Skip to content
Snippets Groups Projects
Select Git revision
  • 13d09b6603df9df3aa3e410bc2a876889a55c744
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

intel_irq_remapping.c

Blame
  • intel_irq_remapping.c 30.78 KiB
    #include <linux/interrupt.h>
    #include <linux/dmar.h>
    #include <linux/spinlock.h>
    #include <linux/slab.h>
    #include <linux/jiffies.h>
    #include <linux/hpet.h>
    #include <linux/pci.h>
    #include <linux/irq.h>
    #include <linux/intel-iommu.h>
    #include <linux/acpi.h>
    #include <asm/io_apic.h>
    #include <asm/smp.h>
    #include <asm/cpu.h>
    #include <asm/irq_remapping.h>
    #include <asm/pci-direct.h>
    #include <asm/msidef.h>
    
    #include "irq_remapping.h"
    
    struct ioapic_scope {
    	struct intel_iommu *iommu;
    	unsigned int id;
    	unsigned int bus;	/* PCI bus number */
    	unsigned int devfn;	/* PCI devfn number */
    };
    
    struct hpet_scope {
    	struct intel_iommu *iommu;
    	u8 id;
    	unsigned int bus;
    	unsigned int devfn;
    };
    
    #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
    #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
    
    static int __read_mostly eim_mode;
    static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
    static struct hpet_scope ir_hpet[MAX_HPET_TBS];
    
    /*
     * Lock ordering:
     * ->dmar_global_lock
     *	->irq_2_ir_lock
     *		->qi->q_lock
     *	->iommu->register_lock
     * Note:
     * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
     * in single-threaded environment with interrupt disabled, so no need to tabke
     * the dmar_global_lock.
     */
    static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
    
    static int __init parse_ioapics_under_ir(void);
    
    static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
    {
    	struct irq_cfg *cfg = irq_cfg(irq);
    	return cfg ? &cfg->irq_2_iommu : NULL;
    }
    
    static int get_irte(int irq, struct irte *entry)
    {
    	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
    	unsigned long flags;
    	int index;
    
    	if (!entry || !irq_iommu)
    		return -1;
    
    	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
    
    	if (unlikely(!irq_iommu->iommu)) {
    		raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    		return -1;
    	}
    
    	index = irq_iommu->irte_index + irq_iommu->sub_handle;
    	*entry = *(irq_iommu->iommu->ir_table->base + index);
    
    	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    	return 0;
    }
    
    static int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
    {
    	struct ir_table *table = iommu->ir_table;
    	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
    	struct irq_cfg *cfg = irq_cfg(irq);
    	unsigned int mask = 0;
    	unsigned long flags;
    	int index;
    
    	if (!count || !irq_iommu)
    		return -1;
    
    	if (count > 1) {
    		count = __roundup_pow_of_two(count);
    		mask = ilog2(count);
    	}
    
    	if (mask > ecap_max_handle_mask(iommu->ecap)) {
    		printk(KERN_ERR
    		       "Requested mask %x exceeds the max invalidation handle"
    		       " mask value %Lx\n", mask,
    		       ecap_max_handle_mask(iommu->ecap));
    		return -1;
    	}
    
    	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
    	index = bitmap_find_free_region(table->bitmap,
    					INTR_REMAP_TABLE_ENTRIES, mask);
    	if (index < 0) {
    		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
    	} else {
    		cfg->remapped = 1;
    		irq_iommu->iommu = iommu;
    		irq_iommu->irte_index =  index;
    		irq_iommu->sub_handle = 0;
    		irq_iommu->irte_mask = mask;
    	}
    	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    
    	return index;
    }
    
    static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
    {
    	struct qi_desc desc;
    
    	desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
    		   | QI_IEC_SELECTIVE;
    	desc.high = 0;
    
    	return qi_submit_sync(&desc, iommu);
    }
    
    static int map_irq_to_irte_handle(int irq, u16 *sub_handle)
    {
    	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
    	unsigned long flags;
    	int index;
    
    	if (!irq_iommu)
    		return -1;
    
    	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
    	*sub_handle = irq_iommu->sub_handle;
    	index = irq_iommu->irte_index;
    	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    	return index;
    }
    
    static int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
    {
    	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
    	struct irq_cfg *cfg = irq_cfg(irq);
    	unsigned long flags;
    
    	if (!irq_iommu)
    		return -1;
    
    	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
    
    	cfg->remapped = 1;
    	irq_iommu->iommu = iommu;
    	irq_iommu->irte_index = index;
    	irq_iommu->sub_handle = subhandle;
    	irq_iommu->irte_mask = 0;
    
