Skip to content
Snippets Groups Projects
Select Git revision
  • 1c03da0522e91617fcadeb7dd596ee41f2b116b9
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

bcm63xx_enet.c

Blame
  • user avatar
    Jonas Gorski authored and David S. Miller committed
    Signed-off-by: default avatarJonas Gorski <jogo@openwrt.org>
    Acked-by: default avatarKevin Cernekee <cernekee@gmail.com>
    Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
    1c03da05
    History
    bcm63xx_enet.c 47.10 KiB
    /*
     * Driver for BCM963xx builtin Ethernet mac
     *
     * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     */
    #include <linux/init.h>
    #include <linux/interrupt.h>
    #include <linux/module.h>
    #include <linux/clk.h>
    #include <linux/etherdevice.h>
    #include <linux/slab.h>
    #include <linux/delay.h>
    #include <linux/ethtool.h>
    #include <linux/crc32.h>
    #include <linux/err.h>
    #include <linux/dma-mapping.h>
    #include <linux/platform_device.h>
    #include <linux/if_vlan.h>
    
    #include <bcm63xx_dev_enet.h>
    #include "bcm63xx_enet.h"
    
    static char bcm_enet_driver_name[] = "bcm63xx_enet";
    static char bcm_enet_driver_version[] = "1.0";
    
    static int copybreak __read_mostly = 128;
    module_param(copybreak, int, 0);
    MODULE_PARM_DESC(copybreak, "Receive copy threshold");
    
    /* io memory shared between all devices */
    static void __iomem *bcm_enet_shared_base;
    
    /*
     * io helpers to access mac registers
     */
    static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
    {
    	return bcm_readl(priv->base + off);
    }
    
    static inline void enet_writel(struct bcm_enet_priv *priv,
    			       u32 val, u32 off)
    {
    	bcm_writel(val, priv->base + off);
    }
    
    /*
     * io helpers to access shared registers
     */
    static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
    {
    	return bcm_readl(bcm_enet_shared_base + off);
    }
    
    static inline void enet_dma_writel(struct bcm_enet_priv *priv,
    				       u32 val, u32 off)
    {
    	bcm_writel(val, bcm_enet_shared_base + off);
    }
    
    /*
     * write given data into mii register and wait for transfer to end
     * with timeout (average measured transfer time is 25us)
     */
    static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
    {
    	int limit;
    
    	/* make sure mii interrupt status is cleared */
    	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
    
    	enet_writel(priv, data, ENET_MIIDATA_REG);
    	wmb();
    
    	/* busy wait on mii interrupt bit, with timeout */
    	limit = 1000;
    	do {
    		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
    			break;
    		udelay(1);
    	} while (limit-- > 0);
    
    	return (limit < 0) ? 1 : 0;
    }
    
    /*
     * MII internal read callback
     */
    static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
    			      int regnum)
    {
    	u32 tmp, val;
    
    	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
    	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
    	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
    	tmp |= ENET_MIIDATA_OP_READ_MASK;
    
    	if (do_mdio_op(priv, tmp))
    		return -1;
    
    	val = enet_readl(priv, ENET_MIIDATA_REG);
    	val &= 0xffff;
    	return val;
    }
    
    /*
     * MII internal write callback
     */
    static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
    			       int regnum, u16 value)
    {
    	u32 tmp;
    
    	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
    	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
    	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
    	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
    	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
    
    	(void)do_mdio_op(priv, tmp);
    	return 0;
    }
    
    /*
     * MII read callback from phylib
     */
    static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
    				     int regnum)
    {
    	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
    }
    
    /*
     * MII write callback from phylib
     */
    static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
    				      int regnum, u16 value)
    {
    	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
    }
    
    /*
     * MII read callback from mii core
     */
    static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
    				  int regnum)
    {
    	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
    }
    
    /*
     * MII write callback from mii core
     */
    static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
    				    int regnum, int value)
    {
    	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
    }
    
    /*
     * refill rx queue
     */
    static int bcm_enet_refill_rx(struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    
    	while (priv->rx_desc_count < priv->rx_ring_size) {
    		struct bcm_enet_desc *desc;
    		struct sk_buff *skb;
    		dma_addr_t p;
    		int desc_idx;
    		u32 len_stat;
    
    		desc_idx = priv->rx_dirty_desc;
    		desc = &priv->rx_desc_cpu[desc_idx];
    
    		if (!priv->rx_skb[desc_idx]) {
    			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
    			if (!skb)
    				break;
    			priv->rx_skb[desc_idx] = skb;
    
    			p = dma_map_single(&priv->pdev->dev, skb->data,
    					   priv->rx_skb_size,
    					   DMA_FROM_DEVICE);
    			desc->address = p;
    		}
    
    		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
    		len_stat |= DMADESC_OWNER_MASK;
    		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
    			len_stat |= DMADESC_WRAP_MASK;
    			priv->rx_dirty_desc = 0;
    		} else {
    			priv->rx_dirty_desc++;
    		}
    		wmb();
    		desc->len_stat = len_stat;
    
    		priv->rx_desc_count++;
    
    		/* tell dma engine we allocated one buffer */
    		enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
    	}
    
    	/* If rx ring is still empty, set a timer to try allocating
    	 * again at a later time. */
    	if (priv->rx_desc_count == 0 && netif_running(dev)) {
    		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
    		priv->rx_timeout.expires = jiffies + HZ;
    		add_timer(&priv->rx_timeout);
    	}
    
    	return 0;
    }
    
    /*
     * timer callback to defer refill rx queue in case we're OOM
     */
    static void bcm_enet_refill_rx_timer(unsigned long data)
    {
    	struct net_device *dev;
    	struct bcm_enet_priv *priv;
    
    	dev = (struct net_device *)data;
    	priv = netdev_priv(dev);
    
    	spin_lock(&priv->rx_lock);
    	bcm_enet_refill_rx((struct net_device *)data);
    	spin_unlock(&priv->rx_lock);
    }
    
    /*
     * extract packet from rx queue
     */
    static int bcm_enet_receive_queue(struct net_device *dev, int budget)
    {
    	struct bcm_enet_priv *priv;
    	struct device *kdev;
    	int processed;
    
    	priv = netdev_priv(dev);
    	kdev = &priv->pdev->dev;
    	processed = 0;
    
    	/* don't scan ring further than number of refilled
    	 * descriptor */
    	if (budget > priv->rx_desc_count)
    		budget = priv->rx_desc_count;
    
    	do {
    		struct bcm_enet_desc *desc;
    		struct sk_buff *skb;
    		int desc_idx;
    		u32 len_stat;
    		unsigned int len;
    
    		desc_idx = priv->rx_curr_desc;
    		desc = &priv->rx_desc_cpu[desc_idx];
    
