Skip to content
Snippets Groups Projects
Select Git revision
  • 70f30cfe5b892fcb7f98e7df72ed6ccfe3225628
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

modpost.c

Blame
  • builtin-stat.c 47.40 KiB
    /*
     * builtin-stat.c
     *
     * Builtin stat command: Give a precise performance counters summary
     * overview about any workload, CPU or specific PID.
     *
     * Sample output:
    
       $ perf stat ./hackbench 10
    
      Time: 0.118
    
      Performance counter stats for './hackbench 10':
    
           1708.761321 task-clock                #   11.037 CPUs utilized
                41,190 context-switches          #    0.024 M/sec
                 6,735 CPU-migrations            #    0.004 M/sec
                17,318 page-faults               #    0.010 M/sec
         5,205,202,243 cycles                    #    3.046 GHz
         3,856,436,920 stalled-cycles-frontend   #   74.09% frontend cycles idle
         1,600,790,871 stalled-cycles-backend    #   30.75% backend  cycles idle
         2,603,501,247 instructions              #    0.50  insns per cycle
                                                 #    1.48  stalled cycles per insn
           484,357,498 branches                  #  283.455 M/sec
             6,388,934 branch-misses             #    1.32% of all branches
    
            0.154822978  seconds time elapsed
    
     *
     * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
     *
     * Improvements and fixes by:
     *
     *   Arjan van de Ven <arjan@linux.intel.com>
     *   Yanmin Zhang <yanmin.zhang@intel.com>
     *   Wu Fengguang <fengguang.wu@intel.com>
     *   Mike Galbraith <efault@gmx.de>
     *   Paul Mackerras <paulus@samba.org>
     *   Jaswinder Singh Rajput <jaswinder@kernel.org>
     *
     * Released under the GPL v2. (and only v2, not any later version)
     */
    
    #include "perf.h"
    #include "builtin.h"
    #include "util/cgroup.h"
    #include "util/util.h"
    #include "util/parse-options.h"
    #include "util/parse-events.h"
    #include "util/pmu.h"
    #include "util/event.h"
    #include "util/evlist.h"
    #include "util/evsel.h"
    #include "util/debug.h"
    #include "util/color.h"
    #include "util/stat.h"
    #include "util/header.h"
    #include "util/cpumap.h"
    #include "util/thread.h"
    #include "util/thread_map.h"
    
    #include <stdlib.h>
    #include <sys/prctl.h>
    #include <locale.h>
    
    #define DEFAULT_SEPARATOR	" "
    #define CNTR_NOT_SUPPORTED	"<not supported>"
    #define CNTR_NOT_COUNTED	"<not counted>"
    
    static void print_stat(int argc, const char **argv);
    static void print_counter_aggr(struct perf_evsel *counter, char *prefix);
    static void print_counter(struct perf_evsel *counter, char *prefix);
    static void print_aggr(char *prefix);
    
    /* Default events used for perf stat -T */
    static const char * const transaction_attrs[] = {
    	"task-clock",
    	"{"
    	"instructions,"
    	"cycles,"
    	"cpu/cycles-t/,"
    	"cpu/tx-start/,"
    	"cpu/el-start/,"
    	"cpu/cycles-ct/"
    	"}"
    };
    
    /* More limited version when the CPU does not have all events. */
    static const char * const transaction_limited_attrs[] = {
    	"task-clock",
    	"{"
    	"instructions,"
    	"cycles,"
    	"cpu/cycles-t/,"
    	"cpu/tx-start/"
    	"}"
    };
    
    /* must match transaction_attrs and the beginning limited_attrs */
    enum {
    	T_TASK_CLOCK,
    	T_INSTRUCTIONS,
    	T_CYCLES,
    	T_CYCLES_IN_TX,
    	T_TRANSACTION_START,
    	T_ELISION_START,
    	T_CYCLES_IN_TX_CP,
    };
    
    static struct perf_evlist	*evsel_list;
    
    static struct target target = {
    	.uid	= UINT_MAX,
    };
    
    enum aggr_mode {
    	AGGR_NONE,
    	AGGR_GLOBAL,
    	AGGR_SOCKET,
    	AGGR_CORE,
    };
    
    static int			run_count			=  1;
    static bool			no_inherit			= false;
    static bool			scale				=  true;
    static enum aggr_mode		aggr_mode			= AGGR_GLOBAL;
    static volatile pid_t		child_pid			= -1;
    static bool			null_run			=  false;
    static int			detailed_run			=  0;
    static bool			transaction_run;
    static bool			big_num				=  true;
    static int			big_num_opt			=  -1;
    static const char		*csv_sep			= NULL;
    static bool			csv_output			= false;
    static bool			group				= false;
    static FILE			*output				= NULL;
    static const char		*pre_cmd			= NULL;
    static const char		*post_cmd			= NULL;
    static bool			sync_run			= false;
    static unsigned int		interval			= 0;
    static unsigned int		initial_delay			= 0;
    static unsigned int		unit_width			= 4; /* strlen("unit") */
    static bool			forever				= false;
    static struct timespec		ref_time;
    static struct cpu_map		*aggr_map;
    static int			(*aggr_get_id)(struct cpu_map *m, int cpu);
    
    static volatile int done = 0;
    
    struct perf_stat {
    	struct stats	  res_stats[3];
    };
    
    static inline void diff_timespec(struct timespec *r, struct timespec *a,
    				 struct timespec *b)
    {
    	r->tv_sec = a->tv_sec - b->tv_sec;
    	if (a->tv_nsec < b->tv_nsec) {
    		r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec;
    		r->tv_sec--;
    	} else {
    		r->tv_nsec = a->tv_nsec - b->tv_nsec ;
    	}
    }
    
    static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel)
    {
    	return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus;
    }
    
    static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel)
    {
    	return perf_evsel__cpus(evsel)->nr;
    }
    
    static void perf_evsel__reset_stat_priv(struct perf_evsel *evsel)
    {
    	int i;
    	struct perf_stat *ps = evsel->priv;
    
    	for (i = 0; i < 3; i++)
    		init_stats(&ps->res_stats[i]);
    }
    
    static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel)
    {
    	evsel->priv = zalloc(sizeof(struct perf_stat));
    	if (evsel->priv == NULL)
    		return -ENOMEM;
    	perf_evsel__reset_stat_priv(evsel);
    	return 0;
    }
    
    static void perf_evsel__free_stat_priv(struct perf_evsel *evsel)
    {
    	zfree(&evsel->priv);
    }
    
    static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel)
    {
    	void *addr;
    	size_t sz;
    
    	sz = sizeof(*evsel->counts) +
    	     (perf_evsel__nr_cpus(evsel) * sizeof(struct perf_counts_values));
    
