)
    		return 0;
    
    	/* we'll create at most two more regions */
    	while (type->cnt + 2 > type->max)
    		if (memblock_double_array(type, base, size) < 0)
    			return -ENOMEM;
    
    	for_each_memblock_type(idx, type, rgn) {
    		phys_addr_t rbase = rgn->base;
    		phys_addr_t rend = rbase + rgn->size;
    
    		if (rbase >= end)
    			break;
    		if (rend <= base)
    			continue;
    
    		if (rbase < base) {
    			/*
    			 * @rgn intersects from below.  Split and continue
    			 * to process the next region - the new top half.
    			 */
    			rgn->base = base;
    			rgn->size -= base - rbase;
    			type->total_size -= base - rbase;
    			memblock_insert_region(type, idx, rbase, base - rbase,
    					       memblock_get_region_node(rgn),
    					       rgn->flags);
    		} else if (rend > end) {
    			/*
    			 * @rgn intersects from above.  Split and redo the
    			 * current region - the new bottom half.
    			 */
    			rgn->base = end;
    			rgn->size -= end - rbase;
    			type->total_size -= end - rbase;
    			memblock_insert_region(type, idx--, rbase, end - rbase,
    					       memblock_get_region_node(rgn),
    					       rgn->flags);
    		} else {
    			/* @rgn is fully contained, record it */
    			if (!*end_rgn)
    				*start_rgn = idx;
    			*end_rgn = idx + 1;
    		}
    	}
    
    	return 0;
    }
    
    static int __init_memblock memblock_remove_range(struct memblock_type *type,
    					  phys_addr_t base, phys_addr_t size)
    {
    	int start_rgn, end_rgn;
    	int i, ret;
    
    	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    	if (ret)
    		return ret;
    
    	for (i = end_rgn - 1; i >= start_rgn; i--)
    		memblock_remove_region(type, i);
    	return 0;
    }
    
    int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
    {
    	phys_addr_t end = base + size - 1;
    
    	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
    		     &base, &end, (void *)_RET_IP_);
    
    	return memblock_remove_range(&memblock.memory, base, size);
    }
    
    
    int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
    {
    	phys_addr_t end = base + size - 1;
    
    	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
    		     &base, &end, (void *)_RET_IP_);
    
    	kmemleak_free_part_phys(base, size);
    	return memblock_remove_range(&memblock.reserved, base, size);
    }
    
    int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
    {
    	phys_addr_t end = base + size - 1;
    
    	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
    		     &base, &end, (void *)_RET_IP_);
    
    	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
    }
    
    /**
     *
     * This function isolates region [@base, @base + @size), and sets/clears flag
     *
     * Return 0 on success, -errno on failure.
     */
    static int __init_memblock memblock_setclr_flag(phys_addr_t base,
    				phys_addr_t size, int set, int flag)
    {
    	struct memblock_type *type = &memblock.memory;
    	int i, ret, start_rgn, end_rgn;
    
    	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    	if (ret)
    		return ret;
    
    	for (i = start_rgn; i < end_rgn; i++)
    		if (set)
    			memblock_set_region_flags(&type->regions[i], flag);
    		else
    			memblock_clear_region_flags(&type->regions[i], flag);
    
    	memblock_merge_regions(type);
    	return 0;
    }
    
    /**
     * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
    }
    
    /**
     * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
    }
    
    /**
     * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
    {
    	system_has_some_mirror = true;
    
    	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
    }
    
    /**
     * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
    }
    
    /**
     * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
     * @base: the base phys addr of the region
     * @size: the size of the region
     *
     * Return 0 on success, -errno on failure.
     */
    int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
    {
    	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
    }
    