    		/* make sure we actually read the descriptor status at
    		 * each loop */
    		rmb();
    
    		len_stat = desc->len_stat;
    
    		/* break if dma ownership belongs to hw */
    		if (len_stat & DMADESC_OWNER_MASK)
    			break;
    
    		processed++;
    		priv->rx_curr_desc++;
    		if (priv->rx_curr_desc == priv->rx_ring_size)
    			priv->rx_curr_desc = 0;
    		priv->rx_desc_count--;
    
    		/* if the packet does not have start of packet _and_
    		 * end of packet flag set, then just recycle it */
    		if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
    			dev->stats.rx_dropped++;
    			continue;
    		}
    
    		/* recycle packet if it's marked as bad */
    		if (unlikely(len_stat & DMADESC_ERR_MASK)) {
    			dev->stats.rx_errors++;
    
    			if (len_stat & DMADESC_OVSIZE_MASK)
    				dev->stats.rx_length_errors++;
    			if (len_stat & DMADESC_CRC_MASK)
    				dev->stats.rx_crc_errors++;
    			if (len_stat & DMADESC_UNDER_MASK)
    				dev->stats.rx_frame_errors++;
    			if (len_stat & DMADESC_OV_MASK)
    				dev->stats.rx_fifo_errors++;
    			continue;
    		}
    
    		/* valid packet */
    		skb = priv->rx_skb[desc_idx];
    		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
    		/* don't include FCS */
    		len -= 4;
    
    		if (len < copybreak) {
    			struct sk_buff *nskb;
    
    			nskb = netdev_alloc_skb_ip_align(dev, len);
    			if (!nskb) {
    				/* forget packet, just rearm desc */
    				dev->stats.rx_dropped++;
    				continue;
    			}
    
    			dma_sync_single_for_cpu(kdev, desc->address,
    						len, DMA_FROM_DEVICE);
    			memcpy(nskb->data, skb->data, len);
    			dma_sync_single_for_device(kdev, desc->address,
    						   len, DMA_FROM_DEVICE);
    			skb = nskb;
    		} else {
    			dma_unmap_single(&priv->pdev->dev, desc->address,
    					 priv->rx_skb_size, DMA_FROM_DEVICE);
    			priv->rx_skb[desc_idx] = NULL;
    		}
    
    		skb_put(skb, len);
    		skb->protocol = eth_type_trans(skb, dev);
    		dev->stats.rx_packets++;
    		dev->stats.rx_bytes += len;
    		netif_receive_skb(skb);
    
    	} while (--budget > 0);
    
    	if (processed || !priv->rx_desc_count) {
    		bcm_enet_refill_rx(dev);
    
    		/* kick rx dma */
    		enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
    				ENETDMA_CHANCFG_REG(priv->rx_chan));
    	}
    
    	return processed;
    }
    
    
    /*
     * try to or force reclaim of transmitted buffers
     */
    static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
    {
    	struct bcm_enet_priv *priv;
    	int released;
    
    	priv = netdev_priv(dev);
    	released = 0;
    
    	while (priv->tx_desc_count < priv->tx_ring_size) {
    		struct bcm_enet_desc *desc;
    		struct sk_buff *skb;
    
    		/* We run in a bh and fight against start_xmit, which
    		 * is called with bh disabled  */
    		spin_lock(&priv->tx_lock);
    
    		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
    
    		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
    			spin_unlock(&priv->tx_lock);
    			break;
    		}
    
    		/* ensure other field of the descriptor were not read
    		 * before we checked ownership */
    		rmb();
    
    		skb = priv->tx_skb[priv->tx_dirty_desc];
    		priv->tx_skb[priv->tx_dirty_desc] = NULL;
    		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
    				 DMA_TO_DEVICE);
    
    		priv->tx_dirty_desc++;
    		if (priv->tx_dirty_desc == priv->tx_ring_size)
    			priv->tx_dirty_desc = 0;
    		priv->tx_desc_count++;
    
    		spin_unlock(&priv->tx_lock);
    
    		if (desc->len_stat & DMADESC_UNDER_MASK)
    			dev->stats.tx_errors++;
    
    		dev_kfree_skb(skb);
    		released++;
    	}
    
    	if (netif_queue_stopped(dev) && released)
    		netif_wake_queue(dev);
    
    	return released;
    }
    
    /*
     * poll func, called by network core
     */
    static int bcm_enet_poll(struct napi_struct *napi, int budget)
    {
    	struct bcm_enet_priv *priv;
    	struct net_device *dev;
    	int tx_work_done, rx_work_done;
    
    	priv = container_of(napi, struct bcm_enet_priv, napi);
    	dev = priv->net_dev;
    
    	/* ack interrupts */
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IR_REG(priv->rx_chan));
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IR_REG(priv->tx_chan));
    
    	/* reclaim sent skb */
    	tx_work_done = bcm_enet_tx_reclaim(dev, 0);
    
    	spin_lock(&priv->rx_lock);
    	rx_work_done = bcm_enet_receive_queue(dev, budget);
    	spin_unlock(&priv->rx_lock);
    
    	if (rx_work_done >= budget || tx_work_done > 0) {
    		/* rx/tx queue is not yet empty/clean */
    		return rx_work_done;
    	}
    
    	/* no more packet in rx/tx queue, remove device from poll
    	 * queue */
    	napi_complete(napi);
    
    	/* restore rx/tx interrupt */
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IRMASK_REG(priv->rx_chan));
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IRMASK_REG(priv->tx_chan));
    
    	return rx_work_done;
    }
    
    /*
     * mac interrupt handler
     */
    static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
    {
    	struct net_device *dev;
    	struct bcm_enet_priv *priv;
    	u32 stat;
    
    	dev = dev_id;
    	priv = netdev_priv(dev);
    
    	stat = enet_readl(priv, ENET_IR_REG);
    	if (!(stat & ENET_IR_MIB))
    		return IRQ_NONE;
    
    	/* clear & mask interrupt */
    	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
    	enet_writel(priv, 0, ENET_IRMASK_REG);
    
    	/* read mib registers in workqueue */
    	schedule_work(&priv->mib_update_task);
    
    	return IRQ_HANDLED;
    }
    
    /*
     * rx/tx dma interrupt handler
     */
    static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
    {
    	struct net_device *dev;
    	struct bcm_enet_priv *priv;
    
    	dev = dev_id;
    	priv = netdev_priv(dev);
    
