Skip to content
Snippets Groups Projects
Select Git revision
  • 90a9fc3eda18c298cbb3a3c65ac64e7f6b24e1f5
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS-Ascend
  • openEuler-22.03-LTS
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
  • 5.10.0-106.16.0
  • 5.10.0-106.15.0
  • 5.10.0-117.0.0
  • 5.10.0-60.57.0
33 results

kvm.c

Blame
  • kvm.c 21.21 KiB
    /*
     * KVM paravirt_ops implementation
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
     *
     * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
     * Copyright IBM Corporation, 2007
     *   Authors: Anthony Liguori <aliguori@us.ibm.com>
     */
    
    #include <linux/context_tracking.h>
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/kvm_para.h>
    #include <linux/cpu.h>
    #include <linux/mm.h>
    #include <linux/highmem.h>
    #include <linux/hardirq.h>
    #include <linux/notifier.h>
    #include <linux/reboot.h>
    #include <linux/hash.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/kprobes.h>
    #include <linux/debugfs.h>
    #include <linux/nmi.h>
    #include <linux/swait.h>
    #include <asm/timer.h>
    #include <asm/cpu.h>
    #include <asm/traps.h>
    #include <asm/desc.h>
    #include <asm/tlbflush.h>
    #include <asm/apic.h>
    #include <asm/apicdef.h>
    #include <asm/hypervisor.h>
    #include <asm/tlb.h>
    
    static int kvmapf = 1;
    
    static int __init parse_no_kvmapf(char *arg)
    {
            kvmapf = 0;
            return 0;
    }
    
    early_param("no-kvmapf", parse_no_kvmapf);
    
    static int steal_acc = 1;
    static int __init parse_no_stealacc(char *arg)
    {
            steal_acc = 0;
            return 0;
    }
    
    early_param("no-steal-acc", parse_no_stealacc);
    
    static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
    static DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64);
    static int has_steal_clock = 0;
    
    /*
     * No need for any "IO delay" on KVM
     */
    static void kvm_io_delay(void)
    {
    }
    
    #define KVM_TASK_SLEEP_HASHBITS 8
    #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
    
    struct kvm_task_sleep_node {
    	struct hlist_node link;
    	struct swait_queue_head wq;
    	u32 token;
    	int cpu;
    	bool halted;
    };
    
    static struct kvm_task_sleep_head {
    	raw_spinlock_t lock;
    	struct hlist_head list;
    } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
    
    static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
    						  u32 token)
    {
    	struct hlist_node *p;
    
    	hlist_for_each(p, &b->list) {
    		struct kvm_task_sleep_node *n =
    			hlist_entry(p, typeof(*n), link);
    		if (n->token == token)
    			return n;
    	}
    
    	return NULL;
    }
    
    /*
     * @interrupt_kernel: Is this called from a routine which interrupts the kernel
     * 		      (other than user space)?
     */
    void kvm_async_pf_task_wait(u32 token, int interrupt_kernel)
    {
    	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
    	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
    	struct kvm_task_sleep_node n, *e;
    	DECLARE_SWAITQUEUE(wait);
    
    	rcu_irq_enter();
    
    	raw_spin_lock(&b->lock);
    	e = _find_apf_task(b, token);
    	if (e) {
    		/* dummy entry exist -> wake up was delivered ahead of PF */
    		hlist_del(&e->link);
    		kfree(e);
    		raw_spin_unlock(&b->lock);
    
    		rcu_irq_exit();
    		return;
    	}
    
    	n.token = token;
    	n.cpu = smp_processor_id();
    	n.halted = is_idle_task(current) ||
    		   (IS_ENABLED(CONFIG_PREEMPT_COUNT)
    		    ? preempt_count() > 1 || rcu_preempt_depth()
    		    : interrupt_kernel);
    	init_swait_queue_head(&n.wq);
    	hlist_add_head(&n.link, &b->list);
    	raw_spin_unlock(&b->lock);
    