    	addr = zalloc(sz);
    	if (!addr)
    		return -ENOMEM;
    
    	evsel->prev_raw_counts =  addr;
    
    	return 0;
    }
    
    static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel)
    {
    	zfree(&evsel->prev_raw_counts);
    }
    
    static void perf_evlist__free_stats(struct perf_evlist *evlist)
    {
    	struct perf_evsel *evsel;
    
    	evlist__for_each(evlist, evsel) {
    		perf_evsel__free_stat_priv(evsel);
    		perf_evsel__free_counts(evsel);
    		perf_evsel__free_prev_raw_counts(evsel);
    	}
    }
    
    static int perf_evlist__alloc_stats(struct perf_evlist *evlist, bool alloc_raw)
    {
    	struct perf_evsel *evsel;
    
    	evlist__for_each(evlist, evsel) {
    		if (perf_evsel__alloc_stat_priv(evsel) < 0 ||
    		    perf_evsel__alloc_counts(evsel, perf_evsel__nr_cpus(evsel)) < 0 ||
    		    (alloc_raw && perf_evsel__alloc_prev_raw_counts(evsel) < 0))
    			goto out_free;
    	}
    
    	return 0;
    
    out_free:
    	perf_evlist__free_stats(evlist);
    	return -1;
    }
    
    static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
    static struct stats runtime_cycles_stats[MAX_NR_CPUS];
    static struct stats runtime_stalled_cycles_front_stats[MAX_NR_CPUS];
    static struct stats runtime_stalled_cycles_back_stats[MAX_NR_CPUS];
    static struct stats runtime_branches_stats[MAX_NR_CPUS];
    static struct stats runtime_cacherefs_stats[MAX_NR_CPUS];
    static struct stats runtime_l1_dcache_stats[MAX_NR_CPUS];
    static struct stats runtime_l1_icache_stats[MAX_NR_CPUS];
    static struct stats runtime_ll_cache_stats[MAX_NR_CPUS];
    static struct stats runtime_itlb_cache_stats[MAX_NR_CPUS];
    static struct stats runtime_dtlb_cache_stats[MAX_NR_CPUS];
    static struct stats runtime_cycles_in_tx_stats[MAX_NR_CPUS];
    static struct stats walltime_nsecs_stats;
    static struct stats runtime_transaction_stats[MAX_NR_CPUS];
    static struct stats runtime_elision_stats[MAX_NR_CPUS];
    
    static void perf_stat__reset_stats(struct perf_evlist *evlist)
    {
    	struct perf_evsel *evsel;
    
    	evlist__for_each(evlist, evsel) {
    		perf_evsel__reset_stat_priv(evsel);
    		perf_evsel__reset_counts(evsel, perf_evsel__nr_cpus(evsel));
    	}
    
    	memset(runtime_nsecs_stats, 0, sizeof(runtime_nsecs_stats));
    	memset(runtime_cycles_stats, 0, sizeof(runtime_cycles_stats));
    	memset(runtime_stalled_cycles_front_stats, 0, sizeof(runtime_stalled_cycles_front_stats));
    	memset(runtime_stalled_cycles_back_stats, 0, sizeof(runtime_stalled_cycles_back_stats));
    	memset(runtime_branches_stats, 0, sizeof(runtime_branches_stats));
    	memset(runtime_cacherefs_stats, 0, sizeof(runtime_cacherefs_stats));
    	memset(runtime_l1_dcache_stats, 0, sizeof(runtime_l1_dcache_stats));
    	memset(runtime_l1_icache_stats, 0, sizeof(runtime_l1_icache_stats));
    	memset(runtime_ll_cache_stats, 0, sizeof(runtime_ll_cache_stats));
    	memset(runtime_itlb_cache_stats, 0, sizeof(runtime_itlb_cache_stats));
    	memset(runtime_dtlb_cache_stats, 0, sizeof(runtime_dtlb_cache_stats));
    	memset(runtime_cycles_in_tx_stats, 0,
    			sizeof(runtime_cycles_in_tx_stats));
    	memset(runtime_transaction_stats, 0,
    		sizeof(runtime_transaction_stats));
    	memset(runtime_elision_stats, 0, sizeof(runtime_elision_stats));
    	memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
    }
    
    static int create_perf_stat_counter(struct perf_evsel *evsel)
    {
    	struct perf_event_attr *attr = &evsel->attr;
    
    	if (scale)
    		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
    				    PERF_FORMAT_TOTAL_TIME_RUNNING;
    
    	attr->inherit = !no_inherit;
    
    	if (target__has_cpu(&target))
    		return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel));
    
    	if (!target__has_task(&target) && perf_evsel__is_group_leader(evsel)) {
    		attr->disabled = 1;
    		if (!initial_delay)
    			attr->enable_on_exec = 1;
    	}
    
    	return perf_evsel__open_per_thread(evsel, evsel_list->threads);
    }
    
    /*
     * Does the counter have nsecs as a unit?
     */
    static inline int nsec_counter(struct perf_evsel *evsel)
    {
    	if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) ||
    	    perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
    		return 1;
    
    	return 0;
    }
    
    static struct perf_evsel *nth_evsel(int n)
    {
    	static struct perf_evsel **array;
    	static int array_len;
    	struct perf_evsel *ev;
    	int j;
    
    	/* Assumes this only called when evsel_list does not change anymore. */
    	if (!array) {
    		evlist__for_each(evsel_list, ev)
    			array_len++;
    		array = malloc(array_len * sizeof(void *));
    		if (!array)
    			exit(ENOMEM);
    		j = 0;
    		evlist__for_each(evsel_list, ev)
    			array[j++] = ev;
    	}
    	if (n < array_len)
    		return array[n];
    	return NULL;
    }
    
    /*
     * Update various tracking values we maintain to print
     * more semantic information such as miss/hit ratios,
     * instruction rates, etc:
     */
    static void update_shadow_stats(struct perf_evsel *counter, u64 *count)
    {
    	if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK))
    		update_stats(&runtime_nsecs_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
    		update_stats(&runtime_cycles_stats[0], count[0]);
    	else if (transaction_run &&
    		 perf_evsel__cmp(counter, nth_evsel(T_CYCLES_IN_TX)))
    		update_stats(&runtime_cycles_in_tx_stats[0], count[0]);
    	else if (transaction_run &&
    		 perf_evsel__cmp(counter, nth_evsel(T_TRANSACTION_START)))
    		update_stats(&runtime_transaction_stats[0], count[0]);
    	else if (transaction_run &&
    		 perf_evsel__cmp(counter, nth_evsel(T_ELISION_START)))
    		update_stats(&runtime_elision_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
    		update_stats(&runtime_stalled_cycles_front_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
    		update_stats(&runtime_stalled_cycles_back_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
    		update_stats(&runtime_branches_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
    		update_stats(&runtime_cacherefs_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
    		update_stats(&runtime_l1_dcache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
    		update_stats(&runtime_l1_icache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL))
    		update_stats(&runtime_ll_cache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
    		update_stats(&runtime_dtlb_cache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
    		update_stats(&runtime_itlb_cache_stats[0], count[0]);
    }
    
