Skip to content
Snippets Groups Projects
Select Git revision
  • 9137bb27e60e554dab694eafa4cca241fa3a694f
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

sched.h

Blame
  • spi-imx.c 43.37 KiB
    /*
     * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
     * Copyright (C) 2008 Juergen Beisert
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * as published by the Free Software Foundation; either version 2
     * of the License, or (at your option) any later version.
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the
     * Free Software Foundation
     * 51 Franklin Street, Fifth Floor
     * Boston, MA  02110-1301, USA.
     */
    
    #include <linux/clk.h>
    #include <linux/completion.h>
    #include <linux/delay.h>
    #include <linux/dmaengine.h>
    #include <linux/dma-mapping.h>
    #include <linux/err.h>
    #include <linux/gpio.h>
    #include <linux/interrupt.h>
    #include <linux/io.h>
    #include <linux/irq.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/platform_device.h>
    #include <linux/slab.h>
    #include <linux/spi/spi.h>
    #include <linux/spi/spi_bitbang.h>
    #include <linux/types.h>
    #include <linux/of.h>
    #include <linux/of_device.h>
    #include <linux/of_gpio.h>
    
    #include <linux/platform_data/dma-imx.h>
    #include <linux/platform_data/spi-imx.h>
    
    #define DRIVER_NAME "spi_imx"
    
    #define MXC_CSPIRXDATA		0x00
    #define MXC_CSPITXDATA		0x04
    #define MXC_CSPICTRL		0x08
    #define MXC_CSPIINT		0x0c
    #define MXC_RESET		0x1c
    
    /* generic defines to abstract from the different register layouts */
    #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
    #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
    #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
    
    /* The maximum  bytes that a sdma BD can transfer.*/
    #define MAX_SDMA_BD_BYTES  (1 << 15)
    #define MX51_ECSPI_CTRL_MAX_BURST	512
    /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
    #define MX53_MAX_TRANSFER_BYTES		512
    
    enum spi_imx_devtype {
    	IMX1_CSPI,
    	IMX21_CSPI,
    	IMX27_CSPI,
    	IMX31_CSPI,
    	IMX35_CSPI,	/* CSPI on all i.mx except above */
    	IMX51_ECSPI,	/* ECSPI on i.mx51 */
    	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
    };
    
    struct spi_imx_data;
    
    struct spi_imx_devtype_data {
    	void (*intctrl)(struct spi_imx_data *, int);
    	int (*config)(struct spi_device *);
    	void (*trigger)(struct spi_imx_data *);
    	int (*rx_available)(struct spi_imx_data *);
    	void (*reset)(struct spi_imx_data *);
    	void (*disable)(struct spi_imx_data *);
    	bool has_dmamode;
    	bool has_slavemode;
    	unsigned int fifo_size;
    	bool dynamic_burst;
    	enum spi_imx_devtype devtype;
    };
    
    struct spi_imx_data {
    	struct spi_bitbang bitbang;
    	struct device *dev;
    
    	struct completion xfer_done;
    	void __iomem *base;
    	unsigned long base_phys;
    
    	struct clk *clk_per;
    	struct clk *clk_ipg;
    	unsigned long spi_clk;
    	unsigned int spi_bus_clk;
    
    	unsigned int speed_hz;
    	unsigned int bits_per_word;
    	unsigned int spi_drctl;
    
    	unsigned int count, remainder;
    	void (*tx)(struct spi_imx_data *);
    	void (*rx)(struct spi_imx_data *);
    	void *rx_buf;
    	const void *tx_buf;
    	unsigned int txfifo; /* number of words pushed in tx FIFO */
    	unsigned int dynamic_burst, read_u32;
    	unsigned int word_mask;
    
    	/* Slave mode */
    	bool slave_mode;
    	bool slave_aborted;
    	unsigned int slave_burst;
    
    	/* DMA */
    	bool usedma;
    	u32 wml;
    	struct completion dma_rx_completion;
    	struct completion dma_tx_completion;
    
    	const struct spi_imx_devtype_data *devtype_data;
    };
    
    static inline int is_imx27_cspi(struct spi_imx_data *d)
    {
    	return d->devtype_data->devtype == IMX27_CSPI;
    }
    
    static inline int is_imx35_cspi(struct spi_imx_data *d)
    {
    	return d->devtype_data->devtype == IMX35_CSPI;
    }
    
    static inline int is_imx51_ecspi(struct spi_imx_data *d)
    {
    	return d->devtype_data->devtype == IMX51_ECSPI;
    }
    
    static inline int is_imx53_ecspi(struct spi_imx_data *d)
    {
    	return d->devtype_data->devtype == IMX53_ECSPI;
    }
    
    #define MXC_SPI_BUF_RX(type)						\
    static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
    {									\
    	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
    									\
    	if (spi_imx->rx_buf) {						\
    		*(type *)spi_imx->rx_buf = val;				\
    		spi_imx->rx_buf += sizeof(type);			\
    	}								\
    }
    
    #define MXC_SPI_BUF_TX(type)						\
    static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
    {									\
    	type val = 0;							\
    									\
    	if (spi_imx->tx_buf) {						\
    		val = *(type *)spi_imx->tx_buf;				\
    		spi_imx->tx_buf += sizeof(type);			\
    	}								\
    									\
    	spi_imx->count -= sizeof(type);					\
    									\
    	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
    }
    
    MXC_SPI_BUF_RX(u8)
    MXC_SPI_BUF_TX(u8)
    MXC_SPI_BUF_RX(u16)
    MXC_SPI_BUF_TX(u16)
    MXC_SPI_BUF_RX(u32)
    MXC_SPI_BUF_TX(u32)
    
    /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
     * (which is currently not the case in this driver)
     */
    static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
    	256, 384, 512, 768, 1024};
    
    /* MX21, MX27 */
    static unsigned int spi_imx_clkdiv_1(unsigned int fin,
    		unsigned int fspi, unsigned int max, unsigned int *fres)
    {
    	int i;
    
    	for (i = 2; i < max; i++)
    		if (fspi * mxc_clkdivs[i] >= fin)
    			break;
    
