Skip to content
Snippets Groups Projects
Select Git revision
  • 69e3c75f4d541a6eb151b3ef91f34033cb3ad6e1
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS-Ascend
  • openEuler-22.03-LTS
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
  • 5.10.0-106.16.0
  • 5.10.0-106.15.0
  • 5.10.0-117.0.0
  • 5.10.0-60.57.0
  • 5.10.0-116.0.0
33 results

if_packet.h

Blame
  • module.c 12.42 KiB
    /*
     * AArch64 loadable module support.
     *
     * Copyright (C) 2012 ARM Limited
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program.  If not, see <http://www.gnu.org/licenses/>.
     *
     * Author: Will Deacon <will.deacon@arm.com>
     */
    
    #include <linux/bitops.h>
    #include <linux/elf.h>
    #include <linux/gfp.h>
    #include <linux/kasan.h>
    #include <linux/kernel.h>
    #include <linux/mm.h>
    #include <linux/moduleloader.h>
    #include <linux/vmalloc.h>
    #include <asm/alternative.h>
    #include <asm/insn.h>
    #include <asm/sections.h>
    
    void *module_alloc(unsigned long size)
    {
    	gfp_t gfp_mask = GFP_KERNEL;
    	void *p;
    
    	/* Silence the initial allocation */
    	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
    		gfp_mask |= __GFP_NOWARN;
    
    	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
    				module_alloc_base + MODULES_VSIZE,
    				gfp_mask, PAGE_KERNEL_EXEC, 0,
    				NUMA_NO_NODE, __builtin_return_address(0));
    
    	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
    	    !IS_ENABLED(CONFIG_KASAN))
    		/*
    		 * KASAN can only deal with module allocations being served
    		 * from the reserved module region, since the remainder of
    		 * the vmalloc region is already backed by zero shadow pages,
    		 * and punching holes into it is non-trivial. Since the module
    		 * region is not randomized when KASAN is enabled, it is even
    		 * less likely that the module region gets exhausted, so we
    		 * can simply omit this fallback in that case.
    		 */
    		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
    				module_alloc_base + SZ_4G, GFP_KERNEL,
    				PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
    				__builtin_return_address(0));
    
    	if (p && (kasan_module_alloc(p, size) < 0)) {
    		vfree(p);
    		return NULL;
    	}
    
    	return p;
    }
    
    enum aarch64_reloc_op {
    	RELOC_OP_NONE,
    	RELOC_OP_ABS,
    	RELOC_OP_PREL,
    	RELOC_OP_PAGE,
    };
    
    static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
    {
    	switch (reloc_op) {
    	case RELOC_OP_ABS:
    		return val;
    	case RELOC_OP_PREL:
    		return val - (u64)place;
    	case RELOC_OP_PAGE:
    		return (val & ~0xfff) - ((u64)place & ~0xfff);
    	case RELOC_OP_NONE:
    		return 0;
    	}
    
    	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
    	return 0;
    }
    
    static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
    {
    	s64 sval = do_reloc(op, place, val);
    
    	switch (len) {
    	case 16:
    		*(s16 *)place = sval;
    		if (sval < S16_MIN || sval > U16_MAX)
    			return -ERANGE;
    		break;
    	case 32:
    		*(s32 *)place = sval;
    		if (sval < S32_MIN || sval > U32_MAX)
    			return -ERANGE;
    		break;
    	case 64:
    		*(s64 *)place = sval;
    		break;
    	default:
    		pr_err("Invalid length (%d) for data relocation\n", len);
    		return 0;
    	}
    	return 0;
    }
    
    enum aarch64_insn_movw_imm_type {
    	AARCH64_INSN_IMM_MOVNZ,
    	AARCH64_INSN_IMM_MOVKZ,
    };
    
    static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
    			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
    {
    	u64 imm;
    	s64 sval;
    	u32 insn = le32_to_cpu(*place);
    
    	sval = do_reloc(op, place, val);
    	imm = sval >> lsb;
    
