Skip to content
Snippets Groups Projects
Select Git revision
  • d7058a79c56abf58bb33a5c2eee2f7cde6f5ec36
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

dm9000.c

Blame
  • dm9000.c 38.44 KiB
    /*
     *      Davicom DM9000 Fast Ethernet driver for Linux.
     * 	Copyright (C) 1997  Sten Wang
     *
     * 	This program is free software; you can redistribute it and/or
     * 	modify it under the terms of the GNU General Public License
     * 	as published by the Free Software Foundation; either version 2
     * 	of the License, or (at your option) any later version.
     *
     * 	This program is distributed in the hope that it will be useful,
     * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
     * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * 	GNU General Public License for more details.
     *
     * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
     *
     * Additional updates, Copyright:
     *	Ben Dooks <ben@simtec.co.uk>
     *	Sascha Hauer <s.hauer@pengutronix.de>
     */
    
    #include <linux/module.h>
    #include <linux/ioport.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/init.h>
    #include <linux/interrupt.h>
    #include <linux/skbuff.h>
    #include <linux/spinlock.h>
    #include <linux/crc32.h>
    #include <linux/mii.h>
    #include <linux/ethtool.h>
    #include <linux/dm9000.h>
    #include <linux/delay.h>
    #include <linux/platform_device.h>
    #include <linux/irq.h>
    #include <linux/slab.h>
    
    #include <asm/delay.h>
    #include <asm/irq.h>
    #include <asm/io.h>
    
    #include "dm9000.h"
    
    /* Board/System/Debug information/definition ---------------- */
    
    #define DM9000_PHY		0x40	/* PHY address 0x01 */
    
    #define CARDNAME	"dm9000"
    #define DRV_VERSION	"1.31"
    
    /*
     * Transmit timeout, default 5 seconds.
     */
    static int watchdog = 5000;
    module_param(watchdog, int, 0400);
    MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
    
    /* DM9000 register address locking.
     *
     * The DM9000 uses an address register to control where data written
     * to the data register goes. This means that the address register
     * must be preserved over interrupts or similar calls.
     *
     * During interrupt and other critical calls, a spinlock is used to
     * protect the system, but the calls themselves save the address
     * in the address register in case they are interrupting another
     * access to the device.
     *
     * For general accesses a lock is provided so that calls which are
     * allowed to sleep are serialised so that the address register does
     * not need to be saved. This lock also serves to serialise access
     * to the EEPROM and PHY access registers which are shared between
     * these two devices.
     */
    
    /* The driver supports the original DM9000E, and now the two newer
     * devices, DM9000A and DM9000B.
     */
    
    enum dm9000_type {
    	TYPE_DM9000E,	/* original DM9000 */
    	TYPE_DM9000A,
    	TYPE_DM9000B
    };
    
    /* Structure/enum declaration ------------------------------- */
    typedef struct board_info {
    
    	void __iomem	*io_addr;	/* Register I/O base address */
    	void __iomem	*io_data;	/* Data I/O address */
    	u16		 irq;		/* IRQ */
    
    	u16		tx_pkt_cnt;
    	u16		queue_pkt_len;
    	u16		queue_start_addr;
    	u16		queue_ip_summed;
    	u16		dbug_cnt;
    	u8		io_mode;		/* 0:word, 2:byte */
    	u8		phy_addr;
    	u8		imr_all;
    
    	unsigned int	flags;
    	unsigned int	in_suspend :1;
    	unsigned int	wake_supported :1;
    	int		debug_level;
    
    	enum dm9000_type type;
    
    	void (*inblk)(void __iomem *port, void *data, int length);
    	void (*outblk)(void __iomem *port, void *data, int length);
    	void (*dumpblk)(void __iomem *port, int length);
    
    	struct device	*dev;	     /* parent device */
    
    	struct resource	*addr_res;   /* resources found */
    	struct resource *data_res;
    	struct resource	*addr_req;   /* resources requested */
    	struct resource *data_req;
    	struct resource *irq_res;
    
    	int		 irq_wake;
    
    	struct mutex	 addr_lock;	/* phy and eeprom access lock */
    
    	struct delayed_work phy_poll;
    	struct net_device  *ndev;
    
    	spinlock_t	lock;
    
    	struct mii_if_info mii;
    	u32		msg_enable;
    	u32		wake_state;
    
    	int		ip_summed;
    } board_info_t;
    
    /* debug code */
    
    #define dm9000_dbg(db, lev, msg...) do {		\
    	if ((lev) < CONFIG_DM9000_DEBUGLEVEL &&		\
    	    (lev) < db->debug_level) {			\
    		dev_dbg(db->dev, msg);			\
    	}						\
    } while (0)
    
    static inline board_info_t *to_dm9000_board(struct net_device *dev)
    {
    	return netdev_priv(dev);
    }
    
    /* DM9000 network board routine ---------------------------- */
    
    static void
    dm9000_reset(board_info_t * db)
    {
    	dev_dbg(db->dev, "resetting device\n");
    
    	/* RESET device */
    	writeb(DM9000_NCR, db->io_addr);
    	udelay(200);
    	writeb(NCR_RST, db->io_data);
    	udelay(200);
    }
    
    /*
     *   Read a byte from I/O port
     */
    static u8
    ior(board_info_t * db, int reg)
    {
    	writeb(reg, db->io_addr);
    	return readb(db->io_data);
    }
    
    /*
     *   Write a byte to I/O port
     */
    
    static void
    iow(board_info_t * db, int reg, int value)
    {
    	writeb(reg, db->io_addr);
    	writeb(value, db->io_data);
    }
    
    /* routines for sending block to chip */
    
    static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
    {
    	writesb(reg, data, count);
    }
    
    static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
    {
    	writesw(reg, data, (count+1) >> 1);
    }
    
    static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
    {
    	writesl(reg, data, (count+3) >> 2);
    }
    
