Skip to content
Snippets Groups Projects
Select Git revision
  • aa310701e787087dbfbccf1409982a96e16c57a6
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

vport.c

Blame
  • printk.c 80.99 KiB
    /*
     *  linux/kernel/printk.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     *
     * Modified to make sys_syslog() more flexible: added commands to
     * return the last 4k of kernel messages, regardless of whether
     * they've been read or not.  Added option to suppress kernel printk's
     * to the console.  Added hook for sending the console messages
     * elsewhere, in preparation for a serial line console (someday).
     * Ted Ts'o, 2/11/93.
     * Modified for sysctl support, 1/8/97, Chris Horn.
     * Fixed SMP synchronization, 08/08/99, Manfred Spraul
     *     manfred@colorfullife.com
     * Rewrote bits to get rid of console_lock
     *	01Mar01 Andrew Morton
     */
    
    #include <linux/kernel.h>
    #include <linux/mm.h>
    #include <linux/tty.h>
    #include <linux/tty_driver.h>
    #include <linux/console.h>
    #include <linux/init.h>
    #include <linux/jiffies.h>
    #include <linux/nmi.h>
    #include <linux/module.h>
    #include <linux/moduleparam.h>
    #include <linux/interrupt.h>			/* For in_interrupt() */
    #include <linux/delay.h>
    #include <linux/smp.h>
    #include <linux/security.h>
    #include <linux/bootmem.h>
    #include <linux/memblock.h>
    #include <linux/syscalls.h>
    #include <linux/kexec.h>
    #include <linux/kdb.h>
    #include <linux/ratelimit.h>
    #include <linux/kmsg_dump.h>
    #include <linux/syslog.h>
    #include <linux/cpu.h>
    #include <linux/notifier.h>
    #include <linux/rculist.h>
    #include <linux/poll.h>
    #include <linux/irq_work.h>
    #include <linux/utsname.h>
    #include <linux/ctype.h>
    #include <linux/uio.h>
    
    #include <asm/uaccess.h>
    #include <asm-generic/sections.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/printk.h>
    
    #include "console_cmdline.h"
    #include "braille.h"
    #include "internal.h"
    
    int console_printk[4] = {
    	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
    	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
    	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
    	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
    };
    
    /*
     * Low level drivers may need that to know if they can schedule in
     * their unblank() callback or not. So let's export it.
     */
    int oops_in_progress;
    EXPORT_SYMBOL(oops_in_progress);
    
    /*
     * console_sem protects the console_drivers list, and also
     * provides serialisation for access to the entire console
     * driver system.
     */
    static DEFINE_SEMAPHORE(console_sem);
    struct console *console_drivers;
    EXPORT_SYMBOL_GPL(console_drivers);
    
    #ifdef CONFIG_LOCKDEP
    static struct lockdep_map console_lock_dep_map = {
    	.name = "console_lock"
    };
    #endif
    
    /*
     * Number of registered extended console drivers.
     *
     * If extended consoles are present, in-kernel cont reassembly is disabled
     * and each fragment is stored as a separate log entry with proper
     * continuation flag so that every emitted message has full metadata.  This
     * doesn't change the result for regular consoles or /proc/kmsg.  For
     * /dev/kmsg, as long as the reader concatenates messages according to
     * consecutive continuation flags, the end result should be the same too.
     */
    static int nr_ext_console_drivers;
    
    /*
     * Helper macros to handle lockdep when locking/unlocking console_sem. We use
     * macros instead of functions so that _RET_IP_ contains useful information.
     */
    #define down_console_sem() do { \
    	down(&console_sem);\
    	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
    } while (0)
    
    static int __down_trylock_console_sem(unsigned long ip)
    {
    	if (down_trylock(&console_sem))
    		return 1;
    	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
    	return 0;
    }
    #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
    
    #define up_console_sem() do { \
    	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
    	up(&console_sem);\
    } while (0)
    
    /*
     * This is used for debugging the mess that is the VT code by
     * keeping track if we have the console semaphore held. It's
     * definitely not the perfect debug tool (we don't know if _WE_
     * hold it and are racing, but it helps tracking those weird code
     * paths in the console code where we end up in places I want
     * locked without the console sempahore held).
     */
    static int console_locked, console_suspended;
    
    /*
     * If exclusive_console is non-NULL then only this console is to be printed to.
     */
    static struct console *exclusive_console;
    