    /**
     * __next_reserved_mem_region - next function for for_each_reserved_region()
     * @idx: pointer to u64 loop variable
     * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
     * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
     *
     * Iterate over all reserved memory regions.
     */
    void __init_memblock __next_reserved_mem_region(u64 *idx,
    					   phys_addr_t *out_start,
    					   phys_addr_t *out_end)
    {
    	struct memblock_type *type = &memblock.reserved;
    
    	if (*idx < type->cnt) {
    		struct memblock_region *r = &type->regions[*idx];
    		phys_addr_t base = r->base;
    		phys_addr_t size = r->size;
    
    		if (out_start)
    			*out_start = base;
    		if (out_end)
    			*out_end = base + size - 1;
    
    		*idx += 1;
    		return;
    	}
    
    	/* signal end of iteration */
    	*idx = ULLONG_MAX;
    }
    
    /**
     * __next__mem_range - next function for for_each_free_mem_range() etc.
     * @idx: pointer to u64 loop variable
     * @nid: node selector, %NUMA_NO_NODE for all nodes
     * @flags: pick from blocks based on memory attributes
     * @type_a: pointer to memblock_type from where the range is taken
     * @type_b: pointer to memblock_type which excludes memory from being taken
     * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
     * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
     * @out_nid: ptr to int for nid of the range, can be %NULL
     *
     * Find the first area from *@idx which matches @nid, fill the out
     * parameters, and update *@idx for the next iteration.  The lower 32bit of
     * *@idx contains index into type_a and the upper 32bit indexes the
     * areas before each region in type_b.	For example, if type_b regions
     * look like the following,
     *
     *	0:[0-16), 1:[32-48), 2:[128-130)
     *
     * The upper 32bit indexes the following regions.
     *
     *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
     *
     * As both region arrays are sorted, the function advances the two indices
     * in lockstep and returns each intersection.
     */
    void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
    				      struct memblock_type *type_a,
    				      struct memblock_type *type_b,
    				      phys_addr_t *out_start,
    				      phys_addr_t *out_end, int *out_nid)
    {
    	int idx_a = *idx & 0xffffffff;
    	int idx_b = *idx >> 32;
    
    	if (WARN_ONCE(nid == MAX_NUMNODES,
    	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    		nid = NUMA_NO_NODE;
    
    	for (; idx_a < type_a->cnt; idx_a++) {
    		struct memblock_region *m = &type_a->regions[idx_a];
    
    		phys_addr_t m_start = m->base;
    		phys_addr_t m_end = m->base + m->size;
    		int	    m_nid = memblock_get_region_node(m);
    
    		/* only memory regions are associated with nodes, check it */
    		if (nid != NUMA_NO_NODE && nid != m_nid)
    			continue;
    
    		/* skip hotpluggable memory regions if needed */
    		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
    			continue;
    
    		/* if we want mirror memory skip non-mirror memory regions */
    		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
    			continue;
    
    		/* skip nomap memory unless we were asked for it explicitly */
    		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
    			continue;
    
    		if (!type_b) {
    			if (out_start)
    				*out_start = m_start;
    			if (out_end)
    				*out_end = m_end;
    			if (out_nid)
    				*out_nid = m_nid;
    			idx_a++;
    			*idx = (u32)idx_a | (u64)idx_b << 32;
    			return;
    		}
    
    		/* scan areas before each reservation */
    		for (; idx_b < type_b->cnt + 1; idx_b++) {
    			struct memblock_region *r;
    			phys_addr_t r_start;
    			phys_addr_t r_end;
    
    			r = &type_b->regions[idx_b];
    			r_start = idx_b ? r[-1].base + r[-1].size : 0;
    			r_end = idx_b < type_b->cnt ?
    				r->base : PHYS_ADDR_MAX;
    
    			/*
    			 * if idx_b advanced past idx_a,
    			 * break out to advance idx_a
    			 */
    			if (r_start >= m_end)
    				break;
    			/* if the two regions intersect, we're done */
    			if (m_start < r_end) {
    				if (out_start)
    					*out_start =
    						max(m_start, r_start);
    				if (out_end)
    					*out_end = min(m_end, r_end);
    				if (out_nid)
    					*out_nid = m_nid;
    				/*
    				 * The region which ends first is
    				 * advanced for the next iteration.
    				 */
    				if (m_end <= r_end)
    					idx_a++;
    				else
    					idx_b++;
    				*idx = (u32)idx_a | (u64)idx_b << 32;
    				return;
    			}
    		}
    	}
    
