Skip to content
Snippets Groups Projects
Select Git revision
  • 83d31e5271ac74aad14b5a1a2ed26923e1446329
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS-Ascend
  • openEuler-22.03-LTS
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
  • 5.10.0-106.16.0
  • 5.10.0-106.15.0
  • 5.10.0-117.0.0
  • 5.10.0-60.57.0
33 results

nested.c

Blame
  • nested.c 199.27 KiB
    // SPDX-License-Identifier: GPL-2.0
    
    #include <linux/frame.h>
    #include <linux/percpu.h>
    
    #include <asm/debugreg.h>
    #include <asm/mmu_context.h>
    
    #include "cpuid.h"
    #include "hyperv.h"
    #include "mmu.h"
    #include "nested.h"
    #include "pmu.h"
    #include "trace.h"
    #include "x86.h"
    
    static bool __read_mostly enable_shadow_vmcs = 1;
    module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
    
    static bool __read_mostly nested_early_check = 0;
    module_param(nested_early_check, bool, S_IRUGO);
    
    #define CC(consistency_check)						\
    ({									\
    	bool failed = (consistency_check);				\
    	if (failed)							\
    		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
    	failed;								\
    })
    
    /*
     * Hyper-V requires all of these, so mark them as supported even though
     * they are just treated the same as all-context.
     */
    #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
    	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
    	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
    	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
    	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
    
    #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
    
    enum {
    	VMX_VMREAD_BITMAP,
    	VMX_VMWRITE_BITMAP,
    	VMX_BITMAP_NR
    };
    static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
    
    #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
    #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
    
    struct shadow_vmcs_field {
    	u16	encoding;
    	u16	offset;
    };
    static struct shadow_vmcs_field shadow_read_only_fields[] = {
    #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
    #include "vmcs_shadow_fields.h"
    };
    static int max_shadow_read_only_fields =
    	ARRAY_SIZE(shadow_read_only_fields);
    
    static struct shadow_vmcs_field shadow_read_write_fields[] = {
    #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
    #include "vmcs_shadow_fields.h"
    };
    static int max_shadow_read_write_fields =
    	ARRAY_SIZE(shadow_read_write_fields);
    
    static void init_vmcs_shadow_fields(void)
    {
    	int i, j;
    
    	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
    	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
    
    	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
    		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
    		u16 field = entry.encoding;
    
    		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
    		    (i + 1 == max_shadow_read_only_fields ||
    		     shadow_read_only_fields[i + 1].encoding != field + 1))
    			pr_err("Missing field from shadow_read_only_field %x\n",
    			       field + 1);
    
    		clear_bit(field, vmx_vmread_bitmap);
    		if (field & 1)
    #ifdef CONFIG_X86_64
    			continue;
    #else
    			entry.offset += sizeof(u32);
    #endif
    		shadow_read_only_fields[j++] = entry;
    	}
    	max_shadow_read_only_fields = j;
    
    	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
    		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
    		u16 field = entry.encoding;
    
    		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
    		    (i + 1 == max_shadow_read_write_fields ||
    		     shadow_read_write_fields[i + 1].encoding != field + 1))
    			pr_err("Missing field from shadow_read_write_field %x\n",
    			       field + 1);
    
    		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
    			  field <= GUEST_TR_AR_BYTES,
    			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
    
    		/*
    		 * PML and the preemption timer can be emulated, but the
    		 * processor cannot vmwrite to fields that don't exist
    		 * on bare metal.
    		 */
    		switch (field) {
    		case GUEST_PML_INDEX:
    			if (!cpu_has_vmx_pml())
    				continue;
    			break;
    		case VMX_PREEMPTION_TIMER_VALUE:
    			if (!cpu_has_vmx_preemption_timer())
    				continue;
    			break;
    		case GUEST_INTR_STATUS:
    			if (!cpu_has_vmx_apicv())
    				continue;
    			break;
    		default:
    			break;
    		}
    
    		clear_bit(field, vmx_vmwrite_bitmap);
    		clear_bit(field, vmx_vmread_bitmap);
    		if (field & 1)
    #ifdef CONFIG_X86_64
    			continue;
    #else
    			entry.offset += sizeof(u32);
    #endif
    		shadow_read_write_fields[j++] = entry;
    	}
    	max_shadow_read_write_fields = j;
    }
    
    /*
     * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
     * set the success or error code of an emulated VMX instruction (as specified
     * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
     * instruction.
     */
    static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
    {
    	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
    			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
    			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
    	return kvm_skip_emulated_instruction(vcpu);
    }
    
    static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
    {
    	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
    			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
    			    X86_EFLAGS_SF | X86_EFLAGS_OF))
    			| X86_EFLAGS_CF);
    	return kvm_skip_emulated_instruction(vcpu);
    }
    
    static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
    				u32 vm_instruction_error)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	/*
    	 * failValid writes the error number to the current VMCS, which
    	 * can't be done if there isn't a current VMCS.
    	 */
    	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
    		return nested_vmx_failInvalid(vcpu);
    
    	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
    			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
    			    X86_EFLAGS_SF | X86_EFLAGS_OF))
    			| X86_EFLAGS_ZF);
    	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
    	/*
    	 * We don't need to force a shadow sync because
    	 * VM_INSTRUCTION_ERROR is not shadowed
    	 */
    	return kvm_skip_emulated_instruction(vcpu);
    }
    
    static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
    {
    	/* TODO: not to reset guest simply here. */
    	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
    	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
    }
    
    static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
    {
    	return fixed_bits_valid(control, low, high);
    }
    
    static inline u64 vmx_control_msr(u32 low, u32 high)
    {
    	return low | ((u64)high << 32);
    }
    
    static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
    {
    	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
    	vmcs_write64(VMCS_LINK_POINTER, -1ull);
    	vmx->nested.need_vmcs12_to_shadow_sync = false;
    }
    
    static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (!vmx->nested.hv_evmcs)
    		return;
    
    	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
    	vmx->nested.hv_evmcs_vmptr = 0;
    	vmx->nested.hv_evmcs = NULL;
    }
    
    /*
     * Free whatever needs to be freed from vmx->nested when L1 goes down, or
     * just stops using VMX.
     */
    static void free_nested(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
    		return;
    
    	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
    
    	vmx->nested.vmxon = false;
    	vmx->nested.smm.vmxon = false;
    	free_vpid(vmx->nested.vpid02);
    	vmx->nested.posted_intr_nv = -1;
    	vmx->nested.current_vmptr = -1ull;
    	if (enable_shadow_vmcs) {
    		vmx_disable_shadow_vmcs(vmx);
    		vmcs_clear(vmx->vmcs01.shadow_vmcs);
    		free_vmcs(vmx->vmcs01.shadow_vmcs);
    		vmx->vmcs01.shadow_vmcs = NULL;
    	}
    	kfree(vmx->nested.cached_vmcs12);
    	vmx->nested.cached_vmcs12 = NULL;
    	kfree(vmx->nested.cached_shadow_vmcs12);
    	vmx->nested.cached_shadow_vmcs12 = NULL;
    	/* Unpin physical memory we referred to in the vmcs02 */
    	if (vmx->nested.apic_access_page) {
    		kvm_release_page_clean(vmx->nested.apic_access_page);
    		vmx->nested.apic_access_page = NULL;
    	}
    	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
    	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
    	vmx->nested.pi_desc = NULL;
    
    	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
    
    	nested_release_evmcs(vcpu);
    
    	free_loaded_vmcs(&vmx->nested.vmcs02);
    }
    
    static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
    				     struct loaded_vmcs *prev)
    {
    	struct vmcs_host_state *dest, *src;
    
    	if (unlikely(!vmx->guest_state_loaded))
    		return;
    
    	src = &prev->host_state;
    	dest = &vmx->loaded_vmcs->host_state;
    
    	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
    	dest->ldt_sel = src->ldt_sel;
    #ifdef CONFIG_X86_64
    	dest->ds_sel = src->ds_sel;
    	dest->es_sel = src->es_sel;
    #endif
    }
    
    static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct loaded_vmcs *prev;
    	int cpu;
    
    	if (vmx->loaded_vmcs == vmcs)
    		return;
    
    	cpu = get_cpu();
    	prev = vmx->loaded_vmcs;
    	vmx->loaded_vmcs = vmcs;
    	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
    	vmx_sync_vmcs_host_state(vmx, prev);
    	put_cpu();
    
    	vmx_register_cache_reset(vcpu);
    }
    
    /*
     * Ensure that the current vmcs of the logical processor is the
     * vmcs01 of the vcpu before calling free_nested().
     */
    void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
    {
    	vcpu_load(vcpu);
    	vmx_leave_nested(vcpu);
    	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
    	free_nested(vcpu);
    	vcpu_put(vcpu);
    }
    
    static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
    		struct x86_exception *fault)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u32 vm_exit_reason;
    	unsigned long exit_qualification = vcpu->arch.exit_qualification;
    
    	if (vmx->nested.pml_full) {
    		vm_exit_reason = EXIT_REASON_PML_FULL;
    		vmx->nested.pml_full = false;
    		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
    	} else if (fault->error_code & PFERR_RSVD_MASK)
    		vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
    	else
    		vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
    
    	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
    	vmcs12->guest_physical_address = fault->address;
    }
    
    static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
    {
    	WARN_ON(mmu_is_nested(vcpu));
    
    	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
    	kvm_init_shadow_ept_mmu(vcpu,
    			to_vmx(vcpu)->nested.msrs.ept_caps &
    			VMX_EPT_EXECUTE_ONLY_BIT,
    			nested_ept_ad_enabled(vcpu),
    			nested_ept_get_eptp(vcpu));
    	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
    	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
    	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
    
    	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
    }
    
    static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
    {
    	vcpu->arch.mmu = &vcpu->arch.root_mmu;
    	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
    }
    
    static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
    					    u16 error_code)
    {
    	bool inequality, bit;
    
    	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
    	inequality =
    		(error_code & vmcs12->page_fault_error_code_mask) !=
    		 vmcs12->page_fault_error_code_match;
    	return inequality ^ bit;
    }
    
    
    /*
     * KVM wants to inject page-faults which it got to the guest. This function
     * checks whether in a nested guest, we need to inject them to L1 or L2.
     */
    static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	unsigned int nr = vcpu->arch.exception.nr;
    	bool has_payload = vcpu->arch.exception.has_payload;
    	unsigned long payload = vcpu->arch.exception.payload;
    
    	if (nr == PF_VECTOR) {
    		if (vcpu->arch.exception.nested_apf) {
    			*exit_qual = vcpu->arch.apf.nested_apf_token;
    			return 1;
    		}
    		if (nested_vmx_is_page_fault_vmexit(vmcs12,
    						    vcpu->arch.exception.error_code)) {
    			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
    			return 1;
    		}
    	} else if (vmcs12->exception_bitmap & (1u << nr)) {
    		if (nr == DB_VECTOR) {
    			if (!has_payload) {
    				payload = vcpu->arch.dr6;
    				payload &= ~(DR6_FIXED_1 | DR6_BT);
    				payload ^= DR6_RTM;
    			}
    			*exit_qual = payload;
    		} else
    			*exit_qual = 0;
    		return 1;
    	}
    
    	return 0;
    }
    
    
    static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
    		struct x86_exception *fault)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    
    	WARN_ON(!is_guest_mode(vcpu));
    
    	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
    		!to_vmx(vcpu)->nested.nested_run_pending) {
    		vmcs12->vm_exit_intr_error_code = fault->error_code;
    		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
    				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
    				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
    				  fault->address);
    	} else {
    		kvm_inject_page_fault(vcpu, fault);
    	}
    }
    
    static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
    					       struct vmcs12 *vmcs12)
    {
    	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
    		return 0;
    
    	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
    	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
    						struct vmcs12 *vmcs12)
    {
    	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
    		return 0;
    
    	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
    						struct vmcs12 *vmcs12)
    {
    	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
    		return 0;
    
    	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
    		return -EINVAL;
    
    	return 0;
    }
    
    /*
     * Check if MSR is intercepted for L01 MSR bitmap.
     */
    static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
    {
    	unsigned long *msr_bitmap;
    	int f = sizeof(unsigned long);
    
    	if (!cpu_has_vmx_msr_bitmap())
    		return true;
    
    	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
    
    	if (msr <= 0x1fff) {
    		return !!test_bit(msr, msr_bitmap + 0x800 / f);
    	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
    		msr &= 0x1fff;
    		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
    	}
    
    	return true;
    }
    
    /*
     * If a msr is allowed by L0, we should check whether it is allowed by L1.
     * The corresponding bit will be cleared unless both of L0 and L1 allow it.
     */
    static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
    					       unsigned long *msr_bitmap_nested,
    					       u32 msr, int type)
    {
    	int f = sizeof(unsigned long);
    
    	/*
    	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
    	 * have the write-low and read-high bitmap offsets the wrong way round.
    	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
    	 */
    	if (msr <= 0x1fff) {
    		if (type & MSR_TYPE_R &&
    		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
    			/* read-low */
    			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
    
    		if (type & MSR_TYPE_W &&
    		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
    			/* write-low */
    			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
    
    	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
    		msr &= 0x1fff;
    		if (type & MSR_TYPE_R &&
    		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
    			/* read-high */
    			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
    
    		if (type & MSR_TYPE_W &&
    		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
    			/* write-high */
    			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
    
    	}
    }
    
    static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
    {
    	int msr;
    
    	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
    		unsigned word = msr / BITS_PER_LONG;
    
    		msr_bitmap[word] = ~0;
    		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
    	}
    }
    
    /*
     * Merge L0's and L1's MSR bitmap, return false to indicate that
     * we do not use the hardware.
     */
    static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
    						 struct vmcs12 *vmcs12)
    {
    	int msr;
    	unsigned long *msr_bitmap_l1;
    	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
    	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
    
    	/* Nothing to do if the MSR bitmap is not in use.  */
    	if (!cpu_has_vmx_msr_bitmap() ||
    	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
    		return false;
    
    	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
    		return false;
    
    	msr_bitmap_l1 = (unsigned long *)map->hva;
    
    	/*
    	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
    	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
    	 * the x2APIC MSR range and selectively disable them below.
    	 */
    	enable_x2apic_msr_intercepts(msr_bitmap_l0);
    
    	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
    		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
    			/*
    			 * L0 need not intercept reads for MSRs between 0x800
    			 * and 0x8ff, it just lets the processor take the value
    			 * from the virtual-APIC page; take those 256 bits
    			 * directly from the L1 bitmap.
    			 */
    			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
    				unsigned word = msr / BITS_PER_LONG;
    
    				msr_bitmap_l0[word] = msr_bitmap_l1[word];
    			}
    		}
    
    		nested_vmx_disable_intercept_for_msr(
    			msr_bitmap_l1, msr_bitmap_l0,
    			X2APIC_MSR(APIC_TASKPRI),
    			MSR_TYPE_R | MSR_TYPE_W);
    
    		if (nested_cpu_has_vid(vmcs12)) {
    			nested_vmx_disable_intercept_for_msr(
    				msr_bitmap_l1, msr_bitmap_l0,
    				X2APIC_MSR(APIC_EOI),
    				MSR_TYPE_W);
    			nested_vmx_disable_intercept_for_msr(
    				msr_bitmap_l1, msr_bitmap_l0,
    				X2APIC_MSR(APIC_SELF_IPI),
    				MSR_TYPE_W);
    		}
    	}
    
    	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
    	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
    					     MSR_FS_BASE, MSR_TYPE_RW);
    
    	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
    					     MSR_GS_BASE, MSR_TYPE_RW);
    
    	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
    					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
    
    	/*
    	 * Checking the L0->L1 bitmap is trying to verify two things:
    	 *
    	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
    	 *    ensures that we do not accidentally generate an L02 MSR bitmap
    	 *    from the L12 MSR bitmap that is too permissive.
    	 * 2. That L1 or L2s have actually used the MSR. This avoids
    	 *    unnecessarily merging of the bitmap if the MSR is unused. This
    	 *    works properly because we only update the L01 MSR bitmap lazily.
    	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
    	 *    updated to reflect this when L1 (or its L2s) actually write to
    	 *    the MSR.
    	 */
    	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
    		nested_vmx_disable_intercept_for_msr(
    					msr_bitmap_l1, msr_bitmap_l0,
    					MSR_IA32_SPEC_CTRL,
    					MSR_TYPE_R | MSR_TYPE_W);
    
    	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
    		nested_vmx_disable_intercept_for_msr(
    					msr_bitmap_l1, msr_bitmap_l0,
    					MSR_IA32_PRED_CMD,
    					MSR_TYPE_W);
    
    	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
    
    	return true;
    }
    
    static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
    				       struct vmcs12 *vmcs12)
    {
    	struct kvm_host_map map;
    	struct vmcs12 *shadow;
    
    	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
    	    vmcs12->vmcs_link_pointer == -1ull)
    		return;
    
    	shadow = get_shadow_vmcs12(vcpu);
    
    	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
    		return;
    
    	memcpy(shadow, map.hva, VMCS12_SIZE);
    	kvm_vcpu_unmap(vcpu, &map, false);
    }
    
    static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
    					      struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
    	    vmcs12->vmcs_link_pointer == -1ull)
    		return;
    
    	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
    			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
    }
    
    /*
     * In nested virtualization, check if L1 has set
     * VM_EXIT_ACK_INTR_ON_EXIT
     */
    static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
    {
    	return get_vmcs12(vcpu)->vm_exit_controls &
    		VM_EXIT_ACK_INTR_ON_EXIT;
    }
    
    static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
    					  struct vmcs12 *vmcs12)
    {
    	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
    	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
    		return -EINVAL;
    	else
    		return 0;
    }
    
    static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
    					   struct vmcs12 *vmcs12)
    {
    	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
    	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
    	    !nested_cpu_has_vid(vmcs12) &&
    	    !nested_cpu_has_posted_intr(vmcs12))
    		return 0;
    
    	/*
    	 * If virtualize x2apic mode is enabled,
    	 * virtualize apic access must be disabled.
    	 */
    	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
    	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
    		return -EINVAL;
    
    	/*
    	 * If virtual interrupt delivery is enabled,
    	 * we must exit on external interrupts.
    	 */
    	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
    		return -EINVAL;
    
    	/*
    	 * bits 15:8 should be zero in posted_intr_nv,
    	 * the descriptor address has been already checked
    	 * in nested_get_vmcs12_pages.
    	 *
    	 * bits 5:0 of posted_intr_desc_addr should be zero.
    	 */
    	if (nested_cpu_has_posted_intr(vmcs12) &&
    	   (CC(!nested_cpu_has_vid(vmcs12)) ||
    	    CC(!nested_exit_intr_ack_set(vcpu)) ||
    	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
    	    CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
    	    CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
    		return -EINVAL;
    
    	/* tpr shadow is needed by all apicv features. */
    	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
    				       u32 count, u64 addr)
    {
    	int maxphyaddr;
    
    	if (count == 0)
    		return 0;
    	maxphyaddr = cpuid_maxphyaddr(vcpu);
    	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
    	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
    						     struct vmcs12 *vmcs12)
    {
    	if (CC(nested_vmx_check_msr_switch(vcpu,
    					   vmcs12->vm_exit_msr_load_count,
    					   vmcs12->vm_exit_msr_load_addr)) ||
    	    CC(nested_vmx_check_msr_switch(vcpu,
    					   vmcs12->vm_exit_msr_store_count,
    					   vmcs12->vm_exit_msr_store_addr)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
                                                          struct vmcs12 *vmcs12)
    {
    	if (CC(nested_vmx_check_msr_switch(vcpu,
    					   vmcs12->vm_entry_msr_load_count,
    					   vmcs12->vm_entry_msr_load_addr)))
                    return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
    					 struct vmcs12 *vmcs12)
    {
    	if (!nested_cpu_has_pml(vmcs12))
    		return 0;
    
    	if (CC(!nested_cpu_has_ept(vmcs12)) ||
    	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
    							struct vmcs12 *vmcs12)
    {
    	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
    	       !nested_cpu_has_ept(vmcs12)))
    		return -EINVAL;
    	return 0;
    }
    
    static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
    							 struct vmcs12 *vmcs12)
    {
    	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
    	       !nested_cpu_has_ept(vmcs12)))
    		return -EINVAL;
    	return 0;
    }
    
    static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
    						 struct vmcs12 *vmcs12)
    {
    	if (!nested_cpu_has_shadow_vmcs(vmcs12))
    		return 0;
    