    /*
     *	Array of consoles built from command line options (console=)
     */
    
    #define MAX_CMDLINECONSOLES 8
    
    static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
    
    static int selected_console = -1;
    static int preferred_console = -1;
    int console_set_on_cmdline;
    EXPORT_SYMBOL(console_set_on_cmdline);
    
    /* Flag: console code may call schedule() */
    static int console_may_schedule;
    
    /*
     * The printk log buffer consists of a chain of concatenated variable
     * length records. Every record starts with a record header, containing
     * the overall length of the record.
     *
     * The heads to the first and last entry in the buffer, as well as the
     * sequence numbers of these entries are maintained when messages are
     * stored.
     *
     * If the heads indicate available messages, the length in the header
     * tells the start next message. A length == 0 for the next message
     * indicates a wrap-around to the beginning of the buffer.
     *
     * Every record carries the monotonic timestamp in microseconds, as well as
     * the standard userspace syslog level and syslog facility. The usual
     * kernel messages use LOG_KERN; userspace-injected messages always carry
     * a matching syslog facility, by default LOG_USER. The origin of every
     * message can be reliably determined that way.
     *
     * The human readable log message directly follows the message header. The
     * length of the message text is stored in the header, the stored message
     * is not terminated.
     *
     * Optionally, a message can carry a dictionary of properties (key/value pairs),
     * to provide userspace with a machine-readable message context.
     *
     * Examples for well-defined, commonly used property names are:
     *   DEVICE=b12:8               device identifier
     *                                b12:8         block dev_t
     *                                c127:3        char dev_t
     *                                n8            netdev ifindex
     *                                +sound:card0  subsystem:devname
     *   SUBSYSTEM=pci              driver-core subsystem name
     *
     * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
     * follows directly after a '=' character. Every property is terminated by
     * a '\0' character. The last property is not terminated.
     *
     * Example of a message structure:
     *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
     *   0008  34 00                        record is 52 bytes long
     *   000a        0b 00                  text is 11 bytes long
     *   000c              1f 00            dictionary is 23 bytes long
     *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
     *   0010  69 74 27 73 20 61 20 6c      "it's a l"
     *         69 6e 65                     "ine"
     *   001b           44 45 56 49 43      "DEVIC"
     *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
     *         52 49 56 45 52 3d 62 75      "RIVER=bu"
     *         67                           "g"
     *   0032     00 00 00                  padding to next message header
     *
     * The 'struct printk_log' buffer header must never be directly exported to
     * userspace, it is a kernel-private implementation detail that might
     * need to be changed in the future, when the requirements change.
     *
     * /dev/kmsg exports the structured data in the following line format:
     *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
     *
     * Users of the export format should ignore possible additional values
     * separated by ',', and find the message after the ';' character.
     *
     * The optional key/value pairs are attached as continuation lines starting
     * with a space character and terminated by a newline. All possible
     * non-prinatable characters are escaped in the "\xff" notation.
     */
    
    enum log_flags {
    	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
    	LOG_NEWLINE	= 2,	/* text ended with a newline */
    	LOG_PREFIX	= 4,	/* text started with a prefix */
    	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
    };
    
    struct printk_log {
    	u64 ts_nsec;		/* timestamp in nanoseconds */
    	u16 len;		/* length of entire record */
    	u16 text_len;		/* length of text buffer */
    	u16 dict_len;		/* length of dictionary buffer */
    	u8 facility;		/* syslog facility */
    	u8 flags:5;		/* internal record flags */
    	u8 level:3;		/* syslog level */
    }
    #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
    __packed __aligned(4)
    #endif
    ;
    
    /*
     * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
     * within the scheduler's rq lock. It must be released before calling
     * console_unlock() or anything else that might wake up a process.
     */
    DEFINE_RAW_SPINLOCK(logbuf_lock);
    
    #ifdef CONFIG_PRINTK
    DECLARE_WAIT_QUEUE_HEAD(log_wait);
    /* the next printk record to read by syslog(READ) or /proc/kmsg */
    static u64 syslog_seq;
    static u32 syslog_idx;
    static enum log_flags syslog_prev;
    static size_t syslog_partial;
    
    /* index and sequence number of the first record stored in the buffer */
    static u64 log_first_seq;
    static u32 log_first_idx;
    
    /* index and sequence number of the next record to store in the buffer */
    static u64 log_next_seq;
    static u32 log_next_idx;
    
    /* the next printk record to write to the console */
    static u64 console_seq;
    static u32 console_idx;
    static enum log_flags console_prev;
    