    	/* mask rx/tx interrupts */
    	enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
    
    	napi_schedule(&priv->napi);
    
    	return IRQ_HANDLED;
    }
    
    /*
     * tx request callback
     */
    static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    	struct bcm_enet_desc *desc;
    	u32 len_stat;
    	int ret;
    
    	priv = netdev_priv(dev);
    
    	/* lock against tx reclaim */
    	spin_lock(&priv->tx_lock);
    
    	/* make sure  the tx hw queue  is not full,  should not happen
    	 * since we stop queue before it's the case */
    	if (unlikely(!priv->tx_desc_count)) {
    		netif_stop_queue(dev);
    		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
    			"available?\n");
    		ret = NETDEV_TX_BUSY;
    		goto out_unlock;
    	}
    
    	/* point to the next available desc */
    	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
    	priv->tx_skb[priv->tx_curr_desc] = skb;
    
    	/* fill descriptor */
    	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
    				       DMA_TO_DEVICE);
    
    	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
    	len_stat |= DMADESC_ESOP_MASK |
    		DMADESC_APPEND_CRC |
    		DMADESC_OWNER_MASK;
    
    	priv->tx_curr_desc++;
    	if (priv->tx_curr_desc == priv->tx_ring_size) {
    		priv->tx_curr_desc = 0;
    		len_stat |= DMADESC_WRAP_MASK;
    	}
    	priv->tx_desc_count--;
    
    	/* dma might be already polling, make sure we update desc
    	 * fields in correct order */
    	wmb();
    	desc->len_stat = len_stat;
    	wmb();
    
    	/* kick tx dma */
    	enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
    			ENETDMA_CHANCFG_REG(priv->tx_chan));
    
    	/* stop queue if no more desc available */
    	if (!priv->tx_desc_count)
    		netif_stop_queue(dev);
    
    	dev->stats.tx_bytes += skb->len;
    	dev->stats.tx_packets++;
    	ret = NETDEV_TX_OK;
    
    out_unlock:
    	spin_unlock(&priv->tx_lock);
    	return ret;
    }
    
    /*
     * Change the interface's mac address.
     */
    static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
    {
    	struct bcm_enet_priv *priv;
    	struct sockaddr *addr = p;
    	u32 val;
    
    	priv = netdev_priv(dev);
    	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
    
    	/* use perfect match register 0 to store my mac address */
    	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
    		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
    	enet_writel(priv, val, ENET_PML_REG(0));
    
    	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
    	val |= ENET_PMH_DATAVALID_MASK;
    	enet_writel(priv, val, ENET_PMH_REG(0));
    
    	return 0;
    }
    
    /*
     * Change rx mode (promiscuous/allmulti) and update multicast list
     */
    static void bcm_enet_set_multicast_list(struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    	struct netdev_hw_addr *ha;
    	u32 val;
    	int i;
    
    	priv = netdev_priv(dev);
    
    	val = enet_readl(priv, ENET_RXCFG_REG);
    
    	if (dev->flags & IFF_PROMISC)
    		val |= ENET_RXCFG_PROMISC_MASK;
    	else
    		val &= ~ENET_RXCFG_PROMISC_MASK;
    
    	/* only 3 perfect match registers left, first one is used for
    	 * own mac address */
    	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
    		val |= ENET_RXCFG_ALLMCAST_MASK;
    	else
    		val &= ~ENET_RXCFG_ALLMCAST_MASK;
    
    	/* no need to set perfect match registers if we catch all
    	 * multicast */
    	if (val & ENET_RXCFG_ALLMCAST_MASK) {
    		enet_writel(priv, val, ENET_RXCFG_REG);
    		return;
    	}
    
    	i = 0;
    	netdev_for_each_mc_addr(ha, dev) {
    		u8 *dmi_addr;
    		u32 tmp;
    
    		if (i == 3)
    			break;
    		/* update perfect match registers */
    		dmi_addr = ha->addr;
    		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
    			(dmi_addr[4] << 8) | dmi_addr[5];
    		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
    
    		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
    		tmp |= ENET_PMH_DATAVALID_MASK;
    		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
    	}
    
    	for (; i < 3; i++) {
    		enet_writel(priv, 0, ENET_PML_REG(i + 1));
    		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
    	}
    
    	enet_writel(priv, val, ENET_RXCFG_REG);
    }
    
    /*
     * set mac duplex parameters
     */
    static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
    {
    	u32 val;
    
    	val = enet_readl(priv, ENET_TXCTL_REG);
    	if (fullduplex)
    		val |= ENET_TXCTL_FD_MASK;
    	else
    		val &= ~ENET_TXCTL_FD_MASK;
    	enet_writel(priv, val, ENET_TXCTL_REG);
    }
    
    /*
     * set mac flow control parameters
     */
    static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
    {
    	u32 val;
    
    	/* rx flow control (pause frame handling) */
    	val = enet_readl(priv, ENET_RXCFG_REG);
    	if (rx_en)
    		val |= ENET_RXCFG_ENFLOW_MASK;
    	else
    		val &= ~ENET_RXCFG_ENFLOW_MASK;
    	enet_writel(priv, val, ENET_RXCFG_REG);
    
    	/* tx flow control (pause frame generation) */
    	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
    	if (tx_en)
    		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
    	else
    		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
    	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
    }
    
    /*
     * link changed callback (from phylib)
     */
    static void bcm_enet_adjust_phy_link(struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    	struct phy_device *phydev;
    	int status_changed;
    
    	priv = netdev_priv(dev);
    	phydev = priv->phydev;
    	status_changed = 0;
    
    	if (priv->old_link != phydev->link) {
    		status_changed = 1;
    		priv->old_link = phydev->link;
    	}
    
    	/* reflect duplex change in mac configuration */
    	if (phydev->link && phydev->duplex != priv->old_duplex) {
    		bcm_enet_set_duplex(priv,
    				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
    		status_changed = 1;
    		priv->old_duplex = phydev->duplex;
    	}
    
    	/* enable flow control if remote advertise it (trust phylib to
    	 * check that duplex is full */
    	if (phydev->link && phydev->pause != priv->old_pause) {
    		int rx_pause_en, tx_pause_en;
    
    		if (phydev->pause) {
    			/* pause was advertised by lpa and us */
    			rx_pause_en = 1;
    			tx_pause_en = 1;
    		} else if (!priv->pause_auto) {
    			/* pause setting overrided by user */
    			rx_pause_en = priv->pause_rx;
    			tx_pause_en = priv->pause_tx;
    		} else {
    			rx_pause_en = 0;
    			tx_pause_en = 0;
    		}
    
