Skip to content
Snippets Groups Projects
Select Git revision
  • 65738c6b461a8bb0b056e024299738f7cc9a28b7
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS-Ascend
  • openEuler-22.03-LTS
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
  • 5.10.0-106.16.0
  • 5.10.0-106.15.0
  • 5.10.0-117.0.0
  • 5.10.0-60.57.0
  • 5.10.0-116.0.0
33 results

arm_pmu_acpi.c

Blame
  • arm_pmu_acpi.c 6.67 KiB
    /*
     * ACPI probing code for ARM performance counters.
     *
     * Copyright (C) 2017 ARM Ltd.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    
    #include <linux/acpi.h>
    #include <linux/cpumask.h>
    #include <linux/init.h>
    #include <linux/irq.h>
    #include <linux/irqdesc.h>
    #include <linux/percpu.h>
    #include <linux/perf/arm_pmu.h>
    
    #include <asm/cputype.h>
    
    static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
    static DEFINE_PER_CPU(int, pmu_irqs);
    
    static int arm_pmu_acpi_register_irq(int cpu)
    {
    	struct acpi_madt_generic_interrupt *gicc;
    	int gsi, trigger;
    
    	gicc = acpi_cpu_get_madt_gicc(cpu);
    	if (WARN_ON(!gicc))
    		return -EINVAL;
    
    	gsi = gicc->performance_interrupt;
    
    	/*
    	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
    	 * have an interrupt. QEMU advertises this by using a GSI of zero,
    	 * which is not known to be valid on any hardware despite being
    	 * valid per the spec. Take the pragmatic approach and reject a
    	 * GSI of zero for now.
    	 */
    	if (!gsi)
    		return 0;
    
    	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
    		trigger = ACPI_EDGE_SENSITIVE;
    	else
    		trigger = ACPI_LEVEL_SENSITIVE;
    
    	/*
    	 * Helpfully, the MADT GICC doesn't have a polarity flag for the
    	 * "performance interrupt". Luckily, on compliant GICs the polarity is
    	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
    	 * from SW.
    	 *
    	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
    	 * may not match the real polarity, but that should not matter.
    	 *
    	 * Other interrupt controllers are not supported with ACPI.
    	 */
    	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
    }
    
    static void arm_pmu_acpi_unregister_irq(int cpu)
    {
    	struct acpi_madt_generic_interrupt *gicc;
    	int gsi;
    
    	gicc = acpi_cpu_get_madt_gicc(cpu);
    	if (!gicc)
    		return;
    
    	gsi = gicc->performance_interrupt;
    	acpi_unregister_gsi(gsi);
    }
    
    static int arm_pmu_acpi_parse_irqs(void)
    {
    	int irq, cpu, irq_cpu, err;
    
    	for_each_possible_cpu(cpu) {
    		irq = arm_pmu_acpi_register_irq(cpu);
    		if (irq < 0) {
    			err = irq;
    			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
    				cpu, err);
    			goto out_err;
    		} else if (irq == 0) {
    			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
    		}
    
    		/*
    		 * Log and request the IRQ so the core arm_pmu code can manage
    		 * it. We'll have to sanity-check IRQs later when we associate
    		 * them with their PMUs.
    		 */
    		per_cpu(pmu_irqs, cpu) = irq;
    		armpmu_request_irq(irq, cpu);
    	}
    
    	return 0;
    
    out_err:
    	for_each_possible_cpu(cpu) {
    		irq = per_cpu(pmu_irqs, cpu);
    		if (!irq)
    			continue;
    
    		arm_pmu_acpi_unregister_irq(cpu);
    