    /* the next printk record to read after the last 'clear' command */
    static u64 clear_seq;
    static u32 clear_idx;
    
    #define PREFIX_MAX		32
    #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
    
    #define LOG_LEVEL(v)		((v) & 0x07)
    #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
    
    /* record buffer */
    #define LOG_ALIGN __alignof__(struct printk_log)
    #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
    static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
    static char *log_buf = __log_buf;
    static u32 log_buf_len = __LOG_BUF_LEN;
    
    /* Return log buffer address */
    char *log_buf_addr_get(void)
    {
    	return log_buf;
    }
    
    /* Return log buffer size */
    u32 log_buf_len_get(void)
    {
    	return log_buf_len;
    }
    
    /* human readable text of the record */
    static char *log_text(const struct printk_log *msg)
    {
    	return (char *)msg + sizeof(struct printk_log);
    }
    
    /* optional key/value pair dictionary attached to the record */
    static char *log_dict(const struct printk_log *msg)
    {
    	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
    }
    
    /* get record by index; idx must point to valid msg */
    static struct printk_log *log_from_idx(u32 idx)
    {
    	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
    
    	/*
    	 * A length == 0 record is the end of buffer marker. Wrap around and
    	 * read the message at the start of the buffer.
    	 */
    	if (!msg->len)
    		return (struct printk_log *)log_buf;
    	return msg;
    }
    
    /* get next record; idx must point to valid msg */
    static u32 log_next(u32 idx)
    {
    	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
    
    	/* length == 0 indicates the end of the buffer; wrap */
    	/*
    	 * A length == 0 record is the end of buffer marker. Wrap around and
    	 * read the message at the start of the buffer as *this* one, and
    	 * return the one after that.
    	 */
    	if (!msg->len) {
    		msg = (struct printk_log *)log_buf;
    		return msg->len;
    	}
    	return idx + msg->len;
    }
    
    /*
     * Check whether there is enough free space for the given message.
     *
     * The same values of first_idx and next_idx mean that the buffer
     * is either empty or full.
     *
     * If the buffer is empty, we must respect the position of the indexes.
     * They cannot be reset to the beginning of the buffer.
     */
    static int logbuf_has_space(u32 msg_size, bool empty)
    {
    	u32 free;
    
    	if (log_next_idx > log_first_idx || empty)
    		free = max(log_buf_len - log_next_idx, log_first_idx);
    	else
    		free = log_first_idx - log_next_idx;
    
    	/*
    	 * We need space also for an empty header that signalizes wrapping
    	 * of the buffer.
    	 */
    	return free >= msg_size + sizeof(struct printk_log);
    }
    
    static int log_make_free_space(u32 msg_size)
    {
    	while (log_first_seq < log_next_seq &&
    	       !logbuf_has_space(msg_size, false)) {
    		/* drop old messages until we have enough contiguous space */
    		log_first_idx = log_next(log_first_idx);
    		log_first_seq++;
    	}
    
    	if (clear_seq < log_first_seq) {
    		clear_seq = log_first_seq;
    		clear_idx = log_first_idx;
    	}
    
    	/* sequence numbers are equal, so the log buffer is empty */
    	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
    		return 0;
    
    	return -ENOMEM;
    }
    
    /* compute the message size including the padding bytes */
    static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
    {
    	u32 size;
    
    	size = sizeof(struct printk_log) + text_len + dict_len;
    	*pad_len = (-size) & (LOG_ALIGN - 1);
    	size += *pad_len;
    
    	return size;
    }
    
    /*
     * Define how much of the log buffer we could take at maximum. The value
     * must be greater than two. Note that only half of the buffer is available
     * when the index points to the middle.
     */
    #define MAX_LOG_TAKE_PART 4
    static const char trunc_msg[] = "<truncated>";
    
    static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
    			u16 *dict_len, u32 *pad_len)
    {
    	/*
    	 * The message should not take the whole buffer. Otherwise, it might
    	 * get removed too soon.
    	 */
    	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
    	if (*text_len > max_text_len)
    		*text_len = max_text_len;
    	/* enable the warning message */
    	*trunc_msg_len = strlen(trunc_msg);
    	/* disable the "dict" completely */
    	*dict_len = 0;
    	/* compute the size again, count also the warning message */
    	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
    }
    