    	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    
    	return 0;
    }
    
    static int modify_irte(int irq, struct irte *irte_modified)
    {
    	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
    	struct intel_iommu *iommu;
    	unsigned long flags;
    	struct irte *irte;
    	int rc, index;
    
    	if (!irq_iommu)
    		return -1;
    
    	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
    
    	iommu = irq_iommu->iommu;
    
    	index = irq_iommu->irte_index + irq_iommu->sub_handle;
    	irte = &iommu->ir_table->base[index];
    
    	set_64bit(&irte->low, irte_modified->low);
    	set_64bit(&irte->high, irte_modified->high);
    	__iommu_flush_cache(iommu, irte, sizeof(*irte));
    
    	rc = qi_flush_iec(iommu, index, 0);
    	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    
    	return rc;
    }
    
    static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
    {
    	int i;
    
    	for (i = 0; i < MAX_HPET_TBS; i++)
    		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
    			return ir_hpet[i].iommu;
    	return NULL;
    }
    
    static struct intel_iommu *map_ioapic_to_ir(int apic)
    {
    	int i;
    
    	for (i = 0; i < MAX_IO_APICS; i++)
    		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
    			return ir_ioapic[i].iommu;
    	return NULL;
    }
    
    static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
    {
    	struct dmar_drhd_unit *drhd;
    
    	drhd = dmar_find_matched_drhd_unit(dev);
    	if (!drhd)
    		return NULL;
    
    	return drhd->iommu;
    }
    
    static int clear_entries(struct irq_2_iommu *irq_iommu)
    {
    	struct irte *start, *entry, *end;
    	struct intel_iommu *iommu;
    	int index;
    
    	if (irq_iommu->sub_handle)
    		return 0;
    
    	iommu = irq_iommu->iommu;
    	index = irq_iommu->irte_index + irq_iommu->sub_handle;
    
    	start = iommu->ir_table->base + index;
    	end = start + (1 << irq_iommu->irte_mask);
    
    	for (entry = start; entry < end; entry++) {
    		set_64bit(&entry->low, 0);
    		set_64bit(&entry->high, 0);
    	}
    	bitmap_release_region(iommu->ir_table->bitmap, index,
    			      irq_iommu->irte_mask);
    
    	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
    }
    
    static int free_irte(int irq)
    {
    	struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
    	unsigned long flags;
    	int rc;
    
    	if (!irq_iommu)
    		return -1;
    
    	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
    
    	rc = clear_entries(irq_iommu);
    
    	irq_iommu->iommu = NULL;
    	irq_iommu->irte_index = 0;
    	irq_iommu->sub_handle = 0;
    	irq_iommu->irte_mask = 0;
    
    	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
    
    	return rc;
    }
    
    /*
     * source validation type
     */
    #define SVT_NO_VERIFY		0x0  /* no verification is required */
    #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
    #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
    
    /*
     * source-id qualifier
     */
    #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
    #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
    			      * the third least significant bit
    			      */
    #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
    			      * the second and third least significant bits
    			      */
    #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
    			      * the least three significant bits
    			      */
    
    /*
     * set SVT, SQ and SID fields of irte to verify
     * source ids of interrupt requests
     */
    static void set_irte_sid(struct irte *irte, unsigned int svt,
    			 unsigned int sq, unsigned int sid)
    {
    	if (disable_sourceid_checking)
    		svt = SVT_NO_VERIFY;
    	irte->svt = svt;
    	irte->sq = sq;
    	irte->sid = sid;
    }
    
    static int set_ioapic_sid(struct irte *irte, int apic)
    {
    	int i;
    	u16 sid = 0;
    
    	if (!irte)
    		return -1;
    
    	down_read(&dmar_global_lock);
    	for (i = 0; i < MAX_IO_APICS; i++) {
    		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
    			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
    			break;
    		}
    	}
    	up_read(&dmar_global_lock);
    
    	if (sid == 0) {
    		pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic);
    		return -1;
    	}
    
    	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
    
    	return 0;
    }
    
    static int set_hpet_sid(struct irte *irte, u8 id)
    {
    	int i;
    	u16 sid = 0;
    
    	if (!irte)
    		return -1;
    
    	down_read(&dmar_global_lock);
    	for (i = 0; i < MAX_HPET_TBS; i++) {
    		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
    			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
    			break;
    		}
    	}
    	up_read(&dmar_global_lock);
    
    	if (sid == 0) {
    		pr_warning("Failed to set source-id of HPET block (%d)\n", id);
    		return -1;
    	}
    