    /*
     * Read out the results of a single counter:
     * aggregate counts across CPUs in system-wide mode
     */
    static int read_counter_aggr(struct perf_evsel *counter)
    {
    	struct perf_stat *ps = counter->priv;
    	u64 *count = counter->counts->aggr.values;
    	int i;
    
    	if (__perf_evsel__read(counter, perf_evsel__nr_cpus(counter),
    			       thread_map__nr(evsel_list->threads), scale) < 0)
    		return -1;
    
    	for (i = 0; i < 3; i++)
    		update_stats(&ps->res_stats[i], count[i]);
    
    	if (verbose) {
    		fprintf(output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
    			perf_evsel__name(counter), count[0], count[1], count[2]);
    	}
    
    	/*
    	 * Save the full runtime - to allow normalization during printout:
    	 */
    	update_shadow_stats(counter, count);
    
    	return 0;
    }
    
    /*
     * Read out the results of a single counter:
     * do not aggregate counts across CPUs in system-wide mode
     */
    static int read_counter(struct perf_evsel *counter)
    {
    	u64 *count;
    	int cpu;
    
    	for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    		if (__perf_evsel__read_on_cpu(counter, cpu, 0, scale) < 0)
    			return -1;
    
    		count = counter->counts->cpu[cpu].values;
    
    		update_shadow_stats(counter, count);
    	}
    
    	return 0;
    }
    
    static void print_interval(void)
    {
    	static int num_print_interval;
    	struct perf_evsel *counter;
    	struct perf_stat *ps;
    	struct timespec ts, rs;
    	char prefix[64];
    
    	if (aggr_mode == AGGR_GLOBAL) {
    		evlist__for_each(evsel_list, counter) {
    			ps = counter->priv;
    			memset(ps->res_stats, 0, sizeof(ps->res_stats));
    			read_counter_aggr(counter);
    		}
    	} else	{
    		evlist__for_each(evsel_list, counter) {
    			ps = counter->priv;
    			memset(ps->res_stats, 0, sizeof(ps->res_stats));
    			read_counter(counter);
    		}
    	}
    
    	clock_gettime(CLOCK_MONOTONIC, &ts);
    	diff_timespec(&rs, &ts, &ref_time);
    	sprintf(prefix, "%6lu.%09lu%s", rs.tv_sec, rs.tv_nsec, csv_sep);
    
    	if (num_print_interval == 0 && !csv_output) {
    		switch (aggr_mode) {
    		case AGGR_SOCKET:
    			fprintf(output, "#           time socket cpus             counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_CORE:
    			fprintf(output, "#           time core         cpus             counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_NONE:
    			fprintf(output, "#           time CPU                counts %*s events\n", unit_width, "unit");
    			break;
    		case AGGR_GLOBAL:
    		default:
    			fprintf(output, "#           time             counts %*s events\n", unit_width, "unit");
    		}
    	}
    
    	if (++num_print_interval == 25)
    		num_print_interval = 0;
    
    	switch (aggr_mode) {
    	case AGGR_CORE:
    	case AGGR_SOCKET:
    		print_aggr(prefix);
    		break;
    	case AGGR_NONE:
    		evlist__for_each(evsel_list, counter)
    			print_counter(counter, prefix);
    		break;
    	case AGGR_GLOBAL:
    	default:
    		evlist__for_each(evsel_list, counter)
    			print_counter_aggr(counter, prefix);
    	}
    
    	fflush(output);
    }
    
    static void handle_initial_delay(void)
    {
    	struct perf_evsel *counter;
    
    	if (initial_delay) {
    		const int ncpus = cpu_map__nr(evsel_list->cpus),
    			nthreads = thread_map__nr(evsel_list->threads);
    
    		usleep(initial_delay * 1000);
    		evlist__for_each(evsel_list, counter)
    			perf_evsel__enable(counter, ncpus, nthreads);
    	}
    }
    
    static volatile int workload_exec_errno;
    
    /*
     * perf_evlist__prepare_workload will send a SIGUSR1
     * if the fork fails, since we asked by setting its
     * want_signal to true.
     */
    static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info,
    					void *ucontext __maybe_unused)
    {
    	workload_exec_errno = info->si_value.sival_int;
    }
    
    static int __run_perf_stat(int argc, const char **argv)
    {
    	char msg[512];
    	unsigned long long t0, t1;
    	struct perf_evsel *counter;
    	struct timespec ts;
    	size_t l;
    	int status = 0;
    	const bool forks = (argc > 0);
    
    	if (interval) {
    		ts.tv_sec  = interval / 1000;
    		ts.tv_nsec = (interval % 1000) * 1000000;
    	} else {
    		ts.tv_sec  = 1;
    		ts.tv_nsec = 0;
    	}
    
    	if (forks) {
    		if (perf_evlist__prepare_workload(evsel_list, &target, argv, false,
    						  workload_exec_failed_signal) < 0) {
    			perror("failed to prepare workload");
    			return -1;
    		}
    		child_pid = evsel_list->workload.pid;
    	}
    
    	if (group)
    		perf_evlist__set_leader(evsel_list);
    
    	evlist__for_each(evsel_list, counter) {
    		if (create_perf_stat_counter(counter) < 0) {
    			/*
    			 * PPC returns ENXIO for HW counters until 2.6.37
    			 * (behavior changed with commit b0a873e).
    			 */
    			if (errno == EINVAL || errno == ENOSYS ||
    			    errno == ENOENT || errno == EOPNOTSUPP ||
    			    errno == ENXIO) {
    				if (verbose)
    					ui__warning("%s event is not supported by the kernel.\n",
    						    perf_evsel__name(counter));
    				counter->supported = false;
    				continue;
    			}
    
    			perf_evsel__open_strerror(counter, &target,
    						  errno, msg, sizeof(msg));
    			ui__error("%s\n", msg);
    
    			if (child_pid != -1)
    				kill(child_pid, SIGTERM);
    
    			return -1;
    		}
    		counter->supported = true;
    
    		l = strlen(counter->unit);
    		if (l > unit_width)
    			unit_width = l;
    	}
    
    	if (perf_evlist__apply_filters(evsel_list)) {
    		error("failed to set filter with %d (%s)\n", errno,
    			strerror_r(errno, msg, sizeof(msg)));
    		return -1;
    	}
    