    /* insert record into the buffer, discard old ones, update heads */
    static int log_store(int facility, int level,
    		     enum log_flags flags, u64 ts_nsec,
    		     const char *dict, u16 dict_len,
    		     const char *text, u16 text_len)
    {
    	struct printk_log *msg;
    	u32 size, pad_len;
    	u16 trunc_msg_len = 0;
    
    	/* number of '\0' padding bytes to next message */
    	size = msg_used_size(text_len, dict_len, &pad_len);
    
    	if (log_make_free_space(size)) {
    		/* truncate the message if it is too long for empty buffer */
    		size = truncate_msg(&text_len, &trunc_msg_len,
    				    &dict_len, &pad_len);
    		/* survive when the log buffer is too small for trunc_msg */
    		if (log_make_free_space(size))
    			return 0;
    	}
    
    	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
    		/*
    		 * This message + an additional empty header does not fit
    		 * at the end of the buffer. Add an empty header with len == 0
    		 * to signify a wrap around.
    		 */
    		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
    		log_next_idx = 0;
    	}
    
    	/* fill message */
    	msg = (struct printk_log *)(log_buf + log_next_idx);
    	memcpy(log_text(msg), text, text_len);
    	msg->text_len = text_len;
    	if (trunc_msg_len) {
    		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
    		msg->text_len += trunc_msg_len;
    	}
    	memcpy(log_dict(msg), dict, dict_len);
    	msg->dict_len = dict_len;
    	msg->facility = facility;
    	msg->level = level & 7;
    	msg->flags = flags & 0x1f;
    	if (ts_nsec > 0)
    		msg->ts_nsec = ts_nsec;
    	else
    		msg->ts_nsec = local_clock();
    	memset(log_dict(msg) + dict_len, 0, pad_len);
    	msg->len = size;
    
    	/* insert message */
    	log_next_idx += msg->len;
    	log_next_seq++;
    
    	return msg->text_len;
    }
    
    int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
    
    static int syslog_action_restricted(int type)
    {
    	if (dmesg_restrict)
    		return 1;
    	/*
    	 * Unless restricted, we allow "read all" and "get buffer size"
    	 * for everybody.
    	 */
    	return type != SYSLOG_ACTION_READ_ALL &&
    	       type != SYSLOG_ACTION_SIZE_BUFFER;
    }
    
    int check_syslog_permissions(int type, int source)
    {
    	/*
    	 * If this is from /proc/kmsg and we've already opened it, then we've
    	 * already done the capabilities checks at open time.
    	 */
    	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
    		goto ok;
    
    	if (syslog_action_restricted(type)) {
    		if (capable(CAP_SYSLOG))
    			goto ok;
    		/*
    		 * For historical reasons, accept CAP_SYS_ADMIN too, with
    		 * a warning.
    		 */
    		if (capable(CAP_SYS_ADMIN)) {
    			pr_warn_once("%s (%d): Attempt to access syslog with "
    				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
    				     "(deprecated).\n",
    				 current->comm, task_pid_nr(current));
    			goto ok;
    		}
    		return -EPERM;
    	}
    ok:
    	return security_syslog(type);
    }
    EXPORT_SYMBOL_GPL(check_syslog_permissions);
    
    static void append_char(char **pp, char *e, char c)
    {
    	if (*pp < e)
    		*(*pp)++ = c;
    }
    
    static ssize_t msg_print_ext_header(char *buf, size_t size,
    				    struct printk_log *msg, u64 seq,
    				    enum log_flags prev_flags)
    {
    	u64 ts_usec = msg->ts_nsec;
    	char cont = '-';
    
    	do_div(ts_usec, 1000);
    
    	/*
    	 * If we couldn't merge continuation line fragments during the print,
    	 * export the stored flags to allow an optional external merge of the
    	 * records. Merging the records isn't always neccessarily correct, like
    	 * when we hit a race during printing. In most cases though, it produces
    	 * better readable output. 'c' in the record flags mark the first
    	 * fragment of a line, '+' the following.
    	 */
    	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
    		cont = 'c';
    	else if ((msg->flags & LOG_CONT) ||
    		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
    		cont = '+';
    
    	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
    		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
    }
    
    static ssize_t msg_print_ext_body(char *buf, size_t size,
    				  char *dict, size_t dict_len,
    				  char *text, size_t text_len)
    {
    	char *p = buf, *e = buf + size;
    	size_t i;
    