    		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
    		status_changed = 1;
    		priv->old_pause = phydev->pause;
    	}
    
    	if (status_changed) {
    		pr_info("%s: link %s", dev->name, phydev->link ?
    			"UP" : "DOWN");
    		if (phydev->link)
    			pr_cont(" - %d/%s - flow control %s", phydev->speed,
    			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
    			       phydev->pause == 1 ? "rx&tx" : "off");
    
    		pr_cont("\n");
    	}
    }
    
    /*
     * link changed callback (if phylib is not used)
     */
    static void bcm_enet_adjust_link(struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    	bcm_enet_set_duplex(priv, priv->force_duplex_full);
    	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
    	netif_carrier_on(dev);
    
    	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
    		dev->name,
    		priv->force_speed_100 ? 100 : 10,
    		priv->force_duplex_full ? "full" : "half",
    		priv->pause_rx ? "rx" : "off",
    		priv->pause_tx ? "tx" : "off");
    }
    
    /*
     * open callback, allocate dma rings & buffers and start rx operation
     */
    static int bcm_enet_open(struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    	struct sockaddr addr;
    	struct device *kdev;
    	struct phy_device *phydev;
    	int i, ret;
    	unsigned int size;
    	char phy_id[MII_BUS_ID_SIZE + 3];
    	void *p;
    	u32 val;
    
    	priv = netdev_priv(dev);
    	kdev = &priv->pdev->dev;
    
    	if (priv->has_phy) {
    		/* connect to PHY */
    		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
    			 priv->mii_bus->id, priv->phy_id);
    
    		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
    				     PHY_INTERFACE_MODE_MII);
    
    		if (IS_ERR(phydev)) {
    			dev_err(kdev, "could not attach to PHY\n");
    			return PTR_ERR(phydev);
    		}
    
    		/* mask with MAC supported features */
    		phydev->supported &= (SUPPORTED_10baseT_Half |
    				      SUPPORTED_10baseT_Full |
    				      SUPPORTED_100baseT_Half |
    				      SUPPORTED_100baseT_Full |
    				      SUPPORTED_Autoneg |
    				      SUPPORTED_Pause |
    				      SUPPORTED_MII);
    		phydev->advertising = phydev->supported;
    
    		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
    			phydev->advertising |= SUPPORTED_Pause;
    		else
    			phydev->advertising &= ~SUPPORTED_Pause;
    
    		dev_info(kdev, "attached PHY at address %d [%s]\n",
    			 phydev->addr, phydev->drv->name);
    
    		priv->old_link = 0;
    		priv->old_duplex = -1;
    		priv->old_pause = -1;
    		priv->phydev = phydev;
    	}
    
    	/* mask all interrupts and request them */
    	enet_writel(priv, 0, ENET_IRMASK_REG);
    	enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
    
    	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
    	if (ret)
    		goto out_phy_disconnect;
    
    	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, IRQF_DISABLED,
    			  dev->name, dev);
    	if (ret)
    		goto out_freeirq;
    
    	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
    			  IRQF_DISABLED, dev->name, dev);
    	if (ret)
    		goto out_freeirq_rx;
    
    	/* initialize perfect match registers */
    	for (i = 0; i < 4; i++) {
    		enet_writel(priv, 0, ENET_PML_REG(i));
    		enet_writel(priv, 0, ENET_PMH_REG(i));
    	}
    
    	/* write device mac address */
    	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
    	bcm_enet_set_mac_address(dev, &addr);
    
    	/* allocate rx dma ring */
    	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
    	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
    	if (!p) {
    		dev_err(kdev, "cannot allocate rx ring %u\n", size);
    		ret = -ENOMEM;
    		goto out_freeirq_tx;
    	}
    
    	memset(p, 0, size);
    	priv->rx_desc_alloc_size = size;
    	priv->rx_desc_cpu = p;
    
    	/* allocate tx dma ring */
    	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
    	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
    	if (!p) {
    		dev_err(kdev, "cannot allocate tx ring\n");
    		ret = -ENOMEM;
    		goto out_free_rx_ring;
    	}
    
    	memset(p, 0, size);
    	priv->tx_desc_alloc_size = size;
    	priv->tx_desc_cpu = p;
    
    	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
    			       GFP_KERNEL);
    	if (!priv->tx_skb) {
    		ret = -ENOMEM;
    		goto out_free_tx_ring;
    	}
    
    	priv->tx_desc_count = priv->tx_ring_size;
    	priv->tx_dirty_desc = 0;
    	priv->tx_curr_desc = 0;
    	spin_lock_init(&priv->tx_lock);
    
    	/* init & fill rx ring with skbs */
    	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
    			       GFP_KERNEL);
    	if (!priv->rx_skb) {
    		ret = -ENOMEM;
    		goto out_free_tx_skb;
    	}
    
    	priv->rx_desc_count = 0;
    	priv->rx_dirty_desc = 0;
    	priv->rx_curr_desc = 0;
    
    	/* initialize flow control buffer allocation */
    	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
    			ENETDMA_BUFALLOC_REG(priv->rx_chan));
    
    	if (bcm_enet_refill_rx(dev)) {
    		dev_err(kdev, "cannot allocate rx skb queue\n");
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	/* write rx & tx ring addresses */
    	enet_dma_writel(priv, priv->rx_desc_dma,
    			ENETDMA_RSTART_REG(priv->rx_chan));
    	enet_dma_writel(priv, priv->tx_desc_dma,
    			ENETDMA_RSTART_REG(priv->tx_chan));
    
    	/* clear remaining state ram for rx & tx channel */
    	enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan));
    
    	/* set max rx/tx length */
    	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
    	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
    
    	/* set dma maximum burst len */
    	enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
    			ENETDMA_MAXBURST_REG(priv->rx_chan));
    	enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
    			ENETDMA_MAXBURST_REG(priv->tx_chan));
    
    	/* set correct transmit fifo watermark */
    	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
    
    	/* set flow control low/high threshold to 1/3 / 2/3 */
    	val = priv->rx_ring_size / 3;
    	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
    	val = (priv->rx_ring_size * 2) / 3;
    	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
    
    	/* all set, enable mac and interrupts, start dma engine and
    	 * kick rx dma channel */
    	wmb();
    	val = enet_readl(priv, ENET_CTL_REG);
    	val |= ENET_CTL_ENABLE_MASK;
    	enet_writel(priv, val, ENET_CTL_REG);
    	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
    	enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
    			ENETDMA_CHANCFG_REG(priv->rx_chan));
    
    	/* watch "mib counters about to overflow" interrupt */
    	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
    	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
    
    	/* watch "packet transferred" interrupt in rx and tx */
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IR_REG(priv->rx_chan));
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IR_REG(priv->tx_chan));
    