    	/* signal end of iteration */
    	*idx = ULLONG_MAX;
    }
    
    /**
     * __next_mem_range_rev - generic next function for for_each_*_range_rev()
     *
     * Finds the next range from type_a which is not marked as unsuitable
     * in type_b.
     *
     * @idx: pointer to u64 loop variable
     * @nid: node selector, %NUMA_NO_NODE for all nodes
     * @flags: pick from blocks based on memory attributes
     * @type_a: pointer to memblock_type from where the range is taken
     * @type_b: pointer to memblock_type which excludes memory from being taken
     * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
     * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
     * @out_nid: ptr to int for nid of the range, can be %NULL
     *
     * Reverse of __next_mem_range().
     */
    void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
    					  struct memblock_type *type_a,
    					  struct memblock_type *type_b,
    					  phys_addr_t *out_start,
    					  phys_addr_t *out_end, int *out_nid)
    {
    	int idx_a = *idx & 0xffffffff;
    	int idx_b = *idx >> 32;
    
    	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    		nid = NUMA_NO_NODE;
    
    	if (*idx == (u64)ULLONG_MAX) {
    		idx_a = type_a->cnt - 1;
    		if (type_b != NULL)
    			idx_b = type_b->cnt;
    		else
    			idx_b = 0;
    	}
    
    	for (; idx_a >= 0; idx_a--) {
    		struct memblock_region *m = &type_a->regions[idx_a];
    
    		phys_addr_t m_start = m->base;
    		phys_addr_t m_end = m->base + m->size;
    		int m_nid = memblock_get_region_node(m);
    
    		/* only memory regions are associated with nodes, check it */
    		if (nid != NUMA_NO_NODE && nid != m_nid)
    			continue;
    
    		/* skip hotpluggable memory regions if needed */
    		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
    			continue;
    
    		/* if we want mirror memory skip non-mirror memory regions */
    		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
    			continue;
    
    		/* skip nomap memory unless we were asked for it explicitly */
    		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
    			continue;
    
    		if (!type_b) {
    			if (out_start)
    				*out_start = m_start;
    			if (out_end)
    				*out_end = m_end;
    			if (out_nid)
    				*out_nid = m_nid;
    			idx_a--;
    			*idx = (u32)idx_a | (u64)idx_b << 32;
    			return;
    		}
    
    		/* scan areas before each reservation */
    		for (; idx_b >= 0; idx_b--) {
    			struct memblock_region *r;
    			phys_addr_t r_start;
    			phys_addr_t r_end;
    
    			r = &type_b->regions[idx_b];
    			r_start = idx_b ? r[-1].base + r[-1].size : 0;
    			r_end = idx_b < type_b->cnt ?
    				r->base : PHYS_ADDR_MAX;
    			/*
    			 * if idx_b advanced past idx_a,
    			 * break out to advance idx_a
    			 */
    
    			if (r_end <= m_start)
    				break;
    			/* if the two regions intersect, we're done */
    			if (m_end > r_start) {
    				if (out_start)
    					*out_start = max(m_start, r_start);
    				if (out_end)
    					*out_end = min(m_end, r_end);
    				if (out_nid)
    					*out_nid = m_nid;
    				if (m_start >= r_start)
    					idx_a--;
    				else
    					idx_b--;
    				*idx = (u32)idx_a | (u64)idx_b << 32;
    				return;
    			}
    		}
    	}
    	/* signal end of iteration */
    	*idx = ULLONG_MAX;
    }
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    /*
     * Common iterator interface used to define for_each_mem_range().
     */
    void __init_memblock __next_mem_pfn_range(int *idx, int nid,
    				unsigned long *out_start_pfn,
    				unsigned long *out_end_pfn, int *out_nid)
    {
    	struct memblock_type *type = &memblock.memory;
    	struct memblock_region *r;
    
    	while (++*idx < type->cnt) {
    		r = &type->regions[*idx];
    