    	/* escape non-printable characters */
    	for (i = 0; i < text_len; i++) {
    		unsigned char c = text[i];
    
    		if (c < ' ' || c >= 127 || c == '\\')
    			p += scnprintf(p, e - p, "\\x%02x", c);
    		else
    			append_char(&p, e, c);
    	}
    	append_char(&p, e, '\n');
    
    	if (dict_len) {
    		bool line = true;
    
    		for (i = 0; i < dict_len; i++) {
    			unsigned char c = dict[i];
    
    			if (line) {
    				append_char(&p, e, ' ');
    				line = false;
    			}
    
    			if (c == '\0') {
    				append_char(&p, e, '\n');
    				line = true;
    				continue;
    			}
    
    			if (c < ' ' || c >= 127 || c == '\\') {
    				p += scnprintf(p, e - p, "\\x%02x", c);
    				continue;
    			}
    
    			append_char(&p, e, c);
    		}
    		append_char(&p, e, '\n');
    	}
    
    	return p - buf;
    }
    
    /* /dev/kmsg - userspace message inject/listen interface */
    struct devkmsg_user {
    	u64 seq;
    	u32 idx;
    	enum log_flags prev;
    	struct mutex lock;
    	char buf[CONSOLE_EXT_LOG_MAX];
    };
    
    static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
    {
    	char *buf, *line;
    	int level = default_message_loglevel;
    	int facility = 1;	/* LOG_USER */
    	size_t len = iov_iter_count(from);
    	ssize_t ret = len;
    
    	if (len > LOG_LINE_MAX)
    		return -EINVAL;
    	buf = kmalloc(len+1, GFP_KERNEL);
    	if (buf == NULL)
    		return -ENOMEM;
    
    	buf[len] = '\0';
    	if (copy_from_iter(buf, len, from) != len) {
    		kfree(buf);
    		return -EFAULT;
    	}
    
    	/*
    	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
    	 * the decimal value represents 32bit, the lower 3 bit are the log
    	 * level, the rest are the log facility.
    	 *
    	 * If no prefix or no userspace facility is specified, we
    	 * enforce LOG_USER, to be able to reliably distinguish
    	 * kernel-generated messages from userspace-injected ones.
    	 */
    	line = buf;
    	if (line[0] == '<') {
    		char *endp = NULL;
    		unsigned int u;
    
    		u = simple_strtoul(line + 1, &endp, 10);
    		if (endp && endp[0] == '>') {
    			level = LOG_LEVEL(u);
    			if (LOG_FACILITY(u) != 0)
    				facility = LOG_FACILITY(u);
    			endp++;
    			len -= endp - line;
    			line = endp;
    		}
    	}
    
    	printk_emit(facility, level, NULL, 0, "%s", line);
    	kfree(buf);
    	return ret;
    }
    
    static ssize_t devkmsg_read(struct file *file, char __user *buf,
    			    size_t count, loff_t *ppos)
    {
    	struct devkmsg_user *user = file->private_data;
    	struct printk_log *msg;
    	size_t len;
    	ssize_t ret;
    
    	if (!user)
    		return -EBADF;
    
    	ret = mutex_lock_interruptible(&user->lock);
    	if (ret)
    		return ret;
    	raw_spin_lock_irq(&logbuf_lock);
    	while (user->seq == log_next_seq) {
    		if (file->f_flags & O_NONBLOCK) {
    			ret = -EAGAIN;
    			raw_spin_unlock_irq(&logbuf_lock);
    			goto out;
    		}
    
    		raw_spin_unlock_irq(&logbuf_lock);
    		ret = wait_event_interruptible(log_wait,
    					       user->seq != log_next_seq);
    		if (ret)
    			goto out;
    		raw_spin_lock_irq(&logbuf_lock);
    	}
    
    	if (user->seq < log_first_seq) {
    		/* our last seen message is gone, return error and reset */
    		user->idx = log_first_idx;
    		user->seq = log_first_seq;
    		ret = -EPIPE;
    		raw_spin_unlock_irq(&logbuf_lock);
    		goto out;
    	}
    
    	msg = log_from_idx(user->idx);
    	len = msg_print_ext_header(user->buf, sizeof(user->buf),
    				   msg, user->seq, user->prev);
    	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
    				  log_dict(msg), msg->dict_len,
    				  log_text(msg), msg->text_len);
    
    	user->prev = msg->flags;
    	user->idx = log_next(user->idx);
    	user->seq++;
    	raw_spin_unlock_irq(&logbuf_lock);
    
    	if (len > count) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	if (copy_to_user(buf, user->buf, len)) {
    		ret = -EFAULT;
    		goto out;
    	}
    	ret = len;
    out:
    	mutex_unlock(&user->lock);
    	return ret;
    }
    
