Skip to content
Snippets Groups Projects
Select Git revision
  • 81aded24675ebda5de8a68843250ad15584ac38a
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

tcp_ipv6.c

Blame
  • internal.h 17.53 KiB
    /*
     * Copyright (C) 1994 Linus Torvalds
     *
     * Pentium III FXSR, SSE support
     * General FPU state handling cleanups
     *	Gareth Hughes <gareth@valinux.com>, May 2000
     * x86-64 work by Andi Kleen 2002
     */
    
    #ifndef _ASM_X86_FPU_INTERNAL_H
    #define _ASM_X86_FPU_INTERNAL_H
    
    #include <linux/compat.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    
    #include <asm/user.h>
    #include <asm/fpu/api.h>
    #include <asm/fpu/xstate.h>
    
    /*
     * High level FPU state handling functions:
     */
    extern void fpu__activate_curr(struct fpu *fpu);
    extern void fpu__activate_stopped(struct fpu *fpu);
    extern void fpu__save(struct fpu *fpu);
    extern void fpu__restore(struct fpu *fpu);
    extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
    extern void fpu__drop(struct fpu *fpu);
    extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
    extern void fpu__clear(struct fpu *fpu);
    extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
    extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
    
    /*
     * Boot time FPU initialization functions:
     */
    extern void fpu__init_cpu(void);
    extern void fpu__init_system_xstate(void);
    extern void fpu__init_cpu_xstate(void);
    extern void fpu__init_system(struct cpuinfo_x86 *c);
    extern void fpu__init_check_bugs(void);
    extern void fpu__resume_cpu(void);
    
    /*
     * Debugging facility:
     */
    #ifdef CONFIG_X86_DEBUG_FPU
    # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
    #else
    # define WARN_ON_FPU(x) ({ 0; })
    #endif
    
    /*
     * FPU related CPU feature flag helper routines:
     */
    static __always_inline __pure bool use_eager_fpu(void)
    {
    	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
    }
    
    static __always_inline __pure bool use_xsaveopt(void)
    {
    	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
    }
    
    static __always_inline __pure bool use_xsave(void)
    {
    	return static_cpu_has_safe(X86_FEATURE_XSAVE);
    }
    
    static __always_inline __pure bool use_fxsr(void)
    {
    	return static_cpu_has_safe(X86_FEATURE_FXSR);
    }
    
    /*
     * fpstate handling functions:
     */
    
    extern union fpregs_state init_fpstate;
    
    extern void fpstate_init(union fpregs_state *state);
    #ifdef CONFIG_MATH_EMULATION
    extern void fpstate_init_soft(struct swregs_state *soft);
    #else
    static inline void fpstate_init_soft(struct swregs_state *soft) {}
    #endif
    static inline void fpstate_init_fxstate(struct fxregs_state *fx)
    {
    	fx->cwd = 0x37f;
    	fx->mxcsr = MXCSR_DEFAULT;
    }
    extern void fpstate_sanitize_xstate(struct fpu *fpu);
    
    #define user_insn(insn, output, input...)				\
    ({									\
    	int err;							\
    	asm volatile(ASM_STAC "\n"					\
    		     "1:" #insn "\n\t"					\
    		     "2: " ASM_CLAC "\n"				\
    		     ".section .fixup,\"ax\"\n"				\
    		     "3:  movl $-1,%[err]\n"				\
    		     "    jmp  2b\n"					\
    		     ".previous\n"					\
    		     _ASM_EXTABLE(1b, 3b)				\
    		     : [err] "=r" (err), output				\
    		     : "0"(0), input);					\
    	err;								\
    })
    
