Skip to content
Snippets Groups Projects
Select Git revision
  • bc48f001de12225b6430a243504aa60b5ae8a91a
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

buffer.c

Blame
  • buffer.c 92.99 KiB
    /*
     *  linux/fs/buffer.c
     *
     *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
     */
    
    /*
     * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
     *
     * Removed a lot of unnecessary code and simplified things now that
     * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
     *
     * Speed up hash, lru, and free list operations.  Use gfp() for allocating
     * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
     *
     * Added 32k buffer block sizes - these are required older ARM systems. - RMK
     *
     * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
     */
    
    #include <linux/kernel.h>
    #include <linux/sched/signal.h>
    #include <linux/syscalls.h>
    #include <linux/fs.h>
    #include <linux/iomap.h>
    #include <linux/mm.h>
    #include <linux/percpu.h>
    #include <linux/slab.h>
    #include <linux/capability.h>
    #include <linux/blkdev.h>
    #include <linux/file.h>
    #include <linux/quotaops.h>
    #include <linux/highmem.h>
    #include <linux/export.h>
    #include <linux/backing-dev.h>
    #include <linux/writeback.h>
    #include <linux/hash.h>
    #include <linux/suspend.h>
    #include <linux/buffer_head.h>
    #include <linux/task_io_accounting_ops.h>
    #include <linux/bio.h>
    #include <linux/notifier.h>
    #include <linux/cpu.h>
    #include <linux/bitops.h>
    #include <linux/mpage.h>
    #include <linux/bit_spinlock.h>
    #include <linux/pagevec.h>
    #include <trace/events/block.h>
    
    static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
    static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
    			 enum rw_hint hint, struct writeback_control *wbc);
    
    #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
    
    void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
    {
    	bh->b_end_io = handler;
    	bh->b_private = private;
    }
    EXPORT_SYMBOL(init_buffer);
    
    inline void touch_buffer(struct buffer_head *bh)
    {
    	trace_block_touch_buffer(bh);
    	mark_page_accessed(bh->b_page);
    }
    EXPORT_SYMBOL(touch_buffer);
    
    void __lock_buffer(struct buffer_head *bh)
    {
    	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
    }
    EXPORT_SYMBOL(__lock_buffer);
    
    void unlock_buffer(struct buffer_head *bh)
    {
    	clear_bit_unlock(BH_Lock, &bh->b_state);
    	smp_mb__after_atomic();
    	wake_up_bit(&bh->b_state, BH_Lock);
    }
    EXPORT_SYMBOL(unlock_buffer);
    
    /*
     * Returns if the page has dirty or writeback buffers. If all the buffers
     * are unlocked and clean then the PageDirty information is stale. If
     * any of the pages are locked, it is assumed they are locked for IO.
     */
    void buffer_check_dirty_writeback(struct page *page,
    				     bool *dirty, bool *writeback)
    {
    	struct buffer_head *head, *bh;
    	*dirty = false;
    	*writeback = false;
    
    	BUG_ON(!PageLocked(page));
    
    	if (!page_has_buffers(page))
    		return;
    
    	if (PageWriteback(page))
    		*writeback = true;
    
    	head = page_buffers(page);
    	bh = head;
    	do {
    		if (buffer_locked(bh))
    			*writeback = true;
    
    		if (buffer_dirty(bh))
    			*dirty = true;
    
    		bh = bh->b_this_page;
    	} while (bh != head);
    }
    EXPORT_SYMBOL(buffer_check_dirty_writeback);
    
    /*
     * Block until a buffer comes unlocked.  This doesn't stop it
     * from becoming locked again - you have to lock it yourself
     * if you want to preserve its state.
     */
    void __wait_on_buffer(struct buffer_head * bh)
    {
    	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
    }
    EXPORT_SYMBOL(__wait_on_buffer);
    
    static void
    __clear_page_buffers(struct page *page)
    {
    	ClearPagePrivate(page);
    	set_page_private(page, 0);
    	put_page(page);
    }
    
    static void buffer_io_error(struct buffer_head *bh, char *msg)
    {
    	if (!test_bit(BH_Quiet, &bh->b_state))
    		printk_ratelimited(KERN_ERR
    			"Buffer I/O error on dev %pg, logical block %llu%s\n",
    			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
    }
    
    /*
     * End-of-IO handler helper function which does not touch the bh after
     * unlocking it.
     * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
     * a race there is benign: unlock_buffer() only use the bh's address for
     * hashing after unlocking the buffer, so it doesn't actually touch the bh
     * itself.
     */
    static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
    {
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		/* This happens, due to failed read-ahead attempts. */
    		clear_buffer_uptodate(bh);
    	}
    	unlock_buffer(bh);
    }
    
    /*
     * Default synchronous end-of-IO handler..  Just mark it up-to-date and
     * unlock the buffer. This is what ll_rw_block uses too.
     */
    void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
    {
    	__end_buffer_read_notouch(bh, uptodate);
    	put_bh(bh);
    }
    EXPORT_SYMBOL(end_buffer_read_sync);
    
    void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
    {
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		buffer_io_error(bh, ", lost sync page write");
    		mark_buffer_write_io_error(bh);
    		clear_buffer_uptodate(bh);
    	}
    	unlock_buffer(bh);
    	put_bh(bh);
    }
    EXPORT_SYMBOL(end_buffer_write_sync);
    
    /*
     * Various filesystems appear to want __find_get_block to be non-blocking.
     * But it's the page lock which protects the buffers.  To get around this,
     * we get exclusion from try_to_free_buffers with the blockdev mapping's
     * private_lock.
     *
     * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
     * may be quite high.  This code could TryLock the page, and if that
     * succeeds, there is no need to take private_lock. (But if
     * private_lock is contended then so is mapping->tree_lock).
     */
    static struct buffer_head *
    __find_get_block_slow(struct block_device *bdev, sector_t block)
    {
    	struct inode *bd_inode = bdev->bd_inode;
    	struct address_space *bd_mapping = bd_inode->i_mapping;
    	struct buffer_head *ret = NULL;
    	pgoff_t index;
    	struct buffer_head *bh;
    	struct buffer_head *head;
    	struct page *page;
    	int all_mapped = 1;
    
    	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
    	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
    	if (!page)
    		goto out;
    
    	spin_lock(&bd_mapping->private_lock);
    	if (!page_has_buffers(page))
    		goto out_unlock;
    	head = page_buffers(page);
    	bh = head;
    	do {
    		if (!buffer_mapped(bh))
    			all_mapped = 0;
    		else if (bh->b_blocknr == block) {
    			ret = bh;
    			get_bh(bh);
    			goto out_unlock;
    		}
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	/* we might be here because some of the buffers on this page are
    	 * not mapped.  This is due to various races between
    	 * file io on the block device and getblk.  It gets dealt with
    	 * elsewhere, don't buffer_error if we had some unmapped buffers
    	 */
    	if (all_mapped) {
    		printk("__find_get_block_slow() failed. "
    			"block=%llu, b_blocknr=%llu\n",
    			(unsigned long long)block,
    			(unsigned long long)bh->b_blocknr);
    		printk("b_state=0x%08lx, b_size=%zu\n",
    			bh->b_state, bh->b_size);
    		printk("device %pg blocksize: %d\n", bdev,
    			1 << bd_inode->i_blkbits);
    	}
    out_unlock:
    	spin_unlock(&bd_mapping->private_lock);
    	put_page(page);
    out:
    	return ret;
    }
    
    /*
     * I/O completion handler for block_read_full_page() - pages
     * which come unlocked at the end of I/O.
     */
    static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
    {
    	unsigned long flags;
    	struct buffer_head *first;
    	struct buffer_head *tmp;
    	struct page *page;
    	int page_uptodate = 1;
    
    	BUG_ON(!buffer_async_read(bh));
    
    	page = bh->b_page;
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		clear_buffer_uptodate(bh);
    		buffer_io_error(bh, ", async page read");
    		SetPageError(page);
    	}
    
    	/*
    	 * Be _very_ careful from here on. Bad things can happen if
    	 * two buffer heads end IO at almost the same time and both
    	 * decide that the page is now completely done.
    	 */
    	first = page_buffers(page);
    	local_irq_save(flags);
    	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
    	clear_buffer_async_read(bh);
    	unlock_buffer(bh);
    	tmp = bh;
    	do {
    		if (!buffer_uptodate(tmp))
    			page_uptodate = 0;
    		if (buffer_async_read(tmp)) {
    			BUG_ON(!buffer_locked(tmp));
    			goto still_busy;
    		}
    		tmp = tmp->b_this_page;
    	} while (tmp != bh);
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    
    	/*
    	 * If none of the buffers had errors and they are all
    	 * uptodate then we can set the page uptodate.
    	 */
    	if (page_uptodate && !PageError(page))
    		SetPageUptodate(page);
    	unlock_page(page);
    	return;
    
    still_busy:
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    	return;
    }
    
    /*
     * Completion handler for block_write_full_page() - pages which are unlocked
     * during I/O, and which have PageWriteback cleared upon I/O completion.
     */
    void end_buffer_async_write(struct buffer_head *bh, int uptodate)
    {
    	unsigned long flags;
    	struct buffer_head *first;
    	struct buffer_head *tmp;
    	struct page *page;
    
    	BUG_ON(!buffer_async_write(bh));
    
    	page = bh->b_page;
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		buffer_io_error(bh, ", lost async page write");
    		mark_buffer_write_io_error(bh);
    		clear_buffer_uptodate(bh);
    		SetPageError(page);
    	}
    
    	first = page_buffers(page);
    	local_irq_save(flags);
    	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
    
    	clear_buffer_async_write(bh);
    	unlock_buffer(bh);
    	tmp = bh->b_this_page;
    	while (tmp != bh) {
    		if (buffer_async_write(tmp)) {
    			BUG_ON(!buffer_locked(tmp));
    			goto still_busy;
    		}
    		tmp = tmp->b_this_page;
    	}
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    	end_page_writeback(page);
    	return;
    
    still_busy:
    	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
    	local_irq_restore(flags);
    	return;
    }
    EXPORT_SYMBOL(end_buffer_async_write);
    
    /*
     * If a page's buffers are under async readin (end_buffer_async_read
     * completion) then there is a possibility that another thread of
     * control could lock one of the buffers after it has completed
     * but while some of the other buffers have not completed.  This
     * locked buffer would confuse end_buffer_async_read() into not unlocking
     * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
     * that this buffer is not under async I/O.
     *
     * The page comes unlocked when it has no locked buffer_async buffers
     * left.
     *
     * PageLocked prevents anyone starting new async I/O reads any of
     * the buffers.
     *
     * PageWriteback is used to prevent simultaneous writeout of the same
     * page.
     *
     * PageLocked prevents anyone from starting writeback of a page which is
     * under read I/O (PageWriteback is only ever set against a locked page).
     */
    static void mark_buffer_async_read(struct buffer_head *bh)
    {
    	bh->b_end_io = end_buffer_async_read;
    	set_buffer_async_read(bh);
    }
    
    static void mark_buffer_async_write_endio(struct buffer_head *bh,
    					  bh_end_io_t *handler)
    {
    	bh->b_end_io = handler;
    	set_buffer_async_write(bh);
    }
    
    void mark_buffer_async_write(struct buffer_head *bh)
    {
    	mark_buffer_async_write_endio(bh, end_buffer_async_write);
    }
    EXPORT_SYMBOL(mark_buffer_async_write);
    
    
    /*
     * fs/buffer.c contains helper functions for buffer-backed address space's
     * fsync functions.  A common requirement for buffer-based filesystems is
     * that certain data from the backing blockdev needs to be written out for
     * a successful fsync().  For example, ext2 indirect blocks need to be
     * written back and waited upon before fsync() returns.
     *
     * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
     * inode_has_buffers() and invalidate_inode_buffers() are provided for the
     * management of a list of dependent buffers at ->i_mapping->private_list.
     *
     * Locking is a little subtle: try_to_free_buffers() will remove buffers
     * from their controlling inode's queue when they are being freed.  But
     * try_to_free_buffers() will be operating against the *blockdev* mapping
     * at the time, not against the S_ISREG file which depends on those buffers.
     * So the locking for private_list is via the private_lock in the address_space
     * which backs the buffers.  Which is different from the address_space 
     * against which the buffers are listed.  So for a particular address_space,
     * mapping->private_lock does *not* protect mapping->private_list!  In fact,
     * mapping->private_list will always be protected by the backing blockdev's
     * ->private_lock.
     *
     * Which introduces a requirement: all buffers on an address_space's
     * ->private_list must be from the same address_space: the blockdev's.
     *
     * address_spaces which do not place buffers at ->private_list via these
     * utility functions are free to use private_lock and private_list for
     * whatever they want.  The only requirement is that list_empty(private_list)
     * be true at clear_inode() time.
     *
     * FIXME: clear_inode should not call invalidate_inode_buffers().  The
     * filesystems should do that.  invalidate_inode_buffers() should just go
     * BUG_ON(!list_empty).
     *
     * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
     * take an address_space, not an inode.  And it should be called
     * mark_buffer_dirty_fsync() to clearly define why those buffers are being
     * queued up.
     *
     * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
     * list if it is already on a list.  Because if the buffer is on a list,
     * it *must* already be on the right one.  If not, the filesystem is being
     * silly.  This will save a ton of locking.  But first we have to ensure
     * that buffers are taken *off* the old inode's list when they are freed
     * (presumably in truncate).  That requires careful auditing of all
     * filesystems (do it inside bforget()).  It could also be done by bringing
     * b_inode back.
     */
    