    /* input block from chip to memory */
    
    static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
    {
    	readsb(reg, data, count);
    }
    
    
    static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
    {
    	readsw(reg, data, (count+1) >> 1);
    }
    
    static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
    {
    	readsl(reg, data, (count+3) >> 2);
    }
    
    /* dump block from chip to null */
    
    static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
    {
    	int i;
    	int tmp;
    
    	for (i = 0; i < count; i++)
    		tmp = readb(reg);
    }
    
    static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
    {
    	int i;
    	int tmp;
    
    	count = (count + 1) >> 1;
    
    	for (i = 0; i < count; i++)
    		tmp = readw(reg);
    }
    
    static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
    {
    	int i;
    	int tmp;
    
    	count = (count + 3) >> 2;
    
    	for (i = 0; i < count; i++)
    		tmp = readl(reg);
    }
    
    /* dm9000_set_io
     *
     * select the specified set of io routines to use with the
     * device
     */
    
    static void dm9000_set_io(struct board_info *db, int byte_width)
    {
    	/* use the size of the data resource to work out what IO
    	 * routines we want to use
    	 */
    
    	switch (byte_width) {
    	case 1:
    		db->dumpblk = dm9000_dumpblk_8bit;
    		db->outblk  = dm9000_outblk_8bit;
    		db->inblk   = dm9000_inblk_8bit;
    		break;
    
    
    	case 3:
    		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
    	case 2:
    		db->dumpblk = dm9000_dumpblk_16bit;
    		db->outblk  = dm9000_outblk_16bit;
    		db->inblk   = dm9000_inblk_16bit;
    		break;
    
    	case 4:
    	default:
    		db->dumpblk = dm9000_dumpblk_32bit;
    		db->outblk  = dm9000_outblk_32bit;
    		db->inblk   = dm9000_inblk_32bit;
    		break;
    	}
    }
    
    static void dm9000_schedule_poll(board_info_t *db)
    {
    	if (db->type == TYPE_DM9000E)
    		schedule_delayed_work(&db->phy_poll, HZ * 2);
    }
    
    static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	if (!netif_running(dev))
    		return -EINVAL;
    
    	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
    }
    
    static unsigned int
    dm9000_read_locked(board_info_t *db, int reg)
    {
    	unsigned long flags;
    	unsigned int ret;
    
    	spin_lock_irqsave(&db->lock, flags);
    	ret = ior(db, reg);
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	return ret;
    }
    
    static int dm9000_wait_eeprom(board_info_t *db)
    {
    	unsigned int status;
    	int timeout = 8;	/* wait max 8msec */
    
    	/* The DM9000 data sheets say we should be able to
    	 * poll the ERRE bit in EPCR to wait for the EEPROM
    	 * operation. From testing several chips, this bit
    	 * does not seem to work.
    	 *
    	 * We attempt to use the bit, but fall back to the
    	 * timeout (which is why we do not return an error
    	 * on expiry) to say that the EEPROM operation has
    	 * completed.
    	 */
    
    	while (1) {
    		status = dm9000_read_locked(db, DM9000_EPCR);
    
    		if ((status & EPCR_ERRE) == 0)
    			break;
    
    		msleep(1);
    
    		if (timeout-- < 0) {
    			dev_dbg(db->dev, "timeout waiting EEPROM\n");
    			break;
    		}
    	}
    
    	return 0;
    }
    
    /*
     *  Read a word data from EEPROM
     */
    static void
    dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
    {
    	unsigned long flags;
    
    	if (db->flags & DM9000_PLATF_NO_EEPROM) {
    		to[0] = 0xff;
    		to[1] = 0xff;
    		return;
    	}
    
    	mutex_lock(&db->addr_lock);
    
    	spin_lock_irqsave(&db->lock, flags);
    
    	iow(db, DM9000_EPAR, offset);
    	iow(db, DM9000_EPCR, EPCR_ERPRR);
    
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	dm9000_wait_eeprom(db);
    
    	/* delay for at-least 150uS */
    	msleep(1);
    
    	spin_lock_irqsave(&db->lock, flags);
    
    	iow(db, DM9000_EPCR, 0x0);
    
    	to[0] = ior(db, DM9000_EPDRL);
    	to[1] = ior(db, DM9000_EPDRH);
    
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	mutex_unlock(&db->addr_lock);
    }
    
    /*
     * Write a word data to SROM
     */
    static void
    dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
    {
    	unsigned long flags;
    
    	if (db->flags & DM9000_PLATF_NO_EEPROM)
    		return;
    
    	mutex_lock(&db->addr_lock);
    
    	spin_lock_irqsave(&db->lock, flags);
    	iow(db, DM9000_EPAR, offset);
    	iow(db, DM9000_EPDRH, data[1]);
    	iow(db, DM9000_EPDRL, data[0]);
    	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	dm9000_wait_eeprom(db);
    
    	mdelay(1);	/* wait at least 150uS to clear */
    
    	spin_lock_irqsave(&db->lock, flags);
    	iow(db, DM9000_EPCR, 0);
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	mutex_unlock(&db->addr_lock);
    }
    