    	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
    	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
    				       struct vmx_msr_entry *e)
    {
    	/* x2APIC MSR accesses are not allowed */
    	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
    		return -EINVAL;
    	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
    	    CC(e->index == MSR_IA32_UCODE_REV))
    		return -EINVAL;
    	if (CC(e->reserved != 0))
    		return -EINVAL;
    	return 0;
    }
    
    static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
    				     struct vmx_msr_entry *e)
    {
    	if (CC(e->index == MSR_FS_BASE) ||
    	    CC(e->index == MSR_GS_BASE) ||
    	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
    	    nested_vmx_msr_check_common(vcpu, e))
    		return -EINVAL;
    	return 0;
    }
    
    static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
    				      struct vmx_msr_entry *e)
    {
    	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
    	    nested_vmx_msr_check_common(vcpu, e))
    		return -EINVAL;
    	return 0;
    }
    
    static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
    				       vmx->nested.msrs.misc_high);
    
    	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
    }
    
    /*
     * Load guest's/host's msr at nested entry/exit.
     * return 0 for success, entry index for failure.
     *
     * One of the failure modes for MSR load/store is when a list exceeds the
     * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
     * as possible, process all valid entries before failing rather than precheck
     * for a capacity violation.
     */
    static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
    {
    	u32 i;
    	struct vmx_msr_entry e;
    	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
    
    	for (i = 0; i < count; i++) {
    		if (unlikely(i >= max_msr_list_size))
    			goto fail;
    
    		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
    					&e, sizeof(e))) {
    			pr_debug_ratelimited(
    				"%s cannot read MSR entry (%u, 0x%08llx)\n",
    				__func__, i, gpa + i * sizeof(e));
    			goto fail;
    		}
    		if (nested_vmx_load_msr_check(vcpu, &e)) {
    			pr_debug_ratelimited(
    				"%s check failed (%u, 0x%x, 0x%x)\n",
    				__func__, i, e.index, e.reserved);
    			goto fail;
    		}
    		if (kvm_set_msr(vcpu, e.index, e.value)) {
    			pr_debug_ratelimited(
    				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
    				__func__, i, e.index, e.value);
    			goto fail;
    		}
    	}
    	return 0;
    fail:
    	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
    	return i + 1;
    }
    
    static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
    					    u32 msr_index,
    					    u64 *data)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	/*
    	 * If the L0 hypervisor stored a more accurate value for the TSC that
    	 * does not include the time taken for emulation of the L2->L1
    	 * VM-exit in L0, use the more accurate value.
    	 */
    	if (msr_index == MSR_IA32_TSC) {
    		int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
    					       MSR_IA32_TSC);
    
    		if (index >= 0) {
    			u64 val = vmx->msr_autostore.guest.val[index].value;
    
    			*data = kvm_read_l1_tsc(vcpu, val);
    			return true;
    		}
    	}
    
    	if (kvm_get_msr(vcpu, msr_index, data)) {
    		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
    			msr_index);
    		return false;
    	}
    	return true;
    }
    
    static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
    				     struct vmx_msr_entry *e)
    {
    	if (kvm_vcpu_read_guest(vcpu,
    				gpa + i * sizeof(*e),
    				e, 2 * sizeof(u32))) {
    		pr_debug_ratelimited(
    			"%s cannot read MSR entry (%u, 0x%08llx)\n",
    			__func__, i, gpa + i * sizeof(*e));
    		return false;
    	}
    	if (nested_vmx_store_msr_check(vcpu, e)) {
    		pr_debug_ratelimited(
    			"%s check failed (%u, 0x%x, 0x%x)\n",
    			__func__, i, e->index, e->reserved);
    		return false;
    	}
    	return true;
    }
    
    static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
    {
    	u64 data;
    	u32 i;
    	struct vmx_msr_entry e;
    	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
    
    	for (i = 0; i < count; i++) {
    		if (unlikely(i >= max_msr_list_size))
    			return -EINVAL;
    
    		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
    			return -EINVAL;
    
    		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
    			return -EINVAL;
    
    		if (kvm_vcpu_write_guest(vcpu,
    					 gpa + i * sizeof(e) +
    					     offsetof(struct vmx_msr_entry, value),
    					 &data, sizeof(data))) {
    			pr_debug_ratelimited(
    				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
    				__func__, i, e.index, data);
    			return -EINVAL;
    		}
    	}
    	return 0;
    }
    
    static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	u32 count = vmcs12->vm_exit_msr_store_count;
    	u64 gpa = vmcs12->vm_exit_msr_store_addr;
    	struct vmx_msr_entry e;
    	u32 i;
    
    	for (i = 0; i < count; i++) {
    		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
    			return false;
    
    		if (e.index == msr_index)
    			return true;
    	}
    	return false;
    }
    
    static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
    					   u32 msr_index)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
    	bool in_vmcs12_store_list;
    	int msr_autostore_index;
    	bool in_autostore_list;
    	int last;
    
    	msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
    	in_autostore_list = msr_autostore_index >= 0;
    	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
    
    	if (in_vmcs12_store_list && !in_autostore_list) {
    		if (autostore->nr == NR_LOADSTORE_MSRS) {
    			/*
    			 * Emulated VMEntry does not fail here.  Instead a less
    			 * accurate value will be returned by
    			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
    			 * instead of reading the value from the vmcs02 VMExit
    			 * MSR-store area.
    			 */
    			pr_warn_ratelimited(
    				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
    				msr_index);
    			return;
    		}
    		last = autostore->nr++;
    		autostore->val[last].index = msr_index;
    	} else if (!in_vmcs12_store_list && in_autostore_list) {
    		last = --autostore->nr;
    		autostore->val[msr_autostore_index] = autostore->val[last];
    	}
    }
    
    static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
    {
    	unsigned long invalid_mask;
    
    	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
    	return (val & invalid_mask) == 0;
    }
    
    /*
     * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
     * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
     * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
     * Here's why.
     *
     * If EPT is enabled by L0 a sync is never needed:
     * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
     *   cannot be unsync'd SPTEs for either L1 or L2.
     *
     * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
     *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
     *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
     *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
     *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
     *
     * If EPT is disabled by L0:
     * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
     *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
     *   required to invalidate linear mappings (EPT is disabled so there are
     *   no combined or guest-physical mappings), i.e. L1 can't rely on the
     *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
     *
     * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
     *   linear mappings (EPT is disabled so there are no combined or guest-physical
     *   mappings) to be invalidated on both VM-Enter and VM-Exit.
     *
     * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
     * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
     * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
     * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
     * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
     * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
     * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
     * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
     * stale TLB entries, at which point L0 will sync L2's MMU.
     */
    static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
    {
    	return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
    }
    
    /*
     * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
     * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
     * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
     * @entry_failure_code.
     */
    static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
    			       enum vm_entry_failure_code *entry_failure_code)
    {
    	if (CC(!nested_cr3_valid(vcpu, cr3))) {
    		*entry_failure_code = ENTRY_FAIL_DEFAULT;
    		return -EINVAL;
    	}
    
    	/*
    	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
    	 * must not be dereferenced.
    	 */
    	if (!nested_ept && is_pae_paging(vcpu) &&
    	    (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
    		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
    			*entry_failure_code = ENTRY_FAIL_PDPTE;
    			return -EINVAL;
    		}
    	}
    
    	/*
    	 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
    	 * flushes are handled by nested_vmx_transition_tlb_flush().  See
    	 * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
    	 */
    	if (!nested_ept)
    		kvm_mmu_new_pgd(vcpu, cr3, true,
    				!nested_vmx_transition_mmu_sync(vcpu));
    
    	vcpu->arch.cr3 = cr3;
    	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
    
    	kvm_init_mmu(vcpu, false);
    
    	return 0;
    }
    
    /*
     * Returns if KVM is able to config CPU to tag TLB entries
     * populated by L2 differently than TLB entries populated
     * by L1.
     *
     * If L0 uses EPT, L1 and L2 run with different EPTP because
     * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
     * are tagged with different EPTP.
     *
     * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
     * with different VPID (L1 entries are tagged with vmx->vpid
     * while L2 entries are tagged with vmx->nested.vpid02).
     */
    static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    
    	return enable_ept ||
    	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
    }
    
    static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
    					    struct vmcs12 *vmcs12,
    					    bool is_vmenter)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	/*
    	 * If VPID is disabled, linear and combined mappings are flushed on
    	 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
    	 * their associated EPTP.
    	 */
    	if (!enable_vpid)
    		return;
    
    	/*
    	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
    	 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
    	 *
    	 * If VPID is enabled and used by vmc12, but L2 does not have a unique
    	 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
    	 * a VPID for L2, flush the current context as the effective ASID is
    	 * common to both L1 and L2.
    	 *
    	 * Defer the flush so that it runs after vmcs02.EPTP has been set by
    	 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
    	 * redundant flushes further down the nested pipeline.
    	 *
    	 * If a TLB flush isn't required due to any of the above, and vpid12 is
    	 * changing then the new "virtual" VPID (vpid12) will reuse the same
    	 * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
    	 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
    	 * all nested vCPUs.
    	 */
    	if (!nested_cpu_has_vpid(vmcs12)) {
    		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
    	} else if (!nested_has_guest_tlb_tag(vcpu)) {
    		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
    	} else if (is_vmenter &&
    		   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
    		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
    		vpid_sync_context(nested_get_vpid02(vcpu));
    	}
    }
    
    static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
    {
    	superset &= mask;
    	subset &= mask;
    
    	return (superset | subset) == superset;
    }
    
    static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
    {
    	const u64 feature_and_reserved =
    		/* feature (except bit 48; see below) */
    		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
    		/* reserved */
    		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
    	u64 vmx_basic = vmx->nested.msrs.basic;
    
    	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
    		return -EINVAL;
    
    	/*
    	 * KVM does not emulate a version of VMX that constrains physical
    	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
    	 */
    	if (data & BIT_ULL(48))
    		return -EINVAL;
    
    	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
    	    vmx_basic_vmcs_revision_id(data))
    		return -EINVAL;
    
    	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
    		return -EINVAL;
    
    	vmx->nested.msrs.basic = data;
    	return 0;
    }
    
    static int
    vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
    {
    	u64 supported;
    	u32 *lowp, *highp;
    
    	switch (msr_index) {
    	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
    		lowp = &vmx->nested.msrs.pinbased_ctls_low;
    		highp = &vmx->nested.msrs.pinbased_ctls_high;
    		break;
    	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
    		lowp = &vmx->nested.msrs.procbased_ctls_low;
    		highp = &vmx->nested.msrs.procbased_ctls_high;
    		break;
    	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
    		lowp = &vmx->nested.msrs.exit_ctls_low;
    		highp = &vmx->nested.msrs.exit_ctls_high;
    		break;
    	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
    		lowp = &vmx->nested.msrs.entry_ctls_low;
    		highp = &vmx->nested.msrs.entry_ctls_high;
    		break;
    	case MSR_IA32_VMX_PROCBASED_CTLS2:
    		lowp = &vmx->nested.msrs.secondary_ctls_low;
    		highp = &vmx->nested.msrs.secondary_ctls_high;
    		break;
    	default:
    		BUG();
    	}
    
    	supported = vmx_control_msr(*lowp, *highp);
    
    	/* Check must-be-1 bits are still 1. */
    	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
    		return -EINVAL;
    
    	/* Check must-be-0 bits are still 0. */
    	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
    		return -EINVAL;
    
    	*lowp = data;
    	*highp = data >> 32;
    	return 0;
    }
    
    static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
    {
    	const u64 feature_and_reserved_bits =
    		/* feature */
    		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
    		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
    		/* reserved */
    		GENMASK_ULL(13, 9) | BIT_ULL(31);
    	u64 vmx_misc;
    
    	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
    				   vmx->nested.msrs.misc_high);
    
    	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
    		return -EINVAL;
    
    	if ((vmx->nested.msrs.pinbased_ctls_high &
    	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
    	    vmx_misc_preemption_timer_rate(data) !=
    	    vmx_misc_preemption_timer_rate(vmx_misc))
    		return -EINVAL;
    
    	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
    		return -EINVAL;
    
    	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
    		return -EINVAL;
    
    	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
    		return -EINVAL;
    
    	vmx->nested.msrs.misc_low = data;
    	vmx->nested.msrs.misc_high = data >> 32;
    
    	return 0;
    }
    
    static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
    {
    	u64 vmx_ept_vpid_cap;
    
    	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
    					   vmx->nested.msrs.vpid_caps);
    
    	/* Every bit is either reserved or a feature bit. */
    	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
    		return -EINVAL;
    
    	vmx->nested.msrs.ept_caps = data;
    	vmx->nested.msrs.vpid_caps = data >> 32;
    	return 0;
    }
    
    static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
    {
    	u64 *msr;
    
    	switch (msr_index) {
    	case MSR_IA32_VMX_CR0_FIXED0:
    		msr = &vmx->nested.msrs.cr0_fixed0;
    		break;
    	case MSR_IA32_VMX_CR4_FIXED0:
    		msr = &vmx->nested.msrs.cr4_fixed0;
    		break;
    	default:
    		BUG();
    	}
    
    	/*
    	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
    	 * must be 1 in the restored value.
    	 */
    	if (!is_bitwise_subset(data, *msr, -1ULL))
    		return -EINVAL;
    
    	*msr = data;
    	return 0;
    }
    
    /*
     * Called when userspace is restoring VMX MSRs.
     *
     * Returns 0 on success, non-0 otherwise.
     */
    int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	/*
    	 * Don't allow changes to the VMX capability MSRs while the vCPU
    	 * is in VMX operation.
    	 */
    	if (vmx->nested.vmxon)
    		return -EBUSY;
    
    	switch (msr_index) {
    	case MSR_IA32_VMX_BASIC:
    		return vmx_restore_vmx_basic(vmx, data);
    	case MSR_IA32_VMX_PINBASED_CTLS:
    	case MSR_IA32_VMX_PROCBASED_CTLS:
    	case MSR_IA32_VMX_EXIT_CTLS:
    	case MSR_IA32_VMX_ENTRY_CTLS:
    		/*
    		 * The "non-true" VMX capability MSRs are generated from the
    		 * "true" MSRs, so we do not support restoring them directly.
    		 *
    		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
    		 * should restore the "true" MSRs with the must-be-1 bits
    		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
    		 * DEFAULT SETTINGS".
    		 */
    		return -EINVAL;
    	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
    	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
    	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
    	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
    	case MSR_IA32_VMX_PROCBASED_CTLS2:
    		return vmx_restore_control_msr(vmx, msr_index, data);
    	case MSR_IA32_VMX_MISC:
    		return vmx_restore_vmx_misc(vmx, data);
    	case MSR_IA32_VMX_CR0_FIXED0:
    	case MSR_IA32_VMX_CR4_FIXED0:
    		return vmx_restore_fixed0_msr(vmx, msr_index, data);
    	case MSR_IA32_VMX_CR0_FIXED1:
    	case MSR_IA32_VMX_CR4_FIXED1:
    		/*
    		 * These MSRs are generated based on the vCPU's CPUID, so we
    		 * do not support restoring them directly.
    		 */
    		return -EINVAL;
    	case MSR_IA32_VMX_EPT_VPID_CAP:
    		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
    	case MSR_IA32_VMX_VMCS_ENUM:
    		vmx->nested.msrs.vmcs_enum = data;
    		return 0;
    	case MSR_IA32_VMX_VMFUNC:
    		if (data & ~vmx->nested.msrs.vmfunc_controls)
    			return -EINVAL;
    		vmx->nested.msrs.vmfunc_controls = data;
    		return 0;
    	default:
    		/*
    		 * The rest of the VMX capability MSRs do not support restore.
    		 */
    		return -EINVAL;
    	}
    }
    
    /* Returns 0 on success, non-0 otherwise. */
    int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
    {
    	switch (msr_index) {
    	case MSR_IA32_VMX_BASIC:
    		*pdata = msrs->basic;
    		break;
    	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
    	case MSR_IA32_VMX_PINBASED_CTLS:
    		*pdata = vmx_control_msr(
    			msrs->pinbased_ctls_low,
    			msrs->pinbased_ctls_high);
    		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
    			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
    		break;
    	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
    	case MSR_IA32_VMX_PROCBASED_CTLS:
    		*pdata = vmx_control_msr(
    			msrs->procbased_ctls_low,
    			msrs->procbased_ctls_high);
    		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
    			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
    		break;
    	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
    	case MSR_IA32_VMX_EXIT_CTLS:
    		*pdata = vmx_control_msr(
    			msrs->exit_ctls_low,
    			msrs->exit_ctls_high);
    		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
    			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
    		break;
    	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
    	case MSR_IA32_VMX_ENTRY_CTLS:
    		*pdata = vmx_control_msr(
    			msrs->entry_ctls_low,
    			msrs->entry_ctls_high);
    		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
    			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
    		break;
    	case MSR_IA32_VMX_MISC:
    		*pdata = vmx_control_msr(
    			msrs->misc_low,
    			msrs->misc_high);
    		break;
    	case MSR_IA32_VMX_CR0_FIXED0:
    		*pdata = msrs->cr0_fixed0;
    		break;
    	case MSR_IA32_VMX_CR0_FIXED1:
    		*pdata = msrs->cr0_fixed1;
    		break;
    	case MSR_IA32_VMX_CR4_FIXED0:
    		*pdata = msrs->cr4_fixed0;
    		break;
    	case MSR_IA32_VMX_CR4_FIXED1:
    		*pdata = msrs->cr4_fixed1;
    		break;
    	case MSR_IA32_VMX_VMCS_ENUM:
    		*pdata = msrs->vmcs_enum;
    		break;
    	case MSR_IA32_VMX_PROCBASED_CTLS2:
    		*pdata = vmx_control_msr(
    			msrs->secondary_ctls_low,
    			msrs->secondary_ctls_high);
    		break;
    	case MSR_IA32_VMX_EPT_VPID_CAP:
    		*pdata = msrs->ept_caps |
    			((u64)msrs->vpid_caps << 32);
    		break;
    	case MSR_IA32_VMX_VMFUNC:
    		*pdata = msrs->vmfunc_controls;
    		break;
    	default:
    		return 1;
    	}
    
    	return 0;
    }
    
    /*
     * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
     * been modified by the L1 guest.  Note, "writable" in this context means
     * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
     * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
     * VM-exit information fields (which are actually writable if the vCPU is
     * configured to support "VMWRITE to any supported field in the VMCS").
     */
    static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
    {
    	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
    	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
    	struct shadow_vmcs_field field;
    	unsigned long val;
    	int i;
    
    	if (WARN_ON(!shadow_vmcs))
    		return;
    
    	preempt_disable();
    
    	vmcs_load(shadow_vmcs);
    
    	for (i = 0; i < max_shadow_read_write_fields; i++) {
    		field = shadow_read_write_fields[i];
    		val = __vmcs_readl(field.encoding);
    		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
    	}
    
    	vmcs_clear(shadow_vmcs);
    	vmcs_load(vmx->loaded_vmcs->vmcs);
    
    	preempt_enable();
    }
    
    static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
    {
    	const struct shadow_vmcs_field *fields[] = {
    		shadow_read_write_fields,
    		shadow_read_only_fields
    	};
    	const int max_fields[] = {
    		max_shadow_read_write_fields,
    		max_shadow_read_only_fields
    	};
    	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
    	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
    	struct shadow_vmcs_field field;
    	unsigned long val;
    	int i, q;
    
    	if (WARN_ON(!shadow_vmcs))
    		return;
    
    	vmcs_load(shadow_vmcs);
    
    	for (q = 0; q < ARRAY_SIZE(fields); q++) {
    		for (i = 0; i < max_fields[q]; i++) {
    			field = fields[q][i];
    			val = vmcs12_read_any(vmcs12, field.encoding,
    					      field.offset);
    			__vmcs_writel(field.encoding, val);
    		}
    	}
    
    	vmcs_clear(shadow_vmcs);
    	vmcs_load(vmx->loaded_vmcs->vmcs);
    }
    
    static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
    {
    	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
    	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
    