    	/* make sure we enable napi before rx interrupt  */
    	napi_enable(&priv->napi);
    
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IRMASK_REG(priv->rx_chan));
    	enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
    			ENETDMA_IRMASK_REG(priv->tx_chan));
    
    	if (priv->has_phy)
    		phy_start(priv->phydev);
    	else
    		bcm_enet_adjust_link(dev);
    
    	netif_start_queue(dev);
    	return 0;
    
    out:
    	for (i = 0; i < priv->rx_ring_size; i++) {
    		struct bcm_enet_desc *desc;
    
    		if (!priv->rx_skb[i])
    			continue;
    
    		desc = &priv->rx_desc_cpu[i];
    		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
    				 DMA_FROM_DEVICE);
    		kfree_skb(priv->rx_skb[i]);
    	}
    	kfree(priv->rx_skb);
    
    out_free_tx_skb:
    	kfree(priv->tx_skb);
    
    out_free_tx_ring:
    	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
    			  priv->tx_desc_cpu, priv->tx_desc_dma);
    
    out_free_rx_ring:
    	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
    			  priv->rx_desc_cpu, priv->rx_desc_dma);
    
    out_freeirq_tx:
    	free_irq(priv->irq_tx, dev);
    
    out_freeirq_rx:
    	free_irq(priv->irq_rx, dev);
    
    out_freeirq:
    	free_irq(dev->irq, dev);
    
    out_phy_disconnect:
    	phy_disconnect(priv->phydev);
    
    	return ret;
    }
    
    /*
     * disable mac
     */
    static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
    {
    	int limit;
    	u32 val;
    
    	val = enet_readl(priv, ENET_CTL_REG);
    	val |= ENET_CTL_DISABLE_MASK;
    	enet_writel(priv, val, ENET_CTL_REG);
    
    	limit = 1000;
    	do {
    		u32 val;
    
    		val = enet_readl(priv, ENET_CTL_REG);
    		if (!(val & ENET_CTL_DISABLE_MASK))
    			break;
    		udelay(1);
    	} while (limit--);
    }
    
    /*
     * disable dma in given channel
     */
    static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
    {
    	int limit;
    
    	enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan));
    
    	limit = 1000;
    	do {
    		u32 val;
    
    		val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan));
    		if (!(val & ENETDMA_CHANCFG_EN_MASK))
    			break;
    		udelay(1);
    	} while (limit--);
    }
    
    /*
     * stop callback
     */
    static int bcm_enet_stop(struct net_device *dev)
    {
    	struct bcm_enet_priv *priv;
    	struct device *kdev;
    	int i;
    
    	priv = netdev_priv(dev);
    	kdev = &priv->pdev->dev;
    
    	netif_stop_queue(dev);
    	napi_disable(&priv->napi);
    	if (priv->has_phy)
    		phy_stop(priv->phydev);
    	del_timer_sync(&priv->rx_timeout);
    
    	/* mask all interrupts */
    	enet_writel(priv, 0, ENET_IRMASK_REG);
    	enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
    	enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
    
    	/* make sure no mib update is scheduled */
    	cancel_work_sync(&priv->mib_update_task);
    
    	/* disable dma & mac */
    	bcm_enet_disable_dma(priv, priv->tx_chan);
    	bcm_enet_disable_dma(priv, priv->rx_chan);
    	bcm_enet_disable_mac(priv);
    
    	/* force reclaim of all tx buffers */
    	bcm_enet_tx_reclaim(dev, 1);
    
    	/* free the rx skb ring */
    	for (i = 0; i < priv->rx_ring_size; i++) {
    		struct bcm_enet_desc *desc;
    
    		if (!priv->rx_skb[i])
    			continue;
    
    		desc = &priv->rx_desc_cpu[i];
    		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
    				 DMA_FROM_DEVICE);
    		kfree_skb(priv->rx_skb[i]);
    	}
    
    	/* free remaining allocated memory */
    	kfree(priv->rx_skb);
    	kfree(priv->tx_skb);
    	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
    			  priv->rx_desc_cpu, priv->rx_desc_dma);
    	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
    			  priv->tx_desc_cpu, priv->tx_desc_dma);
    	free_irq(priv->irq_tx, dev);
    	free_irq(priv->irq_rx, dev);
    	free_irq(dev->irq, dev);
    
    	/* release phy */
    	if (priv->has_phy) {
    		phy_disconnect(priv->phydev);
    		priv->phydev = NULL;
    	}
    
    	return 0;
    }
    
    /*
     * ethtool callbacks
     */
    struct bcm_enet_stats {
    	char stat_string[ETH_GSTRING_LEN];
    	int sizeof_stat;
    	int stat_offset;
    	int mib_reg;
    };
    
    #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
    		     offsetof(struct bcm_enet_priv, m)
    #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
    		     offsetof(struct net_device_stats, m)
    
    static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
    	{ "rx_packets", DEV_STAT(rx_packets), -1 },
    	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
    	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
    	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
    	{ "rx_errors", DEV_STAT(rx_errors), -1 },
    	{ "tx_errors", DEV_STAT(tx_errors), -1 },
    	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
    	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
    
    	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
    	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
    	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
    	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
    	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
    	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
    	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
    	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
    	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
    	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
    	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
    	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
    	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
    	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
    	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
    	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
    	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
    	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
    	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
    	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
    	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
    
    	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
    	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
    	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
    	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
    	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
    	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
    	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
    	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
    	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
    	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
    	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
    	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
    	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
    	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
    	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
    	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
    	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
    	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
    	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
    	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
    	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
    	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
    
    };
    
    #define BCM_ENET_STATS_LEN	\
    	(sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
    
    static const u32 unused_mib_regs[] = {
    	ETH_MIB_TX_ALL_OCTETS,
    	ETH_MIB_TX_ALL_PKTS,
    	ETH_MIB_RX_ALL_OCTETS,
    	ETH_MIB_RX_ALL_PKTS,
    };
    
    
    static void bcm_enet_get_drvinfo(struct net_device *netdev,
    				 struct ethtool_drvinfo *drvinfo)
    {
    	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
    	strlcpy(drvinfo->version, bcm_enet_driver_version,
    		sizeof(drvinfo->version));
    	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
    	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
    	drvinfo->n_stats = BCM_ENET_STATS_LEN;
    }
    
    static int bcm_enet_get_sset_count(struct net_device *netdev,
    					int string_set)
    {
    	switch (string_set) {
    	case ETH_SS_STATS:
    		return BCM_ENET_STATS_LEN;
    	default:
    		return -EINVAL;
    	}
    }
    
    static void bcm_enet_get_strings(struct net_device *netdev,
    				 u32 stringset, u8 *data)
    {
    	int i;
    
    	switch (stringset) {
    	case ETH_SS_STATS:
    		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
    			memcpy(data + i * ETH_GSTRING_LEN,
    			       bcm_enet_gstrings_stats[i].stat_string,
    			       ETH_GSTRING_LEN);
    		}
    		break;
    	}
    }
    
    static void update_mib_counters(struct bcm_enet_priv *priv)
    {
    	int i;
    