    /*
     * The buffer's backing address_space's private_lock must be held
     */
    static void __remove_assoc_queue(struct buffer_head *bh)
    {
    	list_del_init(&bh->b_assoc_buffers);
    	WARN_ON(!bh->b_assoc_map);
    	bh->b_assoc_map = NULL;
    }
    
    int inode_has_buffers(struct inode *inode)
    {
    	return !list_empty(&inode->i_data.private_list);
    }
    
    /*
     * osync is designed to support O_SYNC io.  It waits synchronously for
     * all already-submitted IO to complete, but does not queue any new
     * writes to the disk.
     *
     * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
     * you dirty the buffers, and then use osync_inode_buffers to wait for
     * completion.  Any other dirty buffers which are not yet queued for
     * write will not be flushed to disk by the osync.
     */
    static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
    {
    	struct buffer_head *bh;
    	struct list_head *p;
    	int err = 0;
    
    	spin_lock(lock);
    repeat:
    	list_for_each_prev(p, list) {
    		bh = BH_ENTRY(p);
    		if (buffer_locked(bh)) {
    			get_bh(bh);
    			spin_unlock(lock);
    			wait_on_buffer(bh);
    			if (!buffer_uptodate(bh))
    				err = -EIO;
    			brelse(bh);
    			spin_lock(lock);
    			goto repeat;
    		}
    	}
    	spin_unlock(lock);
    	return err;
    }
    
    static void do_thaw_one(struct super_block *sb, void *unused)
    {
    	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
    		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
    }
    
    static void do_thaw_all(struct work_struct *work)
    {
    	iterate_supers(do_thaw_one, NULL);
    	kfree(work);
    	printk(KERN_WARNING "Emergency Thaw complete\n");
    }
    
    /**
     * emergency_thaw_all -- forcibly thaw every frozen filesystem
     *
     * Used for emergency unfreeze of all filesystems via SysRq
     */
    void emergency_thaw_all(void)
    {
    	struct work_struct *work;
    
    	work = kmalloc(sizeof(*work), GFP_ATOMIC);
    	if (work) {
    		INIT_WORK(work, do_thaw_all);
    		schedule_work(work);
    	}
    }
    
    /**
     * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
     * @mapping: the mapping which wants those buffers written
     *
     * Starts I/O against the buffers at mapping->private_list, and waits upon
     * that I/O.
     *
     * Basically, this is a convenience function for fsync().
     * @mapping is a file or directory which needs those buffers to be written for
     * a successful fsync().
     */
    int sync_mapping_buffers(struct address_space *mapping)
    {
    	struct address_space *buffer_mapping = mapping->private_data;
    
    	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
    		return 0;
    
    	return fsync_buffers_list(&buffer_mapping->private_lock,
    					&mapping->private_list);
    }
    EXPORT_SYMBOL(sync_mapping_buffers);
    
    /*
     * Called when we've recently written block `bblock', and it is known that
     * `bblock' was for a buffer_boundary() buffer.  This means that the block at
     * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
     * dirty, schedule it for IO.  So that indirects merge nicely with their data.
     */
    void write_boundary_block(struct block_device *bdev,
    			sector_t bblock, unsigned blocksize)
    {
    	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
    	if (bh) {
    		if (buffer_dirty(bh))
    			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
    		put_bh(bh);
    	}
    }
    
    void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
    {
    	struct address_space *mapping = inode->i_mapping;
    	struct address_space *buffer_mapping = bh->b_page->mapping;
    
    	mark_buffer_dirty(bh);
    	if (!mapping->private_data) {
    		mapping->private_data = buffer_mapping;
    	} else {
    		BUG_ON(mapping->private_data != buffer_mapping);
    	}
    	if (!bh->b_assoc_map) {
    		spin_lock(&buffer_mapping->private_lock);
    		list_move_tail(&bh->b_assoc_buffers,
    				&mapping->private_list);
    		bh->b_assoc_map = mapping;
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    }
    EXPORT_SYMBOL(mark_buffer_dirty_inode);
    
    /*
     * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
     * dirty.
     *
     * If warn is true, then emit a warning if the page is not uptodate and has
     * not been truncated.
     *
     * The caller must hold lock_page_memcg().
     */
    static void __set_page_dirty(struct page *page, struct address_space *mapping,
    			     int warn)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&mapping->tree_lock, flags);
    	if (page->mapping) {	/* Race with truncate? */
    		WARN_ON_ONCE(warn && !PageUptodate(page));
    		account_page_dirtied(page, mapping);
    		radix_tree_tag_set(&mapping->page_tree,
    				page_index(page), PAGECACHE_TAG_DIRTY);
    	}
    	spin_unlock_irqrestore(&mapping->tree_lock, flags);
    }
    
    /*
     * Add a page to the dirty page list.
     *
     * It is a sad fact of life that this function is called from several places
     * deeply under spinlocking.  It may not sleep.
     *
     * If the page has buffers, the uptodate buffers are set dirty, to preserve
     * dirty-state coherency between the page and the buffers.  It the page does
     * not have buffers then when they are later attached they will all be set
     * dirty.
     *
     * The buffers are dirtied before the page is dirtied.  There's a small race
     * window in which a writepage caller may see the page cleanness but not the
     * buffer dirtiness.  That's fine.  If this code were to set the page dirty
     * before the buffers, a concurrent writepage caller could clear the page dirty
     * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
     * page on the dirty page list.
     *
     * We use private_lock to lock against try_to_free_buffers while using the
     * page's buffer list.  Also use this to protect against clean buffers being
     * added to the page after it was set dirty.
     *
     * FIXME: may need to call ->reservepage here as well.  That's rather up to the
     * address_space though.
     */
    int __set_page_dirty_buffers(struct page *page)
    {
    	int newly_dirty;
    	struct address_space *mapping = page_mapping(page);
    
    	if (unlikely(!mapping))
    		return !TestSetPageDirty(page);
    
    	spin_lock(&mapping->private_lock);
    	if (page_has_buffers(page)) {
    		struct buffer_head *head = page_buffers(page);
    		struct buffer_head *bh = head;
    
    		do {
    			set_buffer_dirty(bh);
    			bh = bh->b_this_page;
    		} while (bh != head);
    	}
    	/*
    	 * Lock out page->mem_cgroup migration to keep PageDirty
    	 * synchronized with per-memcg dirty page counters.
    	 */
    	lock_page_memcg(page);
    	newly_dirty = !TestSetPageDirty(page);
    	spin_unlock(&mapping->private_lock);
    
    	if (newly_dirty)
    		__set_page_dirty(page, mapping, 1);
    
    	unlock_page_memcg(page);
    
    	if (newly_dirty)
    		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    
    	return newly_dirty;
    }
    EXPORT_SYMBOL(__set_page_dirty_buffers);
    
    /*
     * Write out and wait upon a list of buffers.
     *
     * We have conflicting pressures: we want to make sure that all
     * initially dirty buffers get waited on, but that any subsequently
     * dirtied buffers don't.  After all, we don't want fsync to last
     * forever if somebody is actively writing to the file.
     *
     * Do this in two main stages: first we copy dirty buffers to a
     * temporary inode list, queueing the writes as we go.  Then we clean
     * up, waiting for those writes to complete.
     * 
     * During this second stage, any subsequent updates to the file may end
     * up refiling the buffer on the original inode's dirty list again, so
     * there is a chance we will end up with a buffer queued for write but
     * not yet completed on that list.  So, as a final cleanup we go through
     * the osync code to catch these locked, dirty buffers without requeuing
     * any newly dirty buffers for write.
     */
    static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
    {
    	struct buffer_head *bh;
    	struct list_head tmp;
    	struct address_space *mapping;
    	int err = 0, err2;
    	struct blk_plug plug;
    
    	INIT_LIST_HEAD(&tmp);
    	blk_start_plug(&plug);
    
    	spin_lock(lock);
    	while (!list_empty(list)) {
    		bh = BH_ENTRY(list->next);
    		mapping = bh->b_assoc_map;
    		__remove_assoc_queue(bh);
    		/* Avoid race with mark_buffer_dirty_inode() which does
    		 * a lockless check and we rely on seeing the dirty bit */
    		smp_mb();
    		if (buffer_dirty(bh) || buffer_locked(bh)) {
    			list_add(&bh->b_assoc_buffers, &tmp);
    			bh->b_assoc_map = mapping;
    			if (buffer_dirty(bh)) {
    				get_bh(bh);
    				spin_unlock(lock);
    				/*
    				 * Ensure any pending I/O completes so that
    				 * write_dirty_buffer() actually writes the
    				 * current contents - it is a noop if I/O is
    				 * still in flight on potentially older
    				 * contents.
    				 */
    				write_dirty_buffer(bh, REQ_SYNC);
    
    				/*
    				 * Kick off IO for the previous mapping. Note
    				 * that we will not run the very last mapping,
    				 * wait_on_buffer() will do that for us
    				 * through sync_buffer().
    				 */
    				brelse(bh);
    				spin_lock(lock);
    			}
    		}
    	}
    
    	spin_unlock(lock);
    	blk_finish_plug(&plug);
    	spin_lock(lock);
    
    	while (!list_empty(&tmp)) {
    		bh = BH_ENTRY(tmp.prev);
    		get_bh(bh);
    		mapping = bh->b_assoc_map;
    		__remove_assoc_queue(bh);
    		/* Avoid race with mark_buffer_dirty_inode() which does
    		 * a lockless check and we rely on seeing the dirty bit */
    		smp_mb();
    		if (buffer_dirty(bh)) {
    			list_add(&bh->b_assoc_buffers,
    				 &mapping->private_list);
    			bh->b_assoc_map = mapping;
    		}
    		spin_unlock(lock);
    		wait_on_buffer(bh);
    		if (!buffer_uptodate(bh))
    			err = -EIO;
    		brelse(bh);
    		spin_lock(lock);
    	}
    	
    	spin_unlock(lock);
    	err2 = osync_buffers_list(lock, list);
    	if (err)
    		return err;
    	else
    		return err2;
    }
    
    /*
     * Invalidate any and all dirty buffers on a given inode.  We are
     * probably unmounting the fs, but that doesn't mean we have already
     * done a sync().  Just drop the buffers from the inode list.
     *
     * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
     * assumes that all the buffers are against the blockdev.  Not true
     * for reiserfs.
     */
    void invalidate_inode_buffers(struct inode *inode)
    {
    	if (inode_has_buffers(inode)) {
    		struct address_space *mapping = &inode->i_data;
    		struct list_head *list = &mapping->private_list;
    		struct address_space *buffer_mapping = mapping->private_data;
    
    		spin_lock(&buffer_mapping->private_lock);
    		while (!list_empty(list))
    			__remove_assoc_queue(BH_ENTRY(list->next));
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    }
    EXPORT_SYMBOL(invalidate_inode_buffers);
    
    /*
     * Remove any clean buffers from the inode's buffer list.  This is called
     * when we're trying to free the inode itself.  Those buffers can pin it.
     *
     * Returns true if all buffers were removed.
     */
    int remove_inode_buffers(struct inode *inode)
    {
    	int ret = 1;
    
    	if (inode_has_buffers(inode)) {
    		struct address_space *mapping = &inode->i_data;
    		struct list_head *list = &mapping->private_list;
    		struct address_space *buffer_mapping = mapping->private_data;
    
    		spin_lock(&buffer_mapping->private_lock);
    		while (!list_empty(list)) {
    			struct buffer_head *bh = BH_ENTRY(list->next);
    			if (buffer_dirty(bh)) {
    				ret = 0;
    				break;
    			}
    			__remove_assoc_queue(bh);
    		}
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    	return ret;
    }
    
    /*
     * Create the appropriate buffers when given a page for data area and
     * the size of each buffer.. Use the bh->b_this_page linked list to
     * follow the buffers created.  Return NULL if unable to create more
     * buffers.
     *
     * The retry flag is used to differentiate async IO (paging, swapping)
     * which may not fail from ordinary buffer allocations.
     */
    struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
    		bool retry)
    {
    	struct buffer_head *bh, *head;
    	gfp_t gfp = GFP_NOFS;
    	long offset;
    
    	if (retry)
    		gfp |= __GFP_NOFAIL;
    
    	head = NULL;
    	offset = PAGE_SIZE;
    	while ((offset -= size) >= 0) {
    		bh = alloc_buffer_head(gfp);
    		if (!bh)
    			goto no_grow;
    
    		bh->b_this_page = head;
    		bh->b_blocknr = -1;
    		head = bh;
    
    		bh->b_size = size;
    
    		/* Link the buffer to its page */
    		set_bh_page(bh, page, offset);
    	}
    	return head;
    /*
     * In case anything failed, we just free everything we got.
     */
    no_grow:
    	if (head) {
    		do {
    			bh = head;
    			head = head->b_this_page;
    			free_buffer_head(bh);
    		} while (head);
    	}
    