    	*fres = fin / mxc_clkdivs[i];
    	return i;
    }
    
    /* MX1, MX31, MX35, MX51 CSPI */
    static unsigned int spi_imx_clkdiv_2(unsigned int fin,
    		unsigned int fspi, unsigned int *fres)
    {
    	int i, div = 4;
    
    	for (i = 0; i < 7; i++) {
    		if (fspi * div >= fin)
    			goto out;
    		div <<= 1;
    	}
    
    out:
    	*fres = fin / div;
    	return i;
    }
    
    static int spi_imx_bytes_per_word(const int bits_per_word)
    {
    	return DIV_ROUND_UP(bits_per_word, BITS_PER_BYTE);
    }
    
    static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
    			 struct spi_transfer *transfer)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
    	unsigned int bytes_per_word, i;
    
    	if (!master->dma_rx)
    		return false;
    
    	if (spi_imx->slave_mode)
    		return false;
    
    	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
    
    	if (bytes_per_word != 1 && bytes_per_word != 2 && bytes_per_word != 4)
    		return false;
    
    	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
    		if (!(transfer->len % (i * bytes_per_word)))
    			break;
    	}
    
    	if (i == 0)
    		return false;
    
    	spi_imx->wml = i;
    	spi_imx->dynamic_burst = 0;
    
    	return true;
    }
    
    #define MX51_ECSPI_CTRL		0x08
    #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
    #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
    #define MX51_ECSPI_CTRL_SMC		(1 << 3)
    #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
    #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
    #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
    #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
    #define MX51_ECSPI_CTRL_CS(cs)		((cs) << 18)
    #define MX51_ECSPI_CTRL_BL_OFFSET	20
    #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
    
    #define MX51_ECSPI_CONFIG	0x0c
    #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs) +  0))
    #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs) +  4))
    #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs) +  8))
    #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs) + 12))
    #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs) + 20))
    
    #define MX51_ECSPI_INT		0x10
    #define MX51_ECSPI_INT_TEEN		(1 <<  0)
    #define MX51_ECSPI_INT_RREN		(1 <<  3)
    #define MX51_ECSPI_INT_RDREN		(1 <<  4)
    
    #define MX51_ECSPI_DMA      0x14
    #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
    #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
    #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
    
    #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
    #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
    #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
    
    #define MX51_ECSPI_STAT		0x18
    #define MX51_ECSPI_STAT_RR		(1 <<  3)
    
    #define MX51_ECSPI_TESTREG	0x20
    #define MX51_ECSPI_TESTREG_LBC	BIT(31)
    
    static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
    {
    	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
    #ifdef __LITTLE_ENDIAN
    	unsigned int bytes_per_word;
    #endif
    
    	if (spi_imx->rx_buf) {
    #ifdef __LITTLE_ENDIAN
    		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
    		if (bytes_per_word == 1)
    			val = cpu_to_be32(val);
    		else if (bytes_per_word == 2)
    			val = (val << 16) | (val >> 16);
    #endif
    		val &= spi_imx->word_mask;
    		*(u32 *)spi_imx->rx_buf = val;
    		spi_imx->rx_buf += sizeof(u32);
    	}
    }
    
    static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
    {
    	unsigned int bytes_per_word;
    
    	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
    	if (spi_imx->read_u32) {
    		spi_imx_buf_rx_swap_u32(spi_imx);
    		return;
    	}
    
    	if (bytes_per_word == 1)
    		spi_imx_buf_rx_u8(spi_imx);
    	else if (bytes_per_word == 2)
    		spi_imx_buf_rx_u16(spi_imx);
    }
    
    static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
    {
    	u32 val = 0;
    #ifdef __LITTLE_ENDIAN
    	unsigned int bytes_per_word;
    #endif
    
    	if (spi_imx->tx_buf) {
    		val = *(u32 *)spi_imx->tx_buf;
    		val &= spi_imx->word_mask;
    		spi_imx->tx_buf += sizeof(u32);
    	}
    
    	spi_imx->count -= sizeof(u32);
    #ifdef __LITTLE_ENDIAN
    	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
    
    	if (bytes_per_word == 1)
    		val = cpu_to_be32(val);
    	else if (bytes_per_word == 2)
    		val = (val << 16) | (val >> 16);
    #endif
    	writel(val, spi_imx->base + MXC_CSPITXDATA);
    }
    
    static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
    {
    	u32 ctrl, val;
    	unsigned int bytes_per_word;
    
    	if (spi_imx->count == spi_imx->remainder) {
    		ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
    		ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
    		if (spi_imx->count > MX51_ECSPI_CTRL_MAX_BURST) {
    			spi_imx->remainder = spi_imx->count %
    					     MX51_ECSPI_CTRL_MAX_BURST;
    			val = MX51_ECSPI_CTRL_MAX_BURST * 8 - 1;
    		} else if (spi_imx->count >= sizeof(u32)) {
    			spi_imx->remainder = spi_imx->count % sizeof(u32);
    			val = (spi_imx->count - spi_imx->remainder) * 8 - 1;
    		} else {
    			spi_imx->remainder = 0;
    			val = spi_imx->bits_per_word - 1;
    			spi_imx->read_u32 = 0;
    		}
    
    		ctrl |= (val << MX51_ECSPI_CTRL_BL_OFFSET);
    		writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
    	}
    
    	if (spi_imx->count >= sizeof(u32)) {
    		spi_imx_buf_tx_swap_u32(spi_imx);
    		return;
    	}
    
    	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
    
    	if (bytes_per_word == 1)
    		spi_imx_buf_tx_u8(spi_imx);
    	else if (bytes_per_word == 2)
    		spi_imx_buf_tx_u16(spi_imx);
    }
    
    static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
    {
    	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
    
    	if (spi_imx->rx_buf) {
    		int n_bytes = spi_imx->slave_burst % sizeof(val);
    
    		if (!n_bytes)
    			n_bytes = sizeof(val);
    
    		memcpy(spi_imx->rx_buf,
    		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
    
    		spi_imx->rx_buf += n_bytes;
    		spi_imx->slave_burst -= n_bytes;
    	}
    }
    
    static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
    {
    	u32 val = 0;
    	int n_bytes = spi_imx->count % sizeof(val);
    
    	if (!n_bytes)
    		n_bytes = sizeof(val);
    
    	if (spi_imx->tx_buf) {
    		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
    		       spi_imx->tx_buf, n_bytes);
    		val = cpu_to_be32(val);
    		spi_imx->tx_buf += n_bytes;
    	}
    
    	spi_imx->count -= n_bytes;
    
    	writel(val, spi_imx->base + MXC_CSPITXDATA);
    }
    
    /* MX51 eCSPI */
    static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
    				      unsigned int fspi, unsigned int *fres)
    {
    	/*
    	 * there are two 4-bit dividers, the pre-divider divides by
    	 * $pre, the post-divider by 2^$post
    	 */
    	unsigned int pre, post;
    	unsigned int fin = spi_imx->spi_clk;
    
    	if (unlikely(fspi > fin))
    		return 0;
    
    	post = fls(fin) - fls(fspi);
    	if (fin > fspi << post)
    		post++;
    