    /* ethtool ops */
    
    static void dm9000_get_drvinfo(struct net_device *dev,
    			       struct ethtool_drvinfo *info)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	strcpy(info->driver, CARDNAME);
    	strcpy(info->version, DRV_VERSION);
    	strcpy(info->bus_info, to_platform_device(dm->dev)->name);
    }
    
    static u32 dm9000_get_msglevel(struct net_device *dev)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	return dm->msg_enable;
    }
    
    static void dm9000_set_msglevel(struct net_device *dev, u32 value)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	dm->msg_enable = value;
    }
    
    static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	mii_ethtool_gset(&dm->mii, cmd);
    	return 0;
    }
    
    static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	return mii_ethtool_sset(&dm->mii, cmd);
    }
    
    static int dm9000_nway_reset(struct net_device *dev)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    	return mii_nway_restart(&dm->mii);
    }
    
    static int dm9000_set_features(struct net_device *dev, u32 features)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    	u32 changed = dev->features ^ features;
    	unsigned long flags;
    
    	if (!(changed & NETIF_F_RXCSUM))
    		return 0;
    
    	spin_lock_irqsave(&dm->lock, flags);
    	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
    	spin_unlock_irqrestore(&dm->lock, flags);
    
    	return 0;
    }
    
    static u32 dm9000_get_link(struct net_device *dev)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    	u32 ret;
    
    	if (dm->flags & DM9000_PLATF_EXT_PHY)
    		ret = mii_link_ok(&dm->mii);
    	else
    		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
    
    	return ret;
    }
    
    #define DM_EEPROM_MAGIC		(0x444D394B)
    
    static int dm9000_get_eeprom_len(struct net_device *dev)
    {
    	return 128;
    }
    
    static int dm9000_get_eeprom(struct net_device *dev,
    			     struct ethtool_eeprom *ee, u8 *data)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    	int offset = ee->offset;
    	int len = ee->len;
    	int i;
    
    	/* EEPROM access is aligned to two bytes */
    
    	if ((len & 1) != 0 || (offset & 1) != 0)
    		return -EINVAL;
    
    	if (dm->flags & DM9000_PLATF_NO_EEPROM)
    		return -ENOENT;
    
    	ee->magic = DM_EEPROM_MAGIC;
    
    	for (i = 0; i < len; i += 2)
    		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
    
    	return 0;
    }
    
    static int dm9000_set_eeprom(struct net_device *dev,
    			     struct ethtool_eeprom *ee, u8 *data)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    	int offset = ee->offset;
    	int len = ee->len;
    	int done;
    
    	/* EEPROM access is aligned to two bytes */
    
    	if (dm->flags & DM9000_PLATF_NO_EEPROM)
    		return -ENOENT;
    
    	if (ee->magic != DM_EEPROM_MAGIC)
    		return -EINVAL;
    
    	while (len > 0) {
    		if (len & 1 || offset & 1) {
    			int which = offset & 1;
    			u8 tmp[2];
    
    			dm9000_read_eeprom(dm, offset / 2, tmp);
    			tmp[which] = *data;
    			dm9000_write_eeprom(dm, offset / 2, tmp);
    
    			done = 1;
    		} else {
    			dm9000_write_eeprom(dm, offset / 2, data);
    			done = 2;
    		}
    
    		data += done;
    		offset += done;
    		len -= done;
    	}
    
    	return 0;
    }
    
    static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	memset(w, 0, sizeof(struct ethtool_wolinfo));
    
    	/* note, we could probably support wake-phy too */
    	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
    	w->wolopts = dm->wake_state;
    }
    
    static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    	unsigned long flags;
    	u32 opts = w->wolopts;
    	u32 wcr = 0;
    
    	if (!dm->wake_supported)
    		return -EOPNOTSUPP;
    
    	if (opts & ~WAKE_MAGIC)
    		return -EINVAL;
    
    	if (opts & WAKE_MAGIC)
    		wcr |= WCR_MAGICEN;
    
    	mutex_lock(&dm->addr_lock);
    
    	spin_lock_irqsave(&dm->lock, flags);
    	iow(dm, DM9000_WCR, wcr);
    	spin_unlock_irqrestore(&dm->lock, flags);
    
    	mutex_unlock(&dm->addr_lock);
    
    	if (dm->wake_state != opts) {
    		/* change in wol state, update IRQ state */
    
    		if (!dm->wake_state)
    			irq_set_irq_wake(dm->irq_wake, 1);
    		else if (dm->wake_state & !opts)
    			irq_set_irq_wake(dm->irq_wake, 0);
    	}
    
    	dm->wake_state = opts;
    	return 0;
    }
    
    static const struct ethtool_ops dm9000_ethtool_ops = {
    	.get_drvinfo		= dm9000_get_drvinfo,
    	.get_settings		= dm9000_get_settings,
    	.set_settings		= dm9000_set_settings,
    	.get_msglevel		= dm9000_get_msglevel,
    	.set_msglevel		= dm9000_set_msglevel,
    	.nway_reset		= dm9000_nway_reset,
    	.get_link		= dm9000_get_link,
    	.get_wol		= dm9000_get_wol,
    	.set_wol		= dm9000_set_wol,
     	.get_eeprom_len		= dm9000_get_eeprom_len,
     	.get_eeprom		= dm9000_get_eeprom,
     	.set_eeprom		= dm9000_set_eeprom,
    };
    
    static void dm9000_show_carrier(board_info_t *db,
    				unsigned carrier, unsigned nsr)
    {
    	struct net_device *ndev = db->ndev;
    	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
    
    	if (carrier)
    		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
    			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
    			 (ncr & NCR_FDX) ? "full" : "half");
    	else
    		dev_info(db->dev, "%s: link down\n", ndev->name);
    }
    
    static void
    dm9000_poll_work(struct work_struct *w)
    {
    	struct delayed_work *dw = to_delayed_work(w);
    	board_info_t *db = container_of(dw, board_info_t, phy_poll);
    	struct net_device *ndev = db->ndev;
    
    	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
    	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
    		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
    		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
    		unsigned new_carrier;
    