    	/*
    	 * Should really use SQ_ALL_16. Some platforms are broken.
    	 * While we figure out the right quirks for these broken platforms, use
    	 * SQ_13_IGNORE_3 for now.
    	 */
    	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
    
    	return 0;
    }
    
    struct set_msi_sid_data {
    	struct pci_dev *pdev;
    	u16 alias;
    };
    
    static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
    {
    	struct set_msi_sid_data *data = opaque;
    
    	data->pdev = pdev;
    	data->alias = alias;
    
    	return 0;
    }
    
    static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
    {
    	struct set_msi_sid_data data;
    
    	if (!irte || !dev)
    		return -1;
    
    	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
    
    	/*
    	 * DMA alias provides us with a PCI device and alias.  The only case
    	 * where the it will return an alias on a different bus than the
    	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
    	 * the subordinate bus.  In this case we can only verify the bus.
    	 *
    	 * If the alias device is on a different bus than our source device
    	 * then we have a topology based alias, use it.
    	 *
    	 * Otherwise, the alias is for a device DMA quirk and we cannot
    	 * assume that MSI uses the same requester ID.  Therefore use the
    	 * original device.
    	 */
    	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
    		set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
    			     PCI_DEVID(PCI_BUS_NUM(data.alias),
    				       dev->bus->number));
    	else if (data.pdev->bus->number != dev->bus->number)
    		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
    	else
    		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
    			     PCI_DEVID(dev->bus->number, dev->devfn));
    
    	return 0;
    }
    
    static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
    {
    	u64 addr;
    	u32 sts;
    	unsigned long flags;
    
    	addr = virt_to_phys((void *)iommu->ir_table->base);
    
    	raw_spin_lock_irqsave(&iommu->register_lock, flags);
    
    	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
    		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
    
    	/* Set interrupt-remapping table pointer */
    	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
    
    	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
    		      readl, (sts & DMA_GSTS_IRTPS), sts);
    	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
    
    	/*
    	 * global invalidation of interrupt entry cache before enabling
    	 * interrupt-remapping.
    	 */
    	qi_global_iec(iommu);
    
    	raw_spin_lock_irqsave(&iommu->register_lock, flags);
    
    	/* Enable interrupt-remapping */
    	iommu->gcmd |= DMA_GCMD_IRE;
    	iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
    	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
    
    	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
    		      readl, (sts & DMA_GSTS_IRES), sts);
    
    	/*
    	 * With CFI clear in the Global Command register, we should be
    	 * protected from dangerous (i.e. compatibility) interrupts
    	 * regardless of x2apic status.  Check just to be sure.
    	 */
    	if (sts & DMA_GSTS_CFIS)
    		WARN(1, KERN_WARNING
    			"Compatibility-format IRQs enabled despite intr remapping;\n"
    			"you are vulnerable to IRQ injection.\n");
    
    	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
    }
    
    static int intel_setup_irq_remapping(struct intel_iommu *iommu)
    {
    	struct ir_table *ir_table;
    	struct page *pages;
    	unsigned long *bitmap;
    
    	if (iommu->ir_table)
    		return 0;
    
    	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
    	if (!ir_table)
    		return -ENOMEM;
    
    	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
    				 INTR_REMAP_PAGE_ORDER);
    
    	if (!pages) {
    		pr_err("IR%d: failed to allocate pages of order %d\n",
    		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
    		goto out_free_table;
    	}
    
    	bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
    			 sizeof(long), GFP_ATOMIC);
    	if (bitmap == NULL) {
    		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
    		goto out_free_pages;
    	}
    
    	ir_table->base = page_address(pages);
    	ir_table->bitmap = bitmap;
    	iommu->ir_table = ir_table;
    	return 0;
    
    out_free_pages:
    	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
    out_free_table:
    	kfree(ir_table);
    	return -ENOMEM;
    }
    
    static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
    {
    	if (iommu && iommu->ir_table) {
    		free_pages((unsigned long)iommu->ir_table->base,
    			   INTR_REMAP_PAGE_ORDER);
    		kfree(iommu->ir_table->bitmap);
    		kfree(iommu->ir_table);
    		iommu->ir_table = NULL;
    	}
    }
    
    /*
     * Disable Interrupt Remapping.
     */
    static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
    {
    	unsigned long flags;
    	u32 sts;
    
    	if (!ecap_ir_support(iommu->ecap))
    		return;
    
    	/*
    	 * global invalidation of interrupt entry cache before disabling
    	 * interrupt-remapping.
    	 */
    	qi_global_iec(iommu);
    
    	raw_spin_lock_irqsave(&iommu->register_lock, flags);
    
    	sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
    	if (!(sts & DMA_GSTS_IRES))
    		goto end;
    
    	iommu->gcmd &= ~DMA_GCMD_IRE;
    	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
    