    	/*
    	 * Enable counters and exec the command:
    	 */
    	t0 = rdclock();
    	clock_gettime(CLOCK_MONOTONIC, &ref_time);
    
    	if (forks) {
    		perf_evlist__start_workload(evsel_list);
    		handle_initial_delay();
    
    		if (interval) {
    			while (!waitpid(child_pid, &status, WNOHANG)) {
    				nanosleep(&ts, NULL);
    				print_interval();
    			}
    		}
    		wait(&status);
    
    		if (workload_exec_errno) {
    			const char *emsg = strerror_r(workload_exec_errno, msg, sizeof(msg));
    			pr_err("Workload failed: %s\n", emsg);
    			return -1;
    		}
    
    		if (WIFSIGNALED(status))
    			psignal(WTERMSIG(status), argv[0]);
    	} else {
    		handle_initial_delay();
    		while (!done) {
    			nanosleep(&ts, NULL);
    			if (interval)
    				print_interval();
    		}
    	}
    
    	t1 = rdclock();
    
    	update_stats(&walltime_nsecs_stats, t1 - t0);
    
    	if (aggr_mode == AGGR_GLOBAL) {
    		evlist__for_each(evsel_list, counter) {
    			read_counter_aggr(counter);
    			perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter),
    					     thread_map__nr(evsel_list->threads));
    		}
    	} else {
    		evlist__for_each(evsel_list, counter) {
    			read_counter(counter);
    			perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), 1);
    		}
    	}
    
    	return WEXITSTATUS(status);
    }
    
    static int run_perf_stat(int argc, const char **argv)
    {
    	int ret;
    
    	if (pre_cmd) {
    		ret = system(pre_cmd);
    		if (ret)
    			return ret;
    	}
    
    	if (sync_run)
    		sync();
    
    	ret = __run_perf_stat(argc, argv);
    	if (ret)
    		return ret;
    
    	if (post_cmd) {
    		ret = system(post_cmd);
    		if (ret)
    			return ret;
    	}
    
    	return ret;
    }
    
    static void print_noise_pct(double total, double avg)
    {
    	double pct = rel_stddev_stats(total, avg);
    
    	if (csv_output)
    		fprintf(output, "%s%.2f%%", csv_sep, pct);
    	else if (pct)
    		fprintf(output, "  ( +-%6.2f%% )", pct);
    }
    
    static void print_noise(struct perf_evsel *evsel, double avg)
    {
    	struct perf_stat *ps;
    
    	if (run_count == 1)
    		return;
    
    	ps = evsel->priv;
    	print_noise_pct(stddev_stats(&ps->res_stats[0]), avg);
    }
    
    static void aggr_printout(struct perf_evsel *evsel, int id, int nr)
    {
    	switch (aggr_mode) {
    	case AGGR_CORE:
    		fprintf(output, "S%d-C%*d%s%*d%s",
    			cpu_map__id_to_socket(id),
    			csv_output ? 0 : -8,
    			cpu_map__id_to_cpu(id),
    			csv_sep,
    			csv_output ? 0 : 4,
    			nr,
    			csv_sep);
    		break;
    	case AGGR_SOCKET:
    		fprintf(output, "S%*d%s%*d%s",
    			csv_output ? 0 : -5,
    			id,
    			csv_sep,
    			csv_output ? 0 : 4,
    			nr,
    			csv_sep);
    			break;
    	case AGGR_NONE:
    		fprintf(output, "CPU%*d%s",
    			csv_output ? 0 : -4,
    			perf_evsel__cpus(evsel)->map[id], csv_sep);
    		break;
    	case AGGR_GLOBAL:
    	default:
    		break;
    	}
    }
    
    static void nsec_printout(int id, int nr, struct perf_evsel *evsel, double avg)
    {
    	double msecs = avg / 1e6;
    	const char *fmt_v, *fmt_n;
    	char name[25];
    
    	fmt_v = csv_output ? "%.6f%s" : "%18.6f%s";
    	fmt_n = csv_output ? "%s" : "%-25s";
    
    	aggr_printout(evsel, id, nr);
    
    	scnprintf(name, sizeof(name), "%s%s",
    		  perf_evsel__name(evsel), csv_output ? "" : " (msec)");
    
    	fprintf(output, fmt_v, msecs, csv_sep);
    
    	if (csv_output)
    		fprintf(output, "%s%s", evsel->unit, csv_sep);
    	else
    		fprintf(output, "%-*s%s", unit_width, evsel->unit, csv_sep);
    
    	fprintf(output, fmt_n, name);
    
    	if (evsel->cgrp)
    		fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
    
    	if (csv_output || interval)
    		return;
    
    	if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
    		fprintf(output, " # %8.3f CPUs utilized          ",
    			avg / avg_stats(&walltime_nsecs_stats));
    	else
    		fprintf(output, "                                   ");
    }
    
    /* used for get_ratio_color() */
    enum grc_type {
    	GRC_STALLED_CYCLES_FE,
    	GRC_STALLED_CYCLES_BE,
    	GRC_CACHE_MISSES,
    	GRC_MAX_NR
    };
    
    static const char *get_ratio_color(enum grc_type type, double ratio)
    {
    	static const double grc_table[GRC_MAX_NR][3] = {
    		[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
    		[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
    		[GRC_CACHE_MISSES] 	= { 20.0, 10.0, 5.0 },
    	};
    	const char *color = PERF_COLOR_NORMAL;
    
    	if (ratio > grc_table[type][0])
    		color = PERF_COLOR_RED;
    	else if (ratio > grc_table[type][1])
    		color = PERF_COLOR_MAGENTA;
    	else if (ratio > grc_table[type][2])
    		color = PERF_COLOR_YELLOW;
    
    	return color;
    }
    
    static void print_stalled_cycles_frontend(int cpu,
    					  struct perf_evsel *evsel
    					  __maybe_unused, double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_cycles_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " frontend cycles idle   ");
    }
    
    static void print_stalled_cycles_backend(int cpu,
    					 struct perf_evsel *evsel
    					 __maybe_unused, double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_cycles_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " backend  cycles idle   ");
    }
    
    static void print_branch_misses(int cpu,
    				struct perf_evsel *evsel __maybe_unused,
    				double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_branches_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all branches        ");
    }
    
    static void print_l1_dcache_misses(int cpu,
    				   struct perf_evsel *evsel __maybe_unused,
    				   double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_l1_dcache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all L1-dcache hits  ");
    }
    
    static void print_l1_icache_misses(int cpu,
    				   struct perf_evsel *evsel __maybe_unused,
    				   double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_l1_icache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all L1-icache hits  ");
    }
    