    	for (;;) {
    		if (!n.halted)
    			prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
    		if (hlist_unhashed(&n.link))
    			break;
    
    		rcu_irq_exit();
    
    		if (!n.halted) {
    			local_irq_enable();
    			schedule();
    			local_irq_disable();
    		} else {
    			/*
    			 * We cannot reschedule. So halt.
    			 */
    			native_safe_halt();
    			local_irq_disable();
    		}
    
    		rcu_irq_enter();
    	}
    	if (!n.halted)
    		finish_swait(&n.wq, &wait);
    
    	rcu_irq_exit();
    	return;
    }
    EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
    
    static void apf_task_wake_one(struct kvm_task_sleep_node *n)
    {
    	hlist_del_init(&n->link);
    	if (n->halted)
    		smp_send_reschedule(n->cpu);
    	else if (swq_has_sleeper(&n->wq))
    		swake_up_one(&n->wq);
    }
    
    static void apf_task_wake_all(void)
    {
    	int i;
    
    	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
    		struct hlist_node *p, *next;
    		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
    		raw_spin_lock(&b->lock);
    		hlist_for_each_safe(p, next, &b->list) {
    			struct kvm_task_sleep_node *n =
    				hlist_entry(p, typeof(*n), link);
    			if (n->cpu == smp_processor_id())
    				apf_task_wake_one(n);
    		}
    		raw_spin_unlock(&b->lock);
    	}
    }
    
    void kvm_async_pf_task_wake(u32 token)
    {
    	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
    	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
    	struct kvm_task_sleep_node *n;
    
    	if (token == ~0) {
    		apf_task_wake_all();
    		return;
    	}
    
    again:
    	raw_spin_lock(&b->lock);
    	n = _find_apf_task(b, token);
    	if (!n) {
    		/*
    		 * async PF was not yet handled.
    		 * Add dummy entry for the token.
    		 */
    		n = kzalloc(sizeof(*n), GFP_ATOMIC);
    		if (!n) {
    			/*
    			 * Allocation failed! Busy wait while other cpu
    			 * handles async PF.
    			 */
    			raw_spin_unlock(&b->lock);
    			cpu_relax();
    			goto again;
    		}
    		n->token = token;
    		n->cpu = smp_processor_id();
    		init_swait_queue_head(&n->wq);
    		hlist_add_head(&n->link, &b->list);
    	} else
    		apf_task_wake_one(n);
    	raw_spin_unlock(&b->lock);
    	return;
    }
    EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
    
    u32 kvm_read_and_reset_pf_reason(void)
    {
    	u32 reason = 0;
    
    	if (__this_cpu_read(apf_reason.enabled)) {
    		reason = __this_cpu_read(apf_reason.reason);
    		__this_cpu_write(apf_reason.reason, 0);
    	}
    
    	return reason;
    }
    EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
    NOKPROBE_SYMBOL(kvm_read_and_reset_pf_reason);
    
    dotraplinkage void
    do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
    {
    	enum ctx_state prev_state;
    
    	switch (kvm_read_and_reset_pf_reason()) {
    	default:
    		do_page_fault(regs, error_code);
    		break;
    	case KVM_PV_REASON_PAGE_NOT_PRESENT:
    		/* page is swapped out by the host. */
    		prev_state = exception_enter();
    		kvm_async_pf_task_wait((u32)read_cr2(), !user_mode(regs));
    		exception_exit(prev_state);
    		break;
    	case KVM_PV_REASON_PAGE_READY:
    		rcu_irq_enter();
    		kvm_async_pf_task_wake((u32)read_cr2());
    		rcu_irq_exit();
    		break;
    	}
    }
    NOKPROBE_SYMBOL(do_async_page_fault);
    
    static void __init paravirt_ops_setup(void)
    {
    	pv_info.name = "KVM";
    
    	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
    		pv_cpu_ops.io_delay = kvm_io_delay;
    
    #ifdef CONFIG_X86_IO_APIC
    	no_timer_check = 1;
    #endif
    }
    
    static void kvm_register_steal_time(void)
    {
    	int cpu = smp_processor_id();
    	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
    
    	if (!has_steal_clock)
    		return;
    