    	/* now we have: (fin <= fspi << post) with post being minimal */
    
    	post = max(4U, post) - 4;
    	if (unlikely(post > 0xf)) {
    		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
    				fspi, fin);
    		return 0xff;
    	}
    
    	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
    
    	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
    			__func__, fin, fspi, post, pre);
    
    	/* Resulting frequency for the SCLK line. */
    	*fres = (fin / (pre + 1)) >> post;
    
    	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
    		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
    }
    
    static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
    {
    	unsigned val = 0;
    
    	if (enable & MXC_INT_TE)
    		val |= MX51_ECSPI_INT_TEEN;
    
    	if (enable & MXC_INT_RR)
    		val |= MX51_ECSPI_INT_RREN;
    
    	if (enable & MXC_INT_RDR)
    		val |= MX51_ECSPI_INT_RDREN;
    
    	writel(val, spi_imx->base + MX51_ECSPI_INT);
    }
    
    static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
    {
    	u32 reg;
    
    	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
    	reg |= MX51_ECSPI_CTRL_XCH;
    	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
    }
    
    static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
    {
    	u32 ctrl;
    
    	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
    	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
    	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
    }
    
    static int mx51_ecspi_config(struct spi_device *spi)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
    	u32 clk = spi_imx->speed_hz, delay, reg;
    	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
    
    	/* set Master or Slave mode */
    	if (spi_imx->slave_mode)
    		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
    	else
    		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
    
    	/*
    	 * Enable SPI_RDY handling (falling edge/level triggered).
    	 */
    	if (spi->mode & SPI_READY)
    		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
    
    	/* set clock speed */
    	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->speed_hz, &clk);
    	spi_imx->spi_bus_clk = clk;
    
    	/* set chip select to use */
    	ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
    
    	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
    		ctrl |= (spi_imx->slave_burst * 8 - 1)
    			<< MX51_ECSPI_CTRL_BL_OFFSET;
    	else
    		ctrl |= (spi_imx->bits_per_word - 1)
    			<< MX51_ECSPI_CTRL_BL_OFFSET;
    
    	/*
    	 * eCSPI burst completion by Chip Select signal in Slave mode
    	 * is not functional for imx53 Soc, config SPI burst completed when
    	 * BURST_LENGTH + 1 bits are received
    	 */
    	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
    		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
    	else
    		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
    
    	if (spi->mode & SPI_CPHA)
    		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
    	else
    		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
    
    	if (spi->mode & SPI_CPOL) {
    		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
    		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
    	} else {
    		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
    		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
    	}
    	if (spi->mode & SPI_CS_HIGH)
    		cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
    	else
    		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
    
    	if (spi_imx->usedma)
    		ctrl |= MX51_ECSPI_CTRL_SMC;
    
    	/* CTRL register always go first to bring out controller from reset */
    	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
    
    	reg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
    	if (spi->mode & SPI_LOOP)
    		reg |= MX51_ECSPI_TESTREG_LBC;
    	else
    		reg &= ~MX51_ECSPI_TESTREG_LBC;
    	writel(reg, spi_imx->base + MX51_ECSPI_TESTREG);
    
    	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
    
    	/*
    	 * Wait until the changes in the configuration register CONFIGREG
    	 * propagate into the hardware. It takes exactly one tick of the
    	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
    	 * effect of the delay it takes for the hardware to apply changes
    	 * is noticable if the SCLK clock run very slow. In such a case, if
    	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
    	 * be asserted before the SCLK polarity changes, which would disrupt
    	 * the SPI communication as the device on the other end would consider
    	 * the change of SCLK polarity as a clock tick already.
    	 */
    	delay = (2 * 1000000) / clk;
    	if (likely(delay < 10))	/* SCLK is faster than 100 kHz */
    		udelay(delay);
    	else			/* SCLK is _very_ slow */
    		usleep_range(delay, delay + 10);
    
    	/*
    	 * Configure the DMA register: setup the watermark
    	 * and enable DMA request.
    	 */
    
    	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml) |
    		MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
    		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
    		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
    		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
    
    	return 0;
    }
    
    static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
    {
    	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
    }
    
    static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
    {
    	/* drain receive buffer */
    	while (mx51_ecspi_rx_available(spi_imx))
    		readl(spi_imx->base + MXC_CSPIRXDATA);
    }
    
    #define MX31_INTREG_TEEN	(1 << 0)
    #define MX31_INTREG_RREN	(1 << 3)
    
    #define MX31_CSPICTRL_ENABLE	(1 << 0)
    #define MX31_CSPICTRL_MASTER	(1 << 1)
    #define MX31_CSPICTRL_XCH	(1 << 2)
    #define MX31_CSPICTRL_SMC	(1 << 3)
    #define MX31_CSPICTRL_POL	(1 << 4)
    #define MX31_CSPICTRL_PHA	(1 << 5)
    #define MX31_CSPICTRL_SSCTL	(1 << 6)
    #define MX31_CSPICTRL_SSPOL	(1 << 7)
    #define MX31_CSPICTRL_BC_SHIFT	8
    #define MX35_CSPICTRL_BL_SHIFT	20
    #define MX31_CSPICTRL_CS_SHIFT	24
    #define MX35_CSPICTRL_CS_SHIFT	12
    #define MX31_CSPICTRL_DR_SHIFT	16
    
    #define MX31_CSPI_DMAREG	0x10
    #define MX31_DMAREG_RH_DEN	(1<<4)
    #define MX31_DMAREG_TH_DEN	(1<<1)
    
    #define MX31_CSPISTATUS		0x14
    #define MX31_STATUS_RR		(1 << 3)
    
    #define MX31_CSPI_TESTREG	0x1C
    #define MX31_TEST_LBC		(1 << 14)
    