    		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
    			continue;
    		if (nid == MAX_NUMNODES || nid == r->nid)
    			break;
    	}
    	if (*idx >= type->cnt) {
    		*idx = -1;
    		return;
    	}
    
    	if (out_start_pfn)
    		*out_start_pfn = PFN_UP(r->base);
    	if (out_end_pfn)
    		*out_end_pfn = PFN_DOWN(r->base + r->size);
    	if (out_nid)
    		*out_nid = r->nid;
    }
    
    /**
     * memblock_set_node - set node ID on memblock regions
     * @base: base of area to set node ID for
     * @size: size of area to set node ID for
     * @type: memblock type to set node ID for
     * @nid: node ID to set
     *
     * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
     * Regions which cross the area boundaries are split as necessary.
     *
     * RETURNS:
     * 0 on success, -errno on failure.
     */
    int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
    				      struct memblock_type *type, int nid)
    {
    	int start_rgn, end_rgn;
    	int i, ret;
    
    	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
    	if (ret)
    		return ret;
    
    	for (i = start_rgn; i < end_rgn; i++)
    		memblock_set_region_node(&type->regions[i], nid);
    
    	memblock_merge_regions(type);
    	return 0;
    }
    #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    
    static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
    					phys_addr_t align, phys_addr_t start,
    					phys_addr_t end, int nid, ulong flags)
    {
    	phys_addr_t found;
    
    	if (!align)
    		align = SMP_CACHE_BYTES;
    
    	found = memblock_find_in_range_node(size, align, start, end, nid,
    					    flags);
    	if (found && !memblock_reserve(found, size)) {
    		/*
    		 * The min_count is set to 0 so that memblock allocations are
    		 * never reported as leaks.
    		 */
    		kmemleak_alloc_phys(found, size, 0, 0);
    		return found;
    	}
    	return 0;
    }
    
    phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
    					phys_addr_t start, phys_addr_t end,
    					ulong flags)
    {
    	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
    					flags);
    }
    
    phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
    					phys_addr_t align, phys_addr_t max_addr,
    					int nid, ulong flags)
    {
    	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
    }
    
    phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
    {
    	ulong flags = choose_memblock_flags();
    	phys_addr_t ret;
    
    again:
    	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
    				      nid, flags);
    
    	if (!ret && (flags & MEMBLOCK_MIRROR)) {
    		flags &= ~MEMBLOCK_MIRROR;
    		goto again;
    	}
    	return ret;
    }
    
    phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
    {
    	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
    				       MEMBLOCK_NONE);
    }
    
    phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
    {
    	phys_addr_t alloc;
    
    	alloc = __memblock_alloc_base(size, align, max_addr);
    
    	if (alloc == 0)
    		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
    		      &size, &max_addr);
    
    	return alloc;
    }
    
    phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
    {
    	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
    }
    
    phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
    {
    	phys_addr_t res = memblock_alloc_nid(size, align, nid);
    
    	if (res)
    		return res;
    	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
    }
    
    /**
     * memblock_virt_alloc_internal - allocate boot memory block
     * @size: size of memory block to be allocated in bytes
     * @align: alignment of the region and block's size
     * @min_addr: the lower bound of the memory region to allocate (phys address)
     * @max_addr: the upper bound of the memory region to allocate (phys address)
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     *
     * The @min_addr limit is dropped if it can not be satisfied and the allocation
     * will fall back to memory below @min_addr. Also, allocation may fall back
     * to any node in the system if the specified node can not
     * hold the requested memory.
     *
     * The allocation is performed from memory region limited by
     * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
     *
     * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
     *
     * The phys address of allocated boot memory block is converted to virtual and
     * allocated memory is reset to 0.
     *
     * In addition, function sets the min_count to 0 using kmemleak_alloc for
     * allocated boot memory block, so that it is never reported as leaks.
     *
     * RETURNS:
     * Virtual address of allocated memory block on success, NULL on failure.
     */
    static void * __init memblock_virt_alloc_internal(
    				phys_addr_t size, phys_addr_t align,
    				phys_addr_t min_addr, phys_addr_t max_addr,
    				int nid)
    {
    	phys_addr_t alloc;
    	void *ptr;
    	ulong flags = choose_memblock_flags();
    