    	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
    	vmcs12->tpr_threshold = evmcs->tpr_threshold;
    	vmcs12->guest_rip = evmcs->guest_rip;
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
    		vmcs12->guest_rsp = evmcs->guest_rsp;
    		vmcs12->guest_rflags = evmcs->guest_rflags;
    		vmcs12->guest_interruptibility_info =
    			evmcs->guest_interruptibility_info;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
    		vmcs12->cpu_based_vm_exec_control =
    			evmcs->cpu_based_vm_exec_control;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
    		vmcs12->exception_bitmap = evmcs->exception_bitmap;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
    		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
    		vmcs12->vm_entry_intr_info_field =
    			evmcs->vm_entry_intr_info_field;
    		vmcs12->vm_entry_exception_error_code =
    			evmcs->vm_entry_exception_error_code;
    		vmcs12->vm_entry_instruction_len =
    			evmcs->vm_entry_instruction_len;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
    		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
    		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
    		vmcs12->host_cr0 = evmcs->host_cr0;
    		vmcs12->host_cr3 = evmcs->host_cr3;
    		vmcs12->host_cr4 = evmcs->host_cr4;
    		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
    		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
    		vmcs12->host_rip = evmcs->host_rip;
    		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
    		vmcs12->host_es_selector = evmcs->host_es_selector;
    		vmcs12->host_cs_selector = evmcs->host_cs_selector;
    		vmcs12->host_ss_selector = evmcs->host_ss_selector;
    		vmcs12->host_ds_selector = evmcs->host_ds_selector;
    		vmcs12->host_fs_selector = evmcs->host_fs_selector;
    		vmcs12->host_gs_selector = evmcs->host_gs_selector;
    		vmcs12->host_tr_selector = evmcs->host_tr_selector;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
    		vmcs12->pin_based_vm_exec_control =
    			evmcs->pin_based_vm_exec_control;
    		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
    		vmcs12->secondary_vm_exec_control =
    			evmcs->secondary_vm_exec_control;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
    		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
    		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
    		vmcs12->msr_bitmap = evmcs->msr_bitmap;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
    		vmcs12->guest_es_base = evmcs->guest_es_base;
    		vmcs12->guest_cs_base = evmcs->guest_cs_base;
    		vmcs12->guest_ss_base = evmcs->guest_ss_base;
    		vmcs12->guest_ds_base = evmcs->guest_ds_base;
    		vmcs12->guest_fs_base = evmcs->guest_fs_base;
    		vmcs12->guest_gs_base = evmcs->guest_gs_base;
    		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
    		vmcs12->guest_tr_base = evmcs->guest_tr_base;
    		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
    		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
    		vmcs12->guest_es_limit = evmcs->guest_es_limit;
    		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
    		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
    		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
    		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
    		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
    		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
    		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
    		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
    		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
    		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
    		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
    		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
    		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
    		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
    		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
    		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
    		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
    		vmcs12->guest_es_selector = evmcs->guest_es_selector;
    		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
    		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
    		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
    		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
    		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
    		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
    		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
    		vmcs12->tsc_offset = evmcs->tsc_offset;
    		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
    		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
    		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
    		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
    		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
    		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
    		vmcs12->guest_cr0 = evmcs->guest_cr0;
    		vmcs12->guest_cr3 = evmcs->guest_cr3;
    		vmcs12->guest_cr4 = evmcs->guest_cr4;
    		vmcs12->guest_dr7 = evmcs->guest_dr7;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
    		vmcs12->host_fs_base = evmcs->host_fs_base;
    		vmcs12->host_gs_base = evmcs->host_gs_base;
    		vmcs12->host_tr_base = evmcs->host_tr_base;
    		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
    		vmcs12->host_idtr_base = evmcs->host_idtr_base;
    		vmcs12->host_rsp = evmcs->host_rsp;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
    		vmcs12->ept_pointer = evmcs->ept_pointer;
    		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
    	}
    
    	if (unlikely(!(evmcs->hv_clean_fields &
    		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
    		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
    		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
    		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
    		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
    		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
    		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
    		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
    		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
    		vmcs12->guest_pending_dbg_exceptions =
    			evmcs->guest_pending_dbg_exceptions;
    		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
    		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
    		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
    		vmcs12->guest_activity_state = evmcs->guest_activity_state;
    		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
    	}
    
    	/*
    	 * Not used?
    	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
    	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
    	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
    	 * vmcs12->page_fault_error_code_mask =
    	 *		evmcs->page_fault_error_code_mask;
    	 * vmcs12->page_fault_error_code_match =
    	 *		evmcs->page_fault_error_code_match;
    	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
    	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
    	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
    	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
    	 */
    
    	/*
    	 * Read only fields:
    	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
    	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
    	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
    	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
    	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
    	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
    	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
    	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
    	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
    	 * vmcs12->exit_qualification = evmcs->exit_qualification;
    	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
    	 *
    	 * Not present in struct vmcs12:
    	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
    	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
    	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
    	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
    	 */
    
    	return 0;
    }
    
    static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
    {
    	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
    	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
    
    	/*
    	 * Should not be changed by KVM:
    	 *
    	 * evmcs->host_es_selector = vmcs12->host_es_selector;
    	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
    	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
    	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
    	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
    	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
    	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
    	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
    	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
    	 * evmcs->host_cr0 = vmcs12->host_cr0;
    	 * evmcs->host_cr3 = vmcs12->host_cr3;
    	 * evmcs->host_cr4 = vmcs12->host_cr4;
    	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
    	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
    	 * evmcs->host_rip = vmcs12->host_rip;
    	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
    	 * evmcs->host_fs_base = vmcs12->host_fs_base;
    	 * evmcs->host_gs_base = vmcs12->host_gs_base;
    	 * evmcs->host_tr_base = vmcs12->host_tr_base;
    	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
    	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
    	 * evmcs->host_rsp = vmcs12->host_rsp;
    	 * sync_vmcs02_to_vmcs12() doesn't read these:
    	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
    	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
    	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
    	 * evmcs->ept_pointer = vmcs12->ept_pointer;
    	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
    	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
    	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
    	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
    	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
    	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
    	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
    	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
    	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
    	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
    	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
    	 * evmcs->page_fault_error_code_mask =
    	 *		vmcs12->page_fault_error_code_mask;
    	 * evmcs->page_fault_error_code_match =
    	 *		vmcs12->page_fault_error_code_match;
    	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
    	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
    	 * evmcs->tsc_offset = vmcs12->tsc_offset;
    	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
    	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
    	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
    	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
    	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
    	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
    	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
    	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
    	 *
    	 * Not present in struct vmcs12:
    	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
    	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
    	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
    	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
    	 */
    
    	evmcs->guest_es_selector = vmcs12->guest_es_selector;
    	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
    	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
    	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
    	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
    	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
    	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
    	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
    
    	evmcs->guest_es_limit = vmcs12->guest_es_limit;
    	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
    	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
    	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
    	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
    	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
    	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
    	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
    	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
    	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
    
    	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
    	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
    	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
    	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
    	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
    	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
    	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
    	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
    
    	evmcs->guest_es_base = vmcs12->guest_es_base;
    	evmcs->guest_cs_base = vmcs12->guest_cs_base;
    	evmcs->guest_ss_base = vmcs12->guest_ss_base;
    	evmcs->guest_ds_base = vmcs12->guest_ds_base;
    	evmcs->guest_fs_base = vmcs12->guest_fs_base;
    	evmcs->guest_gs_base = vmcs12->guest_gs_base;
    	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
    	evmcs->guest_tr_base = vmcs12->guest_tr_base;
    	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
    	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
    
    	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
    	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
    
    	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
    	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
    	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
    	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
    
    	evmcs->guest_pending_dbg_exceptions =
    		vmcs12->guest_pending_dbg_exceptions;
    	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
    	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
    
    	evmcs->guest_activity_state = vmcs12->guest_activity_state;
    	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
    
    	evmcs->guest_cr0 = vmcs12->guest_cr0;
    	evmcs->guest_cr3 = vmcs12->guest_cr3;
    	evmcs->guest_cr4 = vmcs12->guest_cr4;
    	evmcs->guest_dr7 = vmcs12->guest_dr7;
    
    	evmcs->guest_physical_address = vmcs12->guest_physical_address;
    
    	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
    	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
    	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
    	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
    	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
    	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
    	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
    	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
    
    	evmcs->exit_qualification = vmcs12->exit_qualification;
    
    	evmcs->guest_linear_address = vmcs12->guest_linear_address;
    	evmcs->guest_rsp = vmcs12->guest_rsp;
    	evmcs->guest_rflags = vmcs12->guest_rflags;
    
    	evmcs->guest_interruptibility_info =
    		vmcs12->guest_interruptibility_info;
    	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
    	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
    	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
    	evmcs->vm_entry_exception_error_code =
    		vmcs12->vm_entry_exception_error_code;
    	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
    
    	evmcs->guest_rip = vmcs12->guest_rip;
    
    	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
    
    	return 0;
    }
    
    /*
     * This is an equivalent of the nested hypervisor executing the vmptrld
     * instruction.
     */
    static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
    	struct kvm_vcpu *vcpu, bool from_launch)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	bool evmcs_gpa_changed = false;
    	u64 evmcs_gpa;
    
    	if (likely(!vmx->nested.enlightened_vmcs_enabled))
    		return EVMPTRLD_DISABLED;
    
    	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
    		return EVMPTRLD_DISABLED;
    
    	if (unlikely(!vmx->nested.hv_evmcs ||
    		     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
    		if (!vmx->nested.hv_evmcs)
    			vmx->nested.current_vmptr = -1ull;
    
    		nested_release_evmcs(vcpu);
    
    		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
    				 &vmx->nested.hv_evmcs_map))
    			return EVMPTRLD_ERROR;
    
    		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
    
    		/*
    		 * Currently, KVM only supports eVMCS version 1
    		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
    		 * value to first u32 field of eVMCS which should specify eVMCS
    		 * VersionNumber.
    		 *
    		 * Guest should be aware of supported eVMCS versions by host by
    		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
    		 * expected to set this CPUID leaf according to the value
    		 * returned in vmcs_version from nested_enable_evmcs().
    		 *
    		 * However, it turns out that Microsoft Hyper-V fails to comply
    		 * to their own invented interface: When Hyper-V use eVMCS, it
    		 * just sets first u32 field of eVMCS to revision_id specified
    		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
    		 * which is one of the supported versions specified in
    		 * CPUID.0x4000000A.EAX[0:15].
    		 *
    		 * To overcome Hyper-V bug, we accept here either a supported
    		 * eVMCS version or VMCS12 revision_id as valid values for first
    		 * u32 field of eVMCS.
    		 */
    		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
    		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
    			nested_release_evmcs(vcpu);
    			return EVMPTRLD_VMFAIL;
    		}
    
    		vmx->nested.dirty_vmcs12 = true;
    		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
    
    		evmcs_gpa_changed = true;
    		/*
    		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
    		 * reloaded from guest's memory (read only fields, fields not
    		 * present in struct hv_enlightened_vmcs, ...). Make sure there
    		 * are no leftovers.
    		 */
    		if (from_launch) {
    			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    			memset(vmcs12, 0, sizeof(*vmcs12));
    			vmcs12->hdr.revision_id = VMCS12_REVISION;
    		}
    
    	}
    
    	/*
    	 * Clean fields data can't be used on VMLAUNCH and when we switch
    	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
    	 */
    	if (from_launch || evmcs_gpa_changed)
    		vmx->nested.hv_evmcs->hv_clean_fields &=
    			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
    
    	return EVMPTRLD_SUCCEEDED;
    }
    
    void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (vmx->nested.hv_evmcs) {
    		copy_vmcs12_to_enlightened(vmx);
    		/* All fields are clean */
    		vmx->nested.hv_evmcs->hv_clean_fields |=
    			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
    	} else {
    		copy_vmcs12_to_shadow(vmx);
    	}
    
    	vmx->nested.need_vmcs12_to_shadow_sync = false;
    }
    
    static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
    {
    	struct vcpu_vmx *vmx =
    		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
    
    	vmx->nested.preemption_timer_expired = true;
    	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
    	kvm_vcpu_kick(&vmx->vcpu);
    
    	return HRTIMER_NORESTART;
    }
    
    static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    
    	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
    			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
    
    	if (!vmx->nested.has_preemption_timer_deadline) {
    		vmx->nested.preemption_timer_deadline =
    			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
    		vmx->nested.has_preemption_timer_deadline = true;
    	}
    	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
    }
    
    static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
    					u64 preemption_timeout)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	/*
    	 * A timer value of zero is architecturally guaranteed to cause
    	 * a VMExit prior to executing any instructions in the guest.
    	 */
    	if (preemption_timeout == 0) {
    		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
    		return;
    	}
    
    	if (vcpu->arch.virtual_tsc_khz == 0)
    		return;
    
    	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
    	preemption_timeout *= 1000000;
    	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
    	hrtimer_start(&vmx->nested.preemption_timer,
    		      ktime_add_ns(ktime_get(), preemption_timeout),
    		      HRTIMER_MODE_ABS_PINNED);
    }
    
    static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
    {
    	if (vmx->nested.nested_run_pending &&
    	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
    		return vmcs12->guest_ia32_efer;
    	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
    		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
    	else
    		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
    }
    
    static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
    {
    	/*
    	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
    	 * according to L0's settings (vmcs12 is irrelevant here).  Host
    	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
    	 * will be set as needed prior to VMLAUNCH/VMRESUME.
    	 */
    	if (vmx->nested.vmcs02_initialized)
    		return;
    	vmx->nested.vmcs02_initialized = true;
    
    	/*
    	 * We don't care what the EPTP value is we just need to guarantee
    	 * it's valid so we don't get a false positive when doing early
    	 * consistency checks.
    	 */
    	if (enable_ept && nested_early_check)
    		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
    
    	/* All VMFUNCs are currently emulated through L0 vmexits.  */
    	if (cpu_has_vmx_vmfunc())
    		vmcs_write64(VM_FUNCTION_CONTROL, 0);
    
    	if (cpu_has_vmx_posted_intr())
    		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
    
    	if (cpu_has_vmx_msr_bitmap())
    		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
    
    	/*
    	 * The PML address never changes, so it is constant in vmcs02.
    	 * Conceptually we want to copy the PML index from vmcs01 here,
    	 * and then back to vmcs01 on nested vmexit.  But since we flush
    	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
    	 * index is also effectively constant in vmcs02.
    	 */
    	if (enable_pml) {
    		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
    		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
    	}
    
    	if (cpu_has_vmx_encls_vmexit())
    		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
    
    	/*
    	 * Set the MSR load/store lists to match L0's settings.  Only the
    	 * addresses are constant (for vmcs02), the counts can change based
    	 * on L2's behavior, e.g. switching to/from long mode.
    	 */
    	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
    	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
    	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
    
    	vmx_set_constant_host_state(vmx);
    }
    
    static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
    				      struct vmcs12 *vmcs12)
    {
    	prepare_vmcs02_constant_state(vmx);
    
    	vmcs_write64(VMCS_LINK_POINTER, -1ull);
    
    	if (enable_vpid) {
    		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
    			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
    		else
    			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
    	}
    }
    
    static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
    {
    	u32 exec_control, vmcs12_exec_ctrl;
    	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
    
    	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
    		prepare_vmcs02_early_rare(vmx, vmcs12);
    
    	/*
    	 * PIN CONTROLS
    	 */
    	exec_control = vmx_pin_based_exec_ctrl(vmx);
    	exec_control |= (vmcs12->pin_based_vm_exec_control &
    			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
    
    	/* Posted interrupts setting is only taken from vmcs12.  */
    	if (nested_cpu_has_posted_intr(vmcs12)) {
    		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
    		vmx->nested.pi_pending = false;
    	} else {
    		exec_control &= ~PIN_BASED_POSTED_INTR;
    	}
    	pin_controls_set(vmx, exec_control);
    
    	/*
    	 * EXEC CONTROLS
    	 */
    	exec_control = vmx_exec_control(vmx); /* L0's desires */
    	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
    	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
    	exec_control &= ~CPU_BASED_TPR_SHADOW;
    	exec_control |= vmcs12->cpu_based_vm_exec_control;
    
    	vmx->nested.l1_tpr_threshold = -1;
    	if (exec_control & CPU_BASED_TPR_SHADOW)
    		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
    #ifdef CONFIG_X86_64
    	else
    		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
    				CPU_BASED_CR8_STORE_EXITING;
    #endif
    
    	/*
    	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
    	 * for I/O port accesses.
    	 */
    	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
    	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
    
    	/*
    	 * This bit will be computed in nested_get_vmcs12_pages, because
    	 * we do not have access to L1's MSR bitmap yet.  For now, keep
    	 * the same bit as before, hoping to avoid multiple VMWRITEs that
    	 * only set/clear this bit.
    	 */
    	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
    	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
    
    	exec_controls_set(vmx, exec_control);
    
    	/*
    	 * SECONDARY EXEC CONTROLS
    	 */
    	if (cpu_has_secondary_exec_ctrls()) {
    		exec_control = vmx->secondary_exec_control;
    
    		/* Take the following fields only from vmcs12 */
    		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
    				  SECONDARY_EXEC_ENABLE_INVPCID |
    				  SECONDARY_EXEC_RDTSCP |
    				  SECONDARY_EXEC_XSAVES |
    				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
    				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
    				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
    				  SECONDARY_EXEC_ENABLE_VMFUNC);
    		if (nested_cpu_has(vmcs12,
    				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
    			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
    				~SECONDARY_EXEC_ENABLE_PML;
    			exec_control |= vmcs12_exec_ctrl;
    		}
    
    		/* VMCS shadowing for L2 is emulated for now */
    		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
    
    		/*
    		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
    		 * will not have to rewrite the controls just for this bit.
    		 */
    		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
    		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
    			exec_control |= SECONDARY_EXEC_DESC;
    
    		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
    			vmcs_write16(GUEST_INTR_STATUS,
    				vmcs12->guest_intr_status);
    
    		secondary_exec_controls_set(vmx, exec_control);
    	}
    
    	/*
    	 * ENTRY CONTROLS
    	 *
    	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
    	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
    	 * on the related bits (if supported by the CPU) in the hope that
    	 * we can avoid VMWrites during vmx_set_efer().
    	 */
    	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
    			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
    	if (cpu_has_load_ia32_efer()) {
    		if (guest_efer & EFER_LMA)
    			exec_control |= VM_ENTRY_IA32E_MODE;
    		if (guest_efer != host_efer)
    			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
    	}
    	vm_entry_controls_set(vmx, exec_control);
    
    	/*
    	 * EXIT CONTROLS
    	 *
    	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
    	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
    	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
    	 */
    	exec_control = vmx_vmexit_ctrl();
    	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
    		exec_control |= VM_EXIT_LOAD_IA32_EFER;
    	vm_exit_controls_set(vmx, exec_control);
    
    	/*
    	 * Interrupt/Exception Fields
    	 */
    	if (vmx->nested.nested_run_pending) {
    		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
    			     vmcs12->vm_entry_intr_info_field);
    		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
    			     vmcs12->vm_entry_exception_error_code);
    		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
    			     vmcs12->vm_entry_instruction_len);
    		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
    			     vmcs12->guest_interruptibility_info);
    		vmx->loaded_vmcs->nmi_known_unmasked =
    			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
    	} else {
    		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
    	}
    }
    
    static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
    {
    	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
    
    	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
    			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
    		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
    		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
    		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
    		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
    		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
    		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
    		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
    		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
    		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
    		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
    		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
    		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
    		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
    		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
    		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
    		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
    		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
    		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
    		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
    		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
    		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
    		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
    		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
    		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
    		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
    		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
    		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
    		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
    		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
    		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
    		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
    		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
    		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
    		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
    		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
    		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
    	}
    
    	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
    			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
    		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
    		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
    			    vmcs12->guest_pending_dbg_exceptions);
    		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
    		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
    
    		/*
    		 * L1 may access the L2's PDPTR, so save them to construct
    		 * vmcs12
    		 */
    		if (enable_ept) {
    			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
    			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
    			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
    			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
    		}
    
    		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
    		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
    			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
    	}
    
    	if (nested_cpu_has_xsaves(vmcs12))
    		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
    
    	/*
    	 * Whether page-faults are trapped is determined by a combination of
    	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
    	 * If enable_ept, L0 doesn't care about page faults and we should
    	 * set all of these to L1's desires. However, if !enable_ept, L0 does
    	 * care about (at least some) page faults, and because it is not easy
    	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
    	 * to exit on each and every L2 page fault. This is done by setting
    	 * MASK=MATCH=0 and (see below) EB.PF=1.
    	 * Note that below we don't need special code to set EB.PF beyond the
    	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
    	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
    	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
    	 */
    	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
    		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
    	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
    		enable_ept ? vmcs12->page_fault_error_code_match : 0);
    
    	if (cpu_has_vmx_apicv()) {
    		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
    		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
    		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
    		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
    	}
    
    	/*
    	 * Make sure the msr_autostore list is up to date before we set the
    	 * count in the vmcs02.
    	 */
    	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
    
    	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
    	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
    	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
    
    	set_cr4_guest_host_mask(vmx);
    }
    
    /*
     * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
     * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
     * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
     * guest in a way that will both be appropriate to L1's requests, and our
     * needs. In addition to modifying the active vmcs (which is vmcs02), this
     * function also has additional necessary side-effects, like setting various
     * vcpu->arch fields.
     * Returns 0 on success, 1 on failure. Invalid state exit qualification code
     * is assigned to entry_failure_code on failure.
     */
    static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
    			  enum vm_entry_failure_code *entry_failure_code)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
    	bool load_guest_pdptrs_vmcs12 = false;
    