    /* These functions also work for the i.MX35, but be aware that
     * the i.MX35 has a slightly different register layout for bits
     * we do not use here.
     */
    static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
    {
    	unsigned int val = 0;
    
    	if (enable & MXC_INT_TE)
    		val |= MX31_INTREG_TEEN;
    	if (enable & MXC_INT_RR)
    		val |= MX31_INTREG_RREN;
    
    	writel(val, spi_imx->base + MXC_CSPIINT);
    }
    
    static void mx31_trigger(struct spi_imx_data *spi_imx)
    {
    	unsigned int reg;
    
    	reg = readl(spi_imx->base + MXC_CSPICTRL);
    	reg |= MX31_CSPICTRL_XCH;
    	writel(reg, spi_imx->base + MXC_CSPICTRL);
    }
    
    static int mx31_config(struct spi_device *spi)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
    	unsigned int clk;
    
    	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
    		MX31_CSPICTRL_DR_SHIFT;
    	spi_imx->spi_bus_clk = clk;
    
    	if (is_imx35_cspi(spi_imx)) {
    		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
    		reg |= MX31_CSPICTRL_SSCTL;
    	} else {
    		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
    	}
    
    	if (spi->mode & SPI_CPHA)
    		reg |= MX31_CSPICTRL_PHA;
    	if (spi->mode & SPI_CPOL)
    		reg |= MX31_CSPICTRL_POL;
    	if (spi->mode & SPI_CS_HIGH)
    		reg |= MX31_CSPICTRL_SSPOL;
    	if (!gpio_is_valid(spi->cs_gpio))
    		reg |= (spi->chip_select) <<
    			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
    						  MX31_CSPICTRL_CS_SHIFT);
    
    	if (spi_imx->usedma)
    		reg |= MX31_CSPICTRL_SMC;
    
    	writel(reg, spi_imx->base + MXC_CSPICTRL);
    
    	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
    	if (spi->mode & SPI_LOOP)
    		reg |= MX31_TEST_LBC;
    	else
    		reg &= ~MX31_TEST_LBC;
    	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
    
    	if (spi_imx->usedma) {
    		/* configure DMA requests when RXFIFO is half full and
    		   when TXFIFO is half empty */
    		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
    			spi_imx->base + MX31_CSPI_DMAREG);
    	}
    
    	return 0;
    }
    
    static int mx31_rx_available(struct spi_imx_data *spi_imx)
    {
    	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
    }
    
    static void mx31_reset(struct spi_imx_data *spi_imx)
    {
    	/* drain receive buffer */
    	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
    		readl(spi_imx->base + MXC_CSPIRXDATA);
    }
    
    #define MX21_INTREG_RR		(1 << 4)
    #define MX21_INTREG_TEEN	(1 << 9)
    #define MX21_INTREG_RREN	(1 << 13)
    
    #define MX21_CSPICTRL_POL	(1 << 5)
    #define MX21_CSPICTRL_PHA	(1 << 6)
    #define MX21_CSPICTRL_SSPOL	(1 << 8)
    #define MX21_CSPICTRL_XCH	(1 << 9)
    #define MX21_CSPICTRL_ENABLE	(1 << 10)
    #define MX21_CSPICTRL_MASTER	(1 << 11)
    #define MX21_CSPICTRL_DR_SHIFT	14
    #define MX21_CSPICTRL_CS_SHIFT	19
    
    static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
    {
    	unsigned int val = 0;
    
    	if (enable & MXC_INT_TE)
    		val |= MX21_INTREG_TEEN;
    	if (enable & MXC_INT_RR)
    		val |= MX21_INTREG_RREN;
    
    	writel(val, spi_imx->base + MXC_CSPIINT);
    }
    
    static void mx21_trigger(struct spi_imx_data *spi_imx)
    {
    	unsigned int reg;
    
    	reg = readl(spi_imx->base + MXC_CSPICTRL);
    	reg |= MX21_CSPICTRL_XCH;
    	writel(reg, spi_imx->base + MXC_CSPICTRL);
    }
    
    static int mx21_config(struct spi_device *spi)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
    	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
    	unsigned int clk;
    
    	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->speed_hz, max, &clk)
    		<< MX21_CSPICTRL_DR_SHIFT;
    	spi_imx->spi_bus_clk = clk;
    
    	reg |= spi_imx->bits_per_word - 1;
    
    	if (spi->mode & SPI_CPHA)
    		reg |= MX21_CSPICTRL_PHA;
    	if (spi->mode & SPI_CPOL)
    		reg |= MX21_CSPICTRL_POL;
    	if (spi->mode & SPI_CS_HIGH)
    		reg |= MX21_CSPICTRL_SSPOL;
    	if (!gpio_is_valid(spi->cs_gpio))
    		reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
    
    	writel(reg, spi_imx->base + MXC_CSPICTRL);
    
    	return 0;
    }
    
    static int mx21_rx_available(struct spi_imx_data *spi_imx)
    {
    	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
    }
    
    static void mx21_reset(struct spi_imx_data *spi_imx)
    {
    	writel(1, spi_imx->base + MXC_RESET);
    }
    
    #define MX1_INTREG_RR		(1 << 3)
    #define MX1_INTREG_TEEN		(1 << 8)
    #define MX1_INTREG_RREN		(1 << 11)
    
    #define MX1_CSPICTRL_POL	(1 << 4)
    #define MX1_CSPICTRL_PHA	(1 << 5)
    #define MX1_CSPICTRL_XCH	(1 << 8)
    #define MX1_CSPICTRL_ENABLE	(1 << 9)
    #define MX1_CSPICTRL_MASTER	(1 << 10)
    #define MX1_CSPICTRL_DR_SHIFT	13
    
    static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
    {
    	unsigned int val = 0;
    
    	if (enable & MXC_INT_TE)
    		val |= MX1_INTREG_TEEN;
    	if (enable & MXC_INT_RR)
    		val |= MX1_INTREG_RREN;
    
    	writel(val, spi_imx->base + MXC_CSPIINT);
    }
    
    static void mx1_trigger(struct spi_imx_data *spi_imx)
    {
    	unsigned int reg;
    
    	reg = readl(spi_imx->base + MXC_CSPICTRL);
    	reg |= MX1_CSPICTRL_XCH;
    	writel(reg, spi_imx->base + MXC_CSPICTRL);
    }
    
    static int mx1_config(struct spi_device *spi)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
    	unsigned int clk;
    