    	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
    		      readl, !(sts & DMA_GSTS_IRES), sts);
    
    end:
    	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
    }
    
    static int __init dmar_x2apic_optout(void)
    {
    	struct acpi_table_dmar *dmar;
    	dmar = (struct acpi_table_dmar *)dmar_tbl;
    	if (!dmar || no_x2apic_optout)
    		return 0;
    	return dmar->flags & DMAR_X2APIC_OPT_OUT;
    }
    
    static int __init intel_irq_remapping_supported(void)
    {
    	return 1;
    }
    
    static void __init intel_cleanup_irq_remapping(void)
    {
    	struct dmar_drhd_unit *drhd;
    	struct intel_iommu *iommu;
    
    	for_each_iommu(iommu, drhd) {
    		if (ecap_ir_support(iommu->ecap)) {
    			iommu_disable_irq_remapping(iommu);
    			intel_teardown_irq_remapping(iommu);
    		}
    	}
    
    	if (x2apic_supported())
    		pr_warn("Failed to enable irq remapping.  You are vulnerable to irq-injection attacks.\n");
    }
    
    static int __init intel_prepare_irq_remapping(void)
    {
    	struct dmar_drhd_unit *drhd;
    	struct intel_iommu *iommu;
    
    	/* First check whether IRQ remapping should be enabled */
    	if (disable_irq_remap)
    		return -ENODEV;
    
    	if (irq_remap_broken) {
    		printk(KERN_WARNING
    			"This system BIOS has enabled interrupt remapping\n"
    			"on a chipset that contains an erratum making that\n"
    			"feature unstable.  To maintain system stability\n"
    			"interrupt remapping is being disabled.  Please\n"
    			"contact your BIOS vendor for an update\n");
    		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
    		disable_irq_remap = 1;
    		return -ENODEV;
    	}
    
    	if (dmar_table_init() < 0)
    		return -ENODEV;
    
    	if (!dmar_ir_support())
    		return -ENODEV;
    
    	if (parse_ioapics_under_ir() != 1) {
    		printk(KERN_INFO "Not enabling interrupt remapping\n");
    		goto error;
    	}
    
    	/* First make sure all IOMMUs support IRQ remapping */
    	for_each_iommu(iommu, drhd)
    		if (!ecap_ir_support(iommu->ecap))
    			goto error;
    
    	/* Do the allocations early */
    	for_each_iommu(iommu, drhd)
    		if (intel_setup_irq_remapping(iommu))
    			goto error;
    
    	return 0;
    
    error:
    	intel_cleanup_irq_remapping();
    	return -ENODEV;
    }
    
    static int __init intel_enable_irq_remapping(void)
    {
    	struct dmar_drhd_unit *drhd;
    	struct intel_iommu *iommu;
    	int setup = 0;
    	int eim = 0;
    
    	if (x2apic_supported()) {
    		eim = !dmar_x2apic_optout();
    		if (!eim)
    			printk(KERN_WARNING
    				"Your BIOS is broken and requested that x2apic be disabled.\n"
    				"This will slightly decrease performance.\n"
    				"Use 'intremap=no_x2apic_optout' to override BIOS request.\n");
    	}
    
    	for_each_iommu(iommu, drhd) {
    		/*
    		 * If the queued invalidation is already initialized,
    		 * shouldn't disable it.
    		 */
    		if (iommu->qi)
    			continue;
    
    		/*
    		 * Clear previous faults.
    		 */
    		dmar_fault(-1, iommu);
    
    		/*
    		 * Disable intr remapping and queued invalidation, if already
    		 * enabled prior to OS handover.
    		 */
    		iommu_disable_irq_remapping(iommu);
    
    		dmar_disable_qi(iommu);
    	}
    
    	/*
    	 * check for the Interrupt-remapping support
    	 */
    	for_each_iommu(iommu, drhd)
    		if (eim && !ecap_eim_support(iommu->ecap)) {
    			printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
    			       " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
    			eim = 0;
    		}
    	eim_mode = eim;
    	if (eim)
    		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
    
    	/*
    	 * Enable queued invalidation for all the DRHD's.
    	 */
    	for_each_iommu(iommu, drhd) {
    		int ret = dmar_enable_qi(iommu);
    
    		if (ret) {
    			printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
    			       " invalidation, ecap %Lx, ret %d\n",
    			       drhd->reg_base_addr, iommu->ecap, ret);
    			goto error;
    		}
    	}
    
    	/*
    	 * Setup Interrupt-remapping for all the DRHD's now.
    	 */
    	for_each_iommu(iommu, drhd) {
    		iommu_set_irq_remapping(iommu, eim);
    		setup = 1;
    	}
    
    	if (!setup)
    		goto error;
    
    	irq_remapping_enabled = 1;
    