    	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
    		/*
    		 * For signed MOVW relocations, we have to manipulate the
    		 * instruction encoding depending on whether or not the
    		 * immediate is less than zero.
    		 */
    		insn &= ~(3 << 29);
    		if (sval >= 0) {
    			/* >=0: Set the instruction to MOVZ (opcode 10b). */
    			insn |= 2 << 29;
    		} else {
    			/*
    			 * <0: Set the instruction to MOVN (opcode 00b).
    			 *     Since we've masked the opcode already, we
    			 *     don't need to do anything other than
    			 *     inverting the new immediate field.
    			 */
    			imm = ~imm;
    		}
    	}
    
    	/* Update the instruction with the new encoding. */
    	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
    	*place = cpu_to_le32(insn);
    
    	if (imm > U16_MAX)
    		return -ERANGE;
    
    	return 0;
    }
    
    static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
    			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
    {
    	u64 imm, imm_mask;
    	s64 sval;
    	u32 insn = le32_to_cpu(*place);
    
    	/* Calculate the relocation value. */
    	sval = do_reloc(op, place, val);
    	sval >>= lsb;
    
    	/* Extract the value bits and shift them to bit 0. */
    	imm_mask = (BIT(lsb + len) - 1) >> lsb;
    	imm = sval & imm_mask;
    
    	/* Update the instruction's immediate field. */
    	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
    	*place = cpu_to_le32(insn);
    
    	/*
    	 * Extract the upper value bits (including the sign bit) and
    	 * shift them to bit 0.
    	 */
    	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
    
    	/*
    	 * Overflow has occurred if the upper bits are not all equal to
    	 * the sign bit of the value.
    	 */
    	if ((u64)(sval + 1) >= 2)
    		return -ERANGE;
    
    	return 0;
    }
    
    static int reloc_insn_adrp(struct module *mod, __le32 *place, u64 val)
    {
    	u32 insn;
    
    	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
    	    !cpus_have_const_cap(ARM64_WORKAROUND_843419) ||
    	    ((u64)place & 0xfff) < 0xff8)
    		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
    				      AARCH64_INSN_IMM_ADR);
    
    	/* patch ADRP to ADR if it is in range */
    	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
    			    AARCH64_INSN_IMM_ADR)) {
    		insn = le32_to_cpu(*place);
    		insn &= ~BIT(31);
    	} else {
    		/* out of range for ADR -> emit a veneer */
    		val = module_emit_veneer_for_adrp(mod, place, val & ~0xfff);
    		if (!val)
    			return -ENOEXEC;
    		insn = aarch64_insn_gen_branch_imm((u64)place, val,
    						   AARCH64_INSN_BRANCH_NOLINK);
    	}
    
    	*place = cpu_to_le32(insn);
    	return 0;
    }
    
    int apply_relocate_add(Elf64_Shdr *sechdrs,
    		       const char *strtab,
    		       unsigned int symindex,
    		       unsigned int relsec,
    		       struct module *me)
    {
    	unsigned int i;
    	int ovf;
    	bool overflow_check;
    	Elf64_Sym *sym;
    	void *loc;
    	u64 val;
    	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
    
    	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
    		/* loc corresponds to P in the AArch64 ELF document. */
    		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
    			+ rel[i].r_offset;
    
    		/* sym is the ELF symbol we're referring to. */
    		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
    			+ ELF64_R_SYM(rel[i].r_info);
    
    		/* val corresponds to (S + A) in the AArch64 ELF document. */
    		val = sym->st_value + rel[i].r_addend;
    
    		/* Check for overflow by default. */
    		overflow_check = true;
    
    		/* Perform the static relocation. */
    		switch (ELF64_R_TYPE(rel[i].r_info)) {
    		/* Null relocations. */
    		case R_ARM_NONE:
    		case R_AARCH64_NONE:
    			ovf = 0;
    			break;
    
    		/* Data relocations. */
    		case R_AARCH64_ABS64:
    			overflow_check = false;
    			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
    			break;
    		case R_AARCH64_ABS32:
    			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
    			break;
    		case R_AARCH64_ABS16:
    			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
    			break;
    		case R_AARCH64_PREL64:
    			overflow_check = false;
    			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
    			break;
    		case R_AARCH64_PREL32:
    			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
    			break;
    		case R_AARCH64_PREL16:
    			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
    			break;
    