    	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
    		prepare_vmcs02_rare(vmx, vmcs12);
    		vmx->nested.dirty_vmcs12 = false;
    
    		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
    			!(hv_evmcs->hv_clean_fields &
    			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
    	}
    
    	if (vmx->nested.nested_run_pending &&
    	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
    		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
    		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
    	} else {
    		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
    		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
    	}
    	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
    	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
    		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
    	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
    
    	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
    	 * bitwise-or of what L1 wants to trap for L2, and what we want to
    	 * trap. Note that CR0.TS also needs updating - we do this later.
    	 */
    	update_exception_bitmap(vcpu);
    	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
    	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
    
    	if (vmx->nested.nested_run_pending &&
    	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
    		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
    		vcpu->arch.pat = vmcs12->guest_ia32_pat;
    	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
    		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
    	}
    
    	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
    
    	if (kvm_has_tsc_control)
    		decache_tsc_multiplier(vmx);
    
    	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
    
    	if (nested_cpu_has_ept(vmcs12))
    		nested_ept_init_mmu_context(vcpu);
    
    	/*
    	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
    	 * bits which we consider mandatory enabled.
    	 * The CR0_READ_SHADOW is what L2 should have expected to read given
    	 * the specifications by L1; It's not enough to take
    	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
    	 * have more bits than L1 expected.
    	 */
    	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
    	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
    
    	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
    	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
    
    	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
    	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
    	vmx_set_efer(vcpu, vcpu->arch.efer);
    
    	/*
    	 * Guest state is invalid and unrestricted guest is disabled,
    	 * which means L1 attempted VMEntry to L2 with invalid state.
    	 * Fail the VMEntry.
    	 */
    	if (vmx->emulation_required) {
    		*entry_failure_code = ENTRY_FAIL_DEFAULT;
    		return -EINVAL;
    	}
    
    	/* Shadow page tables on either EPT or shadow page tables. */
    	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
    				entry_failure_code))
    		return -EINVAL;
    
    	/*
    	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
    	 * on nested VM-Exit, which can occur without actually running L2 and
    	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
    	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
    	 * transition to HLT instead of running L2.
    	 */
    	if (enable_ept)
    		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
    
    	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
    	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
    	    is_pae_paging(vcpu)) {
    		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
    		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
    		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
    		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
    	}
    
    	if (!enable_ept)
    		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
    
    	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
    	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
    				     vmcs12->guest_ia32_perf_global_ctrl)))
    		return -EINVAL;
    
    	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
    	kvm_rip_write(vcpu, vmcs12->guest_rip);
    	return 0;
    }
    
    static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
    {
    	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
    	       nested_cpu_has_virtual_nmis(vmcs12)))
    		return -EINVAL;
    
    	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
    	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
    		return -EINVAL;
    
    	return 0;
    }
    
    static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	int maxphyaddr = cpuid_maxphyaddr(vcpu);
    
    	/* Check for memory type validity */
    	switch (new_eptp & VMX_EPTP_MT_MASK) {
    	case VMX_EPTP_MT_UC:
    		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
    			return false;
    		break;
    	case VMX_EPTP_MT_WB:
    		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
    			return false;
    		break;
    	default:
    		return false;
    	}
    
    	/* Page-walk levels validity. */
    	switch (new_eptp & VMX_EPTP_PWL_MASK) {
    	case VMX_EPTP_PWL_5:
    		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
    			return false;
    		break;
    	case VMX_EPTP_PWL_4:
    		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
    			return false;
    		break;
    	default:
    		return false;
    	}
    
    	/* Reserved bits should not be set */
    	if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
    		return false;
    
    	/* AD, if set, should be supported */
    	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
    		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
    			return false;
    	}
    
    	return true;
    }
    
    /*
     * Checks related to VM-Execution Control Fields
     */
    static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
                                                  struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
    				   vmx->nested.msrs.pinbased_ctls_low,
    				   vmx->nested.msrs.pinbased_ctls_high)) ||
    	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
    				   vmx->nested.msrs.procbased_ctls_low,
    				   vmx->nested.msrs.procbased_ctls_high)))
    		return -EINVAL;
    
    	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
    	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
    				   vmx->nested.msrs.secondary_ctls_low,
    				   vmx->nested.msrs.secondary_ctls_high)))
    		return -EINVAL;
    
    	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
    	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_nmi_controls(vmcs12) ||
    	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
    	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
    		return -EINVAL;
    
    	if (!nested_cpu_has_preemption_timer(vmcs12) &&
    	    nested_cpu_has_save_preemption_timer(vmcs12))
    		return -EINVAL;
    
    	if (nested_cpu_has_ept(vmcs12) &&
    	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
    		return -EINVAL;
    
    	if (nested_cpu_has_vmfunc(vmcs12)) {
    		if (CC(vmcs12->vm_function_control &
    		       ~vmx->nested.msrs.vmfunc_controls))
    			return -EINVAL;
    
    		if (nested_cpu_has_eptp_switching(vmcs12)) {
    			if (CC(!nested_cpu_has_ept(vmcs12)) ||
    			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
    				return -EINVAL;
    		}
    	}
    
    	return 0;
    }
    
    /*
     * Checks related to VM-Exit Control Fields
     */
    static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
                                             struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
    				    vmx->nested.msrs.exit_ctls_low,
    				    vmx->nested.msrs.exit_ctls_high)) ||
    	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
    		return -EINVAL;
    
    	return 0;
    }
    
    /*
     * Checks related to VM-Entry Control Fields
     */
    static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
    					  struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
    				    vmx->nested.msrs.entry_ctls_low,
    				    vmx->nested.msrs.entry_ctls_high)))
    		return -EINVAL;
    
    	/*
    	 * From the Intel SDM, volume 3:
    	 * Fields relevant to VM-entry event injection must be set properly.
    	 * These fields are the VM-entry interruption-information field, the
    	 * VM-entry exception error code, and the VM-entry instruction length.
    	 */
    	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
    		u32 intr_info = vmcs12->vm_entry_intr_info_field;
    		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
    		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
    		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
    		bool should_have_error_code;
    		bool urg = nested_cpu_has2(vmcs12,
    					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
    		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
    
    		/* VM-entry interruption-info field: interruption type */
    		if (CC(intr_type == INTR_TYPE_RESERVED) ||
    		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
    		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
    			return -EINVAL;
    
    		/* VM-entry interruption-info field: vector */
    		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
    		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
    		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
    			return -EINVAL;
    
    		/* VM-entry interruption-info field: deliver error code */
    		should_have_error_code =
    			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
    			x86_exception_has_error_code(vector);
    		if (CC(has_error_code != should_have_error_code))
    			return -EINVAL;
    
    		/* VM-entry exception error code */
    		if (CC(has_error_code &&
    		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
    			return -EINVAL;
    
    		/* VM-entry interruption-info field: reserved bits */
    		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
    			return -EINVAL;
    
    		/* VM-entry instruction length */
    		switch (intr_type) {
    		case INTR_TYPE_SOFT_EXCEPTION:
    		case INTR_TYPE_SOFT_INTR:
    		case INTR_TYPE_PRIV_SW_EXCEPTION:
    			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
    			    CC(vmcs12->vm_entry_instruction_len == 0 &&
    			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
    				return -EINVAL;
    		}
    	}
    
    	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
    				     struct vmcs12 *vmcs12)
    {
    	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
    	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
    	    nested_check_vm_entry_controls(vcpu, vmcs12))
    		return -EINVAL;
    
    	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
    		return nested_evmcs_check_controls(vmcs12);
    
    	return 0;
    }
    
    static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
    				       struct vmcs12 *vmcs12)
    {
    	bool ia32e;
    
    	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
    	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
    	    CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
    		return -EINVAL;
    
    	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
    	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
    		return -EINVAL;
    
    	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
    	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
    		return -EINVAL;
    
    	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
    	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
    					   vmcs12->host_ia32_perf_global_ctrl)))
    		return -EINVAL;
    
    #ifdef CONFIG_X86_64
    	ia32e = !!(vcpu->arch.efer & EFER_LMA);
    #else
    	ia32e = false;
    #endif
    
    	if (ia32e) {
    		if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
    		    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
    			return -EINVAL;
    	} else {
    		if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
    		    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
    		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
    		    CC((vmcs12->host_rip) >> 32))
    			return -EINVAL;
    	}
    
    	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
    	    CC(vmcs12->host_cs_selector == 0) ||
    	    CC(vmcs12->host_tr_selector == 0) ||
    	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
    		return -EINVAL;
    
    	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
    	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
    	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
    	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
    	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
    	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
    		return -EINVAL;
    
    	/*
    	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
    	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
    	 * the values of the LMA and LME bits in the field must each be that of
    	 * the host address-space size VM-exit control.
    	 */
    	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
    		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
    		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
    		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
    			return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
    					  struct vmcs12 *vmcs12)
    {
    	int r = 0;
    	struct vmcs12 *shadow;
    	struct kvm_host_map map;
    
    	if (vmcs12->vmcs_link_pointer == -1ull)
    		return 0;
    
    	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
    		return -EINVAL;
    
    	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
    		return -EINVAL;
    
    	shadow = map.hva;
    
    	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
    	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
    		r = -EINVAL;
    
    	kvm_vcpu_unmap(vcpu, &map, false);
    	return r;
    }
    
    /*
     * Checks related to Guest Non-register State
     */
    static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
    {
    	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
    	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
    					struct vmcs12 *vmcs12,
    					enum vm_entry_failure_code *entry_failure_code)
    {
    	bool ia32e;
    
    	*entry_failure_code = ENTRY_FAIL_DEFAULT;
    
    	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
    	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
    		return -EINVAL;
    
    	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
    	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
    		return -EINVAL;
    
    	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
    	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
    		return -EINVAL;
    
    	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
    		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
    		return -EINVAL;
    	}
    
    	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
    	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
    					   vmcs12->guest_ia32_perf_global_ctrl)))
    		return -EINVAL;
    
    	/*
    	 * If the load IA32_EFER VM-entry control is 1, the following checks
    	 * are performed on the field for the IA32_EFER MSR:
    	 * - Bits reserved in the IA32_EFER MSR must be 0.
    	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
    	 *   the IA-32e mode guest VM-exit control. It must also be identical
    	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
    	 *   CR0.PG) is 1.
    	 */
    	if (to_vmx(vcpu)->nested.nested_run_pending &&
    	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
    		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
    		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
    		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
    		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
    		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
    			return -EINVAL;
    	}
    
    	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
    	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
    	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
    		return -EINVAL;
    
    	if (nested_check_guest_non_reg_state(vmcs12))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	unsigned long cr3, cr4;
    	bool vm_fail;
    
    	if (!nested_early_check)
    		return 0;
    
    	if (vmx->msr_autoload.host.nr)
    		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
    	if (vmx->msr_autoload.guest.nr)
    		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
    
    	preempt_disable();
    
    	vmx_prepare_switch_to_guest(vcpu);
    
    	/*
    	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
    	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
    	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
    	 * there is no need to preserve other bits or save/restore the field.
    	 */
    	vmcs_writel(GUEST_RFLAGS, 0);
    
    	cr3 = __get_current_cr3_fast();
    	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
    		vmcs_writel(HOST_CR3, cr3);
    		vmx->loaded_vmcs->host_state.cr3 = cr3;
    	}
    
    	cr4 = cr4_read_shadow();
    	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
    		vmcs_writel(HOST_CR4, cr4);
    		vmx->loaded_vmcs->host_state.cr4 = cr4;
    	}
    
    	asm(
    		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
    		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
    		"je 1f \n\t"
    		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
    		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
    		"1: \n\t"
    		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
    
    		/* Check if vmlaunch or vmresume is needed */
    		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
    
    		/*
    		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
    		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
    		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
    		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
    		 */
    		"call vmx_vmenter\n\t"
    
    		CC_SET(be)
    	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
    	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
    		[loaded_vmcs]"r"(vmx->loaded_vmcs),
    		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
    		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
    		[wordsize]"i"(sizeof(ulong))
    	      : "memory"
    	);
    
    	if (vmx->msr_autoload.host.nr)
    		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
    	if (vmx->msr_autoload.guest.nr)
    		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
    
    	if (vm_fail) {
    		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
    
    		preempt_enable();
    
    		trace_kvm_nested_vmenter_failed(
    			"early hardware check VM-instruction error: ", error);
    		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
    		return 1;
    	}
    
    	/*
    	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
    	 */
    	if (hw_breakpoint_active())
    		set_debugreg(__this_cpu_read(cpu_dr7), 7);
    	local_irq_enable();
    	preempt_enable();
    
    	/*
    	 * A non-failing VMEntry means we somehow entered guest mode with
    	 * an illegal RIP, and that's just the tip of the iceberg.  There
    	 * is no telling what memory has been modified or what state has
    	 * been exposed to unknown code.  Hitting this all but guarantees
    	 * a (very critical) hardware issue.
    	 */
    	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
    		VMX_EXIT_REASONS_FAILED_VMENTRY));
    
    	return 0;
    }
    
    static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct kvm_host_map *map;
    	struct page *page;
    	u64 hpa;
    
    	/*
    	 * hv_evmcs may end up being not mapped after migration (when
    	 * L2 was running), map it here to make sure vmcs12 changes are
    	 * properly reflected.
    	 */
    	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
    		enum nested_evmptrld_status evmptrld_status =
    			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
    
    		if (evmptrld_status == EVMPTRLD_VMFAIL ||
    		    evmptrld_status == EVMPTRLD_ERROR) {
    			pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
    					     __func__);
    			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
    			vcpu->run->internal.suberror =
    				KVM_INTERNAL_ERROR_EMULATION;
    			vcpu->run->internal.ndata = 0;
    			return false;
    		}
    	}
    
    	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
    		/*
    		 * Translate L1 physical address to host physical
    		 * address for vmcs02. Keep the page pinned, so this
    		 * physical address remains valid. We keep a reference
    		 * to it so we can release it later.
    		 */
    		if (vmx->nested.apic_access_page) { /* shouldn't happen */
    			kvm_release_page_clean(vmx->nested.apic_access_page);
    			vmx->nested.apic_access_page = NULL;
    		}
    		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
    		if (!is_error_page(page)) {
    			vmx->nested.apic_access_page = page;
    			hpa = page_to_phys(vmx->nested.apic_access_page);
    			vmcs_write64(APIC_ACCESS_ADDR, hpa);
    		} else {
    			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
    					     __func__);
    			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
    			vcpu->run->internal.suberror =
    				KVM_INTERNAL_ERROR_EMULATION;
    			vcpu->run->internal.ndata = 0;
    			return false;
    		}
    	}
    
    	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
    		map = &vmx->nested.virtual_apic_map;
    
    		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
    			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
    		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
    		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
    			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
    			/*
    			 * The processor will never use the TPR shadow, simply
    			 * clear the bit from the execution control.  Such a
    			 * configuration is useless, but it happens in tests.
    			 * For any other configuration, failing the vm entry is
    			 * _not_ what the processor does but it's basically the
    			 * only possibility we have.
    			 */
    			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
    		} else {
    			/*
    			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
    			 * force VM-Entry to fail.
    			 */
    			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
    		}
    	}
    
    	if (nested_cpu_has_posted_intr(vmcs12)) {
    		map = &vmx->nested.pi_desc_map;
    
    		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
    			vmx->nested.pi_desc =
    				(struct pi_desc *)(((void *)map->hva) +
    				offset_in_page(vmcs12->posted_intr_desc_addr));
    			vmcs_write64(POSTED_INTR_DESC_ADDR,
    				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
    		}
    	}
    	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
    		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
    	else
    		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
    	return true;
    }
    
    /*
     * Intel's VMX Instruction Reference specifies a common set of prerequisites
     * for running VMX instructions (except VMXON, whose prerequisites are
     * slightly different). It also specifies what exception to inject otherwise.
     * Note that many of these exceptions have priority over VM exits, so they
     * don't have to be checked again here.
     */
    static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
    {
    	if (!to_vmx(vcpu)->nested.vmxon) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 0;
    	}
    
    	if (vmx_get_cpl(vcpu)) {
    		kvm_inject_gp(vcpu, 0);
    		return 0;
    	}
    
    	return 1;
    }
    
    static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
    {
    	u8 rvi = vmx_get_rvi();
    	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
    
    	return ((rvi & 0xf0) > (vppr & 0xf0));
    }
    
    static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
    				   struct vmcs12 *vmcs12);
    
    /*
     * If from_vmentry is false, this is being called from state restore (either RSM
     * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
     *
     * Returns:
     *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
     *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
     *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
     *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
     */
    enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
    							bool from_vmentry)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	enum vm_entry_failure_code entry_failure_code;
    	bool evaluate_pending_interrupts;
    	u32 exit_reason, failed_index;
    
    	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
    		kvm_vcpu_flush_tlb_current(vcpu);
    
    	evaluate_pending_interrupts = exec_controls_get(vmx) &
    		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
    	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
    		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
    
    	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
    		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
    	if (kvm_mpx_supported() &&
    		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
    		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
    
    	/*
    	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
    	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
    	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
    	 * software model to the pre-VMEntry host state.  When EPT is disabled,
    	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
    	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
    	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
    	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
    	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
    	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
    	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
    	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
    	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
    	 * path would need to manually save/restore vmcs01.GUEST_CR3.
    	 */
    	if (!enable_ept && !nested_early_check)
    		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
    
    	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
    
    	prepare_vmcs02_early(vmx, vmcs12);
    
    	if (from_vmentry) {
    		if (unlikely(!nested_get_vmcs12_pages(vcpu)))
    			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
    
    		if (nested_vmx_check_vmentry_hw(vcpu)) {
    			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
    			return NVMX_VMENTRY_VMFAIL;
    		}
    
    		if (nested_vmx_check_guest_state(vcpu, vmcs12,
    						 &entry_failure_code)) {
    			exit_reason = EXIT_REASON_INVALID_STATE;
    			vmcs12->exit_qualification = entry_failure_code;
    			goto vmentry_fail_vmexit;
    		}
    	}
    
    	enter_guest_mode(vcpu);
    	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
    		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
    
    	if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
    		exit_reason = EXIT_REASON_INVALID_STATE;
    		vmcs12->exit_qualification = entry_failure_code;
    		goto vmentry_fail_vmexit_guest_mode;
    	}
    
    	if (from_vmentry) {
    		failed_index = nested_vmx_load_msr(vcpu,
    						   vmcs12->vm_entry_msr_load_addr,
    						   vmcs12->vm_entry_msr_load_count);
    		if (failed_index) {
    			exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
    			vmcs12->exit_qualification = failed_index;
    			goto vmentry_fail_vmexit_guest_mode;
    		}
    	} else {
    		/*
    		 * The MMU is not initialized to point at the right entities yet and
    		 * "get pages" would need to read data from the guest (i.e. we will
    		 * need to perform gpa to hpa translation). Request a call
    		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
    		 * have already been set at vmentry time and should not be reset.
    		 */
    		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
    	}
    
    	/*
    	 * If L1 had a pending IRQ/NMI until it executed
    	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
    	 * disallowed (e.g. interrupts disabled), L0 needs to
    	 * evaluate if this pending event should cause an exit from L2
    	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
    	 * intercept EXTERNAL_INTERRUPT).
    	 *
    	 * Usually this would be handled by the processor noticing an
    	 * IRQ/NMI window request, or checking RVI during evaluation of
    	 * pending virtual interrupts.  However, this setting was done
    	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
    	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
    	 */
    	if (unlikely(evaluate_pending_interrupts))
    		kvm_make_request(KVM_REQ_EVENT, vcpu);
    
    	/*
    	 * Do not start the preemption timer hrtimer until after we know
    	 * we are successful, so that only nested_vmx_vmexit needs to cancel
    	 * the timer.
    	 */
    	vmx->nested.preemption_timer_expired = false;
    	if (nested_cpu_has_preemption_timer(vmcs12)) {
    		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
    		vmx_start_preemption_timer(vcpu, timer_value);
    	}
    
    	/*
    	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
    	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
    	 * returned as far as L1 is concerned. It will only return (and set
    	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
    	 */
    	return NVMX_VMENTRY_SUCCESS;
    
    	/*
    	 * A failed consistency check that leads to a VMExit during L1's
    	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
    	 * 26.7 "VM-entry failures during or after loading guest state".
    	 */
    vmentry_fail_vmexit_guest_mode:
    	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
    		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
    	leave_guest_mode(vcpu);
    
    vmentry_fail_vmexit:
    	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
    
    	if (!from_vmentry)
    		return NVMX_VMENTRY_VMEXIT;
    
    	load_vmcs12_host_state(vcpu, vmcs12);
    	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
    	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
    		vmx->nested.need_vmcs12_to_shadow_sync = true;
    	return NVMX_VMENTRY_VMEXIT;
    }
    