    	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
    		MX1_CSPICTRL_DR_SHIFT;
    	spi_imx->spi_bus_clk = clk;
    
    	reg |= spi_imx->bits_per_word - 1;
    
    	if (spi->mode & SPI_CPHA)
    		reg |= MX1_CSPICTRL_PHA;
    	if (spi->mode & SPI_CPOL)
    		reg |= MX1_CSPICTRL_POL;
    
    	writel(reg, spi_imx->base + MXC_CSPICTRL);
    
    	return 0;
    }
    
    static int mx1_rx_available(struct spi_imx_data *spi_imx)
    {
    	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
    }
    
    static void mx1_reset(struct spi_imx_data *spi_imx)
    {
    	writel(1, spi_imx->base + MXC_RESET);
    }
    
    static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
    	.intctrl = mx1_intctrl,
    	.config = mx1_config,
    	.trigger = mx1_trigger,
    	.rx_available = mx1_rx_available,
    	.reset = mx1_reset,
    	.fifo_size = 8,
    	.has_dmamode = false,
    	.dynamic_burst = false,
    	.has_slavemode = false,
    	.devtype = IMX1_CSPI,
    };
    
    static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
    	.intctrl = mx21_intctrl,
    	.config = mx21_config,
    	.trigger = mx21_trigger,
    	.rx_available = mx21_rx_available,
    	.reset = mx21_reset,
    	.fifo_size = 8,
    	.has_dmamode = false,
    	.dynamic_burst = false,
    	.has_slavemode = false,
    	.devtype = IMX21_CSPI,
    };
    
    static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
    	/* i.mx27 cspi shares the functions with i.mx21 one */
    	.intctrl = mx21_intctrl,
    	.config = mx21_config,
    	.trigger = mx21_trigger,
    	.rx_available = mx21_rx_available,
    	.reset = mx21_reset,
    	.fifo_size = 8,
    	.has_dmamode = false,
    	.dynamic_burst = false,
    	.has_slavemode = false,
    	.devtype = IMX27_CSPI,
    };
    
    static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
    	.intctrl = mx31_intctrl,
    	.config = mx31_config,
    	.trigger = mx31_trigger,
    	.rx_available = mx31_rx_available,
    	.reset = mx31_reset,
    	.fifo_size = 8,
    	.has_dmamode = false,
    	.dynamic_burst = false,
    	.has_slavemode = false,
    	.devtype = IMX31_CSPI,
    };
    
    static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
    	/* i.mx35 and later cspi shares the functions with i.mx31 one */
    	.intctrl = mx31_intctrl,
    	.config = mx31_config,
    	.trigger = mx31_trigger,
    	.rx_available = mx31_rx_available,
    	.reset = mx31_reset,
    	.fifo_size = 8,
    	.has_dmamode = true,
    	.dynamic_burst = false,
    	.has_slavemode = false,
    	.devtype = IMX35_CSPI,
    };
    
    static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
    	.intctrl = mx51_ecspi_intctrl,
    	.config = mx51_ecspi_config,
    	.trigger = mx51_ecspi_trigger,
    	.rx_available = mx51_ecspi_rx_available,
    	.reset = mx51_ecspi_reset,
    	.fifo_size = 64,
    	.has_dmamode = true,
    	.dynamic_burst = true,
    	.has_slavemode = true,
    	.disable = mx51_ecspi_disable,
    	.devtype = IMX51_ECSPI,
    };
    
    static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
    	.intctrl = mx51_ecspi_intctrl,
    	.config = mx51_ecspi_config,
    	.trigger = mx51_ecspi_trigger,
    	.rx_available = mx51_ecspi_rx_available,
    	.reset = mx51_ecspi_reset,
    	.fifo_size = 64,
    	.has_dmamode = true,
    	.has_slavemode = true,
    	.disable = mx51_ecspi_disable,
    	.devtype = IMX53_ECSPI,
    };
    
    static const struct platform_device_id spi_imx_devtype[] = {
    	{
    		.name = "imx1-cspi",
    		.driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,
    	}, {
    		.name = "imx21-cspi",
    		.driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
    	}, {
    		.name = "imx27-cspi",
    		.driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data,
    	}, {
    		.name = "imx31-cspi",
    		.driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data,
    	}, {
    		.name = "imx35-cspi",
    		.driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data,
    	}, {
    		.name = "imx51-ecspi",
    		.driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data,
    	}, {
    		.name = "imx53-ecspi",
    		.driver_data = (kernel_ulong_t) &imx53_ecspi_devtype_data,
    	}, {
    		/* sentinel */
    	}
    };
    
    static const struct of_device_id spi_imx_dt_ids[] = {
    	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
    	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
    	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
    	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
    	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
    	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
    	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
    	{ /* sentinel */ }
    };
    MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
    
    static void spi_imx_chipselect(struct spi_device *spi, int is_active)
    {
    	int active = is_active != BITBANG_CS_INACTIVE;
    	int dev_is_lowactive = !(spi->mode & SPI_CS_HIGH);
    
    	if (spi->mode & SPI_NO_CS)
    		return;
    
    	if (!gpio_is_valid(spi->cs_gpio))
    		return;
    
    	gpio_set_value(spi->cs_gpio, dev_is_lowactive ^ active);
    }
    
    static void spi_imx_push(struct spi_imx_data *spi_imx)
    {
    	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
    		if (!spi_imx->count)
    			break;
    		if (spi_imx->txfifo && (spi_imx->count == spi_imx->remainder))
    			break;
    		spi_imx->tx(spi_imx);
    		spi_imx->txfifo++;
    	}
    
    	if (!spi_imx->slave_mode)
    		spi_imx->devtype_data->trigger(spi_imx);
    }
    
    static irqreturn_t spi_imx_isr(int irq, void *dev_id)
    {
    	struct spi_imx_data *spi_imx = dev_id;
    
    	while (spi_imx->txfifo &&
    	       spi_imx->devtype_data->rx_available(spi_imx)) {
    		spi_imx->rx(spi_imx);
    		spi_imx->txfifo--;
    	}
    
    	if (spi_imx->count) {
    		spi_imx_push(spi_imx);
    		return IRQ_HANDLED;
    	}
    
    	if (spi_imx->txfifo) {
    		/* No data left to push, but still waiting for rx data,
    		 * enable receive data available interrupt.
    		 */
    		spi_imx->devtype_data->intctrl(
    				spi_imx, MXC_INT_RR);
    		return IRQ_HANDLED;
    	}
    
    	spi_imx->devtype_data->intctrl(spi_imx, 0);
    	complete(&spi_imx->xfer_done);
    
    	return IRQ_HANDLED;
    }
    
    static int spi_imx_dma_configure(struct spi_master *master)
    {
    	int ret;
    	enum dma_slave_buswidth buswidth;
    	struct dma_slave_config rx = {}, tx = {};
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
    