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(alloc_page_buffers);
    
    static inline void
    link_dev_buffers(struct page *page, struct buffer_head *head)
    {
    	struct buffer_head *bh, *tail;
    
    	bh = head;
    	do {
    		tail = bh;
    		bh = bh->b_this_page;
    	} while (bh);
    	tail->b_this_page = head;
    	attach_page_buffers(page, head);
    }
    
    static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
    {
    	sector_t retval = ~((sector_t)0);
    	loff_t sz = i_size_read(bdev->bd_inode);
    
    	if (sz) {
    		unsigned int sizebits = blksize_bits(size);
    		retval = (sz >> sizebits);
    	}
    	return retval;
    }
    
    /*
     * Initialise the state of a blockdev page's buffers.
     */ 
    static sector_t
    init_page_buffers(struct page *page, struct block_device *bdev,
    			sector_t block, int size)
    {
    	struct buffer_head *head = page_buffers(page);
    	struct buffer_head *bh = head;
    	int uptodate = PageUptodate(page);
    	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
    
    	do {
    		if (!buffer_mapped(bh)) {
    			init_buffer(bh, NULL, NULL);
    			bh->b_bdev = bdev;
    			bh->b_blocknr = block;
    			if (uptodate)
    				set_buffer_uptodate(bh);
    			if (block < end_block)
    				set_buffer_mapped(bh);
    		}
    		block++;
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	/*
    	 * Caller needs to validate requested block against end of device.
    	 */
    	return end_block;
    }
    
    /*
     * Create the page-cache page that contains the requested block.
     *
     * This is used purely for blockdev mappings.
     */
    static int
    grow_dev_page(struct block_device *bdev, sector_t block,
    	      pgoff_t index, int size, int sizebits, gfp_t gfp)
    {
    	struct inode *inode = bdev->bd_inode;
    	struct page *page;
    	struct buffer_head *bh;
    	sector_t end_block;
    	int ret = 0;		/* Will call free_more_memory() */
    	gfp_t gfp_mask;
    
    	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
    
    	/*
    	 * XXX: __getblk_slow() can not really deal with failure and
    	 * will endlessly loop on improvised global reclaim.  Prefer
    	 * looping in the allocator rather than here, at least that
    	 * code knows what it's doing.
    	 */
    	gfp_mask |= __GFP_NOFAIL;
    
    	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
    
    	BUG_ON(!PageLocked(page));
    
    	if (page_has_buffers(page)) {
    		bh = page_buffers(page);
    		if (bh->b_size == size) {
    			end_block = init_page_buffers(page, bdev,
    						(sector_t)index << sizebits,
    						size);
    			goto done;
    		}
    		if (!try_to_free_buffers(page))
    			goto failed;
    	}
    
    	/*
    	 * Allocate some buffers for this page
    	 */
    	bh = alloc_page_buffers(page, size, true);
    
    	/*
    	 * Link the page to the buffers and initialise them.  Take the
    	 * lock to be atomic wrt __find_get_block(), which does not
    	 * run under the page lock.
    	 */
    	spin_lock(&inode->i_mapping->private_lock);
    	link_dev_buffers(page, bh);
    	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
    			size);
    	spin_unlock(&inode->i_mapping->private_lock);
    done:
    	ret = (block < end_block) ? 1 : -ENXIO;
    failed:
    	unlock_page(page);
    	put_page(page);
    	return ret;
    }
    
    /*
     * Create buffers for the specified block device block's page.  If
     * that page was dirty, the buffers are set dirty also.
     */
    static int
    grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
    {
    	pgoff_t index;
    	int sizebits;
    
    	sizebits = -1;
    	do {
    		sizebits++;
    	} while ((size << sizebits) < PAGE_SIZE);
    
    	index = block >> sizebits;
    
    	/*
    	 * Check for a block which wants to lie outside our maximum possible
    	 * pagecache index.  (this comparison is done using sector_t types).
    	 */
    	if (unlikely(index != block >> sizebits)) {
    		printk(KERN_ERR "%s: requested out-of-range block %llu for "
    			"device %pg\n",
    			__func__, (unsigned long long)block,
    			bdev);
    		return -EIO;
    	}
    
    	/* Create a page with the proper size buffers.. */
    	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
    }
    
    static struct buffer_head *
    __getblk_slow(struct block_device *bdev, sector_t block,
    	     unsigned size, gfp_t gfp)
    {
    	/* Size must be multiple of hard sectorsize */
    	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
    			(size < 512 || size > PAGE_SIZE))) {
    		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
    					size);
    		printk(KERN_ERR "logical block size: %d\n",
    					bdev_logical_block_size(bdev));
    
    		dump_stack();
    		return NULL;
    	}
    
    	for (;;) {
    		struct buffer_head *bh;
    		int ret;
    
    		bh = __find_get_block(bdev, block, size);
    		if (bh)
    			return bh;
    
    		ret = grow_buffers(bdev, block, size, gfp);
    		if (ret < 0)
    			return NULL;
    	}
    }
    
    /*
     * The relationship between dirty buffers and dirty pages:
     *
     * Whenever a page has any dirty buffers, the page's dirty bit is set, and
     * the page is tagged dirty in its radix tree.
     *
     * At all times, the dirtiness of the buffers represents the dirtiness of
     * subsections of the page.  If the page has buffers, the page dirty bit is
     * merely a hint about the true dirty state.
     *
     * When a page is set dirty in its entirety, all its buffers are marked dirty
     * (if the page has buffers).
     *
     * When a buffer is marked dirty, its page is dirtied, but the page's other
     * buffers are not.
     *
     * Also.  When blockdev buffers are explicitly read with bread(), they
     * individually become uptodate.  But their backing page remains not
     * uptodate - even if all of its buffers are uptodate.  A subsequent
     * block_read_full_page() against that page will discover all the uptodate
     * buffers, will set the page uptodate and will perform no I/O.
     */
    
    /**
     * mark_buffer_dirty - mark a buffer_head as needing writeout
     * @bh: the buffer_head to mark dirty
     *
     * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
     * backing page dirty, then tag the page as dirty in its address_space's radix
     * tree and then attach the address_space's inode to its superblock's dirty
     * inode list.
     *
     * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
     * mapping->tree_lock and mapping->host->i_lock.
     */
    void mark_buffer_dirty(struct buffer_head *bh)
    {
    	WARN_ON_ONCE(!buffer_uptodate(bh));
    
    	trace_block_dirty_buffer(bh);
    
    	/*
    	 * Very *carefully* optimize the it-is-already-dirty case.
    	 *
    	 * Don't let the final "is it dirty" escape to before we
    	 * perhaps modified the buffer.
    	 */
    	if (buffer_dirty(bh)) {
    		smp_mb();
    		if (buffer_dirty(bh))
    			return;
    	}
    
    	if (!test_set_buffer_dirty(bh)) {
    		struct page *page = bh->b_page;
    		struct address_space *mapping = NULL;
    
    		lock_page_memcg(page);
    		if (!TestSetPageDirty(page)) {
    			mapping = page_mapping(page);
    			if (mapping)
    				__set_page_dirty(page, mapping, 0);
    		}
    		unlock_page_memcg(page);
    		if (mapping)
    			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
    	}
    }
    EXPORT_SYMBOL(mark_buffer_dirty);
    
    void mark_buffer_write_io_error(struct buffer_head *bh)
    {
    	set_buffer_write_io_error(bh);
    	/* FIXME: do we need to set this in both places? */
    	if (bh->b_page && bh->b_page->mapping)
    		mapping_set_error(bh->b_page->mapping, -EIO);
    	if (bh->b_assoc_map)
    		mapping_set_error(bh->b_assoc_map, -EIO);
    }
    EXPORT_SYMBOL(mark_buffer_write_io_error);
    
    /*
     * Decrement a buffer_head's reference count.  If all buffers against a page
     * have zero reference count, are clean and unlocked, and if the page is clean
     * and unlocked then try_to_free_buffers() may strip the buffers from the page
     * in preparation for freeing it (sometimes, rarely, buffers are removed from
     * a page but it ends up not being freed, and buffers may later be reattached).
     */
    void __brelse(struct buffer_head * buf)
    {
    	if (atomic_read(&buf->b_count)) {
    		put_bh(buf);
    		return;
    	}
    	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
    }
    EXPORT_SYMBOL(__brelse);
    
    /*
     * bforget() is like brelse(), except it discards any
     * potentially dirty data.
     */
    void __bforget(struct buffer_head *bh)
    {
    	clear_buffer_dirty(bh);
    	if (bh->b_assoc_map) {
    		struct address_space *buffer_mapping = bh->b_page->mapping;
    
    		spin_lock(&buffer_mapping->private_lock);
    		list_del_init(&bh->b_assoc_buffers);
    		bh->b_assoc_map = NULL;
    		spin_unlock(&buffer_mapping->private_lock);
    	}
    	__brelse(bh);
    }
    EXPORT_SYMBOL(__bforget);
    
    static struct buffer_head *__bread_slow(struct buffer_head *bh)
    {
    	lock_buffer(bh);
    	if (buffer_uptodate(bh)) {
    		unlock_buffer(bh);
    		return bh;
    	} else {
    		get_bh(bh);
    		bh->b_end_io = end_buffer_read_sync;
    		submit_bh(REQ_OP_READ, 0, bh);
    		wait_on_buffer(bh);
    		if (buffer_uptodate(bh))
    			return bh;
    	}
    	brelse(bh);
    	return NULL;
    }
    
    /*
     * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
     * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
     * refcount elevated by one when they're in an LRU.  A buffer can only appear
     * once in a particular CPU's LRU.  A single buffer can be present in multiple
     * CPU's LRUs at the same time.
     *
     * This is a transparent caching front-end to sb_bread(), sb_getblk() and
     * sb_find_get_block().
     *
     * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
     * a local interrupt disable for that.
     */
    
    #define BH_LRU_SIZE	16
    
    struct bh_lru {
    	struct buffer_head *bhs[BH_LRU_SIZE];
    };
    
    static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
    
    #ifdef CONFIG_SMP
    #define bh_lru_lock()	local_irq_disable()
    #define bh_lru_unlock()	local_irq_enable()
    #else
    #define bh_lru_lock()	preempt_disable()
    #define bh_lru_unlock()	preempt_enable()
    #endif
    
    static inline void check_irqs_on(void)
    {
    #ifdef irqs_disabled
    	BUG_ON(irqs_disabled());
    #endif
    }
    
    /*
     * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
     * inserted at the front, and the buffer_head at the back if any is evicted.
     * Or, if already in the LRU it is moved to the front.
     */
    static void bh_lru_install(struct buffer_head *bh)
    {
    	struct buffer_head *evictee = bh;
    	struct bh_lru *b;
    	int i;
    
    	check_irqs_on();
    	bh_lru_lock();
    
    	b = this_cpu_ptr(&bh_lrus);
    	for (i = 0; i < BH_LRU_SIZE; i++) {
    		swap(evictee, b->bhs[i]);
    		if (evictee == bh) {
    			bh_lru_unlock();
    			return;
    		}
    	}
    
    	get_bh(bh);
    	bh_lru_unlock();
    	brelse(evictee);
    }
    
    /*
     * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
     */
    static struct buffer_head *
    lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
    {
    	struct buffer_head *ret = NULL;
    	unsigned int i;
    
    	check_irqs_on();
    	bh_lru_lock();
    	for (i = 0; i < BH_LRU_SIZE; i++) {
    		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
    
    		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
    		    bh->b_size == size) {
    			if (i) {
    				while (i) {
    					__this_cpu_write(bh_lrus.bhs[i],
    						__this_cpu_read(bh_lrus.bhs[i - 1]));
    					i--;
    				}
    				__this_cpu_write(bh_lrus.bhs[0], bh);
    			}
    			get_bh(bh);
    			ret = bh;
    			break;
    		}
    	}
    	bh_lru_unlock();
    	return ret;
    }
    
    /*
     * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
     * it in the LRU and mark it as accessed.  If it is not present then return
     * NULL
     */
    struct buffer_head *
    __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
    {
    	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
    
    	if (bh == NULL) {
    		/* __find_get_block_slow will mark the page accessed */
    		bh = __find_get_block_slow(bdev, block);
    		if (bh)
    			bh_lru_install(bh);
    	} else
    		touch_buffer(bh);
    
    	return bh;
    }
    EXPORT_SYMBOL(__find_get_block);
    
    /*
     * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
     * which corresponds to the passed block_device, block and size. The
     * returned buffer has its reference count incremented.
     *
     * __getblk_gfp() will lock up the machine if grow_dev_page's
     * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
     */
    struct buffer_head *
    __getblk_gfp(struct block_device *bdev, sector_t block,
    	     unsigned size, gfp_t gfp)
    {
    	struct buffer_head *bh = __find_get_block(bdev, block, size);
    
    	might_sleep();
    	if (bh == NULL)
    		bh = __getblk_slow(bdev, block, size, gfp);
    	return bh;
    }
    EXPORT_SYMBOL(__getblk_gfp);
    
    /*
     * Do async read-ahead on a buffer..
     */
    void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
    {
    	struct buffer_head *bh = __getblk(bdev, block, size);
    	if (likely(bh)) {
    		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
    		brelse(bh);
    	}
    }
    EXPORT_SYMBOL(__breadahead);
    