    /*
     * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
     * for running an L2 nested guest.
     */
    static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
    {
    	struct vmcs12 *vmcs12;
    	enum nvmx_vmentry_status status;
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
    	enum nested_evmptrld_status evmptrld_status;
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
    	if (evmptrld_status == EVMPTRLD_ERROR) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 1;
    	} else if (evmptrld_status == EVMPTRLD_VMFAIL) {
    		return nested_vmx_failInvalid(vcpu);
    	}
    
    	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
    		return nested_vmx_failInvalid(vcpu);
    
    	vmcs12 = get_vmcs12(vcpu);
    
    	/*
    	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
    	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
    	 * rather than RFLAGS.ZF, and no error number is stored to the
    	 * VM-instruction error field.
    	 */
    	if (vmcs12->hdr.shadow_vmcs)
    		return nested_vmx_failInvalid(vcpu);
    
    	if (vmx->nested.hv_evmcs) {
    		copy_enlightened_to_vmcs12(vmx);
    		/* Enlightened VMCS doesn't have launch state */
    		vmcs12->launch_state = !launch;
    	} else if (enable_shadow_vmcs) {
    		copy_shadow_to_vmcs12(vmx);
    	}
    
    	/*
    	 * The nested entry process starts with enforcing various prerequisites
    	 * on vmcs12 as required by the Intel SDM, and act appropriately when
    	 * they fail: As the SDM explains, some conditions should cause the
    	 * instruction to fail, while others will cause the instruction to seem
    	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
    	 * To speed up the normal (success) code path, we should avoid checking
    	 * for misconfigurations which will anyway be caught by the processor
    	 * when using the merged vmcs02.
    	 */
    	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
    
    	if (vmcs12->launch_state == launch)
    		return nested_vmx_failValid(vcpu,
    			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
    			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
    
    	if (nested_vmx_check_controls(vcpu, vmcs12))
    		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
    
    	if (nested_vmx_check_host_state(vcpu, vmcs12))
    		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
    
    	/*
    	 * We're finally done with prerequisite checking, and can start with
    	 * the nested entry.
    	 */
    	vmx->nested.nested_run_pending = 1;
    	vmx->nested.has_preemption_timer_deadline = false;
    	status = nested_vmx_enter_non_root_mode(vcpu, true);
    	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
    		goto vmentry_failed;
    
    	/* Hide L1D cache contents from the nested guest.  */
    	vmx->vcpu.arch.l1tf_flush_l1d = true;
    
    	/*
    	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
    	 * also be used as part of restoring nVMX state for
    	 * snapshot restore (migration).
    	 *
    	 * In this flow, it is assumed that vmcs12 cache was
    	 * trasferred as part of captured nVMX state and should
    	 * therefore not be read from guest memory (which may not
    	 * exist on destination host yet).
    	 */
    	nested_cache_shadow_vmcs12(vcpu, vmcs12);
    
    	/*
    	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
    	 * awakened by event injection or by an NMI-window VM-exit or
    	 * by an interrupt-window VM-exit, halt the vcpu.
    	 */
    	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
    	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
    	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
    	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
    	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
    		vmx->nested.nested_run_pending = 0;
    		return kvm_vcpu_halt(vcpu);
    	}
    	return 1;
    
    vmentry_failed:
    	vmx->nested.nested_run_pending = 0;
    	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
    		return 0;
    	if (status == NVMX_VMENTRY_VMEXIT)
    		return 1;
    	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
    	return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
    }
    
    /*
     * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
     * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
     * This function returns the new value we should put in vmcs12.guest_cr0.
     * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
     *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
     *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
     *     didn't trap the bit, because if L1 did, so would L0).
     *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
     *     been modified by L2, and L1 knows it. So just leave the old value of
     *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
     *     isn't relevant, because if L0 traps this bit it can set it to anything.
     *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
     *     changed these bits, and therefore they need to be updated, but L0
     *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
     *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
     */
    static inline unsigned long
    vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
    {
    	return
    	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
    	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
    	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
    			vcpu->arch.cr0_guest_owned_bits));
    }
    
    static inline unsigned long
    vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
    {
    	return
    	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
    	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
    	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
    			vcpu->arch.cr4_guest_owned_bits));
    }
    
    static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
    				      struct vmcs12 *vmcs12)
    {
    	u32 idt_vectoring;
    	unsigned int nr;
    
    	if (vcpu->arch.exception.injected) {
    		nr = vcpu->arch.exception.nr;
    		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
    
    		if (kvm_exception_is_soft(nr)) {
    			vmcs12->vm_exit_instruction_len =
    				vcpu->arch.event_exit_inst_len;
    			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
    		} else
    			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
    
    		if (vcpu->arch.exception.has_error_code) {
    			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
    			vmcs12->idt_vectoring_error_code =
    				vcpu->arch.exception.error_code;
    		}
    
    		vmcs12->idt_vectoring_info_field = idt_vectoring;
    	} else if (vcpu->arch.nmi_injected) {
    		vmcs12->idt_vectoring_info_field =
    			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
    	} else if (vcpu->arch.interrupt.injected) {
    		nr = vcpu->arch.interrupt.nr;
    		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
    
    		if (vcpu->arch.interrupt.soft) {
    			idt_vectoring |= INTR_TYPE_SOFT_INTR;
    			vmcs12->vm_entry_instruction_len =
    				vcpu->arch.event_exit_inst_len;
    		} else
    			idt_vectoring |= INTR_TYPE_EXT_INTR;
    
    		vmcs12->idt_vectoring_info_field = idt_vectoring;
    	}
    }
    
    
    void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	gfn_t gfn;
    
    	/*
    	 * Don't need to mark the APIC access page dirty; it is never
    	 * written to by the CPU during APIC virtualization.
    	 */
    
    	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
    		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
    		kvm_vcpu_mark_page_dirty(vcpu, gfn);
    	}
    
    	if (nested_cpu_has_posted_intr(vmcs12)) {
    		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
    		kvm_vcpu_mark_page_dirty(vcpu, gfn);
    	}
    }
    
    static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	int max_irr;
    	void *vapic_page;
    	u16 status;
    
    	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
    		return;
    
    	vmx->nested.pi_pending = false;
    	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
    		return;
    
    	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
    	if (max_irr != 256) {
    		vapic_page = vmx->nested.virtual_apic_map.hva;
    		if (!vapic_page)
    			return;
    
    		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
    			vapic_page, &max_irr);
    		status = vmcs_read16(GUEST_INTR_STATUS);
    		if ((u8)max_irr > ((u8)status & 0xff)) {
    			status &= ~0xff;
    			status |= (u8)max_irr;
    			vmcs_write16(GUEST_INTR_STATUS, status);
    		}
    	}
    
    	nested_mark_vmcs12_pages_dirty(vcpu);
    }
    
    static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
    					       unsigned long exit_qual)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	unsigned int nr = vcpu->arch.exception.nr;
    	u32 intr_info = nr | INTR_INFO_VALID_MASK;
    
    	if (vcpu->arch.exception.has_error_code) {
    		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
    		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
    	}
    
    	if (kvm_exception_is_soft(nr))
    		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
    	else
    		intr_info |= INTR_TYPE_HARD_EXCEPTION;
    
    	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
    	    vmx_get_nmi_mask(vcpu))
    		intr_info |= INTR_INFO_UNBLOCK_NMI;
    
    	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
    }
    
    /*
     * Returns true if a debug trap is pending delivery.
     *
     * In KVM, debug traps bear an exception payload. As such, the class of a #DB
     * exception may be inferred from the presence of an exception payload.
     */
    static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
    {
    	return vcpu->arch.exception.pending &&
    			vcpu->arch.exception.nr == DB_VECTOR &&
    			vcpu->arch.exception.payload;
    }
    
    /*
     * Certain VM-exits set the 'pending debug exceptions' field to indicate a
     * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
     * represents these debug traps with a payload that is said to be compatible
     * with the 'pending debug exceptions' field, write the payload to the VMCS
     * field if a VM-exit is delivered before the debug trap.
     */
    static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
    {
    	if (vmx_pending_dbg_trap(vcpu))
    		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
    			    vcpu->arch.exception.payload);
    }
    
    static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
    {
    	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
    	       to_vmx(vcpu)->nested.preemption_timer_expired;
    }
    
    static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	unsigned long exit_qual;
    	bool block_nested_events =
    	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
    	bool mtf_pending = vmx->nested.mtf_pending;
    	struct kvm_lapic *apic = vcpu->arch.apic;
    
    	/*
    	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
    	 * this state is discarded.
    	 */
    	if (!block_nested_events)
    		vmx->nested.mtf_pending = false;
    
    	if (lapic_in_kernel(vcpu) &&
    		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
    		if (block_nested_events)
    			return -EBUSY;
    		nested_vmx_update_pending_dbg(vcpu);
    		clear_bit(KVM_APIC_INIT, &apic->pending_events);
    		nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
    		return 0;
    	}
    
    	/*
    	 * Process any exceptions that are not debug traps before MTF.
    	 */
    	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
    		if (block_nested_events)
    			return -EBUSY;
    		if (!nested_vmx_check_exception(vcpu, &exit_qual))
    			goto no_vmexit;
    		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
    		return 0;
    	}
    
    	if (mtf_pending) {
    		if (block_nested_events)
    			return -EBUSY;
    		nested_vmx_update_pending_dbg(vcpu);
    		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
    		return 0;
    	}
    
    	if (vcpu->arch.exception.pending) {
    		if (block_nested_events)
    			return -EBUSY;
    		if (!nested_vmx_check_exception(vcpu, &exit_qual))
    			goto no_vmexit;
    		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
    		return 0;
    	}
    
    	if (nested_vmx_preemption_timer_pending(vcpu)) {
    		if (block_nested_events)
    			return -EBUSY;
    		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
    		return 0;
    	}
    
    	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
    		if (block_nested_events)
    			return -EBUSY;
    		goto no_vmexit;
    	}
    
    	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
    		if (block_nested_events)
    			return -EBUSY;
    		if (!nested_exit_on_nmi(vcpu))
    			goto no_vmexit;
    
    		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
    				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
    				  INTR_INFO_VALID_MASK, 0);
    		/*
    		 * The NMI-triggered VM exit counts as injection:
    		 * clear this one and block further NMIs.
    		 */
    		vcpu->arch.nmi_pending = 0;
    		vmx_set_nmi_mask(vcpu, true);
    		return 0;
    	}
    
    	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
    		if (block_nested_events)
    			return -EBUSY;
    		if (!nested_exit_on_intr(vcpu))
    			goto no_vmexit;
    		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
    		return 0;
    	}
    
    no_vmexit:
    	vmx_complete_nested_posted_interrupt(vcpu);
    	return 0;
    }
    
    static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
    {
    	ktime_t remaining =
    		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
    	u64 value;
    
    	if (ktime_to_ns(remaining) <= 0)
    		return 0;
    
    	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
    	do_div(value, 1000000);
    	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
    }
    
    static bool is_vmcs12_ext_field(unsigned long field)
    {
    	switch (field) {
    	case GUEST_ES_SELECTOR:
    	case GUEST_CS_SELECTOR:
    	case GUEST_SS_SELECTOR:
    	case GUEST_DS_SELECTOR:
    	case GUEST_FS_SELECTOR:
    	case GUEST_GS_SELECTOR:
    	case GUEST_LDTR_SELECTOR:
    	case GUEST_TR_SELECTOR:
    	case GUEST_ES_LIMIT:
    	case GUEST_CS_LIMIT:
    	case GUEST_SS_LIMIT:
    	case GUEST_DS_LIMIT:
    	case GUEST_FS_LIMIT:
    	case GUEST_GS_LIMIT:
    	case GUEST_LDTR_LIMIT:
    	case GUEST_TR_LIMIT:
    	case GUEST_GDTR_LIMIT:
    	case GUEST_IDTR_LIMIT:
    	case GUEST_ES_AR_BYTES:
    	case GUEST_DS_AR_BYTES:
    	case GUEST_FS_AR_BYTES:
    	case GUEST_GS_AR_BYTES:
    	case GUEST_LDTR_AR_BYTES:
    	case GUEST_TR_AR_BYTES:
    	case GUEST_ES_BASE:
    	case GUEST_CS_BASE:
    	case GUEST_SS_BASE:
    	case GUEST_DS_BASE:
    	case GUEST_FS_BASE:
    	case GUEST_GS_BASE:
    	case GUEST_LDTR_BASE:
    	case GUEST_TR_BASE:
    	case GUEST_GDTR_BASE:
    	case GUEST_IDTR_BASE:
    	case GUEST_PENDING_DBG_EXCEPTIONS:
    	case GUEST_BNDCFGS:
    		return true;
    	default:
    		break;
    	}
    
    	return false;
    }
    
    static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
    				       struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
    	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
    	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
    	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
    	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
    	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
    	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
    	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
    	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
    	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
    	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
    	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
    	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
    	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
    	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
    	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
    	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
    	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
    	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
    	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
    	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
    	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
    	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
    	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
    	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
    	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
    	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
    	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
    	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
    	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
    	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
    	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
    	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
    	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
    	vmcs12->guest_pending_dbg_exceptions =
    		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
    	if (kvm_mpx_supported())
    		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
    
    	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
    }
    
    static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
    				       struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	int cpu;
    
    	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
    		return;
    
    
    	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
    
    	cpu = get_cpu();
    	vmx->loaded_vmcs = &vmx->nested.vmcs02;
    	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
    
    	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
    
    	vmx->loaded_vmcs = &vmx->vmcs01;
    	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
    	put_cpu();
    }
    
    /*
     * Update the guest state fields of vmcs12 to reflect changes that
     * occurred while L2 was running. (The "IA-32e mode guest" bit of the
     * VM-entry controls is also updated, since this is really a guest
     * state bit.)
     */
    static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (vmx->nested.hv_evmcs)
    		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
    
    	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
    
    	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
    	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
    
    	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
    	vmcs12->guest_rip = kvm_rip_read(vcpu);
    	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
    
    	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
    	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
    
    	vmcs12->guest_interruptibility_info =
    		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
    
    	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
    		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
    	else
    		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
    
    	if (nested_cpu_has_preemption_timer(vmcs12) &&
    	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
    	    !vmx->nested.nested_run_pending)
    		vmcs12->vmx_preemption_timer_value =
    			vmx_get_preemption_timer_value(vcpu);
    
    	/*
    	 * In some cases (usually, nested EPT), L2 is allowed to change its
    	 * own CR3 without exiting. If it has changed it, we must keep it.
    	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
    	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
    	 *
    	 * Additionally, restore L2's PDPTR to vmcs12.
    	 */
    	if (enable_ept) {
    		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
    		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
    			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
    			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
    			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
    			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
    		}
    	}
    
    	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
    
    	if (nested_cpu_has_vid(vmcs12))
    		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
    
    	vmcs12->vm_entry_controls =
    		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
    		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
    
    	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
    		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
    
    	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
    		vmcs12->guest_ia32_efer = vcpu->arch.efer;
    }
    
    /*
     * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
     * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
     * and this function updates it to reflect the changes to the guest state while
     * L2 was running (and perhaps made some exits which were handled directly by L0
     * without going back to L1), and to reflect the exit reason.
     * Note that we do not have to copy here all VMCS fields, just those that
     * could have changed by the L2 guest or the exit - i.e., the guest-state and
     * exit-information fields only. Other fields are modified by L1 with VMWRITE,
     * which already writes to vmcs12 directly.
     */
    static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
    			   u32 vm_exit_reason, u32 exit_intr_info,
    			   unsigned long exit_qualification)
    {
    	/* update exit information fields: */
    	vmcs12->vm_exit_reason = vm_exit_reason;
    	vmcs12->exit_qualification = exit_qualification;
    	vmcs12->vm_exit_intr_info = exit_intr_info;
    
    	vmcs12->idt_vectoring_info_field = 0;
    	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
    	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    
    	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
    		vmcs12->launch_state = 1;
    
    		/* vm_entry_intr_info_field is cleared on exit. Emulate this
    		 * instead of reading the real value. */
    		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
    
    		/*
    		 * Transfer the event that L0 or L1 may wanted to inject into
    		 * L2 to IDT_VECTORING_INFO_FIELD.
    		 */
    		vmcs12_save_pending_event(vcpu, vmcs12);
    
    		/*
    		 * According to spec, there's no need to store the guest's
    		 * MSRs if the exit is due to a VM-entry failure that occurs
    		 * during or after loading the guest state. Since this exit
    		 * does not fall in that category, we need to save the MSRs.
    		 */
    		if (nested_vmx_store_msr(vcpu,
    					 vmcs12->vm_exit_msr_store_addr,
    					 vmcs12->vm_exit_msr_store_count))
    			nested_vmx_abort(vcpu,
    					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
    	}
    
    	/*
    	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
    	 * preserved above and would only end up incorrectly in L1.
    	 */
    	vcpu->arch.nmi_injected = false;
    	kvm_clear_exception_queue(vcpu);
    	kvm_clear_interrupt_queue(vcpu);
    }
    
    /*
     * A part of what we need to when the nested L2 guest exits and we want to
     * run its L1 parent, is to reset L1's guest state to the host state specified
     * in vmcs12.
     * This function is to be called not only on normal nested exit, but also on
     * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
     * Failures During or After Loading Guest State").
     * This function should be called when the active VMCS is L1's (vmcs01).
     */
    static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
    				   struct vmcs12 *vmcs12)
    {
    	enum vm_entry_failure_code ignored;
    	struct kvm_segment seg;
    
    	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
    		vcpu->arch.efer = vmcs12->host_ia32_efer;
    	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
    		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
    	else
    		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
    	vmx_set_efer(vcpu, vcpu->arch.efer);
    
    	kvm_rsp_write(vcpu, vmcs12->host_rsp);
    	kvm_rip_write(vcpu, vmcs12->host_rip);
    	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
    	vmx_set_interrupt_shadow(vcpu, 0);
    
    	/*
    	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
    	 * actually changed, because vmx_set_cr0 refers to efer set above.
    	 *
    	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
    	 * (KVM doesn't change it);
    	 */
    	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
    	vmx_set_cr0(vcpu, vmcs12->host_cr0);
    
    	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
    	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
    	vmx_set_cr4(vcpu, vmcs12->host_cr4);
    
    	nested_ept_uninit_mmu_context(vcpu);
    
    	/*
    	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
    	 * couldn't have changed.
    	 */
    	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
    		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
    
    	if (!enable_ept)
    		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
    
    	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
    
    	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
    	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
    	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
    	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
    	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
    	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
    	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
    
    	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
    	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
    		vmcs_write64(GUEST_BNDCFGS, 0);
    
    	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
    		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
    		vcpu->arch.pat = vmcs12->host_ia32_pat;
    	}
    	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
    		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
    					 vmcs12->host_ia32_perf_global_ctrl));
    
    	/* Set L1 segment info according to Intel SDM
    	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
    	seg = (struct kvm_segment) {
    		.base = 0,
    		.limit = 0xFFFFFFFF,
    		.selector = vmcs12->host_cs_selector,
    		.type = 11,
    		.present = 1,
    		.s = 1,
    		.g = 1
    	};
    	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
    		seg.l = 1;
    	else
    		seg.db = 1;
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
    	seg = (struct kvm_segment) {
    		.base = 0,
    		.limit = 0xFFFFFFFF,
    		.type = 3,
    		.present = 1,
    		.s = 1,
    		.db = 1,
    		.g = 1
    	};
    	seg.selector = vmcs12->host_ds_selector;
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
    	seg.selector = vmcs12->host_es_selector;
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
    	seg.selector = vmcs12->host_ss_selector;
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
    	seg.selector = vmcs12->host_fs_selector;
    	seg.base = vmcs12->host_fs_base;
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
    	seg.selector = vmcs12->host_gs_selector;
    	seg.base = vmcs12->host_gs_base;
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
    	seg = (struct kvm_segment) {
    		.base = vmcs12->host_tr_base,
    		.limit = 0x67,
    		.selector = vmcs12->host_tr_selector,
    		.type = 11,
    		.present = 1
    	};
    	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
    
    	kvm_set_dr(vcpu, 7, 0x400);
    	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
    
    	if (cpu_has_vmx_msr_bitmap())
    		vmx_update_msr_bitmap(vcpu);
    
    	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
    				vmcs12->vm_exit_msr_load_count))
    		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
    }
    
    static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
    {
    	struct shared_msr_entry *efer_msr;
    	unsigned int i;
    
    	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
    		return vmcs_read64(GUEST_IA32_EFER);
    
    	if (cpu_has_load_ia32_efer())
    		return host_efer;
    