    	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
    	case 4:
    		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
    		break;
    	case 2:
    		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
    		break;
    	case 1:
    		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	tx.direction = DMA_MEM_TO_DEV;
    	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
    	tx.dst_addr_width = buswidth;
    	tx.dst_maxburst = spi_imx->wml;
    	ret = dmaengine_slave_config(master->dma_tx, &tx);
    	if (ret) {
    		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
    		return ret;
    	}
    
    	rx.direction = DMA_DEV_TO_MEM;
    	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
    	rx.src_addr_width = buswidth;
    	rx.src_maxburst = spi_imx->wml;
    	ret = dmaengine_slave_config(master->dma_rx, &rx);
    	if (ret) {
    		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
    		return ret;
    	}
    
    	return 0;
    }
    
    static int spi_imx_setupxfer(struct spi_device *spi,
    				 struct spi_transfer *t)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	int ret;
    
    	if (!t)
    		return 0;
    
    	spi_imx->bits_per_word = t->bits_per_word;
    	spi_imx->speed_hz  = t->speed_hz;
    
    	/* Initialize the functions for transfer */
    	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode) {
    		u32 mask;
    
    		spi_imx->dynamic_burst = 0;
    		spi_imx->remainder = 0;
    		spi_imx->read_u32  = 1;
    
    		mask = (1 << spi_imx->bits_per_word) - 1;
    		spi_imx->rx = spi_imx_buf_rx_swap;
    		spi_imx->tx = spi_imx_buf_tx_swap;
    		spi_imx->dynamic_burst = 1;
    		spi_imx->remainder = t->len;
    
    		if (spi_imx->bits_per_word <= 8)
    			spi_imx->word_mask = mask << 24 | mask << 16
    					     | mask << 8 | mask;
    		else if (spi_imx->bits_per_word <= 16)
    			spi_imx->word_mask = mask << 16 | mask;
    		else
    			spi_imx->word_mask = mask;
    	} else {
    		if (spi_imx->bits_per_word <= 8) {
    			spi_imx->rx = spi_imx_buf_rx_u8;
    			spi_imx->tx = spi_imx_buf_tx_u8;
    		} else if (spi_imx->bits_per_word <= 16) {
    			spi_imx->rx = spi_imx_buf_rx_u16;
    			spi_imx->tx = spi_imx_buf_tx_u16;
    		} else {
    			spi_imx->rx = spi_imx_buf_rx_u32;
    			spi_imx->tx = spi_imx_buf_tx_u32;
    		}
    	}
    
    	if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
    		spi_imx->usedma = 1;
    	else
    		spi_imx->usedma = 0;
    
    	if (spi_imx->usedma) {
    		ret = spi_imx_dma_configure(spi->master);
    		if (ret)
    			return ret;
    	}
    
    	if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
    		spi_imx->rx = mx53_ecspi_rx_slave;
    		spi_imx->tx = mx53_ecspi_tx_slave;
    		spi_imx->slave_burst = t->len;
    	}
    
    	spi_imx->devtype_data->config(spi);
    
    	return 0;
    }
    
    static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
    {
    	struct spi_master *master = spi_imx->bitbang.master;
    
    	if (master->dma_rx) {
    		dma_release_channel(master->dma_rx);
    		master->dma_rx = NULL;
    	}
    
    	if (master->dma_tx) {
    		dma_release_channel(master->dma_tx);
    		master->dma_tx = NULL;
    	}
    }
    
    static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
    			     struct spi_master *master)
    {
    	int ret;
    
    	/* use pio mode for i.mx6dl chip TKT238285 */
    	if (of_machine_is_compatible("fsl,imx6dl"))
    		return 0;
    
    	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
    
    	/* Prepare for TX DMA: */
    	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
    	if (IS_ERR(master->dma_tx)) {
    		ret = PTR_ERR(master->dma_tx);
    		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
    		master->dma_tx = NULL;
    		goto err;
    	}
    
    	/* Prepare for RX : */
    	master->dma_rx = dma_request_slave_channel_reason(dev, "rx");
    	if (IS_ERR(master->dma_rx)) {
    		ret = PTR_ERR(master->dma_rx);
    		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
    		master->dma_rx = NULL;
    		goto err;
    	}
    
    	init_completion(&spi_imx->dma_rx_completion);
    	init_completion(&spi_imx->dma_tx_completion);
    	master->can_dma = spi_imx_can_dma;
    	master->max_dma_len = MAX_SDMA_BD_BYTES;
    	spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
    					 SPI_MASTER_MUST_TX;
    
    	return 0;
    err:
    	spi_imx_sdma_exit(spi_imx);
    	return ret;
    }
    
    static void spi_imx_dma_rx_callback(void *cookie)
    {
    	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
    
    	complete(&spi_imx->dma_rx_completion);
    }
    
    static void spi_imx_dma_tx_callback(void *cookie)
    {
    	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
    
    	complete(&spi_imx->dma_tx_completion);
    }
    
    static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
    {
    	unsigned long timeout = 0;
    
    	/* Time with actual data transfer and CS change delay related to HW */
    	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
    
    	/* Add extra second for scheduler related activities */
    	timeout += 1;
    
    	/* Double calculated timeout */
    	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
    }
    
    static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
    				struct spi_transfer *transfer)
    {
    	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
    	unsigned long transfer_timeout;
    	unsigned long timeout;
    	struct spi_master *master = spi_imx->bitbang.master;
    	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
    