    /**
     *  __bread_gfp() - reads a specified block and returns the bh
     *  @bdev: the block_device to read from
     *  @block: number of block
     *  @size: size (in bytes) to read
     *  @gfp: page allocation flag
     *
     *  Reads a specified block, and returns buffer head that contains it.
     *  The page cache can be allocated from non-movable area
     *  not to prevent page migration if you set gfp to zero.
     *  It returns NULL if the block was unreadable.
     */
    struct buffer_head *
    __bread_gfp(struct block_device *bdev, sector_t block,
    		   unsigned size, gfp_t gfp)
    {
    	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
    
    	if (likely(bh) && !buffer_uptodate(bh))
    		bh = __bread_slow(bh);
    	return bh;
    }
    EXPORT_SYMBOL(__bread_gfp);
    
    /*
     * invalidate_bh_lrus() is called rarely - but not only at unmount.
     * This doesn't race because it runs in each cpu either in irq
     * or with preempt disabled.
     */
    static void invalidate_bh_lru(void *arg)
    {
    	struct bh_lru *b = &get_cpu_var(bh_lrus);
    	int i;
    
    	for (i = 0; i < BH_LRU_SIZE; i++) {
    		brelse(b->bhs[i]);
    		b->bhs[i] = NULL;
    	}
    	put_cpu_var(bh_lrus);
    }
    
    static bool has_bh_in_lru(int cpu, void *dummy)
    {
    	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
    	int i;
    	
    	for (i = 0; i < BH_LRU_SIZE; i++) {
    		if (b->bhs[i])
    			return 1;
    	}
    
    	return 0;
    }
    
    void invalidate_bh_lrus(void)
    {
    	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
    }
    EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
    
    void set_bh_page(struct buffer_head *bh,
    		struct page *page, unsigned long offset)
    {
    	bh->b_page = page;
    	BUG_ON(offset >= PAGE_SIZE);
    	if (PageHighMem(page))
    		/*
    		 * This catches illegal uses and preserves the offset:
    		 */
    		bh->b_data = (char *)(0 + offset);
    	else
    		bh->b_data = page_address(page) + offset;
    }
    EXPORT_SYMBOL(set_bh_page);
    
    /*
     * Called when truncating a buffer on a page completely.
     */
    
    /* Bits that are cleared during an invalidate */
    #define BUFFER_FLAGS_DISCARD \
    	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
    	 1 << BH_Delay | 1 << BH_Unwritten)
    
    static void discard_buffer(struct buffer_head * bh)
    {
    	unsigned long b_state, b_state_old;
    
    	lock_buffer(bh);
    	clear_buffer_dirty(bh);
    	bh->b_bdev = NULL;
    	b_state = bh->b_state;
    	for (;;) {
    		b_state_old = cmpxchg(&bh->b_state, b_state,
    				      (b_state & ~BUFFER_FLAGS_DISCARD));
    		if (b_state_old == b_state)
    			break;
    		b_state = b_state_old;
    	}
    	unlock_buffer(bh);
    }
    
    /**
     * block_invalidatepage - invalidate part or all of a buffer-backed page
     *
     * @page: the page which is affected
     * @offset: start of the range to invalidate
     * @length: length of the range to invalidate
     *
     * block_invalidatepage() is called when all or part of the page has become
     * invalidated by a truncate operation.
     *
     * block_invalidatepage() does not have to release all buffers, but it must
     * ensure that no dirty buffer is left outside @offset and that no I/O
     * is underway against any of the blocks which are outside the truncation
     * point.  Because the caller is about to free (and possibly reuse) those
     * blocks on-disk.
     */
    void block_invalidatepage(struct page *page, unsigned int offset,
    			  unsigned int length)
    {
    	struct buffer_head *head, *bh, *next;
    	unsigned int curr_off = 0;
    	unsigned int stop = length + offset;
    
    	BUG_ON(!PageLocked(page));
    	if (!page_has_buffers(page))
    		goto out;
    
    	/*
    	 * Check for overflow
    	 */
    	BUG_ON(stop > PAGE_SIZE || stop < length);
    
    	head = page_buffers(page);
    	bh = head;
    	do {
    		unsigned int next_off = curr_off + bh->b_size;
    		next = bh->b_this_page;
    
    		/*
    		 * Are we still fully in range ?
    		 */
    		if (next_off > stop)
    			goto out;
    
    		/*
    		 * is this block fully invalidated?
    		 */
    		if (offset <= curr_off)
    			discard_buffer(bh);
    		curr_off = next_off;
    		bh = next;
    	} while (bh != head);
    
    	/*
    	 * We release buffers only if the entire page is being invalidated.
    	 * The get_block cached value has been unconditionally invalidated,
    	 * so real IO is not possible anymore.
    	 */
    	if (offset == 0)
    		try_to_release_page(page, 0);
    out:
    	return;
    }
    EXPORT_SYMBOL(block_invalidatepage);
    
    
    /*
     * We attach and possibly dirty the buffers atomically wrt
     * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
     * is already excluded via the page lock.
     */
    void create_empty_buffers(struct page *page,
    			unsigned long blocksize, unsigned long b_state)
    {
    	struct buffer_head *bh, *head, *tail;
    
    	head = alloc_page_buffers(page, blocksize, true);
    	bh = head;
    	do {
    		bh->b_state |= b_state;
    		tail = bh;
    		bh = bh->b_this_page;
    	} while (bh);
    	tail->b_this_page = head;
    
    	spin_lock(&page->mapping->private_lock);
    	if (PageUptodate(page) || PageDirty(page)) {
    		bh = head;
    		do {
    			if (PageDirty(page))
    				set_buffer_dirty(bh);
    			if (PageUptodate(page))
    				set_buffer_uptodate(bh);
    			bh = bh->b_this_page;
    		} while (bh != head);
    	}
    	attach_page_buffers(page, head);
    	spin_unlock(&page->mapping->private_lock);
    }
    EXPORT_SYMBOL(create_empty_buffers);
    
    /**
     * clean_bdev_aliases: clean a range of buffers in block device
     * @bdev: Block device to clean buffers in
     * @block: Start of a range of blocks to clean
     * @len: Number of blocks to clean
     *
     * We are taking a range of blocks for data and we don't want writeback of any
     * buffer-cache aliases starting from return from this function and until the
     * moment when something will explicitly mark the buffer dirty (hopefully that
     * will not happen until we will free that block ;-) We don't even need to mark
     * it not-uptodate - nobody can expect anything from a newly allocated buffer
     * anyway. We used to use unmap_buffer() for such invalidation, but that was
     * wrong. We definitely don't want to mark the alias unmapped, for example - it
     * would confuse anyone who might pick it with bread() afterwards...
     *
     * Also..  Note that bforget() doesn't lock the buffer.  So there can be
     * writeout I/O going on against recently-freed buffers.  We don't wait on that
     * I/O in bforget() - it's more efficient to wait on the I/O only if we really
     * need to.  That happens here.
     */
    void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
    {
    	struct inode *bd_inode = bdev->bd_inode;
    	struct address_space *bd_mapping = bd_inode->i_mapping;
    	struct pagevec pvec;
    	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
    	pgoff_t end;
    	int i, count;
    	struct buffer_head *bh;
    	struct buffer_head *head;
    
    	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
    	pagevec_init(&pvec, 0);
    	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
    		count = pagevec_count(&pvec);
    		for (i = 0; i < count; i++) {
    			struct page *page = pvec.pages[i];
    
    			if (!page_has_buffers(page))
    				continue;
    			/*
    			 * We use page lock instead of bd_mapping->private_lock
    			 * to pin buffers here since we can afford to sleep and
    			 * it scales better than a global spinlock lock.
    			 */
    			lock_page(page);
    			/* Recheck when the page is locked which pins bhs */
    			if (!page_has_buffers(page))
    				goto unlock_page;
    			head = page_buffers(page);
    			bh = head;
    			do {
    				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
    					goto next;
    				if (bh->b_blocknr >= block + len)
    					break;
    				clear_buffer_dirty(bh);
    				wait_on_buffer(bh);
    				clear_buffer_req(bh);
    next:
    				bh = bh->b_this_page;
    			} while (bh != head);
    unlock_page:
    			unlock_page(page);
    		}
    		pagevec_release(&pvec);
    		cond_resched();
    		/* End of range already reached? */
    		if (index > end || !index)
    			break;
    	}
    }
    EXPORT_SYMBOL(clean_bdev_aliases);
    
    /*
     * Size is a power-of-two in the range 512..PAGE_SIZE,
     * and the case we care about most is PAGE_SIZE.
     *
     * So this *could* possibly be written with those
     * constraints in mind (relevant mostly if some
     * architecture has a slow bit-scan instruction)
     */
    static inline int block_size_bits(unsigned int blocksize)
    {
    	return ilog2(blocksize);
    }
    
    static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
    {
    	BUG_ON(!PageLocked(page));
    
    	if (!page_has_buffers(page))
    		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
    	return page_buffers(page);
    }
    
    /*
     * NOTE! All mapped/uptodate combinations are valid:
     *
     *	Mapped	Uptodate	Meaning
     *
     *	No	No		"unknown" - must do get_block()
     *	No	Yes		"hole" - zero-filled
     *	Yes	No		"allocated" - allocated on disk, not read in
     *	Yes	Yes		"valid" - allocated and up-to-date in memory.
     *
     * "Dirty" is valid only with the last case (mapped+uptodate).
     */
    
    /*
     * While block_write_full_page is writing back the dirty buffers under
     * the page lock, whoever dirtied the buffers may decide to clean them
     * again at any time.  We handle that by only looking at the buffer
     * state inside lock_buffer().
     *
     * If block_write_full_page() is called for regular writeback
     * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
     * locked buffer.   This only can happen if someone has written the buffer
     * directly, with submit_bh().  At the address_space level PageWriteback
     * prevents this contention from occurring.
     *
     * If block_write_full_page() is called with wbc->sync_mode ==
     * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
     * causes the writes to be flagged as synchronous writes.
     */
    int __block_write_full_page(struct inode *inode, struct page *page,
    			get_block_t *get_block, struct writeback_control *wbc,
    			bh_end_io_t *handler)
    {
    	int err;
    	sector_t block;
    	sector_t last_block;
    	struct buffer_head *bh, *head;
    	unsigned int blocksize, bbits;
    	int nr_underway = 0;
    	int write_flags = wbc_to_write_flags(wbc);
    
    	head = create_page_buffers(page, inode,
    					(1 << BH_Dirty)|(1 << BH_Uptodate));
    
    	/*
    	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
    	 * here, and the (potentially unmapped) buffers may become dirty at
    	 * any time.  If a buffer becomes dirty here after we've inspected it
    	 * then we just miss that fact, and the page stays dirty.
    	 *
    	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
    	 * handle that here by just cleaning them.
    	 */
    
    	bh = head;
    	blocksize = bh->b_size;
    	bbits = block_size_bits(blocksize);
    
    	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
    	last_block = (i_size_read(inode) - 1) >> bbits;
    
    	/*
    	 * Get all the dirty buffers mapped to disk addresses and
    	 * handle any aliases from the underlying blockdev's mapping.
    	 */
    	do {
    		if (block > last_block) {
    			/*
    			 * mapped buffers outside i_size will occur, because
    			 * this page can be outside i_size when there is a
    			 * truncate in progress.
    			 */
    			/*
    			 * The buffer was zeroed by block_write_full_page()
    			 */
    			clear_buffer_dirty(bh);
    			set_buffer_uptodate(bh);
    		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
    			   buffer_dirty(bh)) {
    			WARN_ON(bh->b_size != blocksize);
    			err = get_block(inode, block, bh, 1);
    			if (err)
    				goto recover;
    			clear_buffer_delay(bh);
    			if (buffer_new(bh)) {
    				/* blockdev mappings never come here */
    				clear_buffer_new(bh);
    				clean_bdev_bh_alias(bh);
    			}
    		}
    		bh = bh->b_this_page;
    		block++;
    	} while (bh != head);
    
    	do {
    		if (!buffer_mapped(bh))
    			continue;
    		/*
    		 * If it's a fully non-blocking write attempt and we cannot
    		 * lock the buffer then redirty the page.  Note that this can
    		 * potentially cause a busy-wait loop from writeback threads
    		 * and kswapd activity, but those code paths have their own
    		 * higher-level throttling.
    		 */
    		if (wbc->sync_mode != WB_SYNC_NONE) {
    			lock_buffer(bh);
    		} else if (!trylock_buffer(bh)) {
    			redirty_page_for_writepage(wbc, page);
    			continue;
    		}
    		if (test_clear_buffer_dirty(bh)) {
    			mark_buffer_async_write_endio(bh, handler);
    		} else {
    			unlock_buffer(bh);
    		}
    	} while ((bh = bh->b_this_page) != head);
    
    	/*
    	 * The page and its buffers are protected by PageWriteback(), so we can
    	 * drop the bh refcounts early.
    	 */
    	BUG_ON(PageWriteback(page));
    	set_page_writeback(page);
    
    	do {
    		struct buffer_head *next = bh->b_this_page;
    		if (buffer_async_write(bh)) {
    			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
    					inode->i_write_hint, wbc);
    			nr_underway++;
    		}
    		bh = next;
    	} while (bh != head);
    	unlock_page(page);
    
    	err = 0;
    done:
    	if (nr_underway == 0) {
    		/*
    		 * The page was marked dirty, but the buffers were
    		 * clean.  Someone wrote them back by hand with
    		 * ll_rw_block/submit_bh.  A rare case.
    		 */
    		end_page_writeback(page);
    