    	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
    	pr_info("kvm-stealtime: cpu %d, msr %llx\n",
    		cpu, (unsigned long long) slow_virt_to_phys(st));
    }
    
    static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
    
    static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
    {
    	/**
    	 * This relies on __test_and_clear_bit to modify the memory
    	 * in a way that is atomic with respect to the local CPU.
    	 * The hypervisor only accesses this memory from the local CPU so
    	 * there's no need for lock or memory barriers.
    	 * An optimization barrier is implied in apic write.
    	 */
    	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
    		return;
    	apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
    }
    
    static void kvm_guest_cpu_init(void)
    {
    	if (!kvm_para_available())
    		return;
    
    	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
    		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
    
    #ifdef CONFIG_PREEMPT
    		pa |= KVM_ASYNC_PF_SEND_ALWAYS;
    #endif
    		pa |= KVM_ASYNC_PF_ENABLED;
    
    		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
    			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
    
    		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
    		__this_cpu_write(apf_reason.enabled, 1);
    		printk(KERN_INFO"KVM setup async PF for cpu %d\n",
    		       smp_processor_id());
    	}
    
    	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
    		unsigned long pa;
    		/* Size alignment is implied but just to make it explicit. */
    		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
    		__this_cpu_write(kvm_apic_eoi, 0);
    		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
    			| KVM_MSR_ENABLED;
    		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
    	}
    
    	if (has_steal_clock)
    		kvm_register_steal_time();
    }
    
    static void kvm_pv_disable_apf(void)
    {
    	if (!__this_cpu_read(apf_reason.enabled))
    		return;
    
    	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
    	__this_cpu_write(apf_reason.enabled, 0);
    
    	printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
    	       smp_processor_id());
    }
    
    static void kvm_pv_guest_cpu_reboot(void *unused)
    {
    	/*
    	 * We disable PV EOI before we load a new kernel by kexec,
    	 * since MSR_KVM_PV_EOI_EN stores a pointer into old kernel's memory.
    	 * New kernel can re-enable when it boots.
    	 */
    	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
    		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
    	kvm_pv_disable_apf();
    	kvm_disable_steal_time();
    }
    
    static int kvm_pv_reboot_notify(struct notifier_block *nb,
    				unsigned long code, void *unused)
    {
    	if (code == SYS_RESTART)
    		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
    	return NOTIFY_DONE;
    }
    
    static struct notifier_block kvm_pv_reboot_nb = {
    	.notifier_call = kvm_pv_reboot_notify,
    };
    
    static u64 kvm_steal_clock(int cpu)
    {
    	u64 steal;
    	struct kvm_steal_time *src;
    	int version;
    
    	src = &per_cpu(steal_time, cpu);
    	do {
    		version = src->version;
    		virt_rmb();
    		steal = src->steal;
    		virt_rmb();
    	} while ((version & 1) || (version != src->version));
    
    	return steal;
    }
    
    void kvm_disable_steal_time(void)
    {
    	if (!has_steal_clock)
    		return;
    
    	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
    }
    
    static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
    {
    	early_set_memory_decrypted((unsigned long) ptr, size);
    }
    
    /*
     * Iterate through all possible CPUs and map the memory region pointed
     * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
     *
     * Note: we iterate through all possible CPUs to ensure that CPUs
     * hotplugged will have their per-cpu variable already mapped as
     * decrypted.
     */
    static void __init sev_map_percpu_data(void)
    {
    	int cpu;
    
    	if (!sev_active())
    		return;
    
    	for_each_possible_cpu(cpu) {
    		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
    		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
    		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
    	}
    }
    