    	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
    		nid = NUMA_NO_NODE;
    
    	/*
    	 * Detect any accidental use of these APIs after slab is ready, as at
    	 * this moment memblock may be deinitialized already and its
    	 * internal data may be destroyed (after execution of free_all_bootmem)
    	 */
    	if (WARN_ON_ONCE(slab_is_available()))
    		return kzalloc_node(size, GFP_NOWAIT, nid);
    
    	if (!align)
    		align = SMP_CACHE_BYTES;
    
    	if (max_addr > memblock.current_limit)
    		max_addr = memblock.current_limit;
    again:
    	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
    					    nid, flags);
    	if (alloc && !memblock_reserve(alloc, size))
    		goto done;
    
    	if (nid != NUMA_NO_NODE) {
    		alloc = memblock_find_in_range_node(size, align, min_addr,
    						    max_addr, NUMA_NO_NODE,
    						    flags);
    		if (alloc && !memblock_reserve(alloc, size))
    			goto done;
    	}
    
    	if (min_addr) {
    		min_addr = 0;
    		goto again;
    	}
    
    	if (flags & MEMBLOCK_MIRROR) {
    		flags &= ~MEMBLOCK_MIRROR;
    		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
    			&size);
    		goto again;
    	}
    
    	return NULL;
    done:
    	ptr = phys_to_virt(alloc);
    
    	/*
    	 * The min_count is set to 0 so that bootmem allocated blocks
    	 * are never reported as leaks. This is because many of these blocks
    	 * are only referred via the physical address which is not
    	 * looked up by kmemleak.
    	 */
    	kmemleak_alloc(ptr, size, 0, 0);
    
    	return ptr;
    }
    
    /**
     * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
     * memory and without panicking
     * @size: size of memory block to be allocated in bytes
     * @align: alignment of the region and block's size
     * @min_addr: the lower bound of the memory region from where the allocation
     *	  is preferred (phys address)
     * @max_addr: the upper bound of the memory region from where the allocation
     *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
     *	      allocate only from memory limited by memblock.current_limit value
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     *
     * Public function, provides additional debug information (including caller
     * info), if enabled. Does not zero allocated memory, does not panic if request
     * cannot be satisfied.
     *
     * RETURNS:
     * Virtual address of allocated memory block on success, NULL on failure.
     */
    void * __init memblock_virt_alloc_try_nid_raw(
    			phys_addr_t size, phys_addr_t align,
    			phys_addr_t min_addr, phys_addr_t max_addr,
    			int nid)
    {
    	void *ptr;
    
    	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
    		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
    		     (u64)max_addr, (void *)_RET_IP_);
    
    	ptr = memblock_virt_alloc_internal(size, align,
    					   min_addr, max_addr, nid);
    #ifdef CONFIG_DEBUG_VM
    	if (ptr && size > 0)
    		memset(ptr, PAGE_POISON_PATTERN, size);
    #endif
    	return ptr;
    }
    
    /**
     * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
     * @size: size of memory block to be allocated in bytes
     * @align: alignment of the region and block's size
     * @min_addr: the lower bound of the memory region from where the allocation
     *	  is preferred (phys address)
     * @max_addr: the upper bound of the memory region from where the allocation
     *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
     *	      allocate only from memory limited by memblock.current_limit value
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     *
     * Public function, provides additional debug information (including caller
     * info), if enabled. This function zeroes the allocated memory.
     *
     * RETURNS:
     * Virtual address of allocated memory block on success, NULL on failure.
     */
    void * __init memblock_virt_alloc_try_nid_nopanic(
    				phys_addr_t size, phys_addr_t align,
    				phys_addr_t min_addr, phys_addr_t max_addr,
    				int nid)
    {
    	void *ptr;
    