    		/*
    		 * The page and buffer_heads can be released at any time from
    		 * here on.
    		 */
    	}
    	return err;
    
    recover:
    	/*
    	 * ENOSPC, or some other error.  We may already have added some
    	 * blocks to the file, so we need to write these out to avoid
    	 * exposing stale data.
    	 * The page is currently locked and not marked for writeback
    	 */
    	bh = head;
    	/* Recovery: lock and submit the mapped buffers */
    	do {
    		if (buffer_mapped(bh) && buffer_dirty(bh) &&
    		    !buffer_delay(bh)) {
    			lock_buffer(bh);
    			mark_buffer_async_write_endio(bh, handler);
    		} else {
    			/*
    			 * The buffer may have been set dirty during
    			 * attachment to a dirty page.
    			 */
    			clear_buffer_dirty(bh);
    		}
    	} while ((bh = bh->b_this_page) != head);
    	SetPageError(page);
    	BUG_ON(PageWriteback(page));
    	mapping_set_error(page->mapping, err);
    	set_page_writeback(page);
    	do {
    		struct buffer_head *next = bh->b_this_page;
    		if (buffer_async_write(bh)) {
    			clear_buffer_dirty(bh);
    			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
    					inode->i_write_hint, wbc);
    			nr_underway++;
    		}
    		bh = next;
    	} while (bh != head);
    	unlock_page(page);
    	goto done;
    }
    EXPORT_SYMBOL(__block_write_full_page);
    
    /*
     * If a page has any new buffers, zero them out here, and mark them uptodate
     * and dirty so they'll be written out (in order to prevent uninitialised
     * block data from leaking). And clear the new bit.
     */
    void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
    {
    	unsigned int block_start, block_end;
    	struct buffer_head *head, *bh;
    
    	BUG_ON(!PageLocked(page));
    	if (!page_has_buffers(page))
    		return;
    
    	bh = head = page_buffers(page);
    	block_start = 0;
    	do {
    		block_end = block_start + bh->b_size;
    
    		if (buffer_new(bh)) {
    			if (block_end > from && block_start < to) {
    				if (!PageUptodate(page)) {
    					unsigned start, size;
    
    					start = max(from, block_start);
    					size = min(to, block_end) - start;
    
    					zero_user(page, start, size);
    					set_buffer_uptodate(bh);
    				}
    
    				clear_buffer_new(bh);
    				mark_buffer_dirty(bh);
    			}
    		}
    
    		block_start = block_end;
    		bh = bh->b_this_page;
    	} while (bh != head);
    }
    EXPORT_SYMBOL(page_zero_new_buffers);
    
    static void
    iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
    		struct iomap *iomap)
    {
    	loff_t offset = block << inode->i_blkbits;
    
    	bh->b_bdev = iomap->bdev;
    
    	/*
    	 * Block points to offset in file we need to map, iomap contains
    	 * the offset at which the map starts. If the map ends before the
    	 * current block, then do not map the buffer and let the caller
    	 * handle it.
    	 */
    	BUG_ON(offset >= iomap->offset + iomap->length);
    
    	switch (iomap->type) {
    	case IOMAP_HOLE:
    		/*
    		 * If the buffer is not up to date or beyond the current EOF,
    		 * we need to mark it as new to ensure sub-block zeroing is
    		 * executed if necessary.
    		 */
    		if (!buffer_uptodate(bh) ||
    		    (offset >= i_size_read(inode)))
    			set_buffer_new(bh);
    		break;
    	case IOMAP_DELALLOC:
    		if (!buffer_uptodate(bh) ||
    		    (offset >= i_size_read(inode)))
    			set_buffer_new(bh);
    		set_buffer_uptodate(bh);
    		set_buffer_mapped(bh);
    		set_buffer_delay(bh);
    		break;
    	case IOMAP_UNWRITTEN:
    		/*
    		 * For unwritten regions, we always need to ensure that
    		 * sub-block writes cause the regions in the block we are not
    		 * writing to are zeroed. Set the buffer as new to ensure this.
    		 */
    		set_buffer_new(bh);
    		set_buffer_unwritten(bh);
    		/* FALLTHRU */
    	case IOMAP_MAPPED:
    		if (offset >= i_size_read(inode))
    			set_buffer_new(bh);
    		bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
    				((offset - iomap->offset) >> inode->i_blkbits);
    		set_buffer_mapped(bh);
    		break;
    	}
    }
    
    int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
    		get_block_t *get_block, struct iomap *iomap)
    {
    	unsigned from = pos & (PAGE_SIZE - 1);
    	unsigned to = from + len;
    	struct inode *inode = page->mapping->host;
    	unsigned block_start, block_end;
    	sector_t block;
    	int err = 0;
    	unsigned blocksize, bbits;
    	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
    
    	BUG_ON(!PageLocked(page));
    	BUG_ON(from > PAGE_SIZE);
    	BUG_ON(to > PAGE_SIZE);
    	BUG_ON(from > to);
    
    	head = create_page_buffers(page, inode, 0);
    	blocksize = head->b_size;
    	bbits = block_size_bits(blocksize);
    
    	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
    
    	for(bh = head, block_start = 0; bh != head || !block_start;
    	    block++, block_start=block_end, bh = bh->b_this_page) {
    		block_end = block_start + blocksize;
    		if (block_end <= from || block_start >= to) {
    			if (PageUptodate(page)) {
    				if (!buffer_uptodate(bh))
    					set_buffer_uptodate(bh);
    			}
    			continue;
    		}
    		if (buffer_new(bh))
    			clear_buffer_new(bh);
    		if (!buffer_mapped(bh)) {
    			WARN_ON(bh->b_size != blocksize);
    			if (get_block) {
    				err = get_block(inode, block, bh, 1);
    				if (err)
    					break;
    			} else {
    				iomap_to_bh(inode, block, bh, iomap);
    			}
    
    			if (buffer_new(bh)) {
    				clean_bdev_bh_alias(bh);
    				if (PageUptodate(page)) {
    					clear_buffer_new(bh);
    					set_buffer_uptodate(bh);
    					mark_buffer_dirty(bh);
    					continue;
    				}
    				if (block_end > to || block_start < from)
    					zero_user_segments(page,
    						to, block_end,
    						block_start, from);
    				continue;
    			}
    		}
    		if (PageUptodate(page)) {
    			if (!buffer_uptodate(bh))
    				set_buffer_uptodate(bh);
    			continue; 
    		}
    		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
    		    !buffer_unwritten(bh) &&
    		     (block_start < from || block_end > to)) {
    			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
    			*wait_bh++=bh;
    		}
    	}
    	/*
    	 * If we issued read requests - let them complete.
    	 */
    	while(wait_bh > wait) {
    		wait_on_buffer(*--wait_bh);
    		if (!buffer_uptodate(*wait_bh))
    			err = -EIO;
    	}
    	if (unlikely(err))
    		page_zero_new_buffers(page, from, to);
    	return err;
    }
    
    int __block_write_begin(struct page *page, loff_t pos, unsigned len,
    		get_block_t *get_block)
    {
    	return __block_write_begin_int(page, pos, len, get_block, NULL);
    }
    EXPORT_SYMBOL(__block_write_begin);
    
    static int __block_commit_write(struct inode *inode, struct page *page,
    		unsigned from, unsigned to)
    {
    	unsigned block_start, block_end;
    	int partial = 0;
    	unsigned blocksize;
    	struct buffer_head *bh, *head;
    
    	bh = head = page_buffers(page);
    	blocksize = bh->b_size;
    
    	block_start = 0;
    	do {
    		block_end = block_start + blocksize;
    		if (block_end <= from || block_start >= to) {
    			if (!buffer_uptodate(bh))
    				partial = 1;
    		} else {
    			set_buffer_uptodate(bh);
    			mark_buffer_dirty(bh);
    		}
    		clear_buffer_new(bh);
    
    		block_start = block_end;
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	/*
    	 * If this is a partial write which happened to make all buffers
    	 * uptodate then we can optimize away a bogus readpage() for
    	 * the next read(). Here we 'discover' whether the page went
    	 * uptodate as a result of this (potentially partial) write.
    	 */
    	if (!partial)
    		SetPageUptodate(page);
    	return 0;
    }
    
    /*
     * block_write_begin takes care of the basic task of block allocation and
     * bringing partial write blocks uptodate first.
     *
     * The filesystem needs to handle block truncation upon failure.
     */
    int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
    		unsigned flags, struct page **pagep, get_block_t *get_block)
    {
    	pgoff_t index = pos >> PAGE_SHIFT;
    	struct page *page;
    	int status;
    
    	page = grab_cache_page_write_begin(mapping, index, flags);
    	if (!page)
    		return -ENOMEM;
    
    	status = __block_write_begin(page, pos, len, get_block);
    	if (unlikely(status)) {
    		unlock_page(page);
    		put_page(page);
    		page = NULL;
    	}
    
    	*pagep = page;
    	return status;
    }
    EXPORT_SYMBOL(block_write_begin);
    
    int block_write_end(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned copied,
    			struct page *page, void *fsdata)
    {
    	struct inode *inode = mapping->host;
    	unsigned start;
    
    	start = pos & (PAGE_SIZE - 1);
    
    	if (unlikely(copied < len)) {
    		/*
    		 * The buffers that were written will now be uptodate, so we
    		 * don't have to worry about a readpage reading them and
    		 * overwriting a partial write. However if we have encountered
    		 * a short write and only partially written into a buffer, it
    		 * will not be marked uptodate, so a readpage might come in and
    		 * destroy our partial write.
    		 *
    		 * Do the simplest thing, and just treat any short write to a
    		 * non uptodate page as a zero-length write, and force the
    		 * caller to redo the whole thing.
    		 */
    		if (!PageUptodate(page))
    			copied = 0;
    
    		page_zero_new_buffers(page, start+copied, start+len);
    	}
    	flush_dcache_page(page);
    
    	/* This could be a short (even 0-length) commit */
    	__block_commit_write(inode, page, start, start+copied);
    
    	return copied;
    }
    EXPORT_SYMBOL(block_write_end);
    
    int generic_write_end(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned copied,
    			struct page *page, void *fsdata)
    {
    	struct inode *inode = mapping->host;
    	loff_t old_size = inode->i_size;
    	int i_size_changed = 0;
    
    	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
    
    	/*
    	 * No need to use i_size_read() here, the i_size
    	 * cannot change under us because we hold i_mutex.
    	 *
    	 * But it's important to update i_size while still holding page lock:
    	 * page writeout could otherwise come in and zero beyond i_size.
    	 */
    	if (pos+copied > inode->i_size) {
    		i_size_write(inode, pos+copied);
    		i_size_changed = 1;
    	}
    
    	unlock_page(page);
    	put_page(page);
    
    	if (old_size < pos)
    		pagecache_isize_extended(inode, old_size, pos);
    	/*
    	 * Don't mark the inode dirty under page lock. First, it unnecessarily
    	 * makes the holding time of page lock longer. Second, it forces lock
    	 * ordering of page lock and transaction start for journaling
    	 * filesystems.
    	 */
    	if (i_size_changed)
    		mark_inode_dirty(inode);
    
    	return copied;
    }
    EXPORT_SYMBOL(generic_write_end);
    
    /*
     * block_is_partially_uptodate checks whether buffers within a page are
     * uptodate or not.
     *
     * Returns true if all buffers which correspond to a file portion
     * we want to read are uptodate.
     */
    int block_is_partially_uptodate(struct page *page, unsigned long from,
    					unsigned long count)
    {
    	unsigned block_start, block_end, blocksize;
    	unsigned to;
    	struct buffer_head *bh, *head;
    	int ret = 1;
    
    	if (!page_has_buffers(page))
    		return 0;
    
    	head = page_buffers(page);
    	blocksize = head->b_size;
    	to = min_t(unsigned, PAGE_SIZE - from, count);
    	to = from + to;
    	if (from < blocksize && to > PAGE_SIZE - blocksize)
    		return 0;
    
    	bh = head;
    	block_start = 0;
    	do {
    		block_end = block_start + blocksize;
    		if (block_end > from && block_start < to) {
    			if (!buffer_uptodate(bh)) {
    				ret = 0;
    				break;
    			}
    			if (block_end >= to)
    				break;
    		}
    		block_start = block_end;
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	return ret;
    }
    EXPORT_SYMBOL(block_is_partially_uptodate);
    
    /*
     * Generic "read page" function for block devices that have the normal
     * get_block functionality. This is most of the block device filesystems.
     * Reads the page asynchronously --- the unlock_buffer() and
     * set/clear_buffer_uptodate() functions propagate buffer state into the
     * page struct once IO has completed.
     */
    int block_read_full_page(struct page *page, get_block_t *get_block)
    {
    	struct inode *inode = page->mapping->host;
    	sector_t iblock, lblock;
    	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
    	unsigned int blocksize, bbits;
    	int nr, i;
    	int fully_mapped = 1;
    
    	head = create_page_buffers(page, inode, 0);
    	blocksize = head->b_size;
    	bbits = block_size_bits(blocksize);
    