    #define check_insn(insn, output, input...)				\
    ({									\
    	int err;							\
    	asm volatile("1:" #insn "\n\t"					\
    		     "2:\n"						\
    		     ".section .fixup,\"ax\"\n"				\
    		     "3:  movl $-1,%[err]\n"				\
    		     "    jmp  2b\n"					\
    		     ".previous\n"					\
    		     _ASM_EXTABLE(1b, 3b)				\
    		     : [err] "=r" (err), output				\
    		     : "0"(0), input);					\
    	err;								\
    })
    
    static inline int copy_fregs_to_user(struct fregs_state __user *fx)
    {
    	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
    }
    
    static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
    {
    	if (config_enabled(CONFIG_X86_32))
    		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
    	else if (config_enabled(CONFIG_AS_FXSAVEQ))
    		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
    
    	/* See comment in copy_fxregs_to_kernel() below. */
    	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
    }
    
    static inline int copy_kernel_to_fxregs(struct fxregs_state *fx)
    {
    	if (config_enabled(CONFIG_X86_32))
    		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
    	else if (config_enabled(CONFIG_AS_FXSAVEQ))
    		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
    
    	/* See comment in copy_fxregs_to_kernel() below. */
    	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
    			  "m" (*fx));
    }
    
    static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
    {
    	if (config_enabled(CONFIG_X86_32))
    		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
    	else if (config_enabled(CONFIG_AS_FXSAVEQ))
    		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
    
    	/* See comment in copy_fxregs_to_kernel() below. */
    	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
    			  "m" (*fx));
    }
    
    static inline int copy_kernel_to_fregs(struct fregs_state *fx)
    {
    	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
    }
    
    static inline int copy_user_to_fregs(struct fregs_state __user *fx)
    {
    	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
    }
    
    static inline void copy_fxregs_to_kernel(struct fpu *fpu)
    {
    	if (config_enabled(CONFIG_X86_32))
    		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
    	else if (config_enabled(CONFIG_AS_FXSAVEQ))
    		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
    	else {
    		/* Using "rex64; fxsave %0" is broken because, if the memory
    		 * operand uses any extended registers for addressing, a second
    		 * REX prefix will be generated (to the assembler, rex64
    		 * followed by semicolon is a separate instruction), and hence
    		 * the 64-bitness is lost.
    		 *
    		 * Using "fxsaveq %0" would be the ideal choice, but is only
    		 * supported starting with gas 2.16.
    		 *
    		 * Using, as a workaround, the properly prefixed form below
    		 * isn't accepted by any binutils version so far released,
    		 * complaining that the same type of prefix is used twice if
    		 * an extended register is needed for addressing (fix submitted
    		 * to mainline 2005-11-21).
    		 *
    		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
    		 *
    		 * This, however, we can work around by forcing the compiler to
    		 * select an addressing mode that doesn't require extended
    		 * registers.
    		 */
    		asm volatile( "rex64/fxsave (%[fx])"
    			     : "=m" (fpu->state.fxsave)
    			     : [fx] "R" (&fpu->state.fxsave));
    	}
    }
    
    /* These macros all use (%edi)/(%rdi) as the single memory argument. */
    #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
    #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
    #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
    #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
    #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"
    
    /* xstate instruction fault handler: */
    #define xstate_fault(__err)		\
    					\
    	".section .fixup,\"ax\"\n"	\
    					\
    	"3:  movl $-2,%[_err]\n"	\
    	"    jmp  2b\n"			\
    					\
    	".previous\n"			\
    					\
    	_ASM_EXTABLE(1b, 3b)		\
    	: [_err] "=r" (__err)
    
    /*
     * This function is called only during boot time when x86 caps are not set
     * up and alternative can not be used yet.
     */
    static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
    {
    	u64 mask = -1;
    	u32 lmask = mask;
    	u32 hmask = mask >> 32;
    	int err = 0;
    
    	WARN_ON(system_state != SYSTEM_BOOTING);
    
    	if (boot_cpu_has(X86_FEATURE_XSAVES))
    		asm volatile("1:"XSAVES"\n\t"
    			"2:\n\t"
    			     xstate_fault(err)
    			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
    			: "memory");
    	else
    		asm volatile("1:"XSAVE"\n\t"
    			"2:\n\t"
    			     xstate_fault(err)
    			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
    			: "memory");
    