    	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
    		const struct bcm_enet_stats *s;
    		u32 val;
    		char *p;
    
    		s = &bcm_enet_gstrings_stats[i];
    		if (s->mib_reg == -1)
    			continue;
    
    		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
    		p = (char *)priv + s->stat_offset;
    
    		if (s->sizeof_stat == sizeof(u64))
    			*(u64 *)p += val;
    		else
    			*(u32 *)p += val;
    	}
    
    	/* also empty unused mib counters to make sure mib counter
    	 * overflow interrupt is cleared */
    	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
    		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
    }
    
    static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
    	mutex_lock(&priv->mib_update_lock);
    	update_mib_counters(priv);
    	mutex_unlock(&priv->mib_update_lock);
    
    	/* reenable mib interrupt */
    	if (netif_running(priv->net_dev))
    		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
    }
    
    static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
    				       struct ethtool_stats *stats,
    				       u64 *data)
    {
    	struct bcm_enet_priv *priv;
    	int i;
    
    	priv = netdev_priv(netdev);
    
    	mutex_lock(&priv->mib_update_lock);
    	update_mib_counters(priv);
    
    	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
    		const struct bcm_enet_stats *s;
    		char *p;
    
    		s = &bcm_enet_gstrings_stats[i];
    		if (s->mib_reg == -1)
    			p = (char *)&netdev->stats;
    		else
    			p = (char *)priv;
    		p += s->stat_offset;
    		data[i] = (s->sizeof_stat == sizeof(u64)) ?
    			*(u64 *)p : *(u32 *)p;
    	}
    	mutex_unlock(&priv->mib_update_lock);
    }
    
    static int bcm_enet_get_settings(struct net_device *dev,
    				 struct ethtool_cmd *cmd)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    
    	cmd->maxrxpkt = 0;
    	cmd->maxtxpkt = 0;
    
    	if (priv->has_phy) {
    		if (!priv->phydev)
    			return -ENODEV;
    		return phy_ethtool_gset(priv->phydev, cmd);
    	} else {
    		cmd->autoneg = 0;
    		ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
    					    ? SPEED_100 : SPEED_10));
    		cmd->duplex = (priv->force_duplex_full) ?
    			DUPLEX_FULL : DUPLEX_HALF;
    		cmd->supported = ADVERTISED_10baseT_Half  |
    			ADVERTISED_10baseT_Full |
    			ADVERTISED_100baseT_Half |
    			ADVERTISED_100baseT_Full;
    		cmd->advertising = 0;
    		cmd->port = PORT_MII;
    		cmd->transceiver = XCVR_EXTERNAL;
    	}
    	return 0;
    }
    
    static int bcm_enet_set_settings(struct net_device *dev,
    				 struct ethtool_cmd *cmd)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    	if (priv->has_phy) {
    		if (!priv->phydev)
    			return -ENODEV;
    		return phy_ethtool_sset(priv->phydev, cmd);
    	} else {
    
    		if (cmd->autoneg ||
    		    (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
    		    cmd->port != PORT_MII)
    			return -EINVAL;
    
    		priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
    		priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
    
    		if (netif_running(dev))
    			bcm_enet_adjust_link(dev);
    		return 0;
    	}
    }
    
    static void bcm_enet_get_ringparam(struct net_device *dev,
    				   struct ethtool_ringparam *ering)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    
    	/* rx/tx ring is actually only limited by memory */
    	ering->rx_max_pending = 8192;
    	ering->tx_max_pending = 8192;
    	ering->rx_pending = priv->rx_ring_size;
    	ering->tx_pending = priv->tx_ring_size;
    }
    
    static int bcm_enet_set_ringparam(struct net_device *dev,
    				  struct ethtool_ringparam *ering)
    {
    	struct bcm_enet_priv *priv;
    	int was_running;
    
    	priv = netdev_priv(dev);
    
    	was_running = 0;
    	if (netif_running(dev)) {
    		bcm_enet_stop(dev);
    		was_running = 1;
    	}
    
    	priv->rx_ring_size = ering->rx_pending;
    	priv->tx_ring_size = ering->tx_pending;
    
    	if (was_running) {
    		int err;
    
    		err = bcm_enet_open(dev);
    		if (err)
    			dev_close(dev);
    		else
    			bcm_enet_set_multicast_list(dev);
    	}
    	return 0;
    }
    
    static void bcm_enet_get_pauseparam(struct net_device *dev,
    				    struct ethtool_pauseparam *ecmd)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    	ecmd->autoneg = priv->pause_auto;
    	ecmd->rx_pause = priv->pause_rx;
    	ecmd->tx_pause = priv->pause_tx;
    }
    
    static int bcm_enet_set_pauseparam(struct net_device *dev,
    				   struct ethtool_pauseparam *ecmd)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    
    	if (priv->has_phy) {
    		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
    			/* asymetric pause mode not supported,
    			 * actually possible but integrated PHY has RO
    			 * asym_pause bit */
    			return -EINVAL;
    		}
    	} else {
    		/* no pause autoneg on direct mii connection */
    		if (ecmd->autoneg)
    			return -EINVAL;
    	}
    
    	priv->pause_auto = ecmd->autoneg;
    	priv->pause_rx = ecmd->rx_pause;
    	priv->pause_tx = ecmd->tx_pause;
    
    	return 0;
    }
    
    static const struct ethtool_ops bcm_enet_ethtool_ops = {
    	.get_strings		= bcm_enet_get_strings,
    	.get_sset_count		= bcm_enet_get_sset_count,
    	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
    	.get_settings		= bcm_enet_get_settings,
    	.set_settings		= bcm_enet_set_settings,
    	.get_drvinfo		= bcm_enet_get_drvinfo,
    	.get_link		= ethtool_op_get_link,
    	.get_ringparam		= bcm_enet_get_ringparam,
    	.set_ringparam		= bcm_enet_set_ringparam,
    	.get_pauseparam		= bcm_enet_get_pauseparam,
    	.set_pauseparam		= bcm_enet_set_pauseparam,
    };
    
    static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
    {
    	struct bcm_enet_priv *priv;
    
    	priv = netdev_priv(dev);
    	if (priv->has_phy) {
    		if (!priv->phydev)
    			return -ENODEV;
    		return phy_mii_ioctl(priv->phydev, rq, cmd);
    	} else {
    		struct mii_if_info mii;
    
    		mii.dev = dev;
    		mii.mdio_read = bcm_enet_mdio_read_mii;
    		mii.mdio_write = bcm_enet_mdio_write_mii;
    		mii.phy_id = 0;
    		mii.phy_id_mask = 0x3f;
    		mii.reg_num_mask = 0x1f;
    		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
    	}
    }
    