    	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
    	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
    	bh = head;
    	nr = 0;
    	i = 0;
    
    	do {
    		if (buffer_uptodate(bh))
    			continue;
    
    		if (!buffer_mapped(bh)) {
    			int err = 0;
    
    			fully_mapped = 0;
    			if (iblock < lblock) {
    				WARN_ON(bh->b_size != blocksize);
    				err = get_block(inode, iblock, bh, 0);
    				if (err)
    					SetPageError(page);
    			}
    			if (!buffer_mapped(bh)) {
    				zero_user(page, i * blocksize, blocksize);
    				if (!err)
    					set_buffer_uptodate(bh);
    				continue;
    			}
    			/*
    			 * get_block() might have updated the buffer
    			 * synchronously
    			 */
    			if (buffer_uptodate(bh))
    				continue;
    		}
    		arr[nr++] = bh;
    	} while (i++, iblock++, (bh = bh->b_this_page) != head);
    
    	if (fully_mapped)
    		SetPageMappedToDisk(page);
    
    	if (!nr) {
    		/*
    		 * All buffers are uptodate - we can set the page uptodate
    		 * as well. But not if get_block() returned an error.
    		 */
    		if (!PageError(page))
    			SetPageUptodate(page);
    		unlock_page(page);
    		return 0;
    	}
    
    	/* Stage two: lock the buffers */
    	for (i = 0; i < nr; i++) {
    		bh = arr[i];
    		lock_buffer(bh);
    		mark_buffer_async_read(bh);
    	}
    
    	/*
    	 * Stage 3: start the IO.  Check for uptodateness
    	 * inside the buffer lock in case another process reading
    	 * the underlying blockdev brought it uptodate (the sct fix).
    	 */
    	for (i = 0; i < nr; i++) {
    		bh = arr[i];
    		if (buffer_uptodate(bh))
    			end_buffer_async_read(bh, 1);
    		else
    			submit_bh(REQ_OP_READ, 0, bh);
    	}
    	return 0;
    }
    EXPORT_SYMBOL(block_read_full_page);
    
    /* utility function for filesystems that need to do work on expanding
     * truncates.  Uses filesystem pagecache writes to allow the filesystem to
     * deal with the hole.  
     */
    int generic_cont_expand_simple(struct inode *inode, loff_t size)
    {
    	struct address_space *mapping = inode->i_mapping;
    	struct page *page;
    	void *fsdata;
    	int err;
    
    	err = inode_newsize_ok(inode, size);
    	if (err)
    		goto out;
    
    	err = pagecache_write_begin(NULL, mapping, size, 0,
    				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
    	if (err)
    		goto out;
    
    	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
    	BUG_ON(err > 0);
    
    out:
    	return err;
    }
    EXPORT_SYMBOL(generic_cont_expand_simple);
    
    static int cont_expand_zero(struct file *file, struct address_space *mapping,
    			    loff_t pos, loff_t *bytes)
    {
    	struct inode *inode = mapping->host;
    	unsigned int blocksize = i_blocksize(inode);
    	struct page *page;
    	void *fsdata;
    	pgoff_t index, curidx;
    	loff_t curpos;
    	unsigned zerofrom, offset, len;
    	int err = 0;
    
    	index = pos >> PAGE_SHIFT;
    	offset = pos & ~PAGE_MASK;
    
    	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
    		zerofrom = curpos & ~PAGE_MASK;
    		if (zerofrom & (blocksize-1)) {
    			*bytes |= (blocksize-1);
    			(*bytes)++;
    		}
    		len = PAGE_SIZE - zerofrom;
    
    		err = pagecache_write_begin(file, mapping, curpos, len, 0,
    					    &page, &fsdata);
    		if (err)
    			goto out;
    		zero_user(page, zerofrom, len);
    		err = pagecache_write_end(file, mapping, curpos, len, len,
    						page, fsdata);
    		if (err < 0)
    			goto out;
    		BUG_ON(err != len);
    		err = 0;
    
    		balance_dirty_pages_ratelimited(mapping);
    
    		if (unlikely(fatal_signal_pending(current))) {
    			err = -EINTR;
    			goto out;
    		}
    	}
    
    	/* page covers the boundary, find the boundary offset */
    	if (index == curidx) {
    		zerofrom = curpos & ~PAGE_MASK;
    		/* if we will expand the thing last block will be filled */
    		if (offset <= zerofrom) {
    			goto out;
    		}
    		if (zerofrom & (blocksize-1)) {
    			*bytes |= (blocksize-1);
    			(*bytes)++;
    		}
    		len = offset - zerofrom;
    
    		err = pagecache_write_begin(file, mapping, curpos, len, 0,
    					    &page, &fsdata);
    		if (err)
    			goto out;
    		zero_user(page, zerofrom, len);
    		err = pagecache_write_end(file, mapping, curpos, len, len,
    						page, fsdata);
    		if (err < 0)
    			goto out;
    		BUG_ON(err != len);
    		err = 0;
    	}
    out:
    	return err;
    }
    
    /*
     * For moronic filesystems that do not allow holes in file.
     * We may have to extend the file.
     */
    int cont_write_begin(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned flags,
    			struct page **pagep, void **fsdata,
    			get_block_t *get_block, loff_t *bytes)
    {
    	struct inode *inode = mapping->host;
    	unsigned int blocksize = i_blocksize(inode);
    	unsigned int zerofrom;
    	int err;
    
    	err = cont_expand_zero(file, mapping, pos, bytes);
    	if (err)
    		return err;
    
    	zerofrom = *bytes & ~PAGE_MASK;
    	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
    		*bytes |= (blocksize-1);
    		(*bytes)++;
    	}
    
    	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
    }
    EXPORT_SYMBOL(cont_write_begin);
    
    int block_commit_write(struct page *page, unsigned from, unsigned to)
    {
    	struct inode *inode = page->mapping->host;
    	__block_commit_write(inode,page,from,to);
    	return 0;
    }
    EXPORT_SYMBOL(block_commit_write);
    
    /*
     * block_page_mkwrite() is not allowed to change the file size as it gets
     * called from a page fault handler when a page is first dirtied. Hence we must
     * be careful to check for EOF conditions here. We set the page up correctly
     * for a written page which means we get ENOSPC checking when writing into
     * holes and correct delalloc and unwritten extent mapping on filesystems that
     * support these features.
     *
     * We are not allowed to take the i_mutex here so we have to play games to
     * protect against truncate races as the page could now be beyond EOF.  Because
     * truncate writes the inode size before removing pages, once we have the
     * page lock we can determine safely if the page is beyond EOF. If it is not
     * beyond EOF, then the page is guaranteed safe against truncation until we
     * unlock the page.
     *
     * Direct callers of this function should protect against filesystem freezing
     * using sb_start_pagefault() - sb_end_pagefault() functions.
     */
    int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
    			 get_block_t get_block)
    {
    	struct page *page = vmf->page;
    	struct inode *inode = file_inode(vma->vm_file);
    	unsigned long end;
    	loff_t size;
    	int ret;
    
    	lock_page(page);
    	size = i_size_read(inode);
    	if ((page->mapping != inode->i_mapping) ||
    	    (page_offset(page) > size)) {
    		/* We overload EFAULT to mean page got truncated */
    		ret = -EFAULT;
    		goto out_unlock;
    	}
    
    	/* page is wholly or partially inside EOF */
    	if (((page->index + 1) << PAGE_SHIFT) > size)
    		end = size & ~PAGE_MASK;
    	else
    		end = PAGE_SIZE;
    
    	ret = __block_write_begin(page, 0, end, get_block);
    	if (!ret)
    		ret = block_commit_write(page, 0, end);
    
    	if (unlikely(ret < 0))
    		goto out_unlock;
    	set_page_dirty(page);
    	wait_for_stable_page(page);
    	return 0;
    out_unlock:
    	unlock_page(page);
    	return ret;
    }
    EXPORT_SYMBOL(block_page_mkwrite);
    
    /*
     * nobh_write_begin()'s prereads are special: the buffer_heads are freed
     * immediately, while under the page lock.  So it needs a special end_io
     * handler which does not touch the bh after unlocking it.
     */
    static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
    {
    	__end_buffer_read_notouch(bh, uptodate);
    }
    
    /*
     * Attach the singly-linked list of buffers created by nobh_write_begin, to
     * the page (converting it to circular linked list and taking care of page
     * dirty races).
     */
    static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
    {
    	struct buffer_head *bh;
    
    	BUG_ON(!PageLocked(page));
    
    	spin_lock(&page->mapping->private_lock);
    	bh = head;
    	do {
    		if (PageDirty(page))
    			set_buffer_dirty(bh);
    		if (!bh->b_this_page)
    			bh->b_this_page = head;
    		bh = bh->b_this_page;
    	} while (bh != head);
    	attach_page_buffers(page, head);
    	spin_unlock(&page->mapping->private_lock);
    }
    
    /*
     * On entry, the page is fully not uptodate.
     * On exit the page is fully uptodate in the areas outside (from,to)
     * The filesystem needs to handle block truncation upon failure.
     */
    int nobh_write_begin(struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned flags,
    			struct page **pagep, void **fsdata,
    			get_block_t *get_block)
    {
    	struct inode *inode = mapping->host;
    	const unsigned blkbits = inode->i_blkbits;
    	const unsigned blocksize = 1 << blkbits;
    	struct buffer_head *head, *bh;
    	struct page *page;
    	pgoff_t index;
    	unsigned from, to;
    	unsigned block_in_page;
    	unsigned block_start, block_end;
    	sector_t block_in_file;
    	int nr_reads = 0;
    	int ret = 0;
    	int is_mapped_to_disk = 1;
    
    	index = pos >> PAGE_SHIFT;
    	from = pos & (PAGE_SIZE - 1);
    	to = from + len;
    
    	page = grab_cache_page_write_begin(mapping, index, flags);
    	if (!page)
    		return -ENOMEM;
    	*pagep = page;
    	*fsdata = NULL;
    
    	if (page_has_buffers(page)) {
    		ret = __block_write_begin(page, pos, len, get_block);
    		if (unlikely(ret))
    			goto out_release;
    		return ret;
    	}
    
    	if (PageMappedToDisk(page))
    		return 0;
    
    	/*
    	 * Allocate buffers so that we can keep track of state, and potentially
    	 * attach them to the page if an error occurs. In the common case of
    	 * no error, they will just be freed again without ever being attached
    	 * to the page (which is all OK, because we're under the page lock).
    	 *
    	 * Be careful: the buffer linked list is a NULL terminated one, rather
    	 * than the circular one we're used to.
    	 */
    	head = alloc_page_buffers(page, blocksize, false);
    	if (!head) {
    		ret = -ENOMEM;
    		goto out_release;
    	}
    
    	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
    
    	/*
    	 * We loop across all blocks in the page, whether or not they are
    	 * part of the affected region.  This is so we can discover if the
    	 * page is fully mapped-to-disk.
    	 */
    	for (block_start = 0, block_in_page = 0, bh = head;
    		  block_start < PAGE_SIZE;
    		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
    		int create;
    
    		block_end = block_start + blocksize;
    		bh->b_state = 0;
    		create = 1;
    		if (block_start >= to)
    			create = 0;
    		ret = get_block(inode, block_in_file + block_in_page,
    					bh, create);
    		if (ret)
    			goto failed;
    		if (!buffer_mapped(bh))
    			is_mapped_to_disk = 0;
    		if (buffer_new(bh))
    			clean_bdev_bh_alias(bh);
    		if (PageUptodate(page)) {
    			set_buffer_uptodate(bh);
    			continue;
    		}
    		if (buffer_new(bh) || !buffer_mapped(bh)) {
    			zero_user_segments(page, block_start, from,
    							to, block_end);
    			continue;
    		}
    		if (buffer_uptodate(bh))
    			continue;	/* reiserfs does this */
    		if (block_start < from || block_end > to) {
    			lock_buffer(bh);
    			bh->b_end_io = end_buffer_read_nobh;
    			submit_bh(REQ_OP_READ, 0, bh);
    			nr_reads++;
    		}
    	}
    
    	if (nr_reads) {
    		/*
    		 * The page is locked, so these buffers are protected from
    		 * any VM or truncate activity.  Hence we don't need to care
    		 * for the buffer_head refcounts.
    		 */
    		for (bh = head; bh; bh = bh->b_this_page) {
    			wait_on_buffer(bh);
    			if (!buffer_uptodate(bh))
    				ret = -EIO;
    		}
    		if (ret)
    			goto failed;
    	}
    
    	if (is_mapped_to_disk)
    		SetPageMappedToDisk(page);
    