    	/* We should never fault when copying to a kernel buffer: */
    	WARN_ON_FPU(err);
    }
    
    /*
     * This function is called only during boot time when x86 caps are not set
     * up and alternative can not be used yet.
     */
    static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate, u64 mask)
    {
    	u32 lmask = mask;
    	u32 hmask = mask >> 32;
    	int err = 0;
    
    	WARN_ON(system_state != SYSTEM_BOOTING);
    
    	if (boot_cpu_has(X86_FEATURE_XSAVES))
    		asm volatile("1:"XRSTORS"\n\t"
    			"2:\n\t"
    			     xstate_fault(err)
    			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
    			: "memory");
    	else
    		asm volatile("1:"XRSTOR"\n\t"
    			"2:\n\t"
    			     xstate_fault(err)
    			: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
    			: "memory");
    
    	/* We should never fault when copying from a kernel buffer: */
    	WARN_ON_FPU(err);
    }
    
    /*
     * Save processor xstate to xsave area.
     */
    static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
    {
    	u64 mask = -1;
    	u32 lmask = mask;
    	u32 hmask = mask >> 32;
    	int err = 0;
    
    	WARN_ON(!alternatives_patched);
    
    	/*
    	 * If xsaves is enabled, xsaves replaces xsaveopt because
    	 * it supports compact format and supervisor states in addition to
    	 * modified optimization in xsaveopt.
    	 *
    	 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
    	 * because xsaveopt supports modified optimization which is not
    	 * supported by xsave.
    	 *
    	 * If none of xsaves and xsaveopt is enabled, use xsave.
    	 */
    	alternative_input_2(
    		"1:"XSAVE,
    		XSAVEOPT,
    		X86_FEATURE_XSAVEOPT,
    		XSAVES,
    		X86_FEATURE_XSAVES,
    		[xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
    		"memory");
    	asm volatile("2:\n\t"
    		     xstate_fault(err)
    		     : "0" (err)
    		     : "memory");
    
    	/* We should never fault when copying to a kernel buffer: */
    	WARN_ON_FPU(err);
    }
    
    /*
     * Restore processor xstate from xsave area.
     */
    static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
    {
    	u32 lmask = mask;
    	u32 hmask = mask >> 32;
    	int err = 0;
    
    	/*
    	 * Use xrstors to restore context if it is enabled. xrstors supports
    	 * compacted format of xsave area which is not supported by xrstor.
    	 */
    	alternative_input(
    		"1: " XRSTOR,
    		XRSTORS,
    		X86_FEATURE_XSAVES,
    		"D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
    		: "memory");
    
    	asm volatile("2:\n"
    		     xstate_fault(err)
    		     : "0" (err)
    		     : "memory");
    
    	/* We should never fault when copying from a kernel buffer: */
    	WARN_ON_FPU(err);
    }
    
    /*
     * Save xstate to user space xsave area.
     *
     * We don't use modified optimization because xrstor/xrstors might track
     * a different application.
     *
     * We don't use compacted format xsave area for
     * backward compatibility for old applications which don't understand
     * compacted format of xsave area.
     */
    static inline int copy_xregs_to_user(struct xregs_state __user *buf)
    {
    	int err;
    
    	/*
    	 * Clear the xsave header first, so that reserved fields are
    	 * initialized to zero.
    	 */
    	err = __clear_user(&buf->header, sizeof(buf->header));
    	if (unlikely(err))
    		return -EFAULT;
    
    	__asm__ __volatile__(ASM_STAC "\n"
    			     "1:"XSAVE"\n"
    			     "2: " ASM_CLAC "\n"
    			     xstate_fault(err)
    			     : "D" (buf), "a" (-1), "d" (-1), "0" (err)
    			     : "memory");
    	return err;
    }
    