    	/*
    	 * VT-d has a different layout for IO-APIC entries when
    	 * interrupt remapping is enabled. So it needs a special routine
    	 * to print IO-APIC entries for debugging purposes too.
    	 */
    	x86_io_apic_ops.print_entries = intel_ir_io_apic_print_entries;
    
    	pr_info("Enabled IRQ remapping in %s mode\n", eim ? "x2apic" : "xapic");
    
    	return eim ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
    
    error:
    	intel_cleanup_irq_remapping();
    	return -1;
    }
    
    static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
    				   struct intel_iommu *iommu,
    				   struct acpi_dmar_hardware_unit *drhd)
    {
    	struct acpi_dmar_pci_path *path;
    	u8 bus;
    	int count, free = -1;
    
    	bus = scope->bus;
    	path = (struct acpi_dmar_pci_path *)(scope + 1);
    	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
    		/ sizeof(struct acpi_dmar_pci_path);
    
    	while (--count > 0) {
    		/*
    		 * Access PCI directly due to the PCI
    		 * subsystem isn't initialized yet.
    		 */
    		bus = read_pci_config_byte(bus, path->device, path->function,
    					   PCI_SECONDARY_BUS);
    		path++;
    	}
    
    	for (count = 0; count < MAX_HPET_TBS; count++) {
    		if (ir_hpet[count].iommu == iommu &&
    		    ir_hpet[count].id == scope->enumeration_id)
    			return 0;
    		else if (ir_hpet[count].iommu == NULL && free == -1)
    			free = count;
    	}
    	if (free == -1) {
    		pr_warn("Exceeded Max HPET blocks\n");
    		return -ENOSPC;
    	}
    
    	ir_hpet[free].iommu = iommu;
    	ir_hpet[free].id    = scope->enumeration_id;
    	ir_hpet[free].bus   = bus;
    	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
    	pr_info("HPET id %d under DRHD base 0x%Lx\n",
    		scope->enumeration_id, drhd->address);
    
    	return 0;
    }
    
    static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
    				     struct intel_iommu *iommu,
    				     struct acpi_dmar_hardware_unit *drhd)
    {
    	struct acpi_dmar_pci_path *path;
    	u8 bus;
    	int count, free = -1;
    
    	bus = scope->bus;
    	path = (struct acpi_dmar_pci_path *)(scope + 1);
    	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
    		/ sizeof(struct acpi_dmar_pci_path);
    
    	while (--count > 0) {
    		/*
    		 * Access PCI directly due to the PCI
    		 * subsystem isn't initialized yet.
    		 */
    		bus = read_pci_config_byte(bus, path->device, path->function,
    					   PCI_SECONDARY_BUS);
    		path++;
    	}
    
    	for (count = 0; count < MAX_IO_APICS; count++) {
    		if (ir_ioapic[count].iommu == iommu &&
    		    ir_ioapic[count].id == scope->enumeration_id)
    			return 0;
    		else if (ir_ioapic[count].iommu == NULL && free == -1)
    			free = count;
    	}
    	if (free == -1) {
    		pr_warn("Exceeded Max IO APICS\n");
    		return -ENOSPC;
    	}
    
    	ir_ioapic[free].bus   = bus;
    	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
    	ir_ioapic[free].iommu = iommu;
    	ir_ioapic[free].id    = scope->enumeration_id;
    	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
    		scope->enumeration_id, drhd->address, iommu->seq_id);
    
    	return 0;
    }
    
    static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
    				      struct intel_iommu *iommu)
    {
    	int ret = 0;
    	struct acpi_dmar_hardware_unit *drhd;
    	struct acpi_dmar_device_scope *scope;
    	void *start, *end;
    
    	drhd = (struct acpi_dmar_hardware_unit *)header;
    	start = (void *)(drhd + 1);
    	end = ((void *)drhd) + header->length;
    
    	while (start < end && ret == 0) {
    		scope = start;
    		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
    			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
    		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
    			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
    		start += scope->length;
    	}
    
    	return ret;
    }
    
    static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
    {
    	int i;
    
    	for (i = 0; i < MAX_HPET_TBS; i++)
    		if (ir_hpet[i].iommu == iommu)
    			ir_hpet[i].iommu = NULL;
    
    	for (i = 0; i < MAX_IO_APICS; i++)
    		if (ir_ioapic[i].iommu == iommu)
    			ir_ioapic[i].iommu = NULL;
    }
    
    /*
     * Finds the assocaition between IOAPIC's and its Interrupt-remapping
     * hardware unit.
     */
    static int __init parse_ioapics_under_ir(void)
    {
    	struct dmar_drhd_unit *drhd;
    	struct intel_iommu *iommu;
    	int ir_supported = 0;
    	int ioapic_idx;
    
    	for_each_iommu(iommu, drhd)
    		if (ecap_ir_support(iommu->ecap)) {
    			if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu))
    				return -1;
    
    			ir_supported = 1;
    		}
    
    	if (!ir_supported)
    		return 0;
    