    		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
    
    		if (old_carrier != new_carrier) {
    			if (netif_msg_link(db))
    				dm9000_show_carrier(db, new_carrier, nsr);
    
    			if (!new_carrier)
    				netif_carrier_off(ndev);
    			else
    				netif_carrier_on(ndev);
    		}
    	} else
    		mii_check_media(&db->mii, netif_msg_link(db), 0);
    	
    	if (netif_running(ndev))
    		dm9000_schedule_poll(db);
    }
    
    /* dm9000_release_board
     *
     * release a board, and any mapped resources
     */
    
    static void
    dm9000_release_board(struct platform_device *pdev, struct board_info *db)
    {
    	/* unmap our resources */
    
    	iounmap(db->io_addr);
    	iounmap(db->io_data);
    
    	/* release the resources */
    
    	release_resource(db->data_req);
    	kfree(db->data_req);
    
    	release_resource(db->addr_req);
    	kfree(db->addr_req);
    }
    
    static unsigned char dm9000_type_to_char(enum dm9000_type type)
    {
    	switch (type) {
    	case TYPE_DM9000E: return 'e';
    	case TYPE_DM9000A: return 'a';
    	case TYPE_DM9000B: return 'b';
    	}
    
    	return '?';
    }
    
    /*
     *  Set DM9000 multicast address
     */
    static void
    dm9000_hash_table_unlocked(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    	struct netdev_hw_addr *ha;
    	int i, oft;
    	u32 hash_val;
    	u16 hash_table[4];
    	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
    
    	dm9000_dbg(db, 1, "entering %s\n", __func__);
    
    	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
    		iow(db, oft, dev->dev_addr[i]);
    
    	/* Clear Hash Table */
    	for (i = 0; i < 4; i++)
    		hash_table[i] = 0x0;
    
    	/* broadcast address */
    	hash_table[3] = 0x8000;
    
    	if (dev->flags & IFF_PROMISC)
    		rcr |= RCR_PRMSC;
    
    	if (dev->flags & IFF_ALLMULTI)
    		rcr |= RCR_ALL;
    
    	/* the multicast address in Hash Table : 64 bits */
    	netdev_for_each_mc_addr(ha, dev) {
    		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
    		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
    	}
    
    	/* Write the hash table to MAC MD table */
    	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
    		iow(db, oft++, hash_table[i]);
    		iow(db, oft++, hash_table[i] >> 8);
    	}
    
    	iow(db, DM9000_RCR, rcr);
    }
    
    static void
    dm9000_hash_table(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    	unsigned long flags;
    
    	spin_lock_irqsave(&db->lock, flags);
    	dm9000_hash_table_unlocked(dev);
    	spin_unlock_irqrestore(&db->lock, flags);
    }
    
    /*
     * Initialize dm9000 board
     */
    static void
    dm9000_init_dm9000(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    	unsigned int imr;
    	unsigned int ncr;
    
    	dm9000_dbg(db, 1, "entering %s\n", __func__);
    
    	/* I/O mode */
    	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
    
    	/* Checksum mode */
    	if (dev->hw_features & NETIF_F_RXCSUM)
    		iow(db, DM9000_RCSR,
    			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
    
    	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
    
    	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
    
    	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
    	 * up dumping the wake events if we disable this. There is already
    	 * a wake-mask in DM9000_WCR */
    	if (db->wake_supported)
    		ncr |= NCR_WAKEEN;
    
    	iow(db, DM9000_NCR, ncr);
    
    	/* Program operating register */
    	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
    	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
    	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
    	iow(db, DM9000_SMCR, 0);        /* Special Mode */
    	/* clear TX status */
    	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
    	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
    
    	/* Set address filter table */
    	dm9000_hash_table_unlocked(dev);
    
    	imr = IMR_PAR | IMR_PTM | IMR_PRM;
    	if (db->type != TYPE_DM9000E)
    		imr |= IMR_LNKCHNG;
    
    	db->imr_all = imr;
    
    	/* Enable TX/RX interrupt mask */
    	iow(db, DM9000_IMR, imr);
    
    	/* Init Driver variable */
    	db->tx_pkt_cnt = 0;
    	db->queue_pkt_len = 0;
    	dev->trans_start = jiffies;
    }
    
    /* Our watchdog timed out. Called by the networking layer */
    static void dm9000_timeout(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    	u8 reg_save;
    	unsigned long flags;
    
    	/* Save previous register address */
    	spin_lock_irqsave(&db->lock, flags);
    	reg_save = readb(db->io_addr);
    
    	netif_stop_queue(dev);
    	dm9000_reset(db);
    	dm9000_init_dm9000(dev);
    	/* We can accept TX packets again */
    	dev->trans_start = jiffies; /* prevent tx timeout */
    	netif_wake_queue(dev);
    
    	/* Restore previous register address */
    	writeb(reg_save, db->io_addr);
    	spin_unlock_irqrestore(&db->lock, flags);
    }
    
    static void dm9000_send_packet(struct net_device *dev,
    			       int ip_summed,
    			       u16 pkt_len)
    {
    	board_info_t *dm = to_dm9000_board(dev);
    
    	/* The DM9000 is not smart enough to leave fragmented packets alone. */
    	if (dm->ip_summed != ip_summed) {
    		if (ip_summed == CHECKSUM_NONE)
    			iow(dm, DM9000_TCCR, 0);
    		else
    			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
    		dm->ip_summed = ip_summed;
    	}
    
    	/* Set TX length to DM9000 */
    	iow(dm, DM9000_TXPLL, pkt_len);
    	iow(dm, DM9000_TXPLH, pkt_len >> 8);
    
    	/* Issue TX polling command */
    	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
    }
    
    /*
     *  Hardware start transmission.
     *  Send a packet to media from the upper layer.
     */
    static int
    dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
    {
    	unsigned long flags;
    	board_info_t *db = netdev_priv(dev);
    
    	dm9000_dbg(db, 3, "%s:\n", __func__);
    
    	if (db->tx_pkt_cnt > 1)
    		return NETDEV_TX_BUSY;
    
    	spin_lock_irqsave(&db->lock, flags);
    