    	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
    		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
    			return vmx->msr_autoload.guest.val[i].value;
    	}
    
    	efer_msr = find_msr_entry(vmx, MSR_EFER);
    	if (efer_msr)
    		return efer_msr->data;
    
    	return host_efer;
    }
    
    static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmx_msr_entry g, h;
    	gpa_t gpa;
    	u32 i, j;
    
    	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
    
    	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
    		/*
    		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
    		 * as vmcs01.GUEST_DR7 contains a userspace defined value
    		 * and vcpu->arch.dr7 is not squirreled away before the
    		 * nested VMENTER (not worth adding a variable in nested_vmx).
    		 */
    		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
    			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
    		else
    			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
    	}
    
    	/*
    	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
    	 * handle a variety of side effects to KVM's software model.
    	 */
    	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
    
    	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
    	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
    
    	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
    	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
    
    	nested_ept_uninit_mmu_context(vcpu);
    	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
    	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
    
    	/*
    	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
    	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
    	 * VMFail, like everything else we just need to ensure our
    	 * software model is up-to-date.
    	 */
    	if (enable_ept && is_pae_paging(vcpu))
    		ept_save_pdptrs(vcpu);
    
    	kvm_mmu_reset_context(vcpu);
    
    	if (cpu_has_vmx_msr_bitmap())
    		vmx_update_msr_bitmap(vcpu);
    
    	/*
    	 * This nasty bit of open coding is a compromise between blindly
    	 * loading L1's MSRs using the exit load lists (incorrect emulation
    	 * of VMFail), leaving the nested VM's MSRs in the software model
    	 * (incorrect behavior) and snapshotting the modified MSRs (too
    	 * expensive since the lists are unbound by hardware).  For each
    	 * MSR that was (prematurely) loaded from the nested VMEntry load
    	 * list, reload it from the exit load list if it exists and differs
    	 * from the guest value.  The intent is to stuff host state as
    	 * silently as possible, not to fully process the exit load list.
    	 */
    	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
    		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
    		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
    			pr_debug_ratelimited(
    				"%s read MSR index failed (%u, 0x%08llx)\n",
    				__func__, i, gpa);
    			goto vmabort;
    		}
    
    		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
    			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
    			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
    				pr_debug_ratelimited(
    					"%s read MSR failed (%u, 0x%08llx)\n",
    					__func__, j, gpa);
    				goto vmabort;
    			}
    			if (h.index != g.index)
    				continue;
    			if (h.value == g.value)
    				break;
    
    			if (nested_vmx_load_msr_check(vcpu, &h)) {
    				pr_debug_ratelimited(
    					"%s check failed (%u, 0x%x, 0x%x)\n",
    					__func__, j, h.index, h.reserved);
    				goto vmabort;
    			}
    
    			if (kvm_set_msr(vcpu, h.index, h.value)) {
    				pr_debug_ratelimited(
    					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
    					__func__, j, h.index, h.value);
    				goto vmabort;
    			}
    		}
    	}
    
    	return;
    
    vmabort:
    	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
    }
    
    /*
     * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
     * and modify vmcs12 to make it see what it would expect to see there if
     * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
     */
    void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
    		       u32 exit_intr_info, unsigned long exit_qualification)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    
    	/* trying to cancel vmlaunch/vmresume is a bug */
    	WARN_ON_ONCE(vmx->nested.nested_run_pending);
    
    	/* Service the TLB flush request for L2 before switching to L1. */
    	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
    		kvm_vcpu_flush_tlb_current(vcpu);
    
    	leave_guest_mode(vcpu);
    
    	if (nested_cpu_has_preemption_timer(vmcs12))
    		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
    
    	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
    		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
    
    	if (likely(!vmx->fail)) {
    		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
    
    		if (vm_exit_reason != -1)
    			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
    				       exit_intr_info, exit_qualification);
    
    		/*
    		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
    		 * also be used to capture vmcs12 cache as part of
    		 * capturing nVMX state for snapshot (migration).
    		 *
    		 * Otherwise, this flush will dirty guest memory at a
    		 * point it is already assumed by user-space to be
    		 * immutable.
    		 */
    		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
    	} else {
    		/*
    		 * The only expected VM-instruction error is "VM entry with
    		 * invalid control field(s)." Anything else indicates a
    		 * problem with L0.  And we should never get here with a
    		 * VMFail of any type if early consistency checks are enabled.
    		 */
    		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
    			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
    		WARN_ON_ONCE(nested_early_check);
    	}
    
    	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
    
    	/* Update any VMCS fields that might have changed while L2 ran */
    	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
    	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
    	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
    	if (vmx->nested.l1_tpr_threshold != -1)
    		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
    
    	if (kvm_has_tsc_control)
    		decache_tsc_multiplier(vmx);
    
    	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
    		vmx->nested.change_vmcs01_virtual_apic_mode = false;
    		vmx_set_virtual_apic_mode(vcpu);
    	}
    
    	/* Unpin physical memory we referred to in vmcs02 */
    	if (vmx->nested.apic_access_page) {
    		kvm_release_page_clean(vmx->nested.apic_access_page);
    		vmx->nested.apic_access_page = NULL;
    	}
    	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
    	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
    	vmx->nested.pi_desc = NULL;
    
    	if (vmx->nested.reload_vmcs01_apic_access_page) {
    		vmx->nested.reload_vmcs01_apic_access_page = false;
    		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
    	}
    
    	if ((vm_exit_reason != -1) &&
    	    (enable_shadow_vmcs || vmx->nested.hv_evmcs))
    		vmx->nested.need_vmcs12_to_shadow_sync = true;
    
    	/* in case we halted in L2 */
    	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
    
    	if (likely(!vmx->fail)) {
    		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
    		    nested_exit_intr_ack_set(vcpu)) {
    			int irq = kvm_cpu_get_interrupt(vcpu);
    			WARN_ON(irq < 0);
    			vmcs12->vm_exit_intr_info = irq |
    				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
    		}
    
    		if (vm_exit_reason != -1)
    			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
    						       vmcs12->exit_qualification,
    						       vmcs12->idt_vectoring_info_field,
    						       vmcs12->vm_exit_intr_info,
    						       vmcs12->vm_exit_intr_error_code,
    						       KVM_ISA_VMX);
    
    		load_vmcs12_host_state(vcpu, vmcs12);
    
    		return;
    	}
    
    	/*
    	 * After an early L2 VM-entry failure, we're now back
    	 * in L1 which thinks it just finished a VMLAUNCH or
    	 * VMRESUME instruction, so we need to set the failure
    	 * flag and the VM-instruction error field of the VMCS
    	 * accordingly, and skip the emulated instruction.
    	 */
    	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
    
    	/*
    	 * Restore L1's host state to KVM's software model.  We're here
    	 * because a consistency check was caught by hardware, which
    	 * means some amount of guest state has been propagated to KVM's
    	 * model and needs to be unwound to the host's state.
    	 */
    	nested_vmx_restore_host_state(vcpu);
    
    	vmx->fail = 0;
    }
    
    /*
     * Decode the memory-address operand of a vmx instruction, as recorded on an
     * exit caused by such an instruction (run by a guest hypervisor).
     * On success, returns 0. When the operand is invalid, returns 1 and throws
     * #UD, #GP, or #SS.
     */
    int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
    			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
    {
    	gva_t off;
    	bool exn;
    	struct kvm_segment s;
    
    	/*
    	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
    	 * Execution", on an exit, vmx_instruction_info holds most of the
    	 * addressing components of the operand. Only the displacement part
    	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
    	 * For how an actual address is calculated from all these components,
    	 * refer to Vol. 1, "Operand Addressing".
    	 */
    	int  scaling = vmx_instruction_info & 3;
    	int  addr_size = (vmx_instruction_info >> 7) & 7;
    	bool is_reg = vmx_instruction_info & (1u << 10);
    	int  seg_reg = (vmx_instruction_info >> 15) & 7;
    	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
    	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
    	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
    	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
    
    	if (is_reg) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 1;
    	}
    
    	/* Addr = segment_base + offset */
    	/* offset = base + [index * scale] + displacement */
    	off = exit_qualification; /* holds the displacement */
    	if (addr_size == 1)
    		off = (gva_t)sign_extend64(off, 31);
    	else if (addr_size == 0)
    		off = (gva_t)sign_extend64(off, 15);
    	if (base_is_valid)
    		off += kvm_register_read(vcpu, base_reg);
    	if (index_is_valid)
    		off += kvm_register_read(vcpu, index_reg) << scaling;
    	vmx_get_segment(vcpu, &s, seg_reg);
    
    	/*
    	 * The effective address, i.e. @off, of a memory operand is truncated
    	 * based on the address size of the instruction.  Note that this is
    	 * the *effective address*, i.e. the address prior to accounting for
    	 * the segment's base.
    	 */
    	if (addr_size == 1) /* 32 bit */
    		off &= 0xffffffff;
    	else if (addr_size == 0) /* 16 bit */
    		off &= 0xffff;
    
    	/* Checks for #GP/#SS exceptions. */
    	exn = false;
    	if (is_long_mode(vcpu)) {
    		/*
    		 * The virtual/linear address is never truncated in 64-bit
    		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
    		 * address when using FS/GS with a non-zero base.
    		 */
    		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
    			*ret = s.base + off;
    		else
    			*ret = off;
    
    		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
    		 * non-canonical form. This is the only check on the memory
    		 * destination for long mode!
    		 */
    		exn = is_noncanonical_address(*ret, vcpu);
    	} else {
    		/*
    		 * When not in long mode, the virtual/linear address is
    		 * unconditionally truncated to 32 bits regardless of the
    		 * address size.
    		 */
    		*ret = (s.base + off) & 0xffffffff;
    
    		/* Protected mode: apply checks for segment validity in the
    		 * following order:
    		 * - segment type check (#GP(0) may be thrown)
    		 * - usability check (#GP(0)/#SS(0))
    		 * - limit check (#GP(0)/#SS(0))
    		 */
    		if (wr)
    			/* #GP(0) if the destination operand is located in a
    			 * read-only data segment or any code segment.
    			 */
    			exn = ((s.type & 0xa) == 0 || (s.type & 8));
    		else
    			/* #GP(0) if the source operand is located in an
    			 * execute-only code segment
    			 */
    			exn = ((s.type & 0xa) == 8);
    		if (exn) {
    			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
    			return 1;
    		}
    		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
    		 */
    		exn = (s.unusable != 0);
    
    		/*
    		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
    		 * outside the segment limit.  All CPUs that support VMX ignore
    		 * limit checks for flat segments, i.e. segments with base==0,
    		 * limit==0xffffffff and of type expand-up data or code.
    		 */
    		if (!(s.base == 0 && s.limit == 0xffffffff &&
    		     ((s.type & 8) || !(s.type & 4))))
    			exn = exn || ((u64)off + len - 1 > s.limit);
    	}
    	if (exn) {
    		kvm_queue_exception_e(vcpu,
    				      seg_reg == VCPU_SREG_SS ?
    						SS_VECTOR : GP_VECTOR,
    				      0);
    		return 1;
    	}
    
    	return 0;
    }
    
    void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx;
    
    	if (!nested_vmx_allowed(vcpu))
    		return;
    
    	vmx = to_vmx(vcpu);
    	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
    		vmx->nested.msrs.entry_ctls_high |=
    				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
    		vmx->nested.msrs.exit_ctls_high |=
    				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
    	} else {
    		vmx->nested.msrs.entry_ctls_high &=
    				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
    		vmx->nested.msrs.exit_ctls_high &=
    				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
    	}
    }
    
    static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
    				int *ret)
    {
    	gva_t gva;
    	struct x86_exception e;
    	int r;
    
    	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
    				vmcs_read32(VMX_INSTRUCTION_INFO), false,
    				sizeof(*vmpointer), &gva)) {
    		*ret = 1;
    		return -EINVAL;
    	}
    
    	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
    	if (r != X86EMUL_CONTINUE) {
    		*ret = vmx_handle_memory_failure(vcpu, r, &e);
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    /*
     * Allocate a shadow VMCS and associate it with the currently loaded
     * VMCS, unless such a shadow VMCS already exists. The newly allocated
     * VMCS is also VMCLEARed, so that it is ready for use.
     */
    static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
    
    	/*
    	 * We should allocate a shadow vmcs for vmcs01 only when L1
    	 * executes VMXON and free it when L1 executes VMXOFF.
    	 * As it is invalid to execute VMXON twice, we shouldn't reach
    	 * here when vmcs01 already have an allocated shadow vmcs.
    	 */
    	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
    
    	if (!loaded_vmcs->shadow_vmcs) {
    		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
    		if (loaded_vmcs->shadow_vmcs)
    			vmcs_clear(loaded_vmcs->shadow_vmcs);
    	}
    	return loaded_vmcs->shadow_vmcs;
    }
    
    static int enter_vmx_operation(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	int r;
    
    	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
    	if (r < 0)
    		goto out_vmcs02;
    
    	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
    	if (!vmx->nested.cached_vmcs12)
    		goto out_cached_vmcs12;
    
    	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
    	if (!vmx->nested.cached_shadow_vmcs12)
    		goto out_cached_shadow_vmcs12;
    
    	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
    		goto out_shadow_vmcs;
    
    	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
    		     HRTIMER_MODE_ABS_PINNED);
    	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
    
    	vmx->nested.vpid02 = allocate_vpid();
    
    	vmx->nested.vmcs02_initialized = false;
    	vmx->nested.vmxon = true;
    
    	if (vmx_pt_mode_is_host_guest()) {
    		vmx->pt_desc.guest.ctl = 0;
    		pt_update_intercept_for_msr(vmx);
    	}
    
    	return 0;
    
    out_shadow_vmcs:
    	kfree(vmx->nested.cached_shadow_vmcs12);
    
    out_cached_shadow_vmcs12:
    	kfree(vmx->nested.cached_vmcs12);
    
    out_cached_vmcs12:
    	free_loaded_vmcs(&vmx->nested.vmcs02);
    
    out_vmcs02:
    	return -ENOMEM;
    }
    
    /*
     * Emulate the VMXON instruction.
     * Currently, we just remember that VMX is active, and do not save or even
     * inspect the argument to VMXON (the so-called "VMXON pointer") because we
     * do not currently need to store anything in that guest-allocated memory
     * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
     * argument is different from the VMXON pointer (which the spec says they do).
     */
    static int handle_vmon(struct kvm_vcpu *vcpu)
    {
    	int ret;
    	gpa_t vmptr;
    	uint32_t revision;
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
    		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
    
    	/*
    	 * The Intel VMX Instruction Reference lists a bunch of bits that are
    	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
    	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
    	 * Otherwise, we should fail with #UD.  But most faulting conditions
    	 * have already been checked by hardware, prior to the VM-exit for
    	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
    	 * that bit set to 1 in non-root mode.
    	 */
    	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 1;
    	}
    
    	/* CPL=0 must be checked manually. */
    	if (vmx_get_cpl(vcpu)) {
    		kvm_inject_gp(vcpu, 0);
    		return 1;
    	}
    
    	if (vmx->nested.vmxon)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
    
    	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
    			!= VMXON_NEEDED_FEATURES) {
    		kvm_inject_gp(vcpu, 0);
    		return 1;
    	}
    
    	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
    		return ret;
    
    	/*
    	 * SDM 3: 24.11.5
    	 * The first 4 bytes of VMXON region contain the supported
    	 * VMCS revision identifier
    	 *
    	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
    	 * which replaces physical address width with 32
    	 */
    	if (!page_address_valid(vcpu, vmptr))
    		return nested_vmx_failInvalid(vcpu);
    
    	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
    	    revision != VMCS12_REVISION)
    		return nested_vmx_failInvalid(vcpu);
    
    	vmx->nested.vmxon_ptr = vmptr;
    	ret = enter_vmx_operation(vcpu);
    	if (ret)
    		return ret;
    
    	return nested_vmx_succeed(vcpu);
    }
    
    static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    
    	if (vmx->nested.current_vmptr == -1ull)
    		return;
    
    	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
    
    	if (enable_shadow_vmcs) {
    		/* copy to memory all shadowed fields in case
    		   they were modified */
    		copy_shadow_to_vmcs12(vmx);
    		vmx_disable_shadow_vmcs(vmx);
    	}
    	vmx->nested.posted_intr_nv = -1;
    
    	/* Flush VMCS12 to guest memory */
    	kvm_vcpu_write_guest_page(vcpu,
    				  vmx->nested.current_vmptr >> PAGE_SHIFT,
    				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
    
    	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
    
    	vmx->nested.current_vmptr = -1ull;
    }
    
    /* Emulate the VMXOFF instruction */
    static int handle_vmoff(struct kvm_vcpu *vcpu)
    {
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	free_nested(vcpu);
    
    	/* Process a latched INIT during time CPU was in VMX operation */
    	kvm_make_request(KVM_REQ_EVENT, vcpu);
    
    	return nested_vmx_succeed(vcpu);
    }
    
    /* Emulate the VMCLEAR instruction */
    static int handle_vmclear(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u32 zero = 0;
    	gpa_t vmptr;
    	u64 evmcs_gpa;
    	int r;
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
    		return r;
    
    	if (!page_address_valid(vcpu, vmptr))
    		return nested_vmx_failValid(vcpu,
    			VMXERR_VMCLEAR_INVALID_ADDRESS);
    
    	if (vmptr == vmx->nested.vmxon_ptr)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_VMCLEAR_VMXON_POINTER);
    
    	/*
    	 * When Enlightened VMEntry is enabled on the calling CPU we treat
    	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
    	 * way to distinguish it from VMCS12) and we must not corrupt it by
    	 * writing to the non-existent 'launch_state' field. The area doesn't
    	 * have to be the currently active EVMCS on the calling CPU and there's
    	 * nothing KVM has to do to transition it from 'active' to 'non-active'
    	 * state. It is possible that the area will stay mapped as
    	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
    	 */
    	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
    		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
    		if (vmptr == vmx->nested.current_vmptr)
    			nested_release_vmcs12(vcpu);
    
    		kvm_vcpu_write_guest(vcpu,
    				     vmptr + offsetof(struct vmcs12,
    						      launch_state),
    				     &zero, sizeof(zero));
    	}
    
    	return nested_vmx_succeed(vcpu);
    }
    
    /* Emulate the VMLAUNCH instruction */
    static int handle_vmlaunch(struct kvm_vcpu *vcpu)
    {
    	return nested_vmx_run(vcpu, true);
    }
    
    /* Emulate the VMRESUME instruction */
    static int handle_vmresume(struct kvm_vcpu *vcpu)
    {
    
    	return nested_vmx_run(vcpu, false);
    }
    
    static int handle_vmread(struct kvm_vcpu *vcpu)
    {
    	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
    						    : get_vmcs12(vcpu);
    	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
    	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct x86_exception e;
    	unsigned long field;
    	u64 value;
    	gva_t gva = 0;
    	short offset;
    	int len, r;
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	/*
    	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
    	 * any VMREAD sets the ALU flags for VMfailInvalid.
    	 */
    	if (vmx->nested.current_vmptr == -1ull ||
    	    (is_guest_mode(vcpu) &&
    	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
    		return nested_vmx_failInvalid(vcpu);
    
    	/* Decode instruction info and find the field to read */
    	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
    
    	offset = vmcs_field_to_offset(field);
    	if (offset < 0)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
    
    	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
    		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
    
    	/* Read the field, zero-extended to a u64 value */
    	value = vmcs12_read_any(vmcs12, field, offset);
    
    	/*
    	 * Now copy part of this value to register or memory, as requested.
    	 * Note that the number of bits actually copied is 32 or 64 depending
    	 * on the guest's mode (32 or 64 bit), not on the given field's length.
    	 */
    	if (instr_info & BIT(10)) {
    		kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
    	} else {
    		len = is_64_bit_mode(vcpu) ? 8 : 4;
    		if (get_vmx_mem_address(vcpu, exit_qualification,
    					instr_info, true, len, &gva))
    			return 1;
    		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
    		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
    		if (r != X86EMUL_CONTINUE)
    			return vmx_handle_memory_failure(vcpu, r, &e);
    	}
    
    	return nested_vmx_succeed(vcpu);
    }
    
    static bool is_shadow_field_rw(unsigned long field)
    {
    	switch (field) {
    #define SHADOW_FIELD_RW(x, y) case x:
    #include "vmcs_shadow_fields.h"
    		return true;
    	default:
    		break;
    	}
    	return false;
    }
    
    static bool is_shadow_field_ro(unsigned long field)
    {
    	switch (field) {
    #define SHADOW_FIELD_RO(x, y) case x:
    #include "vmcs_shadow_fields.h"
    		return true;
    	default:
    		break;
    	}
    	return false;
    }
    
    static int handle_vmwrite(struct kvm_vcpu *vcpu)
    {
    	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
    						    : get_vmcs12(vcpu);
    	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
    	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct x86_exception e;
    	unsigned long field;
    	short offset;
    	gva_t gva;
    	int len, r;
    