    	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
    		int ioapic_id = mpc_ioapic_id(ioapic_idx);
    		if (!map_ioapic_to_ir(ioapic_id)) {
    			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
    			       "interrupt remapping will be disabled\n",
    			       ioapic_id);
    			return -1;
    		}
    	}
    
    	return 1;
    }
    
    static int __init ir_dev_scope_init(void)
    {
    	int ret;
    
    	if (!irq_remapping_enabled)
    		return 0;
    
    	down_write(&dmar_global_lock);
    	ret = dmar_dev_scope_init();
    	up_write(&dmar_global_lock);
    
    	return ret;
    }
    rootfs_initcall(ir_dev_scope_init);
    
    static void disable_irq_remapping(void)
    {
    	struct dmar_drhd_unit *drhd;
    	struct intel_iommu *iommu = NULL;
    
    	/*
    	 * Disable Interrupt-remapping for all the DRHD's now.
    	 */
    	for_each_iommu(iommu, drhd) {
    		if (!ecap_ir_support(iommu->ecap))
    			continue;
    
    		iommu_disable_irq_remapping(iommu);
    	}
    }
    
    static int reenable_irq_remapping(int eim)
    {
    	struct dmar_drhd_unit *drhd;
    	int setup = 0;
    	struct intel_iommu *iommu = NULL;
    
    	for_each_iommu(iommu, drhd)
    		if (iommu->qi)
    			dmar_reenable_qi(iommu);
    
    	/*
    	 * Setup Interrupt-remapping for all the DRHD's now.
    	 */
    	for_each_iommu(iommu, drhd) {
    		if (!ecap_ir_support(iommu->ecap))
    			continue;
    
    		/* Set up interrupt remapping for iommu.*/
    		iommu_set_irq_remapping(iommu, eim);
    		setup = 1;
    	}
    
    	if (!setup)
    		goto error;
    
    	return 0;
    
    error:
    	/*
    	 * handle error condition gracefully here!
    	 */
    	return -1;
    }
    
    static void prepare_irte(struct irte *irte, int vector,
    			 unsigned int dest)
    {
    	memset(irte, 0, sizeof(*irte));
    
    	irte->present = 1;
    	irte->dst_mode = apic->irq_dest_mode;
    	/*
    	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
    	 * actual level or edge trigger will be setup in the IO-APIC
    	 * RTE. This will help simplify level triggered irq migration.
    	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
    	 * irq migration in the presence of interrupt-remapping.
    	*/
    	irte->trigger_mode = 0;
    	irte->dlvry_mode = apic->irq_delivery_mode;
    	irte->vector = vector;
    	irte->dest_id = IRTE_DEST(dest);
    	irte->redir_hint = 1;
    }
    
    static int intel_setup_ioapic_entry(int irq,
    				    struct IO_APIC_route_entry *route_entry,
    				    unsigned int destination, int vector,
    				    struct io_apic_irq_attr *attr)
    {
    	int ioapic_id = mpc_ioapic_id(attr->ioapic);
    	struct intel_iommu *iommu;
    	struct IR_IO_APIC_route_entry *entry;
    	struct irte irte;
    	int index;
    
    	down_read(&dmar_global_lock);
    	iommu = map_ioapic_to_ir(ioapic_id);
    	if (!iommu) {
    		pr_warn("No mapping iommu for ioapic %d\n", ioapic_id);
    		index = -ENODEV;
    	} else {
    		index = alloc_irte(iommu, irq, 1);
    		if (index < 0) {
    			pr_warn("Failed to allocate IRTE for ioapic %d\n",
    				ioapic_id);
    			index = -ENOMEM;
    		}
    	}
    	up_read(&dmar_global_lock);
    	if (index < 0)
    		return index;
    
    	prepare_irte(&irte, vector, destination);
    