    	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
    		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
    		     (u64)max_addr, (void *)_RET_IP_);
    
    	ptr = memblock_virt_alloc_internal(size, align,
    					   min_addr, max_addr, nid);
    	if (ptr)
    		memset(ptr, 0, size);
    	return ptr;
    }
    
    /**
     * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
     * @size: size of memory block to be allocated in bytes
     * @align: alignment of the region and block's size
     * @min_addr: the lower bound of the memory region from where the allocation
     *	  is preferred (phys address)
     * @max_addr: the upper bound of the memory region from where the allocation
     *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
     *	      allocate only from memory limited by memblock.current_limit value
     * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
     *
     * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
     * which provides debug information (including caller info), if enabled,
     * and panics if the request can not be satisfied.
     *
     * RETURNS:
     * Virtual address of allocated memory block on success, NULL on failure.
     */
    void * __init memblock_virt_alloc_try_nid(
    			phys_addr_t size, phys_addr_t align,
    			phys_addr_t min_addr, phys_addr_t max_addr,
    			int nid)
    {
    	void *ptr;
    
    	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
    		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
    		     (u64)max_addr, (void *)_RET_IP_);
    	ptr = memblock_virt_alloc_internal(size, align,
    					   min_addr, max_addr, nid);
    	if (ptr) {
    		memset(ptr, 0, size);
    		return ptr;
    	}
    
    	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
    	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
    	      (u64)max_addr);
    	return NULL;
    }
    
    /**
     * __memblock_free_early - free boot memory block
     * @base: phys starting address of the  boot memory block
     * @size: size of the boot memory block in bytes
     *
     * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
     * The freeing memory will not be released to the buddy allocator.
     */
    void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
    {
    	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
    		     __func__, (u64)base, (u64)base + size - 1,
    		     (void *)_RET_IP_);
    	kmemleak_free_part_phys(base, size);
    	memblock_remove_range(&memblock.reserved, base, size);
    }
    
    /*
     * __memblock_free_late - free bootmem block pages directly to buddy allocator
     * @addr: phys starting address of the  boot memory block
     * @size: size of the boot memory block in bytes
     *
     * This is only useful when the bootmem allocator has already been torn
     * down, but we are still initializing the system.  Pages are released directly
     * to the buddy allocator, no bootmem metadata is updated because it is gone.
     */
    void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
    {
    	u64 cursor, end;
    
    	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
    		     __func__, (u64)base, (u64)base + size - 1,
    		     (void *)_RET_IP_);
    	kmemleak_free_part_phys(base, size);
    	cursor = PFN_UP(base);
    	end = PFN_DOWN(base + size);
    
    	for (; cursor < end; cursor++) {
    		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
    		totalram_pages++;
    	}
    }
    
    /*
     * Remaining API functions
     */
    
    phys_addr_t __init_memblock memblock_phys_mem_size(void)
    {
    	return memblock.memory.total_size;
    }
    
    phys_addr_t __init_memblock memblock_reserved_size(void)
    {
    	return memblock.reserved.total_size;
    }
    
    phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
    {
    	unsigned long pages = 0;
    	struct memblock_region *r;
    	unsigned long start_pfn, end_pfn;
    
    	for_each_memblock(memory, r) {
    		start_pfn = memblock_region_memory_base_pfn(r);
    		end_pfn = memblock_region_memory_end_pfn(r);
    		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
    		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
    		pages += end_pfn - start_pfn;
    	}
    
    	return PFN_PHYS(pages);
    }
    
    /* lowest address */
    phys_addr_t __init_memblock memblock_start_of_DRAM(void)
    {
    	return memblock.memory.regions[0].base;
    }
    
    phys_addr_t __init_memblock memblock_end_of_DRAM(void)
    {
    	int idx = memblock.memory.cnt - 1;
    