    		/*
    		 * Blat all copies of the IRQ so that we only unregister the
    		 * corresponding GSI once (e.g. when we have PPIs).
    		 */
    		for_each_possible_cpu(irq_cpu) {
    			if (per_cpu(pmu_irqs, irq_cpu) == irq)
    				per_cpu(pmu_irqs, irq_cpu) = 0;
    		}
    	}
    
    	return err;
    }
    
    static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
    {
    	unsigned long cpuid = read_cpuid_id();
    	struct arm_pmu *pmu;
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		pmu = per_cpu(probed_pmus, cpu);
    		if (!pmu || pmu->acpi_cpuid != cpuid)
    			continue;
    
    		return pmu;
    	}
    
    	pmu = armpmu_alloc_atomic();
    	if (!pmu) {
    		pr_warn("Unable to allocate PMU for CPU%d\n",
    			smp_processor_id());
    		return NULL;
    	}
    
    	pmu->acpi_cpuid = cpuid;
    
    	return pmu;
    }
    
    /*
     * Check whether the new IRQ is compatible with those already associated with
     * the PMU (e.g. we don't have mismatched PPIs).
     */
    static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
    {
    	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
    	int cpu;
    
    	if (!irq)
    		return true;
    
    	for_each_cpu(cpu, &pmu->supported_cpus) {
    		int other_irq = per_cpu(hw_events->irq, cpu);
    		if (!other_irq)
    			continue;
    
    		if (irq == other_irq)
    			continue;
    		if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
    			continue;
    
    		pr_warn("mismatched PPIs detected\n");
    		return false;
    	}
    
    	return true;
    }
    
    /*
     * This must run before the common arm_pmu hotplug logic, so that we can
     * associate a CPU and its interrupt before the common code tries to manage the
     * affinity and so on.
     *
     * Note that hotplug events are serialized, so we cannot race with another CPU
     * coming up. The perf core won't open events while a hotplug event is in
     * progress.
     */
    static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
    {
    	struct arm_pmu *pmu;
    	struct pmu_hw_events __percpu *hw_events;
    	int irq;
    
    	/* If we've already probed this CPU, we have nothing to do */
    	if (per_cpu(probed_pmus, cpu))
    		return 0;
    
    	irq = per_cpu(pmu_irqs, cpu);
    
    	pmu = arm_pmu_acpi_find_alloc_pmu();
    	if (!pmu)
    		return -ENOMEM;
    
    	per_cpu(probed_pmus, cpu) = pmu;
    
    	if (pmu_irq_matches(pmu, irq)) {
    		hw_events = pmu->hw_events;
    		per_cpu(hw_events->irq, cpu) = irq;
    	}
    
    	cpumask_set_cpu(cpu, &pmu->supported_cpus);
    
    	/*
    	 * Ideally, we'd probe the PMU here when we find the first matching
    	 * CPU. We can't do that for several reasons; see the comment in
    	 * arm_pmu_acpi_init().
    	 *
    	 * So for the time being, we're done.
    	 */
    	return 0;
    }
    
    int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
    {
    	int pmu_idx = 0;
    	int cpu, ret;
    
    	/*
    	 * Initialise and register the set of PMUs which we know about right
    	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
    	 * could handle late hotplug, but this may lead to deadlock since we
    	 * might try to register a hotplug notifier instance from within a
    	 * hotplug notifier.
    	 *
    	 * There's also the problem of having access to the right init_fn,
    	 * without tying this too deeply into the "real" PMU driver.
    	 *
    	 * For the moment, as with the platform/DT case, we need at least one
    	 * of a PMU's CPUs to be online at probe time.
    	 */
    	for_each_possible_cpu(cpu) {
    		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
    		char *base_name;
    
    		if (!pmu || pmu->name)
    			continue;
    
    		ret = init_fn(pmu);
    		if (ret == -ENODEV) {
    			/* PMU not handled by this driver, or not present */
    			continue;
    		} else if (ret) {
    			pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
    			return ret;
    		}
    
    		base_name = pmu->name;
    		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
    		if (!pmu->name) {
    			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
    			return -ENOMEM;
    		}
    
    		ret = armpmu_register(pmu);
    		if (ret) {
    			pr_warn("Failed to register PMU for CPU%d\n", cpu);
    			kfree(pmu->name);
    			return ret;
    		}
    	}
    
    	return 0;
    }
    
    static int arm_pmu_acpi_init(void)
    {
    	int ret;
    
    	if (acpi_disabled)
    		return 0;
    
    	ret = arm_pmu_acpi_parse_irqs();
    	if (ret)
    		return ret;
    
    	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
    				"perf/arm/pmu_acpi:starting",
    				arm_pmu_acpi_cpu_starting, NULL);
    
    	return ret;
    }
    subsys_initcall(arm_pmu_acpi_init)