    /*
     * calculate actual hardware mtu
     */
    static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
    {
    	int actual_mtu;
    
    	actual_mtu = mtu;
    
    	/* add ethernet header + vlan tag size */
    	actual_mtu += VLAN_ETH_HLEN;
    
    	if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
    		return -EINVAL;
    
    	/*
    	 * setup maximum size before we get overflow mark in
    	 * descriptor, note that this will not prevent reception of
    	 * big frames, they will be split into multiple buffers
    	 * anyway
    	 */
    	priv->hw_mtu = actual_mtu;
    
    	/*
    	 * align rx buffer size to dma burst len, account FCS since
    	 * it's appended
    	 */
    	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
    				  BCMENET_DMA_MAXBURST * 4);
    	return 0;
    }
    
    /*
     * adjust mtu, can't be called while device is running
     */
    static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
    {
    	int ret;
    
    	if (netif_running(dev))
    		return -EBUSY;
    
    	ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
    	if (ret)
    		return ret;
    	dev->mtu = new_mtu;
    	return 0;
    }
    
    /*
     * preinit hardware to allow mii operation while device is down
     */
    static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
    {
    	u32 val;
    	int limit;
    
    	/* make sure mac is disabled */
    	bcm_enet_disable_mac(priv);
    
    	/* soft reset mac */
    	val = ENET_CTL_SRESET_MASK;
    	enet_writel(priv, val, ENET_CTL_REG);
    	wmb();
    
    	limit = 1000;
    	do {
    		val = enet_readl(priv, ENET_CTL_REG);
    		if (!(val & ENET_CTL_SRESET_MASK))
    			break;
    		udelay(1);
    	} while (limit--);
    
    	/* select correct mii interface */
    	val = enet_readl(priv, ENET_CTL_REG);
    	if (priv->use_external_mii)
    		val |= ENET_CTL_EPHYSEL_MASK;
    	else
    		val &= ~ENET_CTL_EPHYSEL_MASK;
    	enet_writel(priv, val, ENET_CTL_REG);
    
    	/* turn on mdc clock */
    	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
    		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
    
    	/* set mib counters to self-clear when read */
    	val = enet_readl(priv, ENET_MIBCTL_REG);
    	val |= ENET_MIBCTL_RDCLEAR_MASK;
    	enet_writel(priv, val, ENET_MIBCTL_REG);
    }
    
    static const struct net_device_ops bcm_enet_ops = {
    	.ndo_open		= bcm_enet_open,
    	.ndo_stop		= bcm_enet_stop,
    	.ndo_start_xmit		= bcm_enet_start_xmit,
    	.ndo_set_mac_address	= bcm_enet_set_mac_address,
    	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
    	.ndo_do_ioctl		= bcm_enet_ioctl,
    	.ndo_change_mtu		= bcm_enet_change_mtu,
    #ifdef CONFIG_NET_POLL_CONTROLLER
    	.ndo_poll_controller = bcm_enet_netpoll,
    #endif
    };
    
    /*
     * allocate netdevice, request register memory and register device.
     */
    static int bcm_enet_probe(struct platform_device *pdev)
    {
    	struct bcm_enet_priv *priv;
    	struct net_device *dev;
    	struct bcm63xx_enet_platform_data *pd;
    	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
    	struct mii_bus *bus;
    	const char *clk_name;
    	int i, ret;
    
    	/* stop if shared driver failed, assume driver->probe will be
    	 * called in the same order we register devices (correct ?) */
    	if (!bcm_enet_shared_base)
    		return -ENODEV;
    
    	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
    	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
    	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
    	if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
    		return -ENODEV;
    
    	ret = 0;
    	dev = alloc_etherdev(sizeof(*priv));
    	if (!dev)
    		return -ENOMEM;
    	priv = netdev_priv(dev);
    
    	ret = compute_hw_mtu(priv, dev->mtu);
    	if (ret)
    		goto out;
    
    	priv->base = devm_request_and_ioremap(&pdev->dev, res_mem);
    	if (priv->base == NULL) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	dev->irq = priv->irq = res_irq->start;
    	priv->irq_rx = res_irq_rx->start;
    	priv->irq_tx = res_irq_tx->start;
    	priv->mac_id = pdev->id;
    
    	/* get rx & tx dma channel id for this mac */
    	if (priv->mac_id == 0) {
    		priv->rx_chan = 0;
    		priv->tx_chan = 1;
    		clk_name = "enet0";
    	} else {
    		priv->rx_chan = 2;
    		priv->tx_chan = 3;
    		clk_name = "enet1";
    	}
    
    	priv->mac_clk = clk_get(&pdev->dev, clk_name);
    	if (IS_ERR(priv->mac_clk)) {
    		ret = PTR_ERR(priv->mac_clk);
    		goto out;
    	}
    	clk_enable(priv->mac_clk);
    
    	/* initialize default and fetch platform data */
    	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
    	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
    
    	pd = pdev->dev.platform_data;
    	if (pd) {
    		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
    		priv->has_phy = pd->has_phy;
    		priv->phy_id = pd->phy_id;
    		priv->has_phy_interrupt = pd->has_phy_interrupt;
    		priv->phy_interrupt = pd->phy_interrupt;
    		priv->use_external_mii = !pd->use_internal_phy;
    		priv->pause_auto = pd->pause_auto;
    		priv->pause_rx = pd->pause_rx;
    		priv->pause_tx = pd->pause_tx;
    		priv->force_duplex_full = pd->force_duplex_full;
    		priv->force_speed_100 = pd->force_speed_100;
    	}
    
    	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
    		/* using internal PHY, enable clock */
    		priv->phy_clk = clk_get(&pdev->dev, "ephy");
    		if (IS_ERR(priv->phy_clk)) {
    			ret = PTR_ERR(priv->phy_clk);
    			priv->phy_clk = NULL;
    			goto out_put_clk_mac;
    		}
    		clk_enable(priv->phy_clk);
    	}
    