    #ifdef CONFIG_SMP
    #define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
    
    static void __send_ipi_mask(const struct cpumask *mask, int vector)
    {
    	unsigned long flags;
    	int cpu, apic_id, icr;
    	int min = 0, max = 0;
    #ifdef CONFIG_X86_64
    	__uint128_t ipi_bitmap = 0;
    #else
    	u64 ipi_bitmap = 0;
    #endif
    	long ret;
    
    	if (cpumask_empty(mask))
    		return;
    
    	local_irq_save(flags);
    
    	switch (vector) {
    	default:
    		icr = APIC_DM_FIXED | vector;
    		break;
    	case NMI_VECTOR:
    		icr = APIC_DM_NMI;
    		break;
    	}
    
    	for_each_cpu(cpu, mask) {
    		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
    		if (!ipi_bitmap) {
    			min = max = apic_id;
    		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
    			ipi_bitmap <<= min - apic_id;
    			min = apic_id;
    		} else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
    			max = apic_id < max ? max : apic_id;
    		} else {
    			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
    				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
    			WARN_ONCE(ret < 0, "KVM: failed to send PV IPI: %ld", ret);
    			min = max = apic_id;
    			ipi_bitmap = 0;
    		}
    		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
    	}
    
    	if (ipi_bitmap) {
    		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
    			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
    		WARN_ONCE(ret < 0, "KVM: failed to send PV IPI: %ld", ret);
    	}
    
    	local_irq_restore(flags);
    }
    
    static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
    {
    	__send_ipi_mask(mask, vector);
    }
    
    static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
    {
    	unsigned int this_cpu = smp_processor_id();
    	struct cpumask new_mask;
    	const struct cpumask *local_mask;
    
    	cpumask_copy(&new_mask, mask);
    	cpumask_clear_cpu(this_cpu, &new_mask);
    	local_mask = &new_mask;
    	__send_ipi_mask(local_mask, vector);
    }
    
    static void kvm_send_ipi_allbutself(int vector)
    {
    	kvm_send_ipi_mask_allbutself(cpu_online_mask, vector);
    }
    
    static void kvm_send_ipi_all(int vector)
    {
    	__send_ipi_mask(cpu_online_mask, vector);
    }
    
    /*
     * Set the IPI entry points
     */
    static void kvm_setup_pv_ipi(void)
    {
    	apic->send_IPI_mask = kvm_send_ipi_mask;
    	apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
    	apic->send_IPI_allbutself = kvm_send_ipi_allbutself;
    	apic->send_IPI_all = kvm_send_ipi_all;
    	pr_info("KVM setup pv IPIs\n");
    }
    
    static void __init kvm_smp_prepare_cpus(unsigned int max_cpus)
    {
    	native_smp_prepare_cpus(max_cpus);
    	if (kvm_para_has_hint(KVM_HINTS_REALTIME))
    		static_branch_disable(&virt_spin_lock_key);
    }
    
    static void __init kvm_smp_prepare_boot_cpu(void)
    {
    	/*
    	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
    	 * shares the guest physical address with the hypervisor.
    	 */
    	sev_map_percpu_data();
    
    	kvm_guest_cpu_init();
    	native_smp_prepare_boot_cpu();
    	kvm_spinlock_init();
    }
    
    static void kvm_guest_cpu_offline(void)
    {
    	kvm_disable_steal_time();
    	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
    		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
    	kvm_pv_disable_apf();
    	apf_task_wake_all();
    }
    
    static int kvm_cpu_online(unsigned int cpu)
    {
    	local_irq_disable();
    	kvm_guest_cpu_init();
    	local_irq_enable();
    	return 0;
    }
    
    static int kvm_cpu_down_prepare(unsigned int cpu)
    {
    	local_irq_disable();
    	kvm_guest_cpu_offline();
    	local_irq_enable();
    	return 0;
    }
    #endif
    
    static void __init kvm_apf_trap_init(void)
    {
    	update_intr_gate(X86_TRAP_PF, async_page_fault);
    }
    
    static DEFINE_PER_CPU(cpumask_var_t, __pv_tlb_mask);
    
    static void kvm_flush_tlb_others(const struct cpumask *cpumask,
    			const struct flush_tlb_info *info)
    {
    	u8 state;
    	int cpu;
    	struct kvm_steal_time *src;
    	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_tlb_mask);
    