    static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
    {
    	struct devkmsg_user *user = file->private_data;
    	loff_t ret = 0;
    
    	if (!user)
    		return -EBADF;
    	if (offset)
    		return -ESPIPE;
    
    	raw_spin_lock_irq(&logbuf_lock);
    	switch (whence) {
    	case SEEK_SET:
    		/* the first record */
    		user->idx = log_first_idx;
    		user->seq = log_first_seq;
    		break;
    	case SEEK_DATA:
    		/*
    		 * The first record after the last SYSLOG_ACTION_CLEAR,
    		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
    		 * changes no global state, and does not clear anything.
    		 */
    		user->idx = clear_idx;
    		user->seq = clear_seq;
    		break;
    	case SEEK_END:
    		/* after the last record */
    		user->idx = log_next_idx;
    		user->seq = log_next_seq;
    		break;
    	default:
    		ret = -EINVAL;
    	}
    	raw_spin_unlock_irq(&logbuf_lock);
    	return ret;
    }
    
    static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
    {
    	struct devkmsg_user *user = file->private_data;
    	int ret = 0;
    
    	if (!user)
    		return POLLERR|POLLNVAL;
    
    	poll_wait(file, &log_wait, wait);
    
    	raw_spin_lock_irq(&logbuf_lock);
    	if (user->seq < log_next_seq) {
    		/* return error when data has vanished underneath us */
    		if (user->seq < log_first_seq)
    			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
    		else
    			ret = POLLIN|POLLRDNORM;
    	}
    	raw_spin_unlock_irq(&logbuf_lock);
    
    	return ret;
    }
    
    static int devkmsg_open(struct inode *inode, struct file *file)
    {
    	struct devkmsg_user *user;
    	int err;
    
    	/* write-only does not need any file context */
    	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
    		return 0;
    
    	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
    				       SYSLOG_FROM_READER);
    	if (err)
    		return err;
    
    	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
    	if (!user)
    		return -ENOMEM;
    
    	mutex_init(&user->lock);
    
    	raw_spin_lock_irq(&logbuf_lock);
    	user->idx = log_first_idx;
    	user->seq = log_first_seq;
    	raw_spin_unlock_irq(&logbuf_lock);
    
    	file->private_data = user;
    	return 0;
    }
    
    static int devkmsg_release(struct inode *inode, struct file *file)
    {
    	struct devkmsg_user *user = file->private_data;
    
    	if (!user)
    		return 0;
    
    	mutex_destroy(&user->lock);
    	kfree(user);
    	return 0;
    }
    
    const struct file_operations kmsg_fops = {
    	.open = devkmsg_open,
    	.read = devkmsg_read,
    	.write_iter = devkmsg_write,
    	.llseek = devkmsg_llseek,
    	.poll = devkmsg_poll,
    	.release = devkmsg_release,
    };
    
    #ifdef CONFIG_KEXEC_CORE
    /*
     * This appends the listed symbols to /proc/vmcore
     *
     * /proc/vmcore is used by various utilities, like crash and makedumpfile to
     * obtain access to symbols that are otherwise very difficult to locate.  These
     * symbols are specifically used so that utilities can access and extract the
     * dmesg log from a vmcore file after a crash.
     */
    void log_buf_kexec_setup(void)
    {
    	VMCOREINFO_SYMBOL(log_buf);
    	VMCOREINFO_SYMBOL(log_buf_len);
    	VMCOREINFO_SYMBOL(log_first_idx);
    	VMCOREINFO_SYMBOL(clear_idx);
    	VMCOREINFO_SYMBOL(log_next_idx);
    	/*
    	 * Export struct printk_log size and field offsets. User space tools can
    	 * parse it and detect any changes to structure down the line.
    	 */
    	VMCOREINFO_STRUCT_SIZE(printk_log);
    	VMCOREINFO_OFFSET(printk_log, ts_nsec);
    	VMCOREINFO_OFFSET(printk_log, len);
    	VMCOREINFO_OFFSET(printk_log, text_len);
    	VMCOREINFO_OFFSET(printk_log, dict_len);
    }
    #endif
    
    /* requested log_buf_len from kernel cmdline */
    static unsigned long __initdata new_log_buf_len;
    
    /* we practice scaling the ring buffer by powers of 2 */
    static void __init log_buf_len_update(unsigned size)
    {
    	if (size)
    		size = roundup_pow_of_two(size);
    	if (size > log_buf_len)
    		new_log_buf_len = size;
    }
    