    	/*
    	 * The value to write might be 32 or 64 bits, depending on L1's long
    	 * mode, and eventually we need to write that into a field of several
    	 * possible lengths. The code below first zero-extends the value to 64
    	 * bit (value), and then copies only the appropriate number of
    	 * bits into the vmcs12 field.
    	 */
    	u64 value = 0;
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	/*
    	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
    	 * any VMWRITE sets the ALU flags for VMfailInvalid.
    	 */
    	if (vmx->nested.current_vmptr == -1ull ||
    	    (is_guest_mode(vcpu) &&
    	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
    		return nested_vmx_failInvalid(vcpu);
    
    	if (instr_info & BIT(10))
    		value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
    	else {
    		len = is_64_bit_mode(vcpu) ? 8 : 4;
    		if (get_vmx_mem_address(vcpu, exit_qualification,
    					instr_info, false, len, &gva))
    			return 1;
    		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
    		if (r != X86EMUL_CONTINUE)
    			return vmx_handle_memory_failure(vcpu, r, &e);
    	}
    
    	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
    
    	offset = vmcs_field_to_offset(field);
    	if (offset < 0)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
    
    	/*
    	 * If the vCPU supports "VMWRITE to any supported field in the
    	 * VMCS," then the "read-only" fields are actually read/write.
    	 */
    	if (vmcs_field_readonly(field) &&
    	    !nested_cpu_has_vmwrite_any_field(vcpu))
    		return nested_vmx_failValid(vcpu,
    			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
    
    	/*
    	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
    	 * vmcs12, else we may crush a field or consume a stale value.
    	 */
    	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
    		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
    
    	/*
    	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
    	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
    	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
    	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
    	 * from L1 will return a different value than VMREAD from L2 (L1 sees
    	 * the stripped down value, L2 sees the full value as stored by KVM).
    	 */
    	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
    		value &= 0x1f0ff;
    
    	vmcs12_write_any(vmcs12, field, offset, value);
    
    	/*
    	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
    	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
    	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
    	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
    	 */
    	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
    		/*
    		 * L1 can read these fields without exiting, ensure the
    		 * shadow VMCS is up-to-date.
    		 */
    		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
    			preempt_disable();
    			vmcs_load(vmx->vmcs01.shadow_vmcs);
    
    			__vmcs_writel(field, value);
    
    			vmcs_clear(vmx->vmcs01.shadow_vmcs);
    			vmcs_load(vmx->loaded_vmcs->vmcs);
    			preempt_enable();
    		}
    		vmx->nested.dirty_vmcs12 = true;
    	}
    
    	return nested_vmx_succeed(vcpu);
    }
    
    static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
    {
    	vmx->nested.current_vmptr = vmptr;
    	if (enable_shadow_vmcs) {
    		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
    		vmcs_write64(VMCS_LINK_POINTER,
    			     __pa(vmx->vmcs01.shadow_vmcs));
    		vmx->nested.need_vmcs12_to_shadow_sync = true;
    	}
    	vmx->nested.dirty_vmcs12 = true;
    }
    
    /* Emulate the VMPTRLD instruction */
    static int handle_vmptrld(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	gpa_t vmptr;
    	int r;
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
    		return r;
    
    	if (!page_address_valid(vcpu, vmptr))
    		return nested_vmx_failValid(vcpu,
    			VMXERR_VMPTRLD_INVALID_ADDRESS);
    
    	if (vmptr == vmx->nested.vmxon_ptr)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_VMPTRLD_VMXON_POINTER);
    
    	/* Forbid normal VMPTRLD if Enlightened version was used */
    	if (vmx->nested.hv_evmcs)
    		return 1;
    
    	if (vmx->nested.current_vmptr != vmptr) {
    		struct kvm_host_map map;
    		struct vmcs12 *new_vmcs12;
    
    		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
    			/*
    			 * Reads from an unbacked page return all 1s,
    			 * which means that the 32 bits located at the
    			 * given physical address won't match the required
    			 * VMCS12_REVISION identifier.
    			 */
    			return nested_vmx_failValid(vcpu,
    				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
    		}
    
    		new_vmcs12 = map.hva;
    
    		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
    		    (new_vmcs12->hdr.shadow_vmcs &&
    		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
    			kvm_vcpu_unmap(vcpu, &map, false);
    			return nested_vmx_failValid(vcpu,
    				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
    		}
    
    		nested_release_vmcs12(vcpu);
    
    		/*
    		 * Load VMCS12 from guest memory since it is not already
    		 * cached.
    		 */
    		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
    		kvm_vcpu_unmap(vcpu, &map, false);
    
    		set_current_vmptr(vmx, vmptr);
    	}
    
    	return nested_vmx_succeed(vcpu);
    }
    
    /* Emulate the VMPTRST instruction */
    static int handle_vmptrst(struct kvm_vcpu *vcpu)
    {
    	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
    	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
    	struct x86_exception e;
    	gva_t gva;
    	int r;
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
    		return 1;
    
    	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
    				true, sizeof(gpa_t), &gva))
    		return 1;
    	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
    	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
    					sizeof(gpa_t), &e);
    	if (r != X86EMUL_CONTINUE)
    		return vmx_handle_memory_failure(vcpu, r, &e);
    
    	return nested_vmx_succeed(vcpu);
    }
    
    #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
    
    static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
    {
    	return VALID_PAGE(root_hpa) &&
    		((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
    }
    
    /* Emulate the INVEPT instruction */
    static int handle_invept(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u32 vmx_instruction_info, types;
    	unsigned long type, roots_to_free;
    	struct kvm_mmu *mmu;
    	gva_t gva;
    	struct x86_exception e;
    	struct {
    		u64 eptp, gpa;
    	} operand;
    	int i, r;
    
    	if (!(vmx->nested.msrs.secondary_ctls_high &
    	      SECONDARY_EXEC_ENABLE_EPT) ||
    	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 1;
    	}
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
    
    	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
    
    	if (type >= 32 || !(types & (1 << type)))
    		return nested_vmx_failValid(vcpu,
    				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
    
    	/* According to the Intel VMX instruction reference, the memory
    	 * operand is read even if it isn't needed (e.g., for type==global)
    	 */
    	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
    			vmx_instruction_info, false, sizeof(operand), &gva))
    		return 1;
    	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
    	if (r != X86EMUL_CONTINUE)
    		return vmx_handle_memory_failure(vcpu, r, &e);
    
    	/*
    	 * Nested EPT roots are always held through guest_mmu,
    	 * not root_mmu.
    	 */
    	mmu = &vcpu->arch.guest_mmu;
    
    	switch (type) {
    	case VMX_EPT_EXTENT_CONTEXT:
    		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
    			return nested_vmx_failValid(vcpu,
    				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
    
    		roots_to_free = 0;
    		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
    					    operand.eptp))
    			roots_to_free |= KVM_MMU_ROOT_CURRENT;
    
    		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
    			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
    						    mmu->prev_roots[i].pgd,
    						    operand.eptp))
    				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
    		}
    		break;
    	case VMX_EPT_EXTENT_GLOBAL:
    		roots_to_free = KVM_MMU_ROOTS_ALL;
    		break;
    	default:
    		BUG();
    		break;
    	}
    
    	if (roots_to_free)
    		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
    
    	return nested_vmx_succeed(vcpu);
    }
    
    static int handle_invvpid(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u32 vmx_instruction_info;
    	unsigned long type, types;
    	gva_t gva;
    	struct x86_exception e;
    	struct {
    		u64 vpid;
    		u64 gla;
    	} operand;
    	u16 vpid02;
    	int r;
    
    	if (!(vmx->nested.msrs.secondary_ctls_high &
    	      SECONDARY_EXEC_ENABLE_VPID) ||
    			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 1;
    	}
    
    	if (!nested_vmx_check_permission(vcpu))
    		return 1;
    
    	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
    
    	types = (vmx->nested.msrs.vpid_caps &
    			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
    
    	if (type >= 32 || !(types & (1 << type)))
    		return nested_vmx_failValid(vcpu,
    			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
    
    	/* according to the intel vmx instruction reference, the memory
    	 * operand is read even if it isn't needed (e.g., for type==global)
    	 */
    	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
    			vmx_instruction_info, false, sizeof(operand), &gva))
    		return 1;
    	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
    	if (r != X86EMUL_CONTINUE)
    		return vmx_handle_memory_failure(vcpu, r, &e);
    
    	if (operand.vpid >> 16)
    		return nested_vmx_failValid(vcpu,
    			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
    
    	vpid02 = nested_get_vpid02(vcpu);
    	switch (type) {
    	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
    		if (!operand.vpid ||
    		    is_noncanonical_address(operand.gla, vcpu))
    			return nested_vmx_failValid(vcpu,
    				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
    		vpid_sync_vcpu_addr(vpid02, operand.gla);
    		break;
    	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
    	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
    		if (!operand.vpid)
    			return nested_vmx_failValid(vcpu,
    				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
    		vpid_sync_context(vpid02);
    		break;
    	case VMX_VPID_EXTENT_ALL_CONTEXT:
    		vpid_sync_context(vpid02);
    		break;
    	default:
    		WARN_ON_ONCE(1);
    		return kvm_skip_emulated_instruction(vcpu);
    	}
    
    	/*
    	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
    	 * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
    	 * VPIDs are not tracked in the MMU role.
    	 *
    	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
    	 * an MMU when EPT is disabled.
    	 *
    	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
    	 */
    	if (!enable_ept)
    		kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
    				   KVM_MMU_ROOTS_ALL);
    
    	return nested_vmx_succeed(vcpu);
    }
    
    static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
    				     struct vmcs12 *vmcs12)
    {
    	u32 index = kvm_rcx_read(vcpu);
    	u64 new_eptp;
    	bool accessed_dirty;
    	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
    
    	if (!nested_cpu_has_eptp_switching(vmcs12) ||
    	    !nested_cpu_has_ept(vmcs12))
    		return 1;
    
    	if (index >= VMFUNC_EPTP_ENTRIES)
    		return 1;
    
    
    	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
    				     &new_eptp, index * 8, 8))
    		return 1;
    
    	accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
    
    	/*
    	 * If the (L2) guest does a vmfunc to the currently
    	 * active ept pointer, we don't have to do anything else
    	 */
    	if (vmcs12->ept_pointer != new_eptp) {
    		if (!nested_vmx_check_eptp(vcpu, new_eptp))
    			return 1;
    
    		kvm_mmu_unload(vcpu);
    		mmu->ept_ad = accessed_dirty;
    		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
    		vmcs12->ept_pointer = new_eptp;
    		/*
    		 * TODO: Check what's the correct approach in case
    		 * mmu reload fails. Currently, we just let the next
    		 * reload potentially fail
    		 */
    		kvm_mmu_reload(vcpu);
    	}
    
    	return 0;
    }
    
    static int handle_vmfunc(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmcs12 *vmcs12;
    	u32 function = kvm_rax_read(vcpu);
    
    	/*
    	 * VMFUNC is only supported for nested guests, but we always enable the
    	 * secondary control for simplicity; for non-nested mode, fake that we
    	 * didn't by injecting #UD.
    	 */
    	if (!is_guest_mode(vcpu)) {
    		kvm_queue_exception(vcpu, UD_VECTOR);
    		return 1;
    	}
    
    	vmcs12 = get_vmcs12(vcpu);
    	if ((vmcs12->vm_function_control & (1 << function)) == 0)
    		goto fail;
    
    	switch (function) {
    	case 0:
    		if (nested_vmx_eptp_switching(vcpu, vmcs12))
    			goto fail;
    		break;
    	default:
    		goto fail;
    	}
    	return kvm_skip_emulated_instruction(vcpu);
    
    fail:
    	nested_vmx_vmexit(vcpu, vmx->exit_reason,
    			  vmx_get_intr_info(vcpu),
    			  vmx_get_exit_qual(vcpu));
    	return 1;
    }
    
    /*
     * Return true if an IO instruction with the specified port and size should cause
     * a VM-exit into L1.
     */
    bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
    				 int size)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	gpa_t bitmap, last_bitmap;
    	u8 b;
    
    	last_bitmap = (gpa_t)-1;
    	b = -1;
    
    	while (size > 0) {
    		if (port < 0x8000)
    			bitmap = vmcs12->io_bitmap_a;
    		else if (port < 0x10000)
    			bitmap = vmcs12->io_bitmap_b;
    		else
    			return true;
    		bitmap += (port & 0x7fff) / 8;
    
    		if (last_bitmap != bitmap)
    			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
    				return true;
    		if (b & (1 << (port & 7)))
    			return true;
    
    		port++;
    		size--;
    		last_bitmap = bitmap;
    	}
    
    	return false;
    }
    
    static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
    				       struct vmcs12 *vmcs12)
    {
    	unsigned long exit_qualification;
    	unsigned short port;
    	int size;
    
    	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
    		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
    
    	exit_qualification = vmx_get_exit_qual(vcpu);
    
    	port = exit_qualification >> 16;
    	size = (exit_qualification & 7) + 1;
    
    	return nested_vmx_check_io_bitmaps(vcpu, port, size);
    }
    
    /*
     * Return 1 if we should exit from L2 to L1 to handle an MSR access,
     * rather than handle it ourselves in L0. I.e., check whether L1 expressed
     * disinterest in the current event (read or write a specific MSR) by using an
     * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
     */
    static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
    	struct vmcs12 *vmcs12, u32 exit_reason)
    {
    	u32 msr_index = kvm_rcx_read(vcpu);
    	gpa_t bitmap;
    
    	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
    		return true;
    
    	/*
    	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
    	 * for the four combinations of read/write and low/high MSR numbers.
    	 * First we need to figure out which of the four to use:
    	 */
    	bitmap = vmcs12->msr_bitmap;
    	if (exit_reason == EXIT_REASON_MSR_WRITE)
    		bitmap += 2048;
    	if (msr_index >= 0xc0000000) {
    		msr_index -= 0xc0000000;
    		bitmap += 1024;
    	}
    
    	/* Then read the msr_index'th bit from this bitmap: */
    	if (msr_index < 1024*8) {
    		unsigned char b;
    		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
    			return true;
    		return 1 & (b >> (msr_index & 7));
    	} else
    		return true; /* let L1 handle the wrong parameter */
    }
    
    /*
     * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
     * rather than handle it ourselves in L0. I.e., check if L1 wanted to
     * intercept (via guest_host_mask etc.) the current event.
     */
    static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
    	struct vmcs12 *vmcs12)
    {
    	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
    	int cr = exit_qualification & 15;
    	int reg;
    	unsigned long val;
    
    	switch ((exit_qualification >> 4) & 3) {
    	case 0: /* mov to cr */
    		reg = (exit_qualification >> 8) & 15;
    		val = kvm_register_readl(vcpu, reg);
    		switch (cr) {
    		case 0:
    			if (vmcs12->cr0_guest_host_mask &
    			    (val ^ vmcs12->cr0_read_shadow))
    				return true;
    			break;
    		case 3:
    			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
    				return true;
    			break;
    		case 4:
    			if (vmcs12->cr4_guest_host_mask &
    			    (vmcs12->cr4_read_shadow ^ val))
    				return true;
    			break;
    		case 8:
    			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
    				return true;
    			break;
    		}
    		break;
    	case 2: /* clts */
    		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
    		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
    			return true;
    		break;
    	case 1: /* mov from cr */
    		switch (cr) {
    		case 3:
    			if (vmcs12->cpu_based_vm_exec_control &
    			    CPU_BASED_CR3_STORE_EXITING)
    				return true;
    			break;
    		case 8:
    			if (vmcs12->cpu_based_vm_exec_control &
    			    CPU_BASED_CR8_STORE_EXITING)
    				return true;
    			break;
    		}
    		break;
    	case 3: /* lmsw */
    		/*
    		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
    		 * cr0. Other attempted changes are ignored, with no exit.
    		 */
    		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
    		if (vmcs12->cr0_guest_host_mask & 0xe &
    		    (val ^ vmcs12->cr0_read_shadow))
    			return true;
    		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
    		    !(vmcs12->cr0_read_shadow & 0x1) &&
    		    (val & 0x1))
    			return true;
    		break;
    	}
    	return false;
    }
    
    static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
    	struct vmcs12 *vmcs12, gpa_t bitmap)
    {
    	u32 vmx_instruction_info;
    	unsigned long field;
    	u8 b;
    
    	if (!nested_cpu_has_shadow_vmcs(vmcs12))
    		return true;
    
    	/* Decode instruction info and find the field to access */
    	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
    	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
    
    	/* Out-of-range fields always cause a VM exit from L2 to L1 */
    	if (field >> 15)
    		return true;
    
    	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
    		return true;
    
    	return 1 & (b >> (field & 7));
    }
    
    static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
    {
    	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
    
    	if (nested_cpu_has_mtf(vmcs12))
    		return true;
    
    	/*
    	 * An MTF VM-exit may be injected into the guest by setting the
    	 * interruption-type to 7 (other event) and the vector field to 0. Such
    	 * is the case regardless of the 'monitor trap flag' VM-execution
    	 * control.
    	 */
    	return entry_intr_info == (INTR_INFO_VALID_MASK
    				   | INTR_TYPE_OTHER_EVENT);
    }
    
    /*
     * Return true if L0 wants to handle an exit from L2 regardless of whether or not
     * L1 wants the exit.  Only call this when in is_guest_mode (L2).
     */
    static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
    {
    	u32 intr_info;
    
    	switch ((u16)exit_reason) {
    	case EXIT_REASON_EXCEPTION_NMI:
    		intr_info = vmx_get_intr_info(vcpu);
    		if (is_nmi(intr_info))
    			return true;
    		else if (is_page_fault(intr_info))
    			return vcpu->arch.apf.host_apf_flags || !enable_ept;
    		else if (is_debug(intr_info) &&
    			 vcpu->guest_debug &
    			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
    			return true;
    		else if (is_breakpoint(intr_info) &&
    			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
    			return true;
    		return false;
    	case EXIT_REASON_EXTERNAL_INTERRUPT:
    		return true;
    	case EXIT_REASON_MCE_DURING_VMENTRY:
    		return true;
    	case EXIT_REASON_EPT_VIOLATION:
    		/*
    		 * L0 always deals with the EPT violation. If nested EPT is
    		 * used, and the nested mmu code discovers that the address is
    		 * missing in the guest EPT table (EPT12), the EPT violation
    		 * will be injected with nested_ept_inject_page_fault()
    		 */
    		return true;
    	case EXIT_REASON_EPT_MISCONFIG:
    		/*
    		 * L2 never uses directly L1's EPT, but rather L0's own EPT
    		 * table (shadow on EPT) or a merged EPT table that L0 built
    		 * (EPT on EPT). So any problems with the structure of the
    		 * table is L0's fault.
    		 */
    		return true;
    	case EXIT_REASON_PREEMPTION_TIMER:
    		return true;
    	case EXIT_REASON_PML_FULL:
    		/* We emulate PML support to L1. */
    		return true;
    	case EXIT_REASON_VMFUNC:
    		/* VM functions are emulated through L2->L0 vmexits. */
    		return true;
    	case EXIT_REASON_ENCLS:
    		/* SGX is never exposed to L1 */
    		return true;
    	default:
    		break;
    	}
    	return false;
    }
    