    	/* Move data to DM9000 TX RAM */
    	writeb(DM9000_MWCMD, db->io_addr);
    
    	(db->outblk)(db->io_data, skb->data, skb->len);
    	dev->stats.tx_bytes += skb->len;
    
    	db->tx_pkt_cnt++;
    	/* TX control: First packet immediately send, second packet queue */
    	if (db->tx_pkt_cnt == 1) {
    		dm9000_send_packet(dev, skb->ip_summed, skb->len);
    	} else {
    		/* Second packet */
    		db->queue_pkt_len = skb->len;
    		db->queue_ip_summed = skb->ip_summed;
    		netif_stop_queue(dev);
    	}
    
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	/* free this SKB */
    	dev_kfree_skb(skb);
    
    	return NETDEV_TX_OK;
    }
    
    /*
     * DM9000 interrupt handler
     * receive the packet to upper layer, free the transmitted packet
     */
    
    static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
    {
    	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
    
    	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
    		/* One packet sent complete */
    		db->tx_pkt_cnt--;
    		dev->stats.tx_packets++;
    
    		if (netif_msg_tx_done(db))
    			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
    
    		/* Queue packet check & send */
    		if (db->tx_pkt_cnt > 0)
    			dm9000_send_packet(dev, db->queue_ip_summed,
    					   db->queue_pkt_len);
    		netif_wake_queue(dev);
    	}
    }
    
    struct dm9000_rxhdr {
    	u8	RxPktReady;
    	u8	RxStatus;
    	__le16	RxLen;
    } __packed;
    
    /*
     *  Received a packet and pass to upper layer
     */
    static void
    dm9000_rx(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    	struct dm9000_rxhdr rxhdr;
    	struct sk_buff *skb;
    	u8 rxbyte, *rdptr;
    	bool GoodPacket;
    	int RxLen;
    
    	/* Check packet ready or not */
    	do {
    		ior(db, DM9000_MRCMDX);	/* Dummy read */
    
    		/* Get most updated data */
    		rxbyte = readb(db->io_data);
    
    		/* Status check: this byte must be 0 or 1 */
    		if (rxbyte & DM9000_PKT_ERR) {
    			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
    			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
    			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
    			return;
    		}
    
    		if (!(rxbyte & DM9000_PKT_RDY))
    			return;
    
    		/* A packet ready now  & Get status/length */
    		GoodPacket = true;
    		writeb(DM9000_MRCMD, db->io_addr);
    
    		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
    
    		RxLen = le16_to_cpu(rxhdr.RxLen);
    
    		if (netif_msg_rx_status(db))
    			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
    				rxhdr.RxStatus, RxLen);
    
    		/* Packet Status check */
    		if (RxLen < 0x40) {
    			GoodPacket = false;
    			if (netif_msg_rx_err(db))
    				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
    		}
    
    		if (RxLen > DM9000_PKT_MAX) {
    			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
    		}
    
    		/* rxhdr.RxStatus is identical to RSR register. */
    		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
    				      RSR_PLE | RSR_RWTO |
    				      RSR_LCS | RSR_RF)) {
    			GoodPacket = false;
    			if (rxhdr.RxStatus & RSR_FOE) {
    				if (netif_msg_rx_err(db))
    					dev_dbg(db->dev, "fifo error\n");
    				dev->stats.rx_fifo_errors++;
    			}
    			if (rxhdr.RxStatus & RSR_CE) {
    				if (netif_msg_rx_err(db))
    					dev_dbg(db->dev, "crc error\n");
    				dev->stats.rx_crc_errors++;
    			}
    			if (rxhdr.RxStatus & RSR_RF) {
    				if (netif_msg_rx_err(db))
    					dev_dbg(db->dev, "length error\n");
    				dev->stats.rx_length_errors++;
    			}
    		}
    
    		/* Move data from DM9000 */
    		if (GoodPacket &&
    		    ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
    			skb_reserve(skb, 2);
    			rdptr = (u8 *) skb_put(skb, RxLen - 4);
    
    			/* Read received packet from RX SRAM */
    
    			(db->inblk)(db->io_data, rdptr, RxLen);
    			dev->stats.rx_bytes += RxLen;
    
    			/* Pass to upper layer */
    			skb->protocol = eth_type_trans(skb, dev);
    			if (dev->features & NETIF_F_RXCSUM) {
    				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
    					skb->ip_summed = CHECKSUM_UNNECESSARY;
    				else
    					skb_checksum_none_assert(skb);
    			}
    			netif_rx(skb);
    			dev->stats.rx_packets++;
    
    		} else {
    			/* need to dump the packet's data */
    
    			(db->dumpblk)(db->io_data, RxLen);
    		}
    	} while (rxbyte & DM9000_PKT_RDY);
    }
    
    static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
    {
    	struct net_device *dev = dev_id;
    	board_info_t *db = netdev_priv(dev);
    	int int_status;
    	unsigned long flags;
    	u8 reg_save;
    
    	dm9000_dbg(db, 3, "entering %s\n", __func__);
    
    	/* A real interrupt coming */
    
    	/* holders of db->lock must always block IRQs */
    	spin_lock_irqsave(&db->lock, flags);
    
    	/* Save previous register address */
    	reg_save = readb(db->io_addr);
    
    	/* Disable all interrupts */
    	iow(db, DM9000_IMR, IMR_PAR);
    
    	/* Got DM9000 interrupt status */
    	int_status = ior(db, DM9000_ISR);	/* Got ISR */
    	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
    
    	if (netif_msg_intr(db))
    		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
    
    	/* Received the coming packet */
    	if (int_status & ISR_PRS)
    		dm9000_rx(dev);
    