    	*fsdata = head; /* to be released by nobh_write_end */
    
    	return 0;
    
    failed:
    	BUG_ON(!ret);
    	/*
    	 * Error recovery is a bit difficult. We need to zero out blocks that
    	 * were newly allocated, and dirty them to ensure they get written out.
    	 * Buffers need to be attached to the page at this point, otherwise
    	 * the handling of potential IO errors during writeout would be hard
    	 * (could try doing synchronous writeout, but what if that fails too?)
    	 */
    	attach_nobh_buffers(page, head);
    	page_zero_new_buffers(page, from, to);
    
    out_release:
    	unlock_page(page);
    	put_page(page);
    	*pagep = NULL;
    
    	return ret;
    }
    EXPORT_SYMBOL(nobh_write_begin);
    
    int nobh_write_end(struct file *file, struct address_space *mapping,
    			loff_t pos, unsigned len, unsigned copied,
    			struct page *page, void *fsdata)
    {
    	struct inode *inode = page->mapping->host;
    	struct buffer_head *head = fsdata;
    	struct buffer_head *bh;
    	BUG_ON(fsdata != NULL && page_has_buffers(page));
    
    	if (unlikely(copied < len) && head)
    		attach_nobh_buffers(page, head);
    	if (page_has_buffers(page))
    		return generic_write_end(file, mapping, pos, len,
    					copied, page, fsdata);
    
    	SetPageUptodate(page);
    	set_page_dirty(page);
    	if (pos+copied > inode->i_size) {
    		i_size_write(inode, pos+copied);
    		mark_inode_dirty(inode);
    	}
    
    	unlock_page(page);
    	put_page(page);
    
    	while (head) {
    		bh = head;
    		head = head->b_this_page;
    		free_buffer_head(bh);
    	}
    
    	return copied;
    }
    EXPORT_SYMBOL(nobh_write_end);
    
    /*
     * nobh_writepage() - based on block_full_write_page() except
     * that it tries to operate without attaching bufferheads to
     * the page.
     */
    int nobh_writepage(struct page *page, get_block_t *get_block,
    			struct writeback_control *wbc)
    {
    	struct inode * const inode = page->mapping->host;
    	loff_t i_size = i_size_read(inode);
    	const pgoff_t end_index = i_size >> PAGE_SHIFT;
    	unsigned offset;
    	int ret;
    
    	/* Is the page fully inside i_size? */
    	if (page->index < end_index)
    		goto out;
    
    	/* Is the page fully outside i_size? (truncate in progress) */
    	offset = i_size & (PAGE_SIZE-1);
    	if (page->index >= end_index+1 || !offset) {
    		/*
    		 * The page may have dirty, unmapped buffers.  For example,
    		 * they may have been added in ext3_writepage().  Make them
    		 * freeable here, so the page does not leak.
    		 */
    #if 0
    		/* Not really sure about this  - do we need this ? */
    		if (page->mapping->a_ops->invalidatepage)
    			page->mapping->a_ops->invalidatepage(page, offset);
    #endif
    		unlock_page(page);
    		return 0; /* don't care */
    	}
    
    	/*
    	 * The page straddles i_size.  It must be zeroed out on each and every
    	 * writepage invocation because it may be mmapped.  "A file is mapped
    	 * in multiples of the page size.  For a file that is not a multiple of
    	 * the  page size, the remaining memory is zeroed when mapped, and
    	 * writes to that region are not written out to the file."
    	 */
    	zero_user_segment(page, offset, PAGE_SIZE);
    out:
    	ret = mpage_writepage(page, get_block, wbc);
    	if (ret == -EAGAIN)
    		ret = __block_write_full_page(inode, page, get_block, wbc,
    					      end_buffer_async_write);
    	return ret;
    }
    EXPORT_SYMBOL(nobh_writepage);
    
    int nobh_truncate_page(struct address_space *mapping,
    			loff_t from, get_block_t *get_block)
    {
    	pgoff_t index = from >> PAGE_SHIFT;
    	unsigned offset = from & (PAGE_SIZE-1);
    	unsigned blocksize;
    	sector_t iblock;
    	unsigned length, pos;
    	struct inode *inode = mapping->host;
    	struct page *page;
    	struct buffer_head map_bh;
    	int err;
    
    	blocksize = i_blocksize(inode);
    	length = offset & (blocksize - 1);
    
    	/* Block boundary? Nothing to do */
    	if (!length)
    		return 0;
    
    	length = blocksize - length;
    	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
    
    	page = grab_cache_page(mapping, index);
    	err = -ENOMEM;
    	if (!page)
    		goto out;
    
    	if (page_has_buffers(page)) {
    has_buffers:
    		unlock_page(page);
    		put_page(page);
    		return block_truncate_page(mapping, from, get_block);
    	}
    
    	/* Find the buffer that contains "offset" */
    	pos = blocksize;
    	while (offset >= pos) {
    		iblock++;
    		pos += blocksize;
    	}
    
    	map_bh.b_size = blocksize;
    	map_bh.b_state = 0;
    	err = get_block(inode, iblock, &map_bh, 0);
    	if (err)
    		goto unlock;
    	/* unmapped? It's a hole - nothing to do */
    	if (!buffer_mapped(&map_bh))
    		goto unlock;
    
    	/* Ok, it's mapped. Make sure it's up-to-date */
    	if (!PageUptodate(page)) {
    		err = mapping->a_ops->readpage(NULL, page);
    		if (err) {
    			put_page(page);
    			goto out;
    		}
    		lock_page(page);
    		if (!PageUptodate(page)) {
    			err = -EIO;
    			goto unlock;
    		}
    		if (page_has_buffers(page))
    			goto has_buffers;
    	}
    	zero_user(page, offset, length);
    	set_page_dirty(page);
    	err = 0;
    
    unlock:
    	unlock_page(page);
    	put_page(page);
    out:
    	return err;
    }
    EXPORT_SYMBOL(nobh_truncate_page);
    
    int block_truncate_page(struct address_space *mapping,
    			loff_t from, get_block_t *get_block)
    {
    	pgoff_t index = from >> PAGE_SHIFT;
    	unsigned offset = from & (PAGE_SIZE-1);
    	unsigned blocksize;
    	sector_t iblock;
    	unsigned length, pos;
    	struct inode *inode = mapping->host;
    	struct page *page;
    	struct buffer_head *bh;
    	int err;
    
    	blocksize = i_blocksize(inode);
    	length = offset & (blocksize - 1);
    
    	/* Block boundary? Nothing to do */
    	if (!length)
    		return 0;
    
    	length = blocksize - length;
    	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
    	
    	page = grab_cache_page(mapping, index);
    	err = -ENOMEM;
    	if (!page)
    		goto out;
    
    	if (!page_has_buffers(page))
    		create_empty_buffers(page, blocksize, 0);
    
    	/* Find the buffer that contains "offset" */
    	bh = page_buffers(page);
    	pos = blocksize;
    	while (offset >= pos) {
    		bh = bh->b_this_page;
    		iblock++;
    		pos += blocksize;
    	}
    
    	err = 0;
    	if (!buffer_mapped(bh)) {
    		WARN_ON(bh->b_size != blocksize);
    		err = get_block(inode, iblock, bh, 0);
    		if (err)
    			goto unlock;
    		/* unmapped? It's a hole - nothing to do */
    		if (!buffer_mapped(bh))
    			goto unlock;
    	}
    
    	/* Ok, it's mapped. Make sure it's up-to-date */
    	if (PageUptodate(page))
    		set_buffer_uptodate(bh);
    
    	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
    		err = -EIO;
    		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
    		wait_on_buffer(bh);
    		/* Uhhuh. Read error. Complain and punt. */
    		if (!buffer_uptodate(bh))
    			goto unlock;
    	}
    
    	zero_user(page, offset, length);
    	mark_buffer_dirty(bh);
    	err = 0;
    
    unlock:
    	unlock_page(page);
    	put_page(page);
    out:
    	return err;
    }
    EXPORT_SYMBOL(block_truncate_page);
    
    /*
     * The generic ->writepage function for buffer-backed address_spaces
     */
    int block_write_full_page(struct page *page, get_block_t *get_block,
    			struct writeback_control *wbc)
    {
    	struct inode * const inode = page->mapping->host;
    	loff_t i_size = i_size_read(inode);
    	const pgoff_t end_index = i_size >> PAGE_SHIFT;
    	unsigned offset;
    
    	/* Is the page fully inside i_size? */
    	if (page->index < end_index)
    		return __block_write_full_page(inode, page, get_block, wbc,
    					       end_buffer_async_write);
    
    	/* Is the page fully outside i_size? (truncate in progress) */
    	offset = i_size & (PAGE_SIZE-1);
    	if (page->index >= end_index+1 || !offset) {
    		/*
    		 * The page may have dirty, unmapped buffers.  For example,
    		 * they may have been added in ext3_writepage().  Make them
    		 * freeable here, so the page does not leak.
    		 */
    		do_invalidatepage(page, 0, PAGE_SIZE);
    		unlock_page(page);
    		return 0; /* don't care */
    	}
    
    	/*
    	 * The page straddles i_size.  It must be zeroed out on each and every
    	 * writepage invocation because it may be mmapped.  "A file is mapped
    	 * in multiples of the page size.  For a file that is not a multiple of
    	 * the  page size, the remaining memory is zeroed when mapped, and
    	 * writes to that region are not written out to the file."
    	 */
    	zero_user_segment(page, offset, PAGE_SIZE);
    	return __block_write_full_page(inode, page, get_block, wbc,
    							end_buffer_async_write);
    }
    EXPORT_SYMBOL(block_write_full_page);
    
    sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
    			    get_block_t *get_block)
    {
    	struct inode *inode = mapping->host;
    	struct buffer_head tmp = {
    		.b_size = i_blocksize(inode),
    	};
    
    	get_block(inode, block, &tmp, 0);
    	return tmp.b_blocknr;
    }
    EXPORT_SYMBOL(generic_block_bmap);
    
    static void end_bio_bh_io_sync(struct bio *bio)
    {
    	struct buffer_head *bh = bio->bi_private;
    
    	if (unlikely(bio_flagged(bio, BIO_QUIET)))
    		set_bit(BH_Quiet, &bh->b_state);
    
    	bh->b_end_io(bh, !bio->bi_status);
    	bio_put(bio);
    }
    
    /*
     * This allows us to do IO even on the odd last sectors
     * of a device, even if the block size is some multiple
     * of the physical sector size.
     *
     * We'll just truncate the bio to the size of the device,
     * and clear the end of the buffer head manually.
     *
     * Truly out-of-range accesses will turn into actual IO
     * errors, this only handles the "we need to be able to
     * do IO at the final sector" case.
     */
    void guard_bio_eod(int op, struct bio *bio)
    {
    	sector_t maxsector;
    	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
    	unsigned truncated_bytes;
    
    	maxsector = get_capacity(bio->bi_disk);
    	if (!maxsector)
    		return;
    
    	/*
    	 * If the *whole* IO is past the end of the device,
    	 * let it through, and the IO layer will turn it into
    	 * an EIO.
    	 */
    	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
    		return;
    
    	maxsector -= bio->bi_iter.bi_sector;
    	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
    		return;
    
    	/* Uhhuh. We've got a bio that straddles the device size! */
    	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
    
    	/* Truncate the bio.. */
    	bio->bi_iter.bi_size -= truncated_bytes;
    	bvec->bv_len -= truncated_bytes;
    
    	/* ..and clear the end of the buffer for reads */
    	if (op == REQ_OP_READ) {
    		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
    				truncated_bytes);
    	}
    }
    
    static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
    			 enum rw_hint write_hint, struct writeback_control *wbc)
    {
    	struct bio *bio;
    
    	BUG_ON(!buffer_locked(bh));
    	BUG_ON(!buffer_mapped(bh));
    	BUG_ON(!bh->b_end_io);
    	BUG_ON(buffer_delay(bh));
    	BUG_ON(buffer_unwritten(bh));
    
    	/*
    	 * Only clear out a write error when rewriting
    	 */
    	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
    		clear_buffer_write_io_error(bh);
    
    	/*
    	 * from here on down, it's all bio -- do the initial mapping,
    	 * submit_bio -> generic_make_request may further map this bio around
    	 */
    	bio = bio_alloc(GFP_NOIO, 1);
    
    	if (wbc) {
    		wbc_init_bio(wbc, bio);
    		wbc_account_io(wbc, bh->b_page, bh->b_size);
    	}
    
    	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
    	bio_set_dev(bio, bh->b_bdev);
    	bio->bi_write_hint = write_hint;
    
    	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
    	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
    
    	bio->bi_end_io = end_bio_bh_io_sync;
    	bio->bi_private = bh;
    
    	/* Take care of bh's that straddle the end of the device */
    	guard_bio_eod(op, bio);
    
    	if (buffer_meta(bh))
    		op_flags |= REQ_META;
    	if (buffer_prio(bh))
    		op_flags |= REQ_PRIO;
    	bio_set_op_attrs(bio, op, op_flags);
    
    	submit_bio(bio);
    	return 0;
    }
    
    int submit_bh(int op, int op_flags, struct buffer_head *bh)
    {
    	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
    }
    EXPORT_SYMBOL(submit_bh);
    