    /* save requested log_buf_len since it's too early to process it */
    static int __init log_buf_len_setup(char *str)
    {
    	unsigned size = memparse(str, &str);
    
    	log_buf_len_update(size);
    
    	return 0;
    }
    early_param("log_buf_len", log_buf_len_setup);
    
    #ifdef CONFIG_SMP
    #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
    
    static void __init log_buf_add_cpu(void)
    {
    	unsigned int cpu_extra;
    
    	/*
    	 * archs should set up cpu_possible_bits properly with
    	 * set_cpu_possible() after setup_arch() but just in
    	 * case lets ensure this is valid.
    	 */
    	if (num_possible_cpus() == 1)
    		return;
    
    	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
    
    	/* by default this will only continue through for large > 64 CPUs */
    	if (cpu_extra <= __LOG_BUF_LEN / 2)
    		return;
    
    	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
    		__LOG_CPU_MAX_BUF_LEN);
    	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
    		cpu_extra);
    	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
    
    	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
    }
    #else /* !CONFIG_SMP */
    static inline void log_buf_add_cpu(void) {}
    #endif /* CONFIG_SMP */
    
    void __init setup_log_buf(int early)
    {
    	unsigned long flags;
    	char *new_log_buf;
    	int free;
    
    	if (log_buf != __log_buf)
    		return;
    
    	if (!early && !new_log_buf_len)
    		log_buf_add_cpu();
    
    	if (!new_log_buf_len)
    		return;
    
    	if (early) {
    		new_log_buf =
    			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
    	} else {
    		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
    							  LOG_ALIGN);
    	}
    
    	if (unlikely(!new_log_buf)) {
    		pr_err("log_buf_len: %ld bytes not available\n",
    			new_log_buf_len);
    		return;
    	}
    
    	raw_spin_lock_irqsave(&logbuf_lock, flags);
    	log_buf_len = new_log_buf_len;
    	log_buf = new_log_buf;
    	new_log_buf_len = 0;
    	free = __LOG_BUF_LEN - log_next_idx;
    	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
    	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    
    	pr_info("log_buf_len: %d bytes\n", log_buf_len);
    	pr_info("early log buf free: %d(%d%%)\n",
    		free, (free * 100) / __LOG_BUF_LEN);
    }
    
    static bool __read_mostly ignore_loglevel;
    
    static int __init ignore_loglevel_setup(char *str)
    {
    	ignore_loglevel = true;
    	pr_info("debug: ignoring loglevel setting.\n");
    
    	return 0;
    }
    
    early_param("ignore_loglevel", ignore_loglevel_setup);
    module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
    MODULE_PARM_DESC(ignore_loglevel,
    		 "ignore loglevel setting (prints all kernel messages to the console)");
    
    #ifdef CONFIG_BOOT_PRINTK_DELAY
    
    static int boot_delay; /* msecs delay after each printk during bootup */
    static unsigned long long loops_per_msec;	/* based on boot_delay */
    
    static int __init boot_delay_setup(char *str)
    {
    	unsigned long lpj;
    
    	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
    	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
    
    	get_option(&str, &boot_delay);
    	if (boot_delay > 10 * 1000)
    		boot_delay = 0;
    
    	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
    		"HZ: %d, loops_per_msec: %llu\n",
    		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
    	return 0;
    }
    early_param("boot_delay", boot_delay_setup);
    
    static void boot_delay_msec(int level)
    {
    	unsigned long long k;
    	unsigned long timeout;
    
    	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
    		|| (level >= console_loglevel && !ignore_loglevel)) {
    		return;
    	}
    
    	k = (unsigned long long)loops_per_msec * boot_delay;
    
    	timeout = jiffies + msecs_to_jiffies(boot_delay);
    	while (k) {
    		k--;
    		cpu_relax();
    		/*
    		 * use (volatile) jiffies to prevent
    		 * compiler reduction; loop termination via jiffies
    		 * is secondary and may or may not happen.
    		 */
    		if (time_after(jiffies, timeout))
    			break;
    		touch_nmi_watchdog();
    	}
    }
    #else
    static inline void boot_delay_msec(int level)
    {
    }
    #endif
    
    static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
    module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
    
    static size_t print_time(u64 ts, char *buf)
    {
    	unsigned long rem_nsec;
    
    	if (!printk_time)
    		return 0;
    
    	rem_nsec = do_div(ts, 1000000000);
    
    	if (!buf)
    		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
    
    	return sprintf(buf, "[%5lu.%06lu] ",
    		       (unsigned long)ts, rem_nsec / 1000);
    }
    
    static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
    {
    	size_t len = 0;
    	unsigned int prefix = (msg->facility << 3) | msg->level;
    
    	if (syslog) {
    		if (buf) {
    			len += sprintf(buf, "<%u>", prefix);
    		} else {
    			len += 3;
    			if (prefix > 999)
    				len += 3;
    			else if (prefix > 99)
    				len += 2;
    			else if (prefix > 9)
    				len++;
    		}
    	}
    