    static void print_dtlb_cache_misses(int cpu,
    				    struct perf_evsel *evsel __maybe_unused,
    				    double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_dtlb_cache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all dTLB cache hits ");
    }
    
    static void print_itlb_cache_misses(int cpu,
    				    struct perf_evsel *evsel __maybe_unused,
    				    double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_itlb_cache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all iTLB cache hits ");
    }
    
    static void print_ll_cache_misses(int cpu,
    				  struct perf_evsel *evsel __maybe_unused,
    				  double avg)
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_ll_cache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all LL-cache hits   ");
    }
    
    static void abs_printout(int id, int nr, struct perf_evsel *evsel, double avg)
    {
    	double total, ratio = 0.0, total2;
    	double sc =  evsel->scale;
    	const char *fmt;
    	int cpu = cpu_map__id_to_cpu(id);
    
    	if (csv_output) {
    		fmt = sc != 1.0 ?  "%.2f%s" : "%.0f%s";
    	} else {
    		if (big_num)
    			fmt = sc != 1.0 ? "%'18.2f%s" : "%'18.0f%s";
    		else
    			fmt = sc != 1.0 ? "%18.2f%s" : "%18.0f%s";
    	}
    
    	aggr_printout(evsel, id, nr);
    
    	if (aggr_mode == AGGR_GLOBAL)
    		cpu = 0;
    
    	fprintf(output, fmt, avg, csv_sep);
    
    	if (evsel->unit)
    		fprintf(output, "%-*s%s",
    			csv_output ? 0 : unit_width,
    			evsel->unit, csv_sep);
    
    	fprintf(output, "%-*s", csv_output ? 0 : 25, perf_evsel__name(evsel));
    
    	if (evsel->cgrp)
    		fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
    
    	if (csv_output || interval)
    		return;
    
    	if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
    		total = avg_stats(&runtime_cycles_stats[cpu]);
    		if (total) {
    			ratio = avg / total;
    			fprintf(output, " #   %5.2f  insns per cycle        ", ratio);
    		}
    		total = avg_stats(&runtime_stalled_cycles_front_stats[cpu]);
    		total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[cpu]));
    
    		if (total && avg) {
    			ratio = total / avg;
    			fprintf(output, "\n");
    			if (aggr_mode == AGGR_NONE)
    				fprintf(output, "        ");
    			fprintf(output, "                                                  #   %5.2f  stalled cycles per insn", ratio);
    		}
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES) &&
    			runtime_branches_stats[cpu].n != 0) {
    		print_branch_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_L1D |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_l1_dcache_stats[cpu].n != 0) {
    		print_l1_dcache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_L1I |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_l1_icache_stats[cpu].n != 0) {
    		print_l1_icache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_DTLB |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_dtlb_cache_stats[cpu].n != 0) {
    		print_dtlb_cache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_ITLB |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_itlb_cache_stats[cpu].n != 0) {
    		print_itlb_cache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_LL |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_ll_cache_stats[cpu].n != 0) {
    		print_ll_cache_misses(cpu, evsel, avg);
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES) &&
    			runtime_cacherefs_stats[cpu].n != 0) {
    		total = avg_stats(&runtime_cacherefs_stats[cpu]);
    
    		if (total)
    			ratio = avg * 100 / total;
    
    		fprintf(output, " # %8.3f %% of all cache refs    ", ratio);
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
    		print_stalled_cycles_frontend(cpu, evsel, avg);
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
    		print_stalled_cycles_backend(cpu, evsel, avg);
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
    		total = avg_stats(&runtime_nsecs_stats[cpu]);
    
    		if (total) {
    			ratio = avg / total;
    			fprintf(output, " # %8.3f GHz                    ", ratio);
    		}
    	} else if (transaction_run &&
    		   perf_evsel__cmp(evsel, nth_evsel(T_CYCLES_IN_TX))) {
    		total = avg_stats(&runtime_cycles_stats[cpu]);
    		if (total)
    			fprintf(output,
    				" #   %5.2f%% transactional cycles   ",
    				100.0 * (avg / total));
    	} else if (transaction_run &&
    		   perf_evsel__cmp(evsel, nth_evsel(T_CYCLES_IN_TX_CP))) {
    		total = avg_stats(&runtime_cycles_stats[cpu]);
    		total2 = avg_stats(&runtime_cycles_in_tx_stats[cpu]);
    		if (total2 < avg)
    			total2 = avg;
    		if (total)
    			fprintf(output,
    				" #   %5.2f%% aborted cycles         ",
    				100.0 * ((total2-avg) / total));
    	} else if (transaction_run &&
    		   perf_evsel__cmp(evsel, nth_evsel(T_TRANSACTION_START)) &&
    		   avg > 0 &&
    		   runtime_cycles_in_tx_stats[cpu].n != 0) {
    		total = avg_stats(&runtime_cycles_in_tx_stats[cpu]);
    
    		if (total)
    			ratio = total / avg;
    
    		fprintf(output, " # %8.0f cycles / transaction   ", ratio);
    	} else if (transaction_run &&
    		   perf_evsel__cmp(evsel, nth_evsel(T_ELISION_START)) &&
    		   avg > 0 &&
    		   runtime_cycles_in_tx_stats[cpu].n != 0) {
    		total = avg_stats(&runtime_cycles_in_tx_stats[cpu]);
    
    		if (total)
    			ratio = total / avg;
    
    		fprintf(output, " # %8.0f cycles / elision       ", ratio);
    	} else if (runtime_nsecs_stats[cpu].n != 0) {
    		char unit = 'M';
    
    		total = avg_stats(&runtime_nsecs_stats[cpu]);
    
    		if (total)
    			ratio = 1000.0 * avg / total;
    		if (ratio < 0.001) {
    			ratio *= 1000;
    			unit = 'K';
    		}
    
    		fprintf(output, " # %8.3f %c/sec                  ", ratio, unit);
    	} else {
    		fprintf(output, "                                   ");
    	}
    }
    
    static void print_aggr(char *prefix)
    {
    	struct perf_evsel *counter;
    	int cpu, cpu2, s, s2, id, nr;
    	double uval;
    	u64 ena, run, val;
    
    	if (!(aggr_map || aggr_get_id))
    		return;
    
    	for (s = 0; s < aggr_map->nr; s++) {
    		id = aggr_map->map[s];
    		evlist__for_each(evsel_list, counter) {
    			val = ena = run = 0;
    			nr = 0;
    			for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    				cpu2 = perf_evsel__cpus(counter)->map[cpu];
    				s2 = aggr_get_id(evsel_list->cpus, cpu2);
    				if (s2 != id)
    					continue;
    				val += counter->counts->cpu[cpu].val;
    				ena += counter->counts->cpu[cpu].ena;
    				run += counter->counts->cpu[cpu].run;
    				nr++;
    			}
    			if (prefix)
    				fprintf(output, "%s", prefix);
    