    /*
     * Restore xstate from user space xsave area.
     */
    static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
    {
    	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
    	u32 lmask = mask;
    	u32 hmask = mask >> 32;
    	int err = 0;
    
    	__asm__ __volatile__(ASM_STAC "\n"
    			     "1:"XRSTOR"\n"
    			     "2: " ASM_CLAC "\n"
    			     xstate_fault(err)
    			     : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
    			     : "memory");	/* memory required? */
    	return err;
    }
    
    /*
     * These must be called with preempt disabled. Returns
     * 'true' if the FPU state is still intact and we can
     * keep registers active.
     *
     * The legacy FNSAVE instruction cleared all FPU state
     * unconditionally, so registers are essentially destroyed.
     * Modern FPU state can be kept in registers, if there are
     * no pending FP exceptions.
     */
    static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
    {
    	if (likely(use_xsave())) {
    		copy_xregs_to_kernel(&fpu->state.xsave);
    		return 1;
    	}
    
    	if (likely(use_fxsr())) {
    		copy_fxregs_to_kernel(fpu);
    		return 1;
    	}
    
    	/*
    	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
    	 * so we have to mark them inactive:
    	 */
    	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
    
    	return 0;
    }
    
    static inline int __copy_fpstate_to_fpregs(struct fpu *fpu)
    {
    	if (use_xsave()) {
    		copy_kernel_to_xregs(&fpu->state.xsave, -1);
    		return 0;
    	} else {
    		if (use_fxsr())
    			return copy_kernel_to_fxregs(&fpu->state.fxsave);
    		else
    			return copy_kernel_to_fregs(&fpu->state.fsave);
    	}
    }
    
    static inline int copy_fpstate_to_fpregs(struct fpu *fpu)
    {
    	/*
    	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
    	 * pending. Clear the x87 state here by setting it to fixed values.
    	 * "m" is a random variable that should be in L1.
    	 */
    	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
    		asm volatile(
    			"fnclex\n\t"
    			"emms\n\t"
    			"fildl %P[addr]"	/* set F?P to defined value */
    			: : [addr] "m" (fpu->fpregs_active));
    	}
    
    	return __copy_fpstate_to_fpregs(fpu);
    }
    
    extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
    
    /*
     * FPU context switch related helper methods:
     */
    
    DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
    
    /*
     * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
     * on this CPU.
     *
     * This will disable any lazy FPU state restore of the current FPU state,
     * but if the current thread owns the FPU, it will still be saved by.
     */
    static inline void __cpu_disable_lazy_restore(unsigned int cpu)
    {
    	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
    }
    
    static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
    {
    	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
    }
    
    
    /*
     * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
     * idiom, which is then paired with the sw-flag (fpregs_active) later on:
     */
    
    static inline void __fpregs_activate_hw(void)
    {
    	if (!use_eager_fpu())
    		clts();
    }
    
    static inline void __fpregs_deactivate_hw(void)
    {
    	if (!use_eager_fpu())
    		stts();
    }
    
    /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
    static inline void __fpregs_deactivate(struct fpu *fpu)
    {
    	WARN_ON_FPU(!fpu->fpregs_active);
    
    	fpu->fpregs_active = 0;
    	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
    }
    
    /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
    static inline void __fpregs_activate(struct fpu *fpu)
    {
    	WARN_ON_FPU(fpu->fpregs_active);
    
    	fpu->fpregs_active = 1;
    	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
    }
    
    /*
     * The question "does this thread have fpu access?"
     * is slightly racy, since preemption could come in
     * and revoke it immediately after the test.
     *
     * However, even in that very unlikely scenario,
     * we can just assume we have FPU access - typically
     * to save the FP state - we'll just take a #NM
     * fault and get the FPU access back.
     */
    static inline int fpregs_active(void)
    {
    	return current->thread.fpu.fpregs_active;
    }
    