    	/*
    	 * The TX DMA setup starts the transfer, so make sure RX is configured
    	 * before TX.
    	 */
    	desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
    				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
    				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    	if (!desc_rx)
    		return -EINVAL;
    
    	desc_rx->callback = spi_imx_dma_rx_callback;
    	desc_rx->callback_param = (void *)spi_imx;
    	dmaengine_submit(desc_rx);
    	reinit_completion(&spi_imx->dma_rx_completion);
    	dma_async_issue_pending(master->dma_rx);
    
    	desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
    				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
    				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    	if (!desc_tx) {
    		dmaengine_terminate_all(master->dma_tx);
    		return -EINVAL;
    	}
    
    	desc_tx->callback = spi_imx_dma_tx_callback;
    	desc_tx->callback_param = (void *)spi_imx;
    	dmaengine_submit(desc_tx);
    	reinit_completion(&spi_imx->dma_tx_completion);
    	dma_async_issue_pending(master->dma_tx);
    
    	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
    
    	/* Wait SDMA to finish the data transfer.*/
    	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
    						transfer_timeout);
    	if (!timeout) {
    		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
    		dmaengine_terminate_all(master->dma_tx);
    		dmaengine_terminate_all(master->dma_rx);
    		return -ETIMEDOUT;
    	}
    
    	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
    					      transfer_timeout);
    	if (!timeout) {
    		dev_err(&master->dev, "I/O Error in DMA RX\n");
    		spi_imx->devtype_data->reset(spi_imx);
    		dmaengine_terminate_all(master->dma_rx);
    		return -ETIMEDOUT;
    	}
    
    	return transfer->len;
    }
    
    static int spi_imx_pio_transfer(struct spi_device *spi,
    				struct spi_transfer *transfer)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	unsigned long transfer_timeout;
    	unsigned long timeout;
    
    	spi_imx->tx_buf = transfer->tx_buf;
    	spi_imx->rx_buf = transfer->rx_buf;
    	spi_imx->count = transfer->len;
    	spi_imx->txfifo = 0;
    
    	reinit_completion(&spi_imx->xfer_done);
    
    	spi_imx_push(spi_imx);
    
    	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
    
    	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
    
    	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
    					      transfer_timeout);
    	if (!timeout) {
    		dev_err(&spi->dev, "I/O Error in PIO\n");
    		spi_imx->devtype_data->reset(spi_imx);
    		return -ETIMEDOUT;
    	}
    
    	return transfer->len;
    }
    
    static int spi_imx_pio_transfer_slave(struct spi_device *spi,
    				      struct spi_transfer *transfer)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    	int ret = transfer->len;
    
    	if (is_imx53_ecspi(spi_imx) &&
    	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
    		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
    			MX53_MAX_TRANSFER_BYTES);
    		return -EMSGSIZE;
    	}
    
    	spi_imx->tx_buf = transfer->tx_buf;
    	spi_imx->rx_buf = transfer->rx_buf;
    	spi_imx->count = transfer->len;
    	spi_imx->txfifo = 0;
    
    	reinit_completion(&spi_imx->xfer_done);
    	spi_imx->slave_aborted = false;
    
    	spi_imx_push(spi_imx);
    
    	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
    
    	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
    	    spi_imx->slave_aborted) {
    		dev_dbg(&spi->dev, "interrupted\n");
    		ret = -EINTR;
    	}
    
    	/* ecspi has a HW issue when works in Slave mode,
    	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
    	 * ECSPI_TXDATA keeps shift out the last word data,
    	 * so we have to disable ECSPI when in slave mode after the
    	 * transfer completes
    	 */
    	if (spi_imx->devtype_data->disable)
    		spi_imx->devtype_data->disable(spi_imx);
    
    	return ret;
    }
    
    static int spi_imx_transfer(struct spi_device *spi,
    				struct spi_transfer *transfer)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
    
    	/* flush rxfifo before transfer */
    	while (spi_imx->devtype_data->rx_available(spi_imx))
    		spi_imx->rx(spi_imx);
    
    	if (spi_imx->slave_mode)
    		return spi_imx_pio_transfer_slave(spi, transfer);
    
    	if (spi_imx->usedma)
    		return spi_imx_dma_transfer(spi_imx, transfer);
    	else
    		return spi_imx_pio_transfer(spi, transfer);
    }
    
    static int spi_imx_setup(struct spi_device *spi)
    {
    	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
    		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
    
    	if (spi->mode & SPI_NO_CS)
    		return 0;
    
    	if (gpio_is_valid(spi->cs_gpio))
    		gpio_direction_output(spi->cs_gpio,
    				      spi->mode & SPI_CS_HIGH ? 0 : 1);
    
    	spi_imx_chipselect(spi, BITBANG_CS_INACTIVE);
    
    	return 0;
    }
    
    static void spi_imx_cleanup(struct spi_device *spi)
    {
    }
    
    static int
    spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
    	int ret;
    
    	ret = clk_enable(spi_imx->clk_per);
    	if (ret)
    		return ret;
    
    	ret = clk_enable(spi_imx->clk_ipg);
    	if (ret) {
    		clk_disable(spi_imx->clk_per);
    		return ret;
    	}
    
    	return 0;
    }
    
    static int
    spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
    
    	clk_disable(spi_imx->clk_ipg);
    	clk_disable(spi_imx->clk_per);
    	return 0;
    }
    
    static int spi_imx_slave_abort(struct spi_master *master)
    {
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
    
    	spi_imx->slave_aborted = true;
    	complete(&spi_imx->xfer_done);
    
    	return 0;
    }
    
    static int spi_imx_probe(struct platform_device *pdev)
    {
    	struct device_node *np = pdev->dev.of_node;
    	const struct of_device_id *of_id =
    			of_match_device(spi_imx_dt_ids, &pdev->dev);
    	struct spi_imx_master *mxc_platform_info =
    			dev_get_platdata(&pdev->dev);
    	struct spi_master *master;
    	struct spi_imx_data *spi_imx;
    	struct resource *res;
    	int i, ret, irq, spi_drctl;
    	const struct spi_imx_devtype_data *devtype_data = of_id ? of_id->data :
    		(struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
    	bool slave_mode;
    
    	if (!np && !mxc_platform_info) {
    		dev_err(&pdev->dev, "can't get the platform data\n");
    		return -EINVAL;
    	}
    
    	slave_mode = devtype_data->has_slavemode &&
    			of_property_read_bool(np, "spi-slave");
    	if (slave_mode)
    		master = spi_alloc_slave(&pdev->dev,
    					 sizeof(struct spi_imx_data));
    	else
    		master = spi_alloc_master(&pdev->dev,
    					  sizeof(struct spi_imx_data));
    	if (!master)
    		return -ENOMEM;
    