    /*
     * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
     * is_guest_mode (L2).
     */
    static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
    {
    	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    	u32 intr_info;
    
    	switch ((u16)exit_reason) {
    	case EXIT_REASON_EXCEPTION_NMI:
    		intr_info = vmx_get_intr_info(vcpu);
    		if (is_nmi(intr_info))
    			return true;
    		else if (is_page_fault(intr_info))
    			return true;
    		return vmcs12->exception_bitmap &
    				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
    	case EXIT_REASON_EXTERNAL_INTERRUPT:
    		return nested_exit_on_intr(vcpu);
    	case EXIT_REASON_TRIPLE_FAULT:
    		return true;
    	case EXIT_REASON_INTERRUPT_WINDOW:
    		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
    	case EXIT_REASON_NMI_WINDOW:
    		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
    	case EXIT_REASON_TASK_SWITCH:
    		return true;
    	case EXIT_REASON_CPUID:
    		return true;
    	case EXIT_REASON_HLT:
    		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
    	case EXIT_REASON_INVD:
    		return true;
    	case EXIT_REASON_INVLPG:
    		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
    	case EXIT_REASON_RDPMC:
    		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
    	case EXIT_REASON_RDRAND:
    		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
    	case EXIT_REASON_RDSEED:
    		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
    	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
    		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
    	case EXIT_REASON_VMREAD:
    		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
    			vmcs12->vmread_bitmap);
    	case EXIT_REASON_VMWRITE:
    		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
    			vmcs12->vmwrite_bitmap);
    	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
    	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
    	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
    	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
    	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
    		/*
    		 * VMX instructions trap unconditionally. This allows L1 to
    		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
    		 */
    		return true;
    	case EXIT_REASON_CR_ACCESS:
    		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
    	case EXIT_REASON_DR_ACCESS:
    		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
    	case EXIT_REASON_IO_INSTRUCTION:
    		return nested_vmx_exit_handled_io(vcpu, vmcs12);
    	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
    		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
    	case EXIT_REASON_MSR_READ:
    	case EXIT_REASON_MSR_WRITE:
    		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
    	case EXIT_REASON_INVALID_STATE:
    		return true;
    	case EXIT_REASON_MWAIT_INSTRUCTION:
    		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
    	case EXIT_REASON_MONITOR_TRAP_FLAG:
    		return nested_vmx_exit_handled_mtf(vmcs12);
    	case EXIT_REASON_MONITOR_INSTRUCTION:
    		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
    	case EXIT_REASON_PAUSE_INSTRUCTION:
    		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
    			nested_cpu_has2(vmcs12,
    				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
    	case EXIT_REASON_MCE_DURING_VMENTRY:
    		return true;
    	case EXIT_REASON_TPR_BELOW_THRESHOLD:
    		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
    	case EXIT_REASON_APIC_ACCESS:
    	case EXIT_REASON_APIC_WRITE:
    	case EXIT_REASON_EOI_INDUCED:
    		/*
    		 * The controls for "virtualize APIC accesses," "APIC-
    		 * register virtualization," and "virtual-interrupt
    		 * delivery" only come from vmcs12.
    		 */
    		return true;
    	case EXIT_REASON_INVPCID:
    		return
    			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
    			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
    	case EXIT_REASON_WBINVD:
    		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
    	case EXIT_REASON_XSETBV:
    		return true;
    	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
    		/*
    		 * This should never happen, since it is not possible to
    		 * set XSS to a non-zero value---neither in L1 nor in L2.
    		 * If if it were, XSS would have to be checked against
    		 * the XSS exit bitmap in vmcs12.
    		 */
    		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
    	case EXIT_REASON_UMWAIT:
    	case EXIT_REASON_TPAUSE:
    		return nested_cpu_has2(vmcs12,
    			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
    	default:
    		return true;
    	}
    }
    
    /*
     * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
     * reflected into L1.
     */
    bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	u32 exit_reason = vmx->exit_reason;
    	unsigned long exit_qual;
    	u32 exit_intr_info;
    
    	WARN_ON_ONCE(vmx->nested.nested_run_pending);
    
    	/*
    	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
    	 * has already loaded L2's state.
    	 */
    	if (unlikely(vmx->fail)) {
    		trace_kvm_nested_vmenter_failed(
    			"hardware VM-instruction error: ",
    			vmcs_read32(VM_INSTRUCTION_ERROR));
    		exit_intr_info = 0;
    		exit_qual = 0;
    		goto reflect_vmexit;
    	}
    
    	exit_intr_info = vmx_get_intr_info(vcpu);
    	exit_qual = vmx_get_exit_qual(vcpu);
    
    	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, exit_qual,
    				vmx->idt_vectoring_info, exit_intr_info,
    				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
    				KVM_ISA_VMX);
    
    	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
    	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
    		return false;
    
    	/* If L1 doesn't want the exit, handle it in L0. */
    	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
    		return false;
    
    	/*
    	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
    	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
    	 * need to be synthesized by querying the in-kernel LAPIC, but external
    	 * interrupts are never reflected to L1 so it's a non-issue.
    	 */
    	if ((exit_intr_info &
    	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
    	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
    		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
    
    		vmcs12->vm_exit_intr_error_code =
    			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
    	}
    
    reflect_vmexit:
    	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
    	return true;
    }
    
    static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
    				struct kvm_nested_state __user *user_kvm_nested_state,
    				u32 user_data_size)
    {
    	struct vcpu_vmx *vmx;
    	struct vmcs12 *vmcs12;
    	struct kvm_nested_state kvm_state = {
    		.flags = 0,
    		.format = KVM_STATE_NESTED_FORMAT_VMX,
    		.size = sizeof(kvm_state),
    		.hdr.vmx.flags = 0,
    		.hdr.vmx.vmxon_pa = -1ull,
    		.hdr.vmx.vmcs12_pa = -1ull,
    		.hdr.vmx.preemption_timer_deadline = 0,
    	};
    	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
    		&user_kvm_nested_state->data.vmx[0];
    
    	if (!vcpu)
    		return kvm_state.size + sizeof(*user_vmx_nested_state);
    
    	vmx = to_vmx(vcpu);
    	vmcs12 = get_vmcs12(vcpu);
    
    	if (nested_vmx_allowed(vcpu) &&
    	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
    		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
    		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
    
    		if (vmx_has_valid_vmcs12(vcpu)) {
    			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
    
    			if (vmx->nested.hv_evmcs)
    				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
    
    			if (is_guest_mode(vcpu) &&
    			    nested_cpu_has_shadow_vmcs(vmcs12) &&
    			    vmcs12->vmcs_link_pointer != -1ull)
    				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
    		}
    
    		if (vmx->nested.smm.vmxon)
    			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
    
    		if (vmx->nested.smm.guest_mode)
    			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
    
    		if (is_guest_mode(vcpu)) {
    			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
    
    			if (vmx->nested.nested_run_pending)
    				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
    
    			if (vmx->nested.mtf_pending)
    				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
    
    			if (nested_cpu_has_preemption_timer(vmcs12) &&
    			    vmx->nested.has_preemption_timer_deadline) {
    				kvm_state.hdr.vmx.flags |=
    					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
    				kvm_state.hdr.vmx.preemption_timer_deadline =
    					vmx->nested.preemption_timer_deadline;
    			}
    		}
    	}
    
    	if (user_data_size < kvm_state.size)
    		goto out;
    
    	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
    		return -EFAULT;
    
    	if (!vmx_has_valid_vmcs12(vcpu))
    		goto out;
    
    	/*
    	 * When running L2, the authoritative vmcs12 state is in the
    	 * vmcs02. When running L1, the authoritative vmcs12 state is
    	 * in the shadow or enlightened vmcs linked to vmcs01, unless
    	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
    	 * vmcs12 state is in the vmcs12 already.
    	 */
    	if (is_guest_mode(vcpu)) {
    		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
    		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
    	} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
    		if (vmx->nested.hv_evmcs)
    			copy_enlightened_to_vmcs12(vmx);
    		else if (enable_shadow_vmcs)
    			copy_shadow_to_vmcs12(vmx);
    	}
    
    	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
    	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
    
    	/*
    	 * Copy over the full allocated size of vmcs12 rather than just the size
    	 * of the struct.
    	 */
    	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
    		return -EFAULT;
    
    	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
    	    vmcs12->vmcs_link_pointer != -1ull) {
    		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
    				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
    			return -EFAULT;
    	}
    out:
    	return kvm_state.size;
    }
    
    /*
     * Forcibly leave nested mode in order to be able to reset the VCPU later on.
     */
    void vmx_leave_nested(struct kvm_vcpu *vcpu)
    {
    	if (is_guest_mode(vcpu)) {
    		to_vmx(vcpu)->nested.nested_run_pending = 0;
    		nested_vmx_vmexit(vcpu, -1, 0, 0);
    	}
    	free_nested(vcpu);
    }
    
    static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
    				struct kvm_nested_state __user *user_kvm_nested_state,
    				struct kvm_nested_state *kvm_state)
    {
    	struct vcpu_vmx *vmx = to_vmx(vcpu);
    	struct vmcs12 *vmcs12;
    	enum vm_entry_failure_code ignored;
    	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
    		&user_kvm_nested_state->data.vmx[0];
    	int ret;
    
    	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
    		return -EINVAL;
    
    	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
    		if (kvm_state->hdr.vmx.smm.flags)
    			return -EINVAL;
    
    		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
    			return -EINVAL;
    
    		/*
    		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
    		 * enable eVMCS capability on vCPU. However, since then
    		 * code was changed such that flag signals vmcs12 should
    		 * be copied into eVMCS in guest memory.
    		 *
    		 * To preserve backwards compatability, allow user
    		 * to set this flag even when there is no VMXON region.
    		 */
    		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
    			return -EINVAL;
    	} else {
    		if (!nested_vmx_allowed(vcpu))
    			return -EINVAL;
    
    		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
    			return -EINVAL;
    	}
    
    	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
    	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
    		return -EINVAL;
    
    	if (kvm_state->hdr.vmx.smm.flags &
    	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
    		return -EINVAL;
    
    	/*
    	 * SMM temporarily disables VMX, so we cannot be in guest mode,
    	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
    	 * must be zero.
    	 */
    	if (is_smm(vcpu) ?
    		(kvm_state->flags &
    		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
    		: kvm_state->hdr.vmx.smm.flags)
    		return -EINVAL;
    
    	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
    	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
    		return -EINVAL;
    
    	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
    		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
    			return -EINVAL;
    
    	vmx_leave_nested(vcpu);
    
    	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
    		return 0;
    
    	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
    	ret = enter_vmx_operation(vcpu);
    	if (ret)
    		return ret;
    
    	/* Empty 'VMXON' state is permitted */
    	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
    		return 0;
    
    	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
    		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
    		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
    			return -EINVAL;
    
    		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
    	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
    		/*
    		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
    		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
    		 * restored yet. EVMCS will be mapped from
    		 * nested_get_vmcs12_pages().
    		 */
    		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
    	} else {
    		return -EINVAL;
    	}
    
    	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
    		vmx->nested.smm.vmxon = true;
    		vmx->nested.vmxon = false;
    
    		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
    			vmx->nested.smm.guest_mode = true;
    	}
    
    	vmcs12 = get_vmcs12(vcpu);
    	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
    		return -EFAULT;
    
    	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
    		return -EINVAL;
    
    	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
    		return 0;
    
    	vmx->nested.nested_run_pending =
    		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
    
    	vmx->nested.mtf_pending =
    		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
    
    	ret = -EINVAL;
    	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
    	    vmcs12->vmcs_link_pointer != -1ull) {
    		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
    
    		if (kvm_state->size <
    		    sizeof(*kvm_state) +
    		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
    			goto error_guest_mode;
    
    		if (copy_from_user(shadow_vmcs12,
    				   user_vmx_nested_state->shadow_vmcs12,
    				   sizeof(*shadow_vmcs12))) {
    			ret = -EFAULT;
    			goto error_guest_mode;
    		}
    
    		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
    		    !shadow_vmcs12->hdr.shadow_vmcs)
    			goto error_guest_mode;
    	}
    
    	vmx->nested.has_preemption_timer_deadline = false;
    	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
    		vmx->nested.has_preemption_timer_deadline = true;
    		vmx->nested.preemption_timer_deadline =
    			kvm_state->hdr.vmx.preemption_timer_deadline;
    	}
    
    	if (nested_vmx_check_controls(vcpu, vmcs12) ||
    	    nested_vmx_check_host_state(vcpu, vmcs12) ||
    	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
    		goto error_guest_mode;
    
    	vmx->nested.dirty_vmcs12 = true;
    	ret = nested_vmx_enter_non_root_mode(vcpu, false);
    	if (ret)
    		goto error_guest_mode;
    
    	return 0;
    
    error_guest_mode:
    	vmx->nested.nested_run_pending = 0;
    	return ret;
    }
    
    void nested_vmx_set_vmcs_shadowing_bitmap(void)
    {
    	if (enable_shadow_vmcs) {
    		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
    		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
    	}
    }
    
    /*
     * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
     * returned for the various VMX controls MSRs when nested VMX is enabled.
     * The same values should also be used to verify that vmcs12 control fields are
     * valid during nested entry from L1 to L2.
     * Each of these control msrs has a low and high 32-bit half: A low bit is on
     * if the corresponding bit in the (32-bit) control field *must* be on, and a
     * bit in the high half is on if the corresponding bit in the control field
     * may be on. See also vmx_control_verify().
     */
    void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
    {
    	/*
    	 * Note that as a general rule, the high half of the MSRs (bits in
    	 * the control fields which may be 1) should be initialized by the
    	 * intersection of the underlying hardware's MSR (i.e., features which
    	 * can be supported) and the list of features we want to expose -
    	 * because they are known to be properly supported in our code.
    	 * Also, usually, the low half of the MSRs (bits which must be 1) can
    	 * be set to 0, meaning that L1 may turn off any of these bits. The
    	 * reason is that if one of these bits is necessary, it will appear
    	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
    	 * fields of vmcs01 and vmcs02, will turn these bits off - and
    	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
    	 * These rules have exceptions below.
    	 */
    
    	/* pin-based controls */
    	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
    		msrs->pinbased_ctls_low,
    		msrs->pinbased_ctls_high);
    	msrs->pinbased_ctls_low |=
    		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
    	msrs->pinbased_ctls_high &=
    		PIN_BASED_EXT_INTR_MASK |
    		PIN_BASED_NMI_EXITING |
    		PIN_BASED_VIRTUAL_NMIS |
    		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
    	msrs->pinbased_ctls_high |=
    		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
    		PIN_BASED_VMX_PREEMPTION_TIMER;
    
    	/* exit controls */
    	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
    		msrs->exit_ctls_low,
    		msrs->exit_ctls_high);
    	msrs->exit_ctls_low =
    		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
    
    	msrs->exit_ctls_high &=
    #ifdef CONFIG_X86_64
    		VM_EXIT_HOST_ADDR_SPACE_SIZE |
    #endif
    		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
    	msrs->exit_ctls_high |=
    		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
    		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
    		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
    
    	/* We support free control of debug control saving. */
    	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
    
    	/* entry controls */
    	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
    		msrs->entry_ctls_low,
    		msrs->entry_ctls_high);
    	msrs->entry_ctls_low =
    		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
    	msrs->entry_ctls_high &=
    #ifdef CONFIG_X86_64
    		VM_ENTRY_IA32E_MODE |
    #endif
    		VM_ENTRY_LOAD_IA32_PAT;
    	msrs->entry_ctls_high |=
    		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
    
    	/* We support free control of debug control loading. */
    	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
    
    	/* cpu-based controls */
    	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
    		msrs->procbased_ctls_low,
    		msrs->procbased_ctls_high);
    	msrs->procbased_ctls_low =
    		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
    	msrs->procbased_ctls_high &=
    		CPU_BASED_INTR_WINDOW_EXITING |
    		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
    		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
    		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
    		CPU_BASED_CR3_STORE_EXITING |
    #ifdef CONFIG_X86_64
    		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
    #endif
    		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
    		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
    		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
    		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
    		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
    	/*
    	 * We can allow some features even when not supported by the
    	 * hardware. For example, L1 can specify an MSR bitmap - and we
    	 * can use it to avoid exits to L1 - even when L0 runs L2
    	 * without MSR bitmaps.
    	 */
    	msrs->procbased_ctls_high |=
    		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
    		CPU_BASED_USE_MSR_BITMAPS;
    
    	/* We support free control of CR3 access interception. */
    	msrs->procbased_ctls_low &=
    		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
    
    	/*
    	 * secondary cpu-based controls.  Do not include those that
    	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
    	 */
    	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
    		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
    		      msrs->secondary_ctls_low,
    		      msrs->secondary_ctls_high);
    
    	msrs->secondary_ctls_low = 0;
    	msrs->secondary_ctls_high &=
    		SECONDARY_EXEC_DESC |
    		SECONDARY_EXEC_RDTSCP |
    		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
    		SECONDARY_EXEC_WBINVD_EXITING |
    		SECONDARY_EXEC_APIC_REGISTER_VIRT |
    		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
    		SECONDARY_EXEC_RDRAND_EXITING |
    		SECONDARY_EXEC_ENABLE_INVPCID |
    		SECONDARY_EXEC_RDSEED_EXITING |
    		SECONDARY_EXEC_XSAVES;
    
    	/*
    	 * We can emulate "VMCS shadowing," even if the hardware
    	 * doesn't support it.
    	 */
    	msrs->secondary_ctls_high |=
    		SECONDARY_EXEC_SHADOW_VMCS;
    
    	if (enable_ept) {
    		/* nested EPT: emulate EPT also to L1 */
    		msrs->secondary_ctls_high |=
    			SECONDARY_EXEC_ENABLE_EPT;
    		msrs->ept_caps =
    			VMX_EPT_PAGE_WALK_4_BIT |
    			VMX_EPT_PAGE_WALK_5_BIT |
    			VMX_EPTP_WB_BIT |
    			VMX_EPT_INVEPT_BIT |
    			VMX_EPT_EXECUTE_ONLY_BIT;
    
    		msrs->ept_caps &= ept_caps;
    		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
    			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
    			VMX_EPT_1GB_PAGE_BIT;
    		if (enable_ept_ad_bits) {
    			msrs->secondary_ctls_high |=
    				SECONDARY_EXEC_ENABLE_PML;
    			msrs->ept_caps |= VMX_EPT_AD_BIT;
    		}
    	}
    
    	if (cpu_has_vmx_vmfunc()) {
    		msrs->secondary_ctls_high |=
    			SECONDARY_EXEC_ENABLE_VMFUNC;
    		/*
    		 * Advertise EPTP switching unconditionally
    		 * since we emulate it
    		 */
    		if (enable_ept)
    			msrs->vmfunc_controls =
    				VMX_VMFUNC_EPTP_SWITCHING;
    	}
    
    	/*
    	 * Old versions of KVM use the single-context version without
    	 * checking for support, so declare that it is supported even
    	 * though it is treated as global context.  The alternative is
    	 * not failing the single-context invvpid, and it is worse.
    	 */
    	if (enable_vpid) {
    		msrs->secondary_ctls_high |=
    			SECONDARY_EXEC_ENABLE_VPID;
    		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
    			VMX_VPID_EXTENT_SUPPORTED_MASK;
    	}
    
    	if (enable_unrestricted_guest)
    		msrs->secondary_ctls_high |=
    			SECONDARY_EXEC_UNRESTRICTED_GUEST;
    
    	if (flexpriority_enabled)
    		msrs->secondary_ctls_high |=
    			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
    
    	/* miscellaneous data */
    	rdmsr(MSR_IA32_VMX_MISC,
    		msrs->misc_low,
    		msrs->misc_high);
    	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
    	msrs->misc_low |=
    		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
    		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
    		VMX_MISC_ACTIVITY_HLT;
    	msrs->misc_high = 0;
    
    	/*
    	 * This MSR reports some information about VMX support. We
    	 * should return information about the VMX we emulate for the
    	 * guest, and the VMCS structure we give it - not about the
    	 * VMX support of the underlying hardware.
    	 */
    	msrs->basic =
    		VMCS12_REVISION |
    		VMX_BASIC_TRUE_CTLS |
    		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
    		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
    
    	if (cpu_has_vmx_basic_inout())
    		msrs->basic |= VMX_BASIC_INOUT;
    
    	/*
    	 * These MSRs specify bits which the guest must keep fixed on
    	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
    	 * We picked the standard core2 setting.
    	 */
    #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
    #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
    	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
    	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
    
    	/* These MSRs specify bits which the guest must keep fixed off. */
    	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
    	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
    
    	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
    	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
    }
    
    void nested_vmx_hardware_unsetup(void)
    {
    	int i;
    
    	if (enable_shadow_vmcs) {
    		for (i = 0; i < VMX_BITMAP_NR; i++)
    			free_page((unsigned long)vmx_bitmap[i]);
    	}
    }
    
    __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
    {
    	int i;
    
    	if (!cpu_has_vmx_shadow_vmcs())
    		enable_shadow_vmcs = 0;
    	if (enable_shadow_vmcs) {
    		for (i = 0; i < VMX_BITMAP_NR; i++) {
    			/*
    			 * The vmx_bitmap is not tied to a VM and so should
    			 * not be charged to a memcg.
    			 */
    			vmx_bitmap[i] = (unsigned long *)
    				__get_free_page(GFP_KERNEL);
    			if (!vmx_bitmap[i]) {
    				nested_vmx_hardware_unsetup();
    				return -ENOMEM;
    			}
    		}
    
    		init_vmcs_shadow_fields();
    	}
    
    	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
    	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
    	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
    	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
    	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
    	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
    	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
    	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
    	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
    	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
    	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
    	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
    
    	return 0;
    }
    
    struct kvm_x86_nested_ops vmx_nested_ops = {
    	.check_events = vmx_check_nested_events,
    	.hv_timer_pending = nested_vmx_preemption_timer_pending,
    	.get_state = vmx_get_nested_state,
    	.set_state = vmx_set_nested_state,
    	.get_vmcs12_pages = nested_get_vmcs12_pages,
    	.enable_evmcs = nested_enable_evmcs,
    	.get_evmcs_version = nested_get_evmcs_version,
    };