    	/* Trnasmit Interrupt check */
    	if (int_status & ISR_PTS)
    		dm9000_tx_done(dev, db);
    
    	if (db->type != TYPE_DM9000E) {
    		if (int_status & ISR_LNKCHNG) {
    			/* fire a link-change request */
    			schedule_delayed_work(&db->phy_poll, 1);
    		}
    	}
    
    	/* Re-enable interrupt mask */
    	iow(db, DM9000_IMR, db->imr_all);
    
    	/* Restore previous register address */
    	writeb(reg_save, db->io_addr);
    
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	return IRQ_HANDLED;
    }
    
    static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
    {
    	struct net_device *dev = dev_id;
    	board_info_t *db = netdev_priv(dev);
    	unsigned long flags;
    	unsigned nsr, wcr;
    
    	spin_lock_irqsave(&db->lock, flags);
    
    	nsr = ior(db, DM9000_NSR);
    	wcr = ior(db, DM9000_WCR);
    
    	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
    
    	if (nsr & NSR_WAKEST) {
    		/* clear, so we can avoid */
    		iow(db, DM9000_NSR, NSR_WAKEST);
    
    		if (wcr & WCR_LINKST)
    			dev_info(db->dev, "wake by link status change\n");
    		if (wcr & WCR_SAMPLEST)
    			dev_info(db->dev, "wake by sample packet\n");
    		if (wcr & WCR_MAGICST )
    			dev_info(db->dev, "wake by magic packet\n");
    		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
    			dev_err(db->dev, "wake signalled with no reason? "
    				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
    
    	}
    
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
    }
    
    #ifdef CONFIG_NET_POLL_CONTROLLER
    /*
     *Used by netconsole
     */
    static void dm9000_poll_controller(struct net_device *dev)
    {
    	disable_irq(dev->irq);
    	dm9000_interrupt(dev->irq, dev);
    	enable_irq(dev->irq);
    }
    #endif
    
    /*
     *  Open the interface.
     *  The interface is opened whenever "ifconfig" actives it.
     */
    static int
    dm9000_open(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
    
    	if (netif_msg_ifup(db))
    		dev_dbg(db->dev, "enabling %s\n", dev->name);
    
    	/* If there is no IRQ type specified, default to something that
    	 * may work, and tell the user that this is a problem */
    
    	if (irqflags == IRQF_TRIGGER_NONE)
    		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
    
    	irqflags |= IRQF_SHARED;
    
    	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
    	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
    	mdelay(1); /* delay needs by DM9000B */
    
    	/* Initialize DM9000 board */
    	dm9000_reset(db);
    	dm9000_init_dm9000(dev);
    
    	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
    		return -EAGAIN;
    
    	/* Init driver variable */
    	db->dbug_cnt = 0;
    
    	mii_check_media(&db->mii, netif_msg_link(db), 1);
    	netif_start_queue(dev);
    	
    	dm9000_schedule_poll(db);
    
    	return 0;
    }
    
    /*
     * Sleep, either by using msleep() or if we are suspending, then
     * use mdelay() to sleep.
     */
    static void dm9000_msleep(board_info_t *db, unsigned int ms)
    {
    	if (db->in_suspend)
    		mdelay(ms);
    	else
    		msleep(ms);
    }
    
    /*
     *   Read a word from phyxcer
     */
    static int
    dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
    {
    	board_info_t *db = netdev_priv(dev);
    	unsigned long flags;
    	unsigned int reg_save;
    	int ret;
    
    	mutex_lock(&db->addr_lock);
    
    	spin_lock_irqsave(&db->lock,flags);
    
    	/* Save previous register address */
    	reg_save = readb(db->io_addr);
    
    	/* Fill the phyxcer register into REG_0C */
    	iow(db, DM9000_EPAR, DM9000_PHY | reg);
    
    	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
    
    	writeb(reg_save, db->io_addr);
    	spin_unlock_irqrestore(&db->lock,flags);
    
    	dm9000_msleep(db, 1);		/* Wait read complete */
    
    	spin_lock_irqsave(&db->lock,flags);
    	reg_save = readb(db->io_addr);
    
    	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
    
    	/* The read data keeps on REG_0D & REG_0E */
    	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
    
    	/* restore the previous address */
    	writeb(reg_save, db->io_addr);
    	spin_unlock_irqrestore(&db->lock,flags);
    
    	mutex_unlock(&db->addr_lock);
    
    	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
    	return ret;
    }
    
    /*
     *   Write a word to phyxcer
     */
    static void
    dm9000_phy_write(struct net_device *dev,
    		 int phyaddr_unused, int reg, int value)
    {
    	board_info_t *db = netdev_priv(dev);
    	unsigned long flags;
    	unsigned long reg_save;
    
    	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
    	mutex_lock(&db->addr_lock);
    
    	spin_lock_irqsave(&db->lock,flags);
    
    	/* Save previous register address */
    	reg_save = readb(db->io_addr);
    
    	/* Fill the phyxcer register into REG_0C */
    	iow(db, DM9000_EPAR, DM9000_PHY | reg);
    
    	/* Fill the written data into REG_0D & REG_0E */
    	iow(db, DM9000_EPDRL, value);
    	iow(db, DM9000_EPDRH, value >> 8);
    
    	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
    
    	writeb(reg_save, db->io_addr);
    	spin_unlock_irqrestore(&db->lock, flags);
    
    	dm9000_msleep(db, 1);		/* Wait write complete */
    
    	spin_lock_irqsave(&db->lock,flags);
    	reg_save = readb(db->io_addr);
    
    	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
    
    	/* restore the previous address */
    	writeb(reg_save, db->io_addr);
    
    	spin_unlock_irqrestore(&db->lock, flags);
    	mutex_unlock(&db->addr_lock);
    }
    
    static void
    dm9000_shutdown(struct net_device *dev)
    {
    	board_info_t *db = netdev_priv(dev);
    
