Skip to content
Snippets Groups Projects
Select Git revision
  • 9a69a829f9b656c2a220d65a94ecf7b5887c5da1
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

userfaultfd.c

Blame
  • tcp_recovery.c 5.67 KiB
    #include <linux/tcp.h>
    #include <net/tcp.h>
    
    int sysctl_tcp_recovery __read_mostly = TCP_RACK_LOSS_DETECTION;
    
    static void tcp_rack_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	tcp_skb_mark_lost_uncond_verify(tp, skb);
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
    		/* Account for retransmits that are lost again */
    		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
    		tp->retrans_out -= tcp_skb_pcount(skb);
    		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
    			      tcp_skb_pcount(skb));
    	}
    }
    
    static bool tcp_rack_sent_after(const struct skb_mstamp *t1,
    				const struct skb_mstamp *t2,
    				u32 seq1, u32 seq2)
    {
    	return skb_mstamp_after(t1, t2) ||
    	       (t1->v64 == t2->v64 && after(seq1, seq2));
    }
    
    /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
     *
     * Marks a packet lost, if some packet sent later has been (s)acked.
     * The underlying idea is similar to the traditional dupthresh and FACK
     * but they look at different metrics:
     *
     * dupthresh: 3 OOO packets delivered (packet count)
     * FACK: sequence delta to highest sacked sequence (sequence space)
     * RACK: sent time delta to the latest delivered packet (time domain)
     *
     * The advantage of RACK is it applies to both original and retransmitted
     * packet and therefore is robust against tail losses. Another advantage
     * is being more resilient to reordering by simply allowing some
     * "settling delay", instead of tweaking the dupthresh.
     *
     * When tcp_rack_detect_loss() detects some packets are lost and we
     * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
     * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
     * make us enter the CA_Recovery state.
     */
    static void tcp_rack_detect_loss(struct sock *sk, const struct skb_mstamp *now,
    				 u32 *reo_timeout)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    	u32 reo_wnd;
    
    	*reo_timeout = 0;
    	/* To be more reordering resilient, allow min_rtt/4 settling delay
    	 * (lower-bounded to 1000uS). We use min_rtt instead of the smoothed
    	 * RTT because reordering is often a path property and less related
    	 * to queuing or delayed ACKs.
    	 */
    	reo_wnd = 1000;
    	if ((tp->rack.reord || !tp->lost_out) && tcp_min_rtt(tp) != ~0U)
    		reo_wnd = max(tcp_min_rtt(tp) >> 2, reo_wnd);
    
    	tcp_for_write_queue(skb, sk) {
    		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
    
    		if (skb == tcp_send_head(sk))
    			break;
    
    		/* Skip ones already (s)acked */
    		if (!after(scb->end_seq, tp->snd_una) ||
    		    scb->sacked & TCPCB_SACKED_ACKED)
    			continue;
    
    		if (tcp_rack_sent_after(&tp->rack.mstamp, &skb->skb_mstamp,
    					tp->rack.end_seq, scb->end_seq)) {
    			/* Step 3 in draft-cheng-tcpm-rack-00.txt:
    			 * A packet is lost if its elapsed time is beyond
    			 * the recent RTT plus the reordering window.
    			 */
    			u32 elapsed = skb_mstamp_us_delta(now,
    							  &skb->skb_mstamp);
    			s32 remaining = tp->rack.rtt_us + reo_wnd - elapsed;
    
    			if (remaining < 0) {
    				tcp_rack_mark_skb_lost(sk, skb);
    				continue;
    			}
    
    			/* Skip ones marked lost but not yet retransmitted */
    			if ((scb->sacked & TCPCB_LOST) &&
    			    !(scb->sacked & TCPCB_SACKED_RETRANS))
    				continue;
    
    			/* Record maximum wait time (+1 to avoid 0) */
    			*reo_timeout = max_t(u32, *reo_timeout, 1 + remaining);
    
    		} else if (!(scb->sacked & TCPCB_RETRANS)) {
    			/* Original data are sent sequentially so stop early
    			 * b/c the rest are all sent after rack_sent
    			 */
    			break;
    		}
    	}
    }
    
    void tcp_rack_mark_lost(struct sock *sk, const struct skb_mstamp *now)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 timeout;
    
    	if (!tp->rack.advanced)
    		return;
    
    	/* Reset the advanced flag to avoid unnecessary queue scanning */
    	tp->rack.advanced = 0;
    	tcp_rack_detect_loss(sk, now, &timeout);
    	if (timeout) {
    		timeout = usecs_to_jiffies(timeout + TCP_REO_TIMEOUT_MIN);
    		inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
    					  timeout, inet_csk(sk)->icsk_rto);
    	}
    }
    
    /* Record the most recently (re)sent time among the (s)acked packets
     * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
     * draft-cheng-tcpm-rack-00.txt
     */
    void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
    		      const struct skb_mstamp *xmit_time,
    		      const struct skb_mstamp *ack_time)
    {
    	u32 rtt_us;
    
    	if (tp->rack.mstamp.v64 &&
    	    !tcp_rack_sent_after(xmit_time, &tp->rack.mstamp,
    				 end_seq, tp->rack.end_seq))
    		return;
    
    	rtt_us = skb_mstamp_us_delta(ack_time, xmit_time);
    	if (sacked & TCPCB_RETRANS) {
    		/* If the sacked packet was retransmitted, it's ambiguous
    		 * whether the retransmission or the original (or the prior
    		 * retransmission) was sacked.
    		 *
    		 * If the original is lost, there is no ambiguity. Otherwise
    		 * we assume the original can be delayed up to aRTT + min_rtt.
    		 * the aRTT term is bounded by the fast recovery or timeout,
    		 * so it's at least one RTT (i.e., retransmission is at least
    		 * an RTT later).
    		 */
    		if (rtt_us < tcp_min_rtt(tp))
    			return;
    	}
    	tp->rack.rtt_us = rtt_us;
    	tp->rack.mstamp = *xmit_time;
    	tp->rack.end_seq = end_seq;
    	tp->rack.advanced = 1;
    }
    
    /* We have waited long enough to accommodate reordering. Mark the expired
     * packets lost and retransmit them.
     */
    void tcp_rack_reo_timeout(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct skb_mstamp now;
    	u32 timeout, prior_inflight;
    
    	skb_mstamp_get(&now);
    	prior_inflight = tcp_packets_in_flight(tp);
    	tcp_rack_detect_loss(sk, &now, &timeout);
    	if (prior_inflight != tcp_packets_in_flight(tp)) {
    		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
    			tcp_enter_recovery(sk, false);
    			if (!inet_csk(sk)->icsk_ca_ops->cong_control)
    				tcp_cwnd_reduction(sk, 1, 0);
    		}
    		tcp_xmit_retransmit_queue(sk);
    	}
    	if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
    		tcp_rearm_rto(sk);
    }