    	cpumask_copy(flushmask, cpumask);
    	/*
    	 * We have to call flush only on online vCPUs. And
    	 * queue flush_on_enter for pre-empted vCPUs
    	 */
    	for_each_cpu(cpu, flushmask) {
    		src = &per_cpu(steal_time, cpu);
    		state = READ_ONCE(src->preempted);
    		if ((state & KVM_VCPU_PREEMPTED)) {
    			if (try_cmpxchg(&src->preempted, &state,
    					state | KVM_VCPU_FLUSH_TLB))
    				__cpumask_clear_cpu(cpu, flushmask);
    		}
    	}
    
    	native_flush_tlb_others(flushmask, info);
    }
    
    static void __init kvm_guest_init(void)
    {
    	int i;
    
    	if (!kvm_para_available())
    		return;
    
    	paravirt_ops_setup();
    	register_reboot_notifier(&kvm_pv_reboot_nb);
    	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
    		raw_spin_lock_init(&async_pf_sleepers[i].lock);
    	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
    		x86_init.irqs.trap_init = kvm_apf_trap_init;
    
    	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
    		has_steal_clock = 1;
    		pv_time_ops.steal_clock = kvm_steal_clock;
    	}
    
    	if (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
    	    !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
    	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
    		pv_mmu_ops.flush_tlb_others = kvm_flush_tlb_others;
    		pv_mmu_ops.tlb_remove_table = tlb_remove_table;
    	}
    
    	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
    		apic_set_eoi_write(kvm_guest_apic_eoi_write);
    
    #ifdef CONFIG_SMP
    	smp_ops.smp_prepare_cpus = kvm_smp_prepare_cpus;
    	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
    	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
    				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
    		pr_err("kvm_guest: Failed to install cpu hotplug callbacks\n");
    #else
    	sev_map_percpu_data();
    	kvm_guest_cpu_init();
    #endif
    
    	/*
    	 * Hard lockup detection is enabled by default. Disable it, as guests
    	 * can get false positives too easily, for example if the host is
    	 * overcommitted.
    	 */
    	hardlockup_detector_disable();
    }
    
    static noinline uint32_t __kvm_cpuid_base(void)
    {
    	if (boot_cpu_data.cpuid_level < 0)
    		return 0;	/* So we don't blow up on old processors */
    
    	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
    		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
    
    	return 0;
    }
    
    static inline uint32_t kvm_cpuid_base(void)
    {
    	static int kvm_cpuid_base = -1;
    
    	if (kvm_cpuid_base == -1)
    		kvm_cpuid_base = __kvm_cpuid_base();
    
    	return kvm_cpuid_base;
    }
    
    bool kvm_para_available(void)
    {
    	return kvm_cpuid_base() != 0;
    }
    EXPORT_SYMBOL_GPL(kvm_para_available);
    
    unsigned int kvm_arch_para_features(void)
    {
    	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
    }
    
    unsigned int kvm_arch_para_hints(void)
    {
    	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
    }
    EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
    
    static uint32_t __init kvm_detect(void)
    {
    	return kvm_cpuid_base();
    }
    
    static void __init kvm_apic_init(void)
    {
    #if defined(CONFIG_SMP)
    	if (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI))
    		kvm_setup_pv_ipi();
    #endif
    }
    
    static void __init kvm_init_platform(void)
    {
    	kvmclock_init();
    	x86_platform.apic_post_init = kvm_apic_init;
    }
    
    const __initconst struct hypervisor_x86 x86_hyper_kvm = {
    	.name			= "KVM",
    	.detect			= kvm_detect,
    	.type			= X86_HYPER_KVM,
    	.init.guest_late_init	= kvm_guest_init,
    	.init.x2apic_available	= kvm_para_available,
    	.init.init_platform	= kvm_init_platform,
    };
    