    	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
    	if ((ret < 0) || (spi_drctl >= 0x3)) {
    		/* '11' is reserved */
    		spi_drctl = 0;
    	}
    
    	platform_set_drvdata(pdev, master);
    
    	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
    	master->bus_num = np ? -1 : pdev->id;
    
    	spi_imx = spi_master_get_devdata(master);
    	spi_imx->bitbang.master = master;
    	spi_imx->dev = &pdev->dev;
    	spi_imx->slave_mode = slave_mode;
    
    	spi_imx->devtype_data = devtype_data;
    
    	/* Get number of chip selects, either platform data or OF */
    	if (mxc_platform_info) {
    		master->num_chipselect = mxc_platform_info->num_chipselect;
    		if (mxc_platform_info->chipselect) {
    			master->cs_gpios = devm_kzalloc(&master->dev,
    				sizeof(int) * master->num_chipselect, GFP_KERNEL);
    			if (!master->cs_gpios)
    				return -ENOMEM;
    
    			for (i = 0; i < master->num_chipselect; i++)
    				master->cs_gpios[i] = mxc_platform_info->chipselect[i];
    		}
    	} else {
    		u32 num_cs;
    
    		if (!of_property_read_u32(np, "num-cs", &num_cs))
    			master->num_chipselect = num_cs;
    		/* If not preset, default value of 1 is used */
    	}
    
    	spi_imx->bitbang.chipselect = spi_imx_chipselect;
    	spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
    	spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
    	spi_imx->bitbang.master->setup = spi_imx_setup;
    	spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
    	spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
    	spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
    	spi_imx->bitbang.master->slave_abort = spi_imx_slave_abort;
    	spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
    					     | SPI_NO_CS;
    	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
    	    is_imx53_ecspi(spi_imx))
    		spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY;
    
    	spi_imx->spi_drctl = spi_drctl;
    
    	init_completion(&spi_imx->xfer_done);
    
    	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
    	if (IS_ERR(spi_imx->base)) {
    		ret = PTR_ERR(spi_imx->base);
    		goto out_master_put;
    	}
    	spi_imx->base_phys = res->start;
    
    	irq = platform_get_irq(pdev, 0);
    	if (irq < 0) {
    		ret = irq;
    		goto out_master_put;
    	}
    
    	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
    			       dev_name(&pdev->dev), spi_imx);
    	if (ret) {
    		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
    		goto out_master_put;
    	}
    
    	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
    	if (IS_ERR(spi_imx->clk_ipg)) {
    		ret = PTR_ERR(spi_imx->clk_ipg);
    		goto out_master_put;
    	}
    
    	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
    	if (IS_ERR(spi_imx->clk_per)) {
    		ret = PTR_ERR(spi_imx->clk_per);
    		goto out_master_put;
    	}
    
    	ret = clk_prepare_enable(spi_imx->clk_per);
    	if (ret)
    		goto out_master_put;
    
    	ret = clk_prepare_enable(spi_imx->clk_ipg);
    	if (ret)
    		goto out_put_per;
    
    	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
    	/*
    	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
    	 * if validated on other chips.
    	 */
    	if (spi_imx->devtype_data->has_dmamode) {
    		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
    		if (ret == -EPROBE_DEFER)
    			goto out_clk_put;
    
    		if (ret < 0)
    			dev_err(&pdev->dev, "dma setup error %d, use pio\n",
    				ret);
    	}
    
    	spi_imx->devtype_data->reset(spi_imx);
    
    	spi_imx->devtype_data->intctrl(spi_imx, 0);
    
    	master->dev.of_node = pdev->dev.of_node;
    
    	/* Request GPIO CS lines, if any */
    	if (!spi_imx->slave_mode && master->cs_gpios) {
    		for (i = 0; i < master->num_chipselect; i++) {
    			if (!gpio_is_valid(master->cs_gpios[i]))
    				continue;
    
    			ret = devm_gpio_request(&pdev->dev,
    						master->cs_gpios[i],
    						DRIVER_NAME);
    			if (ret) {
    				dev_err(&pdev->dev, "Can't get CS GPIO %i\n",
    					master->cs_gpios[i]);
    				goto out_spi_bitbang;
    			}
    		}
    	}
    
    	ret = spi_bitbang_start(&spi_imx->bitbang);
    	if (ret) {
    		dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
    		goto out_clk_put;
    	}
    
    	dev_info(&pdev->dev, "probed\n");
    
    	clk_disable(spi_imx->clk_ipg);
    	clk_disable(spi_imx->clk_per);
    	return ret;
    
    out_spi_bitbang:
    	spi_bitbang_stop(&spi_imx->bitbang);
    out_clk_put:
    	clk_disable_unprepare(spi_imx->clk_ipg);
    out_put_per:
    	clk_disable_unprepare(spi_imx->clk_per);
    out_master_put:
    	spi_master_put(master);
    
    	return ret;
    }
    
    static int spi_imx_remove(struct platform_device *pdev)
    {
    	struct spi_master *master = platform_get_drvdata(pdev);
    	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
    
    	spi_bitbang_stop(&spi_imx->bitbang);
    
    	writel(0, spi_imx->base + MXC_CSPICTRL);
    	clk_unprepare(spi_imx->clk_ipg);
    	clk_unprepare(spi_imx->clk_per);
    	spi_imx_sdma_exit(spi_imx);
    	spi_master_put(master);
    
    	return 0;
    }
    
    static struct platform_driver spi_imx_driver = {
    	.driver = {
    		   .name = DRIVER_NAME,
    		   .of_match_table = spi_imx_dt_ids,
    		   },
    	.id_table = spi_imx_devtype,
    	.probe = spi_imx_probe,
    	.remove = spi_imx_remove,
    };
    module_platform_driver(spi_imx_driver);
    
    MODULE_DESCRIPTION("SPI Master Controller driver");
    MODULE_AUTHOR("Sascha Hauer, Pengutronix");
    MODULE_LICENSE("GPL");
    MODULE_ALIAS("platform:" DRIVER_NAME);