    			if (run == 0 || ena == 0) {
    				aggr_printout(counter, id, nr);
    
    				fprintf(output, "%*s%s",
    					csv_output ? 0 : 18,
    					counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
    					csv_sep);
    
    				fprintf(output, "%-*s%s",
    					csv_output ? 0 : unit_width,
    					counter->unit, csv_sep);
    
    				fprintf(output, "%*s",
    					csv_output ? 0 : -25,
    					perf_evsel__name(counter));
    
    				if (counter->cgrp)
    					fprintf(output, "%s%s",
    						csv_sep, counter->cgrp->name);
    
    				fputc('\n', output);
    				continue;
    			}
    			uval = val * counter->scale;
    
    			if (nsec_counter(counter))
    				nsec_printout(id, nr, counter, uval);
    			else
    				abs_printout(id, nr, counter, uval);
    
    			if (!csv_output) {
    				print_noise(counter, 1.0);
    
    				if (run != ena)
    					fprintf(output, "  (%.2f%%)",
    						100.0 * run / ena);
    			}
    			fputc('\n', output);
    		}
    	}
    }
    
    /*
     * Print out the results of a single counter:
     * aggregated counts in system-wide mode
     */
    static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
    {
    	struct perf_stat *ps = counter->priv;
    	double avg = avg_stats(&ps->res_stats[0]);
    	int scaled = counter->counts->scaled;
    	double uval;
    
    	if (prefix)
    		fprintf(output, "%s", prefix);
    
    	if (scaled == -1) {
    		fprintf(output, "%*s%s",
    			csv_output ? 0 : 18,
    			counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
    			csv_sep);
    		fprintf(output, "%-*s%s",
    			csv_output ? 0 : unit_width,
    			counter->unit, csv_sep);
    		fprintf(output, "%*s",
    			csv_output ? 0 : -25,
    			perf_evsel__name(counter));
    
    		if (counter->cgrp)
    			fprintf(output, "%s%s", csv_sep, counter->cgrp->name);
    
    		fputc('\n', output);
    		return;
    	}
    
    	uval = avg * counter->scale;
    
    	if (nsec_counter(counter))
    		nsec_printout(-1, 0, counter, uval);
    	else
    		abs_printout(-1, 0, counter, uval);
    
    	print_noise(counter, avg);
    
    	if (csv_output) {
    		fputc('\n', output);
    		return;
    	}
    
    	if (scaled) {
    		double avg_enabled, avg_running;
    
    		avg_enabled = avg_stats(&ps->res_stats[1]);
    		avg_running = avg_stats(&ps->res_stats[2]);
    
    		fprintf(output, " [%5.2f%%]", 100 * avg_running / avg_enabled);
    	}
    	fprintf(output, "\n");
    }
    
    /*
     * Print out the results of a single counter:
     * does not use aggregated count in system-wide
     */
    static void print_counter(struct perf_evsel *counter, char *prefix)
    {
    	u64 ena, run, val;
    	double uval;
    	int cpu;
    
    	for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    		val = counter->counts->cpu[cpu].val;
    		ena = counter->counts->cpu[cpu].ena;
    		run = counter->counts->cpu[cpu].run;
    
    		if (prefix)
    			fprintf(output, "%s", prefix);
    
    		if (run == 0 || ena == 0) {
    			fprintf(output, "CPU%*d%s%*s%s",
    				csv_output ? 0 : -4,
    				perf_evsel__cpus(counter)->map[cpu], csv_sep,
    				csv_output ? 0 : 18,
    				counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
    				csv_sep);
    
    				fprintf(output, "%-*s%s",
    					csv_output ? 0 : unit_width,
    					counter->unit, csv_sep);
    
    				fprintf(output, "%*s",
    					csv_output ? 0 : -25,
    					perf_evsel__name(counter));
    
    			if (counter->cgrp)
    				fprintf(output, "%s%s",
    					csv_sep, counter->cgrp->name);
    
    			fputc('\n', output);
    			continue;
    		}
    
    		uval = val * counter->scale;
    
    		if (nsec_counter(counter))
    			nsec_printout(cpu, 0, counter, uval);
    		else
    			abs_printout(cpu, 0, counter, uval);
    
    		if (!csv_output) {
    			print_noise(counter, 1.0);
    
    			if (run != ena)
    				fprintf(output, "  (%.2f%%)",
    					100.0 * run / ena);
    		}
    		fputc('\n', output);
    	}
    }
    
    static void print_stat(int argc, const char **argv)
    {
    	struct perf_evsel *counter;
    	int i;
    
    	fflush(stdout);
    
    	if (!csv_output) {
    		fprintf(output, "\n");
    		fprintf(output, " Performance counter stats for ");
    		if (target.system_wide)
    			fprintf(output, "\'system wide");
    		else if (target.cpu_list)
    			fprintf(output, "\'CPU(s) %s", target.cpu_list);
    		else if (!target__has_task(&target)) {
    			fprintf(output, "\'%s", argv[0]);
    			for (i = 1; i < argc; i++)
    				fprintf(output, " %s", argv[i]);
    		} else if (target.pid)
    			fprintf(output, "process id \'%s", target.pid);
    		else
    			fprintf(output, "thread id \'%s", target.tid);
    
    		fprintf(output, "\'");
    		if (run_count > 1)
    			fprintf(output, " (%d runs)", run_count);
    		fprintf(output, ":\n\n");
    	}
    
    	switch (aggr_mode) {
    	case AGGR_CORE:
    	case AGGR_SOCKET:
    		print_aggr(NULL);
    		break;
    	case AGGR_GLOBAL:
    		evlist__for_each(evsel_list, counter)
    			print_counter_aggr(counter, NULL);
    		break;
    	case AGGR_NONE:
    		evlist__for_each(evsel_list, counter)
    			print_counter(counter, NULL);
    		break;
    	default:
    		break;
    	}
    
    	if (!csv_output) {
    		if (!null_run)
    			fprintf(output, "\n");
    		fprintf(output, " %17.9f seconds time elapsed",
    				avg_stats(&walltime_nsecs_stats)/1e9);
    		if (run_count > 1) {
    			fprintf(output, "                                        ");
    			print_noise_pct(stddev_stats(&walltime_nsecs_stats),
    					avg_stats(&walltime_nsecs_stats));
    		}
    		fprintf(output, "\n\n");
    	}
    }
    
    static volatile int signr = -1;
    
    static void skip_signal(int signo)
    {
    	if ((child_pid == -1) || interval)
    		done = 1;
    
    	signr = signo;
    	/*
    	 * render child_pid harmless
    	 * won't send SIGTERM to a random
    	 * process in case of race condition
    	 * and fast PID recycling
    	 */
    	child_pid = -1;
    }
    
    static void sig_atexit(void)
    {
    	sigset_t set, oset;
    