    	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
    }
    
    static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
    {
    	phys_addr_t max_addr = PHYS_ADDR_MAX;
    	struct memblock_region *r;
    
    	/*
    	 * translate the memory @limit size into the max address within one of
    	 * the memory memblock regions, if the @limit exceeds the total size
    	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
    	 */
    	for_each_memblock(memory, r) {
    		if (limit <= r->size) {
    			max_addr = r->base + limit;
    			break;
    		}
    		limit -= r->size;
    	}
    
    	return max_addr;
    }
    
    void __init memblock_enforce_memory_limit(phys_addr_t limit)
    {
    	phys_addr_t max_addr = PHYS_ADDR_MAX;
    
    	if (!limit)
    		return;
    
    	max_addr = __find_max_addr(limit);
    
    	/* @limit exceeds the total size of the memory, do nothing */
    	if (max_addr == PHYS_ADDR_MAX)
    		return;
    
    	/* truncate both memory and reserved regions */
    	memblock_remove_range(&memblock.memory, max_addr,
    			      PHYS_ADDR_MAX);
    	memblock_remove_range(&memblock.reserved, max_addr,
    			      PHYS_ADDR_MAX);
    }
    
    void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
    {
    	int start_rgn, end_rgn;
    	int i, ret;
    
    	if (!size)
    		return;
    
    	ret = memblock_isolate_range(&memblock.memory, base, size,
    						&start_rgn, &end_rgn);
    	if (ret)
    		return;
    
    	/* remove all the MAP regions */
    	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
    		if (!memblock_is_nomap(&memblock.memory.regions[i]))
    			memblock_remove_region(&memblock.memory, i);
    
    	for (i = start_rgn - 1; i >= 0; i--)
    		if (!memblock_is_nomap(&memblock.memory.regions[i]))
    			memblock_remove_region(&memblock.memory, i);
    
    	/* truncate the reserved regions */
    	memblock_remove_range(&memblock.reserved, 0, base);
    	memblock_remove_range(&memblock.reserved,
    			base + size, PHYS_ADDR_MAX);
    }
    
    void __init memblock_mem_limit_remove_map(phys_addr_t limit)
    {
    	phys_addr_t max_addr;
    
    	if (!limit)
    		return;
    
    	max_addr = __find_max_addr(limit);
    
    	/* @limit exceeds the total size of the memory, do nothing */
    	if (max_addr == PHYS_ADDR_MAX)
    		return;
    
    	memblock_cap_memory_range(0, max_addr);
    }
    
    static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
    {
    	unsigned int left = 0, right = type->cnt;
    
    	do {
    		unsigned int mid = (right + left) / 2;
    
    		if (addr < type->regions[mid].base)
    			right = mid;
    		else if (addr >= (type->regions[mid].base +
    				  type->regions[mid].size))
    			left = mid + 1;
    		else
    			return mid;
    	} while (left < right);
    	return -1;
    }
    
    bool __init memblock_is_reserved(phys_addr_t addr)
    {
    	return memblock_search(&memblock.reserved, addr) != -1;
    }
    
    bool __init_memblock memblock_is_memory(phys_addr_t addr)
    {
    	return memblock_search(&memblock.memory, addr) != -1;
    }
    
    bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
    {
    	int i = memblock_search(&memblock.memory, addr);
    
    	if (i == -1)
    		return false;
    	return !memblock_is_nomap(&memblock.memory.regions[i]);
    }
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
    			 unsigned long *start_pfn, unsigned long *end_pfn)
    {
    	struct memblock_type *type = &memblock.memory;
    	int mid = memblock_search(type, PFN_PHYS(pfn));
    
    	if (mid == -1)
    		return -1;
    
    	*start_pfn = PFN_DOWN(type->regions[mid].base);
    	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
    
    	return type->regions[mid].nid;
    }
    #endif
    
    /**
     * memblock_is_region_memory - check if a region is a subset of memory
     * @base: base of region to check
     * @size: size of region to check
     *
     * Check if the region [@base, @base+@size) is a subset of a memory block.
     *
     * RETURNS:
     * 0 if false, non-zero if true
     */
    bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
    {
    	int idx = memblock_search(&memblock.memory, base);
    	phys_addr_t end = base + memblock_cap_size(base, &size);
    
    	if (idx == -1)
    		return false;
    	return (memblock.memory.regions[idx].base +
    		 memblock.memory.regions[idx].size) >= end;
    }
    