    		/* MOVW instruction relocations. */
    		case R_AARCH64_MOVW_UABS_G0_NC:
    			overflow_check = false;
    		case R_AARCH64_MOVW_UABS_G0:
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_UABS_G1_NC:
    			overflow_check = false;
    		case R_AARCH64_MOVW_UABS_G1:
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_UABS_G2_NC:
    			overflow_check = false;
    		case R_AARCH64_MOVW_UABS_G2:
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_UABS_G3:
    			/* We're using the top bits so we can't overflow. */
    			overflow_check = false;
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_SABS_G0:
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    		case R_AARCH64_MOVW_SABS_G1:
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    		case R_AARCH64_MOVW_SABS_G2:
    			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G0_NC:
    			overflow_check = false;
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G0:
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G1_NC:
    			overflow_check = false;
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G1:
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G2_NC:
    			overflow_check = false;
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
    					      AARCH64_INSN_IMM_MOVKZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G2:
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    		case R_AARCH64_MOVW_PREL_G3:
    			/* We're using the top bits so we can't overflow. */
    			overflow_check = false;
    			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
    					      AARCH64_INSN_IMM_MOVNZ);
    			break;
    
    		/* Immediate instruction relocations. */
    		case R_AARCH64_LD_PREL_LO19:
    			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
    					     AARCH64_INSN_IMM_19);
    			break;
    		case R_AARCH64_ADR_PREL_LO21:
    			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
    					     AARCH64_INSN_IMM_ADR);
    			break;
    		case R_AARCH64_ADR_PREL_PG_HI21_NC:
    			overflow_check = false;
    		case R_AARCH64_ADR_PREL_PG_HI21:
    			ovf = reloc_insn_adrp(me, loc, val);
    			if (ovf && ovf != -ERANGE)
    				return ovf;
    			break;
    		case R_AARCH64_ADD_ABS_LO12_NC:
    		case R_AARCH64_LDST8_ABS_LO12_NC:
    			overflow_check = false;
    			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
    					     AARCH64_INSN_IMM_12);
    			break;
    		case R_AARCH64_LDST16_ABS_LO12_NC:
    			overflow_check = false;
    			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
    					     AARCH64_INSN_IMM_12);
    			break;
    		case R_AARCH64_LDST32_ABS_LO12_NC:
    			overflow_check = false;
    			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
    					     AARCH64_INSN_IMM_12);
    			break;
    		case R_AARCH64_LDST64_ABS_LO12_NC:
    			overflow_check = false;
    			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
    					     AARCH64_INSN_IMM_12);
    			break;
    		case R_AARCH64_LDST128_ABS_LO12_NC:
    			overflow_check = false;
    			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
    					     AARCH64_INSN_IMM_12);
    			break;
    		case R_AARCH64_TSTBR14:
    			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
    					     AARCH64_INSN_IMM_14);
    			break;
    		case R_AARCH64_CONDBR19:
    			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
    					     AARCH64_INSN_IMM_19);
    			break;
    		case R_AARCH64_JUMP26:
    		case R_AARCH64_CALL26:
    			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
    					     AARCH64_INSN_IMM_26);
    
    			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
    			    ovf == -ERANGE) {
    				val = module_emit_plt_entry(me, loc, &rel[i], sym);
    				if (!val)
    					return -ENOEXEC;
    				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
    						     26, AARCH64_INSN_IMM_26);
    			}
    			break;
    
    		default:
    			pr_err("module %s: unsupported RELA relocation: %llu\n",
    			       me->name, ELF64_R_TYPE(rel[i].r_info));
    			return -ENOEXEC;
    		}
    
    		if (overflow_check && ovf == -ERANGE)
    			goto overflow;
    
    	}
    
    	return 0;
    
    overflow:
    	pr_err("module %s: overflow in relocation type %d val %Lx\n",
    	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
    	return -ENOEXEC;
    }
    
    int module_finalize(const Elf_Ehdr *hdr,
    		    const Elf_Shdr *sechdrs,
    		    struct module *me)
    {
    	const Elf_Shdr *s, *se;
    	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
    
    	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
    		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
    			apply_alternatives((void *)s->sh_addr, s->sh_size);
    		}
    #ifdef CONFIG_ARM64_MODULE_PLTS
    		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
    		    !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
    			me->arch.ftrace_trampoline = (void *)s->sh_addr;
    #endif
    	}
    
    	return 0;
    }