    	/* do minimal hardware init to be able to probe mii bus */
    	bcm_enet_hw_preinit(priv);
    
    	/* MII bus registration */
    	if (priv->has_phy) {
    
    		priv->mii_bus = mdiobus_alloc();
    		if (!priv->mii_bus) {
    			ret = -ENOMEM;
    			goto out_uninit_hw;
    		}
    
    		bus = priv->mii_bus;
    		bus->name = "bcm63xx_enet MII bus";
    		bus->parent = &pdev->dev;
    		bus->priv = priv;
    		bus->read = bcm_enet_mdio_read_phylib;
    		bus->write = bcm_enet_mdio_write_phylib;
    		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
    
    		/* only probe bus where we think the PHY is, because
    		 * the mdio read operation return 0 instead of 0xffff
    		 * if a slave is not present on hw */
    		bus->phy_mask = ~(1 << priv->phy_id);
    
    		bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
    		if (!bus->irq) {
    			ret = -ENOMEM;
    			goto out_free_mdio;
    		}
    
    		if (priv->has_phy_interrupt)
    			bus->irq[priv->phy_id] = priv->phy_interrupt;
    		else
    			bus->irq[priv->phy_id] = PHY_POLL;
    
    		ret = mdiobus_register(bus);
    		if (ret) {
    			dev_err(&pdev->dev, "unable to register mdio bus\n");
    			goto out_free_mdio;
    		}
    	} else {
    
    		/* run platform code to initialize PHY device */
    		if (pd->mii_config &&
    		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
    				   bcm_enet_mdio_write_mii)) {
    			dev_err(&pdev->dev, "unable to configure mdio bus\n");
    			goto out_uninit_hw;
    		}
    	}
    
    	spin_lock_init(&priv->rx_lock);
    
    	/* init rx timeout (used for oom) */
    	init_timer(&priv->rx_timeout);
    	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
    	priv->rx_timeout.data = (unsigned long)dev;
    
    	/* init the mib update lock&work */
    	mutex_init(&priv->mib_update_lock);
    	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
    
    	/* zero mib counters */
    	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
    		enet_writel(priv, 0, ENET_MIB_REG(i));
    
    	/* register netdevice */
    	dev->netdev_ops = &bcm_enet_ops;
    	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
    
    	SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
    	SET_NETDEV_DEV(dev, &pdev->dev);
    
    	ret = register_netdev(dev);
    	if (ret)
    		goto out_unregister_mdio;
    
    	netif_carrier_off(dev);
    	platform_set_drvdata(pdev, dev);
    	priv->pdev = pdev;
    	priv->net_dev = dev;
    
    	return 0;
    
    out_unregister_mdio:
    	if (priv->mii_bus) {
    		mdiobus_unregister(priv->mii_bus);
    		kfree(priv->mii_bus->irq);
    	}
    
    out_free_mdio:
    	if (priv->mii_bus)
    		mdiobus_free(priv->mii_bus);
    
    out_uninit_hw:
    	/* turn off mdc clock */
    	enet_writel(priv, 0, ENET_MIISC_REG);
    	if (priv->phy_clk) {
    		clk_disable(priv->phy_clk);
    		clk_put(priv->phy_clk);
    	}
    
    out_put_clk_mac:
    	clk_disable(priv->mac_clk);
    	clk_put(priv->mac_clk);
    out:
    	free_netdev(dev);
    	return ret;
    }
    
    
    /*
     * exit func, stops hardware and unregisters netdevice
     */
    static int bcm_enet_remove(struct platform_device *pdev)
    {
    	struct bcm_enet_priv *priv;
    	struct net_device *dev;
    
    	/* stop netdevice */
    	dev = platform_get_drvdata(pdev);
    	priv = netdev_priv(dev);
    	unregister_netdev(dev);
    
    	/* turn off mdc clock */
    	enet_writel(priv, 0, ENET_MIISC_REG);
    
    	if (priv->has_phy) {
    		mdiobus_unregister(priv->mii_bus);
    		kfree(priv->mii_bus->irq);
    		mdiobus_free(priv->mii_bus);
    	} else {
    		struct bcm63xx_enet_platform_data *pd;
    
    		pd = pdev->dev.platform_data;
    		if (pd && pd->mii_config)
    			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
    				       bcm_enet_mdio_write_mii);
    	}
    
    	/* disable hw block clocks */
    	if (priv->phy_clk) {
    		clk_disable(priv->phy_clk);
    		clk_put(priv->phy_clk);
    	}
    	clk_disable(priv->mac_clk);
    	clk_put(priv->mac_clk);
    
    	platform_set_drvdata(pdev, NULL);
    	free_netdev(dev);
    	return 0;
    }
    
    struct platform_driver bcm63xx_enet_driver = {
    	.probe	= bcm_enet_probe,
    	.remove	= bcm_enet_remove,
    	.driver	= {
    		.name	= "bcm63xx_enet",
    		.owner  = THIS_MODULE,
    	},
    };
    
    /*
     * reserve & remap memory space shared between all macs
     */
    static int bcm_enet_shared_probe(struct platform_device *pdev)
    {
    	struct resource *res;
    
    	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	if (!res)
    		return -ENODEV;
    
    	bcm_enet_shared_base = devm_request_and_ioremap(&pdev->dev, res);
    	if (!bcm_enet_shared_base)
    		return -ENOMEM;
    
    	return 0;
    }
    
    static int bcm_enet_shared_remove(struct platform_device *pdev)
    {
    	return 0;
    }
    
    /*
     * this "shared" driver is needed because both macs share a single
     * address space
     */
    struct platform_driver bcm63xx_enet_shared_driver = {
    	.probe	= bcm_enet_shared_probe,
    	.remove	= bcm_enet_shared_remove,
    	.driver	= {
    		.name	= "bcm63xx_enet_shared",
    		.owner  = THIS_MODULE,
    	},
    };
    
    /*
     * entry point
     */
    static int __init bcm_enet_init(void)
    {
    	int ret;
    
    	ret = platform_driver_register(&bcm63xx_enet_shared_driver);
    	if (ret)
    		return ret;
    
    	ret = platform_driver_register(&bcm63xx_enet_driver);
    	if (ret)
    		platform_driver_unregister(&bcm63xx_enet_shared_driver);
    
    	return ret;
    }
    
    static void __exit bcm_enet_exit(void)
    {
    	platform_driver_unregister(&bcm63xx_enet_driver);
    	platform_driver_unregister(&bcm63xx_enet_shared_driver);
    }
    
    
    module_init(bcm_enet_init);
    module_exit(bcm_enet_exit);
    
    MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
    MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
    MODULE_LICENSE("GPL");