    /**
     * memblock_is_region_reserved - check if a region intersects reserved memory
     * @base: base of region to check
     * @size: size of region to check
     *
     * Check if the region [@base, @base+@size) intersects a reserved memory block.
     *
     * RETURNS:
     * True if they intersect, false if not.
     */
    bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
    {
    	memblock_cap_size(base, &size);
    	return memblock_overlaps_region(&memblock.reserved, base, size);
    }
    
    void __init_memblock memblock_trim_memory(phys_addr_t align)
    {
    	phys_addr_t start, end, orig_start, orig_end;
    	struct memblock_region *r;
    
    	for_each_memblock(memory, r) {
    		orig_start = r->base;
    		orig_end = r->base + r->size;
    		start = round_up(orig_start, align);
    		end = round_down(orig_end, align);
    
    		if (start == orig_start && end == orig_end)
    			continue;
    
    		if (start < end) {
    			r->base = start;
    			r->size = end - start;
    		} else {
    			memblock_remove_region(&memblock.memory,
    					       r - memblock.memory.regions);
    			r--;
    		}
    	}
    }
    
    void __init_memblock memblock_set_current_limit(phys_addr_t limit)
    {
    	memblock.current_limit = limit;
    }
    
    phys_addr_t __init_memblock memblock_get_current_limit(void)
    {
    	return memblock.current_limit;
    }
    
    static void __init_memblock memblock_dump(struct memblock_type *type)
    {
    	phys_addr_t base, end, size;
    	unsigned long flags;
    	int idx;
    	struct memblock_region *rgn;
    
    	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
    
    	for_each_memblock_type(idx, type, rgn) {
    		char nid_buf[32] = "";
    
    		base = rgn->base;
    		size = rgn->size;
    		end = base + size - 1;
    		flags = rgn->flags;
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
    			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
    				 memblock_get_region_node(rgn));
    #endif
    		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
    			type->name, idx, &base, &end, &size, nid_buf, flags);
    	}
    }
    
    void __init_memblock __memblock_dump_all(void)
    {
    	pr_info("MEMBLOCK configuration:\n");
    	pr_info(" memory size = %pa reserved size = %pa\n",
    		&memblock.memory.total_size,
    		&memblock.reserved.total_size);
    
    	memblock_dump(&memblock.memory);
    	memblock_dump(&memblock.reserved);
    #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    	memblock_dump(&memblock.physmem);
    #endif
    }
    
    void __init memblock_allow_resize(void)
    {
    	memblock_can_resize = 1;
    }
    
    static int __init early_memblock(char *p)
    {
    	if (p && strstr(p, "debug"))
    		memblock_debug = 1;
    	return 0;
    }
    early_param("memblock", early_memblock);
    
    #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
    
    static int memblock_debug_show(struct seq_file *m, void *private)
    {
    	struct memblock_type *type = m->private;
    	struct memblock_region *reg;
    	int i;
    	phys_addr_t end;
    
    	for (i = 0; i < type->cnt; i++) {
    		reg = &type->regions[i];
    		end = reg->base + reg->size - 1;
    
    		seq_printf(m, "%4d: ", i);
    		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
    	}
    	return 0;
    }
    DEFINE_SHOW_ATTRIBUTE(memblock_debug);
    
    static int __init memblock_init_debugfs(void)
    {
    	struct dentry *root = debugfs_create_dir("memblock", NULL);
    	if (!root)
    		return -ENXIO;
    	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
    	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
    #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
    	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
    #endif
    
    	return 0;
    }
    __initcall(memblock_init_debugfs);
    
    #endif /* CONFIG_DEBUG_FS */