    /**
     * ll_rw_block: low-level access to block devices (DEPRECATED)
     * @op: whether to %READ or %WRITE
     * @op_flags: req_flag_bits
     * @nr: number of &struct buffer_heads in the array
     * @bhs: array of pointers to &struct buffer_head
     *
     * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
     * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
     * @op_flags contains flags modifying the detailed I/O behavior, most notably
     * %REQ_RAHEAD.
     *
     * This function drops any buffer that it cannot get a lock on (with the
     * BH_Lock state bit), any buffer that appears to be clean when doing a write
     * request, and any buffer that appears to be up-to-date when doing read
     * request.  Further it marks as clean buffers that are processed for
     * writing (the buffer cache won't assume that they are actually clean
     * until the buffer gets unlocked).
     *
     * ll_rw_block sets b_end_io to simple completion handler that marks
     * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
     * any waiters. 
     *
     * All of the buffers must be for the same device, and must also be a
     * multiple of the current approved size for the device.
     */
    void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
    {
    	int i;
    
    	for (i = 0; i < nr; i++) {
    		struct buffer_head *bh = bhs[i];
    
    		if (!trylock_buffer(bh))
    			continue;
    		if (op == WRITE) {
    			if (test_clear_buffer_dirty(bh)) {
    				bh->b_end_io = end_buffer_write_sync;
    				get_bh(bh);
    				submit_bh(op, op_flags, bh);
    				continue;
    			}
    		} else {
    			if (!buffer_uptodate(bh)) {
    				bh->b_end_io = end_buffer_read_sync;
    				get_bh(bh);
    				submit_bh(op, op_flags, bh);
    				continue;
    			}
    		}
    		unlock_buffer(bh);
    	}
    }
    EXPORT_SYMBOL(ll_rw_block);
    
    void write_dirty_buffer(struct buffer_head *bh, int op_flags)
    {
    	lock_buffer(bh);
    	if (!test_clear_buffer_dirty(bh)) {
    		unlock_buffer(bh);
    		return;
    	}
    	bh->b_end_io = end_buffer_write_sync;
    	get_bh(bh);
    	submit_bh(REQ_OP_WRITE, op_flags, bh);
    }
    EXPORT_SYMBOL(write_dirty_buffer);
    
    /*
     * For a data-integrity writeout, we need to wait upon any in-progress I/O
     * and then start new I/O and then wait upon it.  The caller must have a ref on
     * the buffer_head.
     */
    int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
    {
    	int ret = 0;
    
    	WARN_ON(atomic_read(&bh->b_count) < 1);
    	lock_buffer(bh);
    	if (test_clear_buffer_dirty(bh)) {
    		get_bh(bh);
    		bh->b_end_io = end_buffer_write_sync;
    		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
    		wait_on_buffer(bh);
    		if (!ret && !buffer_uptodate(bh))
    			ret = -EIO;
    	} else {
    		unlock_buffer(bh);
    	}
    	return ret;
    }
    EXPORT_SYMBOL(__sync_dirty_buffer);
    
    int sync_dirty_buffer(struct buffer_head *bh)
    {
    	return __sync_dirty_buffer(bh, REQ_SYNC);
    }
    EXPORT_SYMBOL(sync_dirty_buffer);
    
    /*
     * try_to_free_buffers() checks if all the buffers on this particular page
     * are unused, and releases them if so.
     *
     * Exclusion against try_to_free_buffers may be obtained by either
     * locking the page or by holding its mapping's private_lock.
     *
     * If the page is dirty but all the buffers are clean then we need to
     * be sure to mark the page clean as well.  This is because the page
     * may be against a block device, and a later reattachment of buffers
     * to a dirty page will set *all* buffers dirty.  Which would corrupt
     * filesystem data on the same device.
     *
     * The same applies to regular filesystem pages: if all the buffers are
     * clean then we set the page clean and proceed.  To do that, we require
     * total exclusion from __set_page_dirty_buffers().  That is obtained with
     * private_lock.
     *
     * try_to_free_buffers() is non-blocking.
     */
    static inline int buffer_busy(struct buffer_head *bh)
    {
    	return atomic_read(&bh->b_count) |
    		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
    }
    
    static int
    drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
    {
    	struct buffer_head *head = page_buffers(page);
    	struct buffer_head *bh;
    
    	bh = head;
    	do {
    		if (buffer_busy(bh))
    			goto failed;
    		bh = bh->b_this_page;
    	} while (bh != head);
    
    	do {
    		struct buffer_head *next = bh->b_this_page;
    
    		if (bh->b_assoc_map)
    			__remove_assoc_queue(bh);
    		bh = next;
    	} while (bh != head);
    	*buffers_to_free = head;
    	__clear_page_buffers(page);
    	return 1;
    failed:
    	return 0;
    }
    
    int try_to_free_buffers(struct page *page)
    {
    	struct address_space * const mapping = page->mapping;
    	struct buffer_head *buffers_to_free = NULL;
    	int ret = 0;
    
    	BUG_ON(!PageLocked(page));
    	if (PageWriteback(page))
    		return 0;
    
    	if (mapping == NULL) {		/* can this still happen? */
    		ret = drop_buffers(page, &buffers_to_free);
    		goto out;
    	}
    
    	spin_lock(&mapping->private_lock);
    	ret = drop_buffers(page, &buffers_to_free);
    
    	/*
    	 * If the filesystem writes its buffers by hand (eg ext3)
    	 * then we can have clean buffers against a dirty page.  We
    	 * clean the page here; otherwise the VM will never notice
    	 * that the filesystem did any IO at all.
    	 *
    	 * Also, during truncate, discard_buffer will have marked all
    	 * the page's buffers clean.  We discover that here and clean
    	 * the page also.
    	 *
    	 * private_lock must be held over this entire operation in order
    	 * to synchronise against __set_page_dirty_buffers and prevent the
    	 * dirty bit from being lost.
    	 */
    	if (ret)
    		cancel_dirty_page(page);
    	spin_unlock(&mapping->private_lock);
    out:
    	if (buffers_to_free) {
    		struct buffer_head *bh = buffers_to_free;
    
    		do {
    			struct buffer_head *next = bh->b_this_page;
    			free_buffer_head(bh);
    			bh = next;
    		} while (bh != buffers_to_free);
    	}
    	return ret;
    }
    EXPORT_SYMBOL(try_to_free_buffers);
    
    /*
     * There are no bdflush tunables left.  But distributions are
     * still running obsolete flush daemons, so we terminate them here.
     *
     * Use of bdflush() is deprecated and will be removed in a future kernel.
     * The `flush-X' kernel threads fully replace bdflush daemons and this call.
     */
    SYSCALL_DEFINE2(bdflush, int, func, long, data)
    {
    	static int msg_count;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (msg_count < 5) {
    		msg_count++;
    		printk(KERN_INFO
    			"warning: process `%s' used the obsolete bdflush"
    			" system call\n", current->comm);
    		printk(KERN_INFO "Fix your initscripts?\n");
    	}
    
    	if (func == 1)
    		do_exit(0);
    	return 0;
    }
    
    /*
     * Buffer-head allocation
     */
    static struct kmem_cache *bh_cachep __read_mostly;
    
    /*
     * Once the number of bh's in the machine exceeds this level, we start
     * stripping them in writeback.
     */
    static unsigned long max_buffer_heads;
    
    int buffer_heads_over_limit;
    
    struct bh_accounting {
    	int nr;			/* Number of live bh's */
    	int ratelimit;		/* Limit cacheline bouncing */
    };
    
    static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
    
    static void recalc_bh_state(void)
    {
    	int i;
    	int tot = 0;
    
    	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
    		return;
    	__this_cpu_write(bh_accounting.ratelimit, 0);
    	for_each_online_cpu(i)
    		tot += per_cpu(bh_accounting, i).nr;
    	buffer_heads_over_limit = (tot > max_buffer_heads);
    }
    
    struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
    {
    	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
    	if (ret) {
    		INIT_LIST_HEAD(&ret->b_assoc_buffers);
    		preempt_disable();
    		__this_cpu_inc(bh_accounting.nr);
    		recalc_bh_state();
    		preempt_enable();
    	}
    	return ret;
    }
    EXPORT_SYMBOL(alloc_buffer_head);
    
    void free_buffer_head(struct buffer_head *bh)
    {
    	BUG_ON(!list_empty(&bh->b_assoc_buffers));
    	kmem_cache_free(bh_cachep, bh);
    	preempt_disable();
    	__this_cpu_dec(bh_accounting.nr);
    	recalc_bh_state();
    	preempt_enable();
    }
    EXPORT_SYMBOL(free_buffer_head);
    
    static int buffer_exit_cpu_dead(unsigned int cpu)
    {
    	int i;
    	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
    
    	for (i = 0; i < BH_LRU_SIZE; i++) {
    		brelse(b->bhs[i]);
    		b->bhs[i] = NULL;
    	}
    	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
    	per_cpu(bh_accounting, cpu).nr = 0;
    	return 0;
    }
    
    /**
     * bh_uptodate_or_lock - Test whether the buffer is uptodate
     * @bh: struct buffer_head
     *
     * Return true if the buffer is up-to-date and false,
     * with the buffer locked, if not.
     */
    int bh_uptodate_or_lock(struct buffer_head *bh)
    {
    	if (!buffer_uptodate(bh)) {
    		lock_buffer(bh);
    		if (!buffer_uptodate(bh))
    			return 0;
    		unlock_buffer(bh);
    	}
    	return 1;
    }
    EXPORT_SYMBOL(bh_uptodate_or_lock);
    
    /**
     * bh_submit_read - Submit a locked buffer for reading
     * @bh: struct buffer_head
     *
     * Returns zero on success and -EIO on error.
     */
    int bh_submit_read(struct buffer_head *bh)
    {
    	BUG_ON(!buffer_locked(bh));
    
    	if (buffer_uptodate(bh)) {
    		unlock_buffer(bh);
    		return 0;
    	}
    
    	get_bh(bh);
    	bh->b_end_io = end_buffer_read_sync;
    	submit_bh(REQ_OP_READ, 0, bh);
    	wait_on_buffer(bh);
    	if (buffer_uptodate(bh))
    		return 0;
    	return -EIO;
    }
    EXPORT_SYMBOL(bh_submit_read);
    
    /*
     * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
     *
     * Returns the offset within the file on success, and -ENOENT otherwise.
     */
    static loff_t
    page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
    {
    	loff_t offset = page_offset(page);
    	struct buffer_head *bh, *head;
    	bool seek_data = whence == SEEK_DATA;
    
    	if (lastoff < offset)
    		lastoff = offset;
    
    	bh = head = page_buffers(page);
    	do {
    		offset += bh->b_size;
    		if (lastoff >= offset)
    			continue;
    
    		/*
    		 * Unwritten extents that have data in the page cache covering
    		 * them can be identified by the BH_Unwritten state flag.
    		 * Pages with multiple buffers might have a mix of holes, data
    		 * and unwritten extents - any buffer with valid data in it
    		 * should have BH_Uptodate flag set on it.
    		 */
    
    		if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
    			return lastoff;
    
    		lastoff = offset;
    	} while ((bh = bh->b_this_page) != head);
    	return -ENOENT;
    }
    
    /*
     * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
     *
     * Within unwritten extents, the page cache determines which parts are holes
     * and which are data: unwritten and uptodate buffer heads count as data;
     * everything else counts as a hole.
     *
     * Returns the resulting offset on successs, and -ENOENT otherwise.
     */
    loff_t
    page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
    			  int whence)
    {
    	pgoff_t index = offset >> PAGE_SHIFT;
    	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
    	loff_t lastoff = offset;
    	struct pagevec pvec;
    
    	if (length <= 0)
    		return -ENOENT;
    
    	pagevec_init(&pvec, 0);
    
    	do {
    		unsigned nr_pages, i;
    
    		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
    						end - 1);
    		if (nr_pages == 0)
    			break;
    
    		for (i = 0; i < nr_pages; i++) {
    			struct page *page = pvec.pages[i];
    
    			/*
    			 * At this point, the page may be truncated or
    			 * invalidated (changing page->mapping to NULL), or
    			 * even swizzled back from swapper_space to tmpfs file
    			 * mapping.  However, page->index will not change
    			 * because we have a reference on the page.
                             *
    			 * If current page offset is beyond where we've ended,
    			 * we've found a hole.
                             */
    			if (whence == SEEK_HOLE &&
    			    lastoff < page_offset(page))
    				goto check_range;
    
    			lock_page(page);
    			if (likely(page->mapping == inode->i_mapping) &&
    			    page_has_buffers(page)) {
    				lastoff = page_seek_hole_data(page, lastoff, whence);
    				if (lastoff >= 0) {
    					unlock_page(page);
    					goto check_range;
    				}
    			}
    			unlock_page(page);
    			lastoff = page_offset(page) + PAGE_SIZE;
    		}
    		pagevec_release(&pvec);
    	} while (index < end);
    
    	/* When no page at lastoff and we are not done, we found a hole. */
    	if (whence != SEEK_HOLE)
    		goto not_found;
    
    check_range:
    	if (lastoff < offset + length)
    		goto out;
    not_found:
    	lastoff = -ENOENT;
    out:
    	pagevec_release(&pvec);
    	return lastoff;
    }
    
    void __init buffer_init(void)
    {
    	unsigned long nrpages;
    	int ret;
    
    	bh_cachep = kmem_cache_create("buffer_head",
    			sizeof(struct buffer_head), 0,
    				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
    				SLAB_MEM_SPREAD),
    				NULL);
    
    	/*
    	 * Limit the bh occupancy to 10% of ZONE_NORMAL
    	 */
    	nrpages = (nr_free_buffer_pages() * 10) / 100;
    	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
    	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
    					NULL, buffer_exit_cpu_dead);
    	WARN_ON(ret < 0);
    }