    	/* Set source-id of interrupt request */
    	set_ioapic_sid(&irte, ioapic_id);
    
    	modify_irte(irq, &irte);
    
    	apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: "
    		"Set IRTE entry (P:%d FPD:%d Dst_Mode:%d "
    		"Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X "
    		"Avail:%X Vector:%02X Dest:%08X "
    		"SID:%04X SQ:%X SVT:%X)\n",
    		attr->ioapic, irte.present, irte.fpd, irte.dst_mode,
    		irte.redir_hint, irte.trigger_mode, irte.dlvry_mode,
    		irte.avail, irte.vector, irte.dest_id,
    		irte.sid, irte.sq, irte.svt);
    
    	entry = (struct IR_IO_APIC_route_entry *)route_entry;
    	memset(entry, 0, sizeof(*entry));
    
    	entry->index2	= (index >> 15) & 0x1;
    	entry->zero	= 0;
    	entry->format	= 1;
    	entry->index	= (index & 0x7fff);
    	/*
    	 * IO-APIC RTE will be configured with virtual vector.
    	 * irq handler will do the explicit EOI to the io-apic.
    	 */
    	entry->vector	= attr->ioapic_pin;
    	entry->mask	= 0;			/* enable IRQ */
    	entry->trigger	= attr->trigger;
    	entry->polarity	= attr->polarity;
    
    	/* Mask level triggered irqs.
    	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
    	 */
    	if (attr->trigger)
    		entry->mask = 1;
    
    	return 0;
    }
    
    /*
     * Migrate the IO-APIC irq in the presence of intr-remapping.
     *
     * For both level and edge triggered, irq migration is a simple atomic
     * update(of vector and cpu destination) of IRTE and flush the hardware cache.
     *
     * For level triggered, we eliminate the io-apic RTE modification (with the
     * updated vector information), by using a virtual vector (io-apic pin number).
     * Real vector that is used for interrupting cpu will be coming from
     * the interrupt-remapping table entry.
     *
     * As the migration is a simple atomic update of IRTE, the same mechanism
     * is used to migrate MSI irq's in the presence of interrupt-remapping.
     */
    static int
    intel_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
    			  bool force)
    {
    	struct irq_cfg *cfg = irqd_cfg(data);
    	unsigned int dest, irq = data->irq;
    	struct irte irte;
    	int err;
    
    	if (!config_enabled(CONFIG_SMP))
    		return -EINVAL;
    
    	if (!cpumask_intersects(mask, cpu_online_mask))
    		return -EINVAL;
    
    	if (get_irte(irq, &irte))
    		return -EBUSY;
    
    	err = assign_irq_vector(irq, cfg, mask);
    	if (err)
    		return err;
    
    	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
    	if (err) {
    		if (assign_irq_vector(irq, cfg, data->affinity))
    			pr_err("Failed to recover vector for irq %d\n", irq);
    		return err;
    	}
    
    	irte.vector = cfg->vector;
    	irte.dest_id = IRTE_DEST(dest);
    
    	/*
    	 * Atomically updates the IRTE with the new destination, vector
    	 * and flushes the interrupt entry cache.
    	 */
    	modify_irte(irq, &irte);
    
    	/*
    	 * After this point, all the interrupts will start arriving
    	 * at the new destination. So, time to cleanup the previous
    	 * vector allocation.
    	 */
    	if (cfg->move_in_progress)
    		send_cleanup_vector(cfg);
    
    	cpumask_copy(data->affinity, mask);
    	return 0;
    }
    
    static void intel_compose_msi_msg(struct pci_dev *pdev,
    				  unsigned int irq, unsigned int dest,
    				  struct msi_msg *msg, u8 hpet_id)
    {
    	struct irq_cfg *cfg;
    	struct irte irte;
    	u16 sub_handle = 0;
    	int ir_index;
    
    	cfg = irq_cfg(irq);
    
    	ir_index = map_irq_to_irte_handle(irq, &sub_handle);
    	BUG_ON(ir_index == -1);
    
    	prepare_irte(&irte, cfg->vector, dest);
    
    	/* Set source-id of interrupt request */
    	if (pdev)
    		set_msi_sid(&irte, pdev);
    	else
    		set_hpet_sid(&irte, hpet_id);
    
    	modify_irte(irq, &irte);
    
    	msg->address_hi = MSI_ADDR_BASE_HI;
    	msg->data = sub_handle;
    	msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
    			  MSI_ADDR_IR_SHV |
    			  MSI_ADDR_IR_INDEX1(ir_index) |
    			  MSI_ADDR_IR_INDEX2(ir_index);
    }
    
    /*
     * Map the PCI dev to the corresponding remapping hardware unit
     * and allocate 'nvec' consecutive interrupt-remapping table entries
     * in it.
     */
    static int intel_msi_alloc_irq(struct pci_dev *dev, int irq, int nvec)
    {
    	struct intel_iommu *iommu;
    	int index;
    
    	down_read(&dmar_global_lock);
    	iommu = map_dev_to_ir(dev);
    	if (!iommu) {
    		printk(KERN_ERR
    		       "Unable to map PCI %s to iommu\n", pci_name(dev));
    		index = -ENOENT;
    	} else {
    		index = alloc_irte(iommu, irq, nvec);
    		if (index < 0) {
    			printk(KERN_ERR
    			       "Unable to allocate %d IRTE for PCI %s\n",
    			       nvec, pci_name(dev));
    			index = -ENOSPC;
    		}
    	}
    	up_read(&dmar_global_lock);
    