    	/* RESET device */
    	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
    	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
    	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
    	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
    }
    
    /*
     * Stop the interface.
     * The interface is stopped when it is brought.
     */
    static int
    dm9000_stop(struct net_device *ndev)
    {
    	board_info_t *db = netdev_priv(ndev);
    
    	if (netif_msg_ifdown(db))
    		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
    
    	cancel_delayed_work_sync(&db->phy_poll);
    
    	netif_stop_queue(ndev);
    	netif_carrier_off(ndev);
    
    	/* free interrupt */
    	free_irq(ndev->irq, ndev);
    
    	dm9000_shutdown(ndev);
    
    	return 0;
    }
    
    static const struct net_device_ops dm9000_netdev_ops = {
    	.ndo_open		= dm9000_open,
    	.ndo_stop		= dm9000_stop,
    	.ndo_start_xmit		= dm9000_start_xmit,
    	.ndo_tx_timeout		= dm9000_timeout,
    	.ndo_set_multicast_list	= dm9000_hash_table,
    	.ndo_do_ioctl		= dm9000_ioctl,
    	.ndo_change_mtu		= eth_change_mtu,
    	.ndo_set_features	= dm9000_set_features,
    	.ndo_validate_addr	= eth_validate_addr,
    	.ndo_set_mac_address	= eth_mac_addr,
    #ifdef CONFIG_NET_POLL_CONTROLLER
    	.ndo_poll_controller	= dm9000_poll_controller,
    #endif
    };
    
    /*
     * Search DM9000 board, allocate space and register it
     */
    static int __devinit
    dm9000_probe(struct platform_device *pdev)
    {
    	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
    	struct board_info *db;	/* Point a board information structure */
    	struct net_device *ndev;
    	const unsigned char *mac_src;
    	int ret = 0;
    	int iosize;
    	int i;
    	u32 id_val;
    
    	/* Init network device */
    	ndev = alloc_etherdev(sizeof(struct board_info));
    	if (!ndev) {
    		dev_err(&pdev->dev, "could not allocate device.\n");
    		return -ENOMEM;
    	}
    
    	SET_NETDEV_DEV(ndev, &pdev->dev);
    
    	dev_dbg(&pdev->dev, "dm9000_probe()\n");
    
    	/* setup board info structure */
    	db = netdev_priv(ndev);
    
    	db->dev = &pdev->dev;
    	db->ndev = ndev;
    
    	spin_lock_init(&db->lock);
    	mutex_init(&db->addr_lock);
    
    	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
    
    	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
    	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
    
    	if (db->addr_res == NULL || db->data_res == NULL ||
    	    db->irq_res == NULL) {
    		dev_err(db->dev, "insufficient resources\n");
    		ret = -ENOENT;
    		goto out;
    	}
    
    	db->irq_wake = platform_get_irq(pdev, 1);
    	if (db->irq_wake >= 0) {
    		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
    
    		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
    				  IRQF_SHARED, dev_name(db->dev), ndev);
    		if (ret) {
    			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
    		} else {
    
    			/* test to see if irq is really wakeup capable */
    			ret = irq_set_irq_wake(db->irq_wake, 1);
    			if (ret) {
    				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
    					db->irq_wake, ret);
    				ret = 0;
    			} else {
    				irq_set_irq_wake(db->irq_wake, 0);
    				db->wake_supported = 1;
    			}
    		}
    	}
    
    	iosize = resource_size(db->addr_res);
    	db->addr_req = request_mem_region(db->addr_res->start, iosize,
    					  pdev->name);
    
    	if (db->addr_req == NULL) {
    		dev_err(db->dev, "cannot claim address reg area\n");
    		ret = -EIO;
    		goto out;
    	}
    
    	db->io_addr = ioremap(db->addr_res->start, iosize);
    
    	if (db->io_addr == NULL) {
    		dev_err(db->dev, "failed to ioremap address reg\n");
    		ret = -EINVAL;
    		goto out;
    	}
    
    	iosize = resource_size(db->data_res);
    	db->data_req = request_mem_region(db->data_res->start, iosize,
    					  pdev->name);
    
    	if (db->data_req == NULL) {
    		dev_err(db->dev, "cannot claim data reg area\n");
    		ret = -EIO;
    		goto out;
    	}
    
    	db->io_data = ioremap(db->data_res->start, iosize);
    
    	if (db->io_data == NULL) {
    		dev_err(db->dev, "failed to ioremap data reg\n");
    		ret = -EINVAL;
    		goto out;
    	}
    
    	/* fill in parameters for net-dev structure */
    	ndev->base_addr = (unsigned long)db->io_addr;
    	ndev->irq	= db->irq_res->start;
    
    	/* ensure at least we have a default set of IO routines */
    	dm9000_set_io(db, iosize);
    
    	/* check to see if anything is being over-ridden */
    	if (pdata != NULL) {
    		/* check to see if the driver wants to over-ride the
    		 * default IO width */
    
    		if (pdata->flags & DM9000_PLATF_8BITONLY)
    			dm9000_set_io(db, 1);
    
    		if (pdata->flags & DM9000_PLATF_16BITONLY)
    			dm9000_set_io(db, 2);
    
    		if (pdata->flags & DM9000_PLATF_32BITONLY)
    			dm9000_set_io(db, 4);
    
    		/* check to see if there are any IO routine
    		 * over-rides */
    
    		if (pdata->inblk != NULL)
    			db->inblk = pdata->inblk;
    
    		if (pdata->outblk != NULL)
    			db->outblk = pdata->outblk;
    
    		if (pdata->dumpblk != NULL)
    			db->dumpblk = pdata->dumpblk;
    
    		db->flags = pdata->flags;
    	}
    
    #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
    	db->flags |= DM9000_PLATF_SIMPLE_PHY;
    #endif
    
    	dm9000_reset(db);
    