    static __init int activate_jump_labels(void)
    {
    	if (has_steal_clock) {
    		static_key_slow_inc(&paravirt_steal_enabled);
    		if (steal_acc)
    			static_key_slow_inc(&paravirt_steal_rq_enabled);
    	}
    
    	return 0;
    }
    arch_initcall(activate_jump_labels);
    
    static __init int kvm_setup_pv_tlb_flush(void)
    {
    	int cpu;
    
    	if (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
    	    !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
    	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
    		for_each_possible_cpu(cpu) {
    			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_tlb_mask, cpu),
    				GFP_KERNEL, cpu_to_node(cpu));
    		}
    		pr_info("KVM setup pv remote TLB flush\n");
    	}
    
    	return 0;
    }
    arch_initcall(kvm_setup_pv_tlb_flush);
    
    #ifdef CONFIG_PARAVIRT_SPINLOCKS
    
    /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
    static void kvm_kick_cpu(int cpu)
    {
    	int apicid;
    	unsigned long flags = 0;
    
    	apicid = per_cpu(x86_cpu_to_apicid, cpu);
    	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
    }
    
    #include <asm/qspinlock.h>
    
    static void kvm_wait(u8 *ptr, u8 val)
    {
    	unsigned long flags;
    
    	if (in_nmi())
    		return;
    
    	local_irq_save(flags);
    
    	if (READ_ONCE(*ptr) != val)
    		goto out;
    
    	/*
    	 * halt until it's our turn and kicked. Note that we do safe halt
    	 * for irq enabled case to avoid hang when lock info is overwritten
    	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
    	 */
    	if (arch_irqs_disabled_flags(flags))
    		halt();
    	else
    		safe_halt();
    
    out:
    	local_irq_restore(flags);
    }
    
    #ifdef CONFIG_X86_32
    __visible bool __kvm_vcpu_is_preempted(long cpu)
    {
    	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
    
    	return !!(src->preempted & KVM_VCPU_PREEMPTED);
    }
    PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
    
    #else
    
    #include <asm/asm-offsets.h>
    
    extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
    
    /*
     * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
     * restoring to/from the stack.
     */
    asm(
    ".pushsection .text;"
    ".global __raw_callee_save___kvm_vcpu_is_preempted;"
    ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
    "__raw_callee_save___kvm_vcpu_is_preempted:"
    "movq	__per_cpu_offset(,%rdi,8), %rax;"
    "cmpb	$0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
    "setne	%al;"
    "ret;"
    ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
    ".popsection");
    
    #endif
    
    /*
     * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
     */
    void __init kvm_spinlock_init(void)
    {
    	if (!kvm_para_available())
    		return;
    	/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
    	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
    		return;
    
    	if (kvm_para_has_hint(KVM_HINTS_REALTIME))
    		return;
    
    	/* Don't use the pvqspinlock code if there is only 1 vCPU. */
    	if (num_possible_cpus() == 1)
    		return;
    
    	__pv_init_lock_hash();
    	pv_lock_ops.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
    	pv_lock_ops.queued_spin_unlock = PV_CALLEE_SAVE(__pv_queued_spin_unlock);
    	pv_lock_ops.wait = kvm_wait;
    	pv_lock_ops.kick = kvm_kick_cpu;
    
    	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
    		pv_lock_ops.vcpu_is_preempted =
    			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
    	}
    }
    
    #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
    
    #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
    
    static void kvm_disable_host_haltpoll(void *i)
    {
    	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
    }
    
    static void kvm_enable_host_haltpoll(void *i)
    {
    	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
    }
    
    void arch_haltpoll_enable(unsigned int cpu)
    {
    	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
    		pr_err_once("kvm: host does not support poll control\n");
    		pr_err_once("kvm: host upgrade recommended\n");
    		return;
    	}
    
    	/* Enable guest halt poll disables host halt poll */
    	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
    }
    EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
    
    void arch_haltpoll_disable(unsigned int cpu)
    {
    	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
    		return;
    
    	/* Enable guest halt poll disables host halt poll */
    	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
    }
    EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
    #endif