    	/*
    	 * avoid race condition with SIGCHLD handler
    	 * in skip_signal() which is modifying child_pid
    	 * goal is to avoid send SIGTERM to a random
    	 * process
    	 */
    	sigemptyset(&set);
    	sigaddset(&set, SIGCHLD);
    	sigprocmask(SIG_BLOCK, &set, &oset);
    
    	if (child_pid != -1)
    		kill(child_pid, SIGTERM);
    
    	sigprocmask(SIG_SETMASK, &oset, NULL);
    
    	if (signr == -1)
    		return;
    
    	signal(signr, SIG_DFL);
    	kill(getpid(), signr);
    }
    
    static int stat__set_big_num(const struct option *opt __maybe_unused,
    			     const char *s __maybe_unused, int unset)
    {
    	big_num_opt = unset ? 0 : 1;
    	return 0;
    }
    
    static int perf_stat_init_aggr_mode(void)
    {
    	switch (aggr_mode) {
    	case AGGR_SOCKET:
    		if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) {
    			perror("cannot build socket map");
    			return -1;
    		}
    		aggr_get_id = cpu_map__get_socket;
    		break;
    	case AGGR_CORE:
    		if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) {
    			perror("cannot build core map");
    			return -1;
    		}
    		aggr_get_id = cpu_map__get_core;
    		break;
    	case AGGR_NONE:
    	case AGGR_GLOBAL:
    	default:
    		break;
    	}
    	return 0;
    }
    
    static int setup_events(const char * const *attrs, unsigned len)
    {
    	unsigned i;
    
    	for (i = 0; i < len; i++) {
    		if (parse_events(evsel_list, attrs[i]))
    			return -1;
    	}
    	return 0;
    }
    
    /*
     * Add default attributes, if there were no attributes specified or
     * if -d/--detailed, -d -d or -d -d -d is used:
     */
    static int add_default_attributes(void)
    {
    	struct perf_event_attr default_attrs[] = {
    
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK		},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES	},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS		},
      { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS		},
    
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES		},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS		},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS	},
      { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES		},
    
    };
    
    /*
     * Detailed stats (-d), covering the L1 and last level data caches:
     */
    	struct perf_event_attr detailed_attrs[] = {
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_LL			<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_LL			<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    };
    
    /*
     * Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
     */
    	struct perf_event_attr very_detailed_attrs[] = {
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1I		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1I		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_DTLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_DTLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_ITLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_ITLB		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_READ		<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    
    };
    
    /*
     * Very, very detailed stats (-d -d -d), adding prefetch events:
     */
    	struct perf_event_attr very_very_detailed_attrs[] = {
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_PREFETCH	<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_ACCESS	<< 16)				},
    
      { .type = PERF_TYPE_HW_CACHE,
        .config =
    	 PERF_COUNT_HW_CACHE_L1D		<<  0  |
    	(PERF_COUNT_HW_CACHE_OP_PREFETCH	<<  8) |
    	(PERF_COUNT_HW_CACHE_RESULT_MISS	<< 16)				},
    };
    
    	/* Set attrs if no event is selected and !null_run: */
    	if (null_run)
    		return 0;
    
    	if (transaction_run) {
    		int err;
    		if (pmu_have_event("cpu", "cycles-ct") &&
    		    pmu_have_event("cpu", "el-start"))
    			err = setup_events(transaction_attrs,
    					ARRAY_SIZE(transaction_attrs));
    		else
    			err = setup_events(transaction_limited_attrs,
    				 ARRAY_SIZE(transaction_limited_attrs));
    		if (err < 0) {
    			fprintf(stderr, "Cannot set up transaction events\n");
    			return -1;
    		}
    		return 0;
    	}
    
    	if (!evsel_list->nr_entries) {
    		if (perf_evlist__add_default_attrs(evsel_list, default_attrs) < 0)
    			return -1;
    	}
    
    	/* Detailed events get appended to the event list: */
    
    	if (detailed_run <  1)
    		return 0;
    
    	/* Append detailed run extra attributes: */
    	if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
    		return -1;
    
    	if (detailed_run < 2)
    		return 0;
    
    	/* Append very detailed run extra attributes: */
    	if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
    		return -1;
    
    	if (detailed_run < 3)
    		return 0;
    
    	/* Append very, very detailed run extra attributes: */
    	return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
    }
    
    int cmd_stat(int argc, const char **argv, const char *prefix __maybe_unused)
    {
    	bool append_file = false;
    	int output_fd = 0;
    	const char *output_name	= NULL;
    	const struct option options[] = {
    	OPT_BOOLEAN('T', "transaction", &transaction_run,
    		    "hardware transaction statistics"),
    	OPT_CALLBACK('e', "event", &evsel_list, "event",
    		     "event selector. use 'perf list' to list available events",
    		     parse_events_option),
    	OPT_CALLBACK(0, "filter", &evsel_list, "filter",
    		     "event filter", parse_filter),
    	OPT_BOOLEAN('i', "no-inherit", &no_inherit,
    		    "child tasks do not inherit counters"),
    	OPT_STRING('p', "pid", &target.pid, "pid",
    		   "stat events on existing process id"),
    	OPT_STRING('t', "tid", &target.tid, "tid",
    		   "stat events on existing thread id"),
    	OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
    		    "system-wide collection from all CPUs"),
    	OPT_BOOLEAN('g', "group", &group,
    		    "put the counters into a counter group"),
    	OPT_BOOLEAN('c', "scale", &scale, "scale/normalize counters"),
    	OPT_INCR('v', "verbose", &verbose,
    		    "be more verbose (show counter open errors, etc)"),
    	OPT_INTEGER('r', "repeat", &run_count,
    		    "repeat command and print average + stddev (max: 100, forever: 0)"),
    	OPT_BOOLEAN('n', "null", &null_run,
    		    "null run - dont start any counters"),
    	OPT_INCR('d', "detailed", &detailed_run,
    		    "detailed run - start a lot of events"),
    	OPT_BOOLEAN('S', "sync", &sync_run,
    		    "call sync() before starting a run"),
    	OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 
    			   "print large numbers with thousands\' separators",
    			   stat__set_big_num),
    	OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
    		    "list of cpus to monitor in system-wide"),
    	OPT_SET_UINT('A', "no-aggr", &aggr_mode,
    		    "disable CPU count aggregation", AGGR_NONE),
    	OPT_STRING('x', "field-separator", &csv_sep, "separator",
    		   "print counts with custom separator"),
    	OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
    		     "monitor event in cgroup name only", parse_cgroups),
    	OPT_STRING('o', "output", &output_name, "file", "output file name"),
    	OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
    	OPT_INTEGER(0, "log-fd", &output_fd,
    		    "log output to fd, instead of stderr"),
    	OPT_STRING(0, "pre", &pre_cmd, "command",
    			"command to run prior to the measured command"),
    	OPT_STRING(0, "post", &post_cmd, "command",
    			"command to run after to the measured command"),
    	OPT_UINTEGER('I', "interval-print", &interval,
    		    "print counts at regular interval in ms (>= 100)"),
    	OPT_SET_UINT(0, "per-socket", &aggr_mode,
    		     "aggregate counts per processor socket", AGGR_SOCKET),
    	OPT_SET_UINT(0, "per-core", &aggr_mode,
    		     "aggregate counts per physical processor core", AGGR_CORE),
    	OPT_UINTEGER('D', "delay", &initial_delay,
    		     "ms to wait before starting measurement after program start"),
    	OPT_END()
    	};
    	const char * const stat_usage[] = {
    		"perf stat [<options>] [<command>]",
    		NULL
    	};
    	int status = -EINVAL, run_idx;
    	const char *mode;
    