    /*
     * Encapsulate the CR0.TS handling together with the
     * software flag.
     *
     * These generally need preemption protection to work,
     * do try to avoid using these on their own.
     */
    static inline void fpregs_activate(struct fpu *fpu)
    {
    	__fpregs_activate_hw();
    	__fpregs_activate(fpu);
    }
    
    static inline void fpregs_deactivate(struct fpu *fpu)
    {
    	__fpregs_deactivate(fpu);
    	__fpregs_deactivate_hw();
    }
    
    /*
     * FPU state switching for scheduling.
     *
     * This is a two-stage process:
     *
     *  - switch_fpu_prepare() saves the old state and
     *    sets the new state of the CR0.TS bit. This is
     *    done within the context of the old process.
     *
     *  - switch_fpu_finish() restores the new state as
     *    necessary.
     */
    typedef struct { int preload; } fpu_switch_t;
    
    static inline fpu_switch_t
    switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
    {
    	fpu_switch_t fpu;
    
    	/*
    	 * If the task has used the math, pre-load the FPU on xsave processors
    	 * or if the past 5 consecutive context-switches used math.
    	 */
    	fpu.preload = new_fpu->fpstate_active &&
    		      (use_eager_fpu() || new_fpu->counter > 5);
    
    	if (old_fpu->fpregs_active) {
    		if (!copy_fpregs_to_fpstate(old_fpu))
    			old_fpu->last_cpu = -1;
    		else
    			old_fpu->last_cpu = cpu;
    
    		/* But leave fpu_fpregs_owner_ctx! */
    		old_fpu->fpregs_active = 0;
    
    		/* Don't change CR0.TS if we just switch! */
    		if (fpu.preload) {
    			new_fpu->counter++;
    			__fpregs_activate(new_fpu);
    			prefetch(&new_fpu->state);
    		} else {
    			__fpregs_deactivate_hw();
    		}
    	} else {
    		old_fpu->counter = 0;
    		old_fpu->last_cpu = -1;
    		if (fpu.preload) {
    			new_fpu->counter++;
    			if (fpu_want_lazy_restore(new_fpu, cpu))
    				fpu.preload = 0;
    			else
    				prefetch(&new_fpu->state);
    			fpregs_activate(new_fpu);
    		}
    	}
    	return fpu;
    }
    
    /*
     * Misc helper functions:
     */
    
    /*
     * By the time this gets called, we've already cleared CR0.TS and
     * given the process the FPU if we are going to preload the FPU
     * state - all we need to do is to conditionally restore the register
     * state itself.
     */
    static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
    {
    	if (fpu_switch.preload) {
    		if (unlikely(copy_fpstate_to_fpregs(new_fpu))) {
    			WARN_ON_FPU(1);
    			fpu__clear(new_fpu);
    		}
    	}
    }
    
    /*
     * Needs to be preemption-safe.
     *
     * NOTE! user_fpu_begin() must be used only immediately before restoring
     * the save state. It does not do any saving/restoring on its own. In
     * lazy FPU mode, it is just an optimization to avoid a #NM exception,
     * the task can lose the FPU right after preempt_enable().
     */
    static inline void user_fpu_begin(void)
    {
    	struct fpu *fpu = &current->thread.fpu;
    
    	preempt_disable();
    	if (!fpregs_active())
    		fpregs_activate(fpu);
    	preempt_enable();
    }
    
    /*
     * MXCSR and XCR definitions:
     */
    
    extern unsigned int mxcsr_feature_mask;
    
    #define XCR_XFEATURE_ENABLED_MASK	0x00000000
    
    static inline u64 xgetbv(u32 index)
    {
    	u32 eax, edx;
    
    	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
    		     : "=a" (eax), "=d" (edx)
    		     : "c" (index));
    	return eax + ((u64)edx << 32);
    }
    
    static inline void xsetbv(u32 index, u64 value)
    {
    	u32 eax = value;
    	u32 edx = value >> 32;
    
    	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
    		     : : "a" (eax), "d" (edx), "c" (index));
    }
    
    #endif /* _ASM_X86_FPU_INTERNAL_H */