    	/* try multiple times, DM9000 sometimes gets the read wrong */
    	for (i = 0; i < 8; i++) {
    		id_val  = ior(db, DM9000_VIDL);
    		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
    		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
    		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
    
    		if (id_val == DM9000_ID)
    			break;
    		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
    	}
    
    	if (id_val != DM9000_ID) {
    		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
    		ret = -ENODEV;
    		goto out;
    	}
    
    	/* Identify what type of DM9000 we are working on */
    
    	id_val = ior(db, DM9000_CHIPR);
    	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
    
    	switch (id_val) {
    	case CHIPR_DM9000A:
    		db->type = TYPE_DM9000A;
    		break;
    	case CHIPR_DM9000B:
    		db->type = TYPE_DM9000B;
    		break;
    	default:
    		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
    		db->type = TYPE_DM9000E;
    	}
    
    	/* dm9000a/b are capable of hardware checksum offload */
    	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
    		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
    		ndev->features |= ndev->hw_features;
    	}
    
    	/* from this point we assume that we have found a DM9000 */
    
    	/* driver system function */
    	ether_setup(ndev);
    
    	ndev->netdev_ops	= &dm9000_netdev_ops;
    	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
    	ndev->ethtool_ops	= &dm9000_ethtool_ops;
    
    	db->msg_enable       = NETIF_MSG_LINK;
    	db->mii.phy_id_mask  = 0x1f;
    	db->mii.reg_num_mask = 0x1f;
    	db->mii.force_media  = 0;
    	db->mii.full_duplex  = 0;
    	db->mii.dev	     = ndev;
    	db->mii.mdio_read    = dm9000_phy_read;
    	db->mii.mdio_write   = dm9000_phy_write;
    
    	mac_src = "eeprom";
    
    	/* try reading the node address from the attached EEPROM */
    	for (i = 0; i < 6; i += 2)
    		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
    
    	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
    		mac_src = "platform data";
    		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
    	}
    
    	if (!is_valid_ether_addr(ndev->dev_addr)) {
    		/* try reading from mac */
    		
    		mac_src = "chip";
    		for (i = 0; i < 6; i++)
    			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
    	}
    
    	if (!is_valid_ether_addr(ndev->dev_addr)) {
    		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
    			 "set using ifconfig\n", ndev->name);
    
    		random_ether_addr(ndev->dev_addr);
    		mac_src = "random";
    	}
    
    
    	platform_set_drvdata(pdev, ndev);
    	ret = register_netdev(ndev);
    
    	if (ret == 0)
    		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
    		       ndev->name, dm9000_type_to_char(db->type),
    		       db->io_addr, db->io_data, ndev->irq,
    		       ndev->dev_addr, mac_src);
    	return 0;
    
    out:
    	dev_err(db->dev, "not found (%d).\n", ret);
    
    	dm9000_release_board(pdev, db);
    	free_netdev(ndev);
    
    	return ret;
    }
    
    static int
    dm9000_drv_suspend(struct device *dev)
    {
    	struct platform_device *pdev = to_platform_device(dev);
    	struct net_device *ndev = platform_get_drvdata(pdev);
    	board_info_t *db;
    
    	if (ndev) {
    		db = netdev_priv(ndev);
    		db->in_suspend = 1;
    
    		if (!netif_running(ndev))
    			return 0;
    
    		netif_device_detach(ndev);
    
    		/* only shutdown if not using WoL */
    		if (!db->wake_state)
    			dm9000_shutdown(ndev);
    	}
    	return 0;
    }
    
    static int
    dm9000_drv_resume(struct device *dev)
    {
    	struct platform_device *pdev = to_platform_device(dev);
    	struct net_device *ndev = platform_get_drvdata(pdev);
    	board_info_t *db = netdev_priv(ndev);
    
    	if (ndev) {
    		if (netif_running(ndev)) {
    			/* reset if we were not in wake mode to ensure if
    			 * the device was powered off it is in a known state */
    			if (!db->wake_state) {
    				dm9000_reset(db);
    				dm9000_init_dm9000(ndev);
    			}
    
    			netif_device_attach(ndev);
    		}
    
    		db->in_suspend = 0;
    	}
    	return 0;
    }
    
    static const struct dev_pm_ops dm9000_drv_pm_ops = {
    	.suspend	= dm9000_drv_suspend,
    	.resume		= dm9000_drv_resume,
    };
    
    static int __devexit
    dm9000_drv_remove(struct platform_device *pdev)
    {
    	struct net_device *ndev = platform_get_drvdata(pdev);
    
    	platform_set_drvdata(pdev, NULL);
    
    	unregister_netdev(ndev);
    	dm9000_release_board(pdev, netdev_priv(ndev));
    	free_netdev(ndev);		/* free device structure */
    
    	dev_dbg(&pdev->dev, "released and freed device\n");
    	return 0;
    }
    
    static struct platform_driver dm9000_driver = {
    	.driver	= {
    		.name    = "dm9000",
    		.owner	 = THIS_MODULE,
    		.pm	 = &dm9000_drv_pm_ops,
    	},
    	.probe   = dm9000_probe,
    	.remove  = __devexit_p(dm9000_drv_remove),
    };
    
    static int __init
    dm9000_init(void)
    {
    	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
    
    	return platform_driver_register(&dm9000_driver);
    }
    
    static void __exit
    dm9000_cleanup(void)
    {
    	platform_driver_unregister(&dm9000_driver);
    }
    
    module_init(dm9000_init);
    module_exit(dm9000_cleanup);
    
    MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
    MODULE_DESCRIPTION("Davicom DM9000 network driver");
    MODULE_LICENSE("GPL");
    MODULE_ALIAS("platform:dm9000");