    	setlocale(LC_ALL, "");
    
    	evsel_list = perf_evlist__new();
    	if (evsel_list == NULL)
    		return -ENOMEM;
    
    	argc = parse_options(argc, argv, options, stat_usage,
    		PARSE_OPT_STOP_AT_NON_OPTION);
    
    	output = stderr;
    	if (output_name && strcmp(output_name, "-"))
    		output = NULL;
    
    	if (output_name && output_fd) {
    		fprintf(stderr, "cannot use both --output and --log-fd\n");
    		parse_options_usage(stat_usage, options, "o", 1);
    		parse_options_usage(NULL, options, "log-fd", 0);
    		goto out;
    	}
    
    	if (output_fd < 0) {
    		fprintf(stderr, "argument to --log-fd must be a > 0\n");
    		parse_options_usage(stat_usage, options, "log-fd", 0);
    		goto out;
    	}
    
    	if (!output) {
    		struct timespec tm;
    		mode = append_file ? "a" : "w";
    
    		output = fopen(output_name, mode);
    		if (!output) {
    			perror("failed to create output file");
    			return -1;
    		}
    		clock_gettime(CLOCK_REALTIME, &tm);
    		fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
    	} else if (output_fd > 0) {
    		mode = append_file ? "a" : "w";
    		output = fdopen(output_fd, mode);
    		if (!output) {
    			perror("Failed opening logfd");
    			return -errno;
    		}
    	}
    
    	if (csv_sep) {
    		csv_output = true;
    		if (!strcmp(csv_sep, "\\t"))
    			csv_sep = "\t";
    	} else
    		csv_sep = DEFAULT_SEPARATOR;
    
    	/*
    	 * let the spreadsheet do the pretty-printing
    	 */
    	if (csv_output) {
    		/* User explicitly passed -B? */
    		if (big_num_opt == 1) {
    			fprintf(stderr, "-B option not supported with -x\n");
    			parse_options_usage(stat_usage, options, "B", 1);
    			parse_options_usage(NULL, options, "x", 1);
    			goto out;
    		} else /* Nope, so disable big number formatting */
    			big_num = false;
    	} else if (big_num_opt == 0) /* User passed --no-big-num */
    		big_num = false;
    
    	if (!argc && target__none(&target))
    		usage_with_options(stat_usage, options);
    
    	if (run_count < 0) {
    		pr_err("Run count must be a positive number\n");
    		parse_options_usage(stat_usage, options, "r", 1);
    		goto out;
    	} else if (run_count == 0) {
    		forever = true;
    		run_count = 1;
    	}
    
    	/* no_aggr, cgroup are for system-wide only */
    	if ((aggr_mode != AGGR_GLOBAL || nr_cgroups) &&
    	    !target__has_cpu(&target)) {
    		fprintf(stderr, "both cgroup and no-aggregation "
    			"modes only available in system-wide mode\n");
    
    		parse_options_usage(stat_usage, options, "G", 1);
    		parse_options_usage(NULL, options, "A", 1);
    		parse_options_usage(NULL, options, "a", 1);
    		goto out;
    	}
    
    	if (add_default_attributes())
    		goto out;
    
    	target__validate(&target);
    
    	if (perf_evlist__create_maps(evsel_list, &target) < 0) {
    		if (target__has_task(&target)) {
    			pr_err("Problems finding threads of monitor\n");
    			parse_options_usage(stat_usage, options, "p", 1);
    			parse_options_usage(NULL, options, "t", 1);
    		} else if (target__has_cpu(&target)) {
    			perror("failed to parse CPUs map");
    			parse_options_usage(stat_usage, options, "C", 1);
    			parse_options_usage(NULL, options, "a", 1);
    		}
    		goto out;
    	}
    	if (interval && interval < 100) {
    		pr_err("print interval must be >= 100ms\n");
    		parse_options_usage(stat_usage, options, "I", 1);
    		goto out;
    	}
    
    	if (perf_evlist__alloc_stats(evsel_list, interval))
    		goto out;
    
    	if (perf_stat_init_aggr_mode())
    		goto out;
    
    	/*
    	 * We dont want to block the signals - that would cause
    	 * child tasks to inherit that and Ctrl-C would not work.
    	 * What we want is for Ctrl-C to work in the exec()-ed
    	 * task, but being ignored by perf stat itself:
    	 */
    	atexit(sig_atexit);
    	if (!forever)
    		signal(SIGINT,  skip_signal);
    	signal(SIGCHLD, skip_signal);
    	signal(SIGALRM, skip_signal);
    	signal(SIGABRT, skip_signal);
    
    	status = 0;
    	for (run_idx = 0; forever || run_idx < run_count; run_idx++) {
    		if (run_count != 1 && verbose)
    			fprintf(output, "[ perf stat: executing run #%d ... ]\n",
    				run_idx + 1);
    
    		status = run_perf_stat(argc, argv);
    		if (forever && status != -1) {
    			print_stat(argc, argv);
    			perf_stat__reset_stats(evsel_list);
    		}
    	}
    
    	if (!forever && status != -1 && !interval)
    		print_stat(argc, argv);
    
    	perf_evlist__free_stats(evsel_list);
    out:
    	perf_evlist__delete(evsel_list);
    	return status;
    }