    	return index;
    }
    
    static int intel_msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
    			       int index, int sub_handle)
    {
    	struct intel_iommu *iommu;
    	int ret = -ENOENT;
    
    	down_read(&dmar_global_lock);
    	iommu = map_dev_to_ir(pdev);
    	if (iommu) {
    		/*
    		 * setup the mapping between the irq and the IRTE
    		 * base index, the sub_handle pointing to the
    		 * appropriate interrupt remap table entry.
    		 */
    		set_irte_irq(irq, iommu, index, sub_handle);
    		ret = 0;
    	}
    	up_read(&dmar_global_lock);
    
    	return ret;
    }
    
    static int intel_alloc_hpet_msi(unsigned int irq, unsigned int id)
    {
    	int ret = -1;
    	struct intel_iommu *iommu;
    	int index;
    
    	down_read(&dmar_global_lock);
    	iommu = map_hpet_to_ir(id);
    	if (iommu) {
    		index = alloc_irte(iommu, irq, 1);
    		if (index >= 0)
    			ret = 0;
    	}
    	up_read(&dmar_global_lock);
    
    	return ret;
    }
    
    struct irq_remap_ops intel_irq_remap_ops = {
    	.supported		= intel_irq_remapping_supported,
    	.prepare		= intel_prepare_irq_remapping,
    	.enable			= intel_enable_irq_remapping,
    	.disable		= disable_irq_remapping,
    	.reenable		= reenable_irq_remapping,
    	.enable_faulting	= enable_drhd_fault_handling,
    	.setup_ioapic_entry	= intel_setup_ioapic_entry,
    	.set_affinity		= intel_ioapic_set_affinity,
    	.free_irq		= free_irte,
    	.compose_msi_msg	= intel_compose_msi_msg,
    	.msi_alloc_irq		= intel_msi_alloc_irq,
    	.msi_setup_irq		= intel_msi_setup_irq,
    	.alloc_hpet_msi		= intel_alloc_hpet_msi,
    };
    
    /*
     * Support of Interrupt Remapping Unit Hotplug
     */
    static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
    {
    	int ret;
    	int eim = x2apic_enabled();
    
    	if (eim && !ecap_eim_support(iommu->ecap)) {
    		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
    			iommu->reg_phys, iommu->ecap);
    		return -ENODEV;
    	}
    
    	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
    		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
    			iommu->reg_phys);
    		return -ENODEV;
    	}
    
    	/* TODO: check all IOAPICs are covered by IOMMU */
    
    	/* Setup Interrupt-remapping now. */
    	ret = intel_setup_irq_remapping(iommu);
    	if (ret) {
    		pr_err("DRHD %Lx: failed to allocate resource\n",
    		       iommu->reg_phys);
    		ir_remove_ioapic_hpet_scope(iommu);
    		return ret;
    	}
    
    	if (!iommu->qi) {
    		/* Clear previous faults. */
    		dmar_fault(-1, iommu);
    		iommu_disable_irq_remapping(iommu);
    		dmar_disable_qi(iommu);
    	}
    
    	/* Enable queued invalidation */
    	ret = dmar_enable_qi(iommu);
    	if (!ret) {
    		iommu_set_irq_remapping(iommu, eim);
    	} else {
    		pr_err("DRHD %Lx: failed to enable queued invalidation, ecap %Lx, ret %d\n",
    		       iommu->reg_phys, iommu->ecap, ret);
    		intel_teardown_irq_remapping(iommu);
    		ir_remove_ioapic_hpet_scope(iommu);
    	}
    
    	return ret;
    }
    
    int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
    {
    	int ret = 0;
    	struct intel_iommu *iommu = dmaru->iommu;
    
    	if (!irq_remapping_enabled)
    		return 0;
    	if (iommu == NULL)
    		return -EINVAL;
    	if (!ecap_ir_support(iommu->ecap))
    		return 0;
    
    	if (insert) {
    		if (!iommu->ir_table)
    			ret = dmar_ir_add(dmaru, iommu);
    	} else {
    		if (iommu->ir_table) {
    			if (!bitmap_empty(iommu->ir_table->bitmap,
    					  INTR_REMAP_TABLE_ENTRIES)) {
    				ret = -EBUSY;
    			} else {
    				iommu_disable_irq_remapping(iommu);
    				intel_teardown_irq_remapping(iommu);
    				ir_remove_ioapic_hpet_scope(iommu);
    			}
    		}
    	}
    
    	return ret;
    }