    	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
    	return len;
    }
    
    static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
    			     bool syslog, char *buf, size_t size)
    {
    	const char *text = log_text(msg);
    	size_t text_size = msg->text_len;
    	bool prefix = true;
    	bool newline = true;
    	size_t len = 0;
    
    	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
    		prefix = false;
    
    	if (msg->flags & LOG_CONT) {
    		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
    			prefix = false;
    
    		if (!(msg->flags & LOG_NEWLINE))
    			newline = false;
    	}
    
    	do {
    		const char *next = memchr(text, '\n', text_size);
    		size_t text_len;
    
    		if (next) {
    			text_len = next - text;
    			next++;
    			text_size -= next - text;
    		} else {
    			text_len = text_size;
    		}
    
    		if (buf) {
    			if (print_prefix(msg, syslog, NULL) +
    			    text_len + 1 >= size - len)
    				break;
    
    			if (prefix)
    				len += print_prefix(msg, syslog, buf + len);
    			memcpy(buf + len, text, text_len);
    			len += text_len;
    			if (next || newline)
    				buf[len++] = '\n';
    		} else {
    			/* SYSLOG_ACTION_* buffer size only calculation */
    			if (prefix)
    				len += print_prefix(msg, syslog, NULL);
    			len += text_len;
    			if (next || newline)
    				len++;
    		}
    
    		prefix = true;
    		text = next;
    	} while (text);
    
    	return len;
    }
    
    static int syslog_print(char __user *buf, int size)
    {
    	char *text;
    	struct printk_log *msg;
    	int len = 0;
    
    	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
    	if (!text)
    		return -ENOMEM;
    
    	while (size > 0) {
    		size_t n;
    		size_t skip;
    
    		raw_spin_lock_irq(&logbuf_lock);
    		if (syslog_seq < log_first_seq) {
    			/* messages are gone, move to first one */
    			syslog_seq = log_first_seq;
    			syslog_idx = log_first_idx;
    			syslog_prev = 0;
    			syslog_partial = 0;
    		}
    		if (syslog_seq == log_next_seq) {
    			raw_spin_unlock_irq(&logbuf_lock);
    			break;
    		}
    
    		skip = syslog_partial;
    		msg = log_from_idx(syslog_idx);
    		n = msg_print_text(msg, syslog_prev, true, text,
    				   LOG_LINE_MAX + PREFIX_MAX);
    		if (n - syslog_partial <= size) {
    			/* message fits into buffer, move forward */
    			syslog_idx = log_next(syslog_idx);
    			syslog_seq++;
    			syslog_prev = msg->flags;
    			n -= syslog_partial;
    			syslog_partial = 0;
    		} else if (!len){
    			/* partial read(), remember position */
    			n = size;
    			syslog_partial += n;
    		} else
    			n = 0;
    		raw_spin_unlock_irq(&logbuf_lock);
    
    		if (!n)
    			break;
    
    		if (copy_to_user(buf, text + skip, n)) {
    			if (!len)
    				len = -EFAULT;
    			break;
    		}
    
    		len += n;
    		size -= n;
    		buf += n;
    	}
    
    	kfree(text);
    	return len;
    }
    
    static int syslog_print_all(char __user *buf, int size, bool clear)
    {
    	char *text;
    	int len = 0;
    
    	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
    	if (!text)
    		return -ENOMEM;
    
    	raw_spin_lock_irq(&logbuf_lock);
    	if (buf) {
    		u64 next_seq;
    		u64 seq;
    		u32 idx;
    		enum log_flags prev;
    
    		/*
    		 * Find first record that fits, including all following records,
    		 * into the user-provided buffer for this dump.
    		 */
    		seq = clear_seq;
    		idx = clear_idx;
    		prev = 0;
    		while (seq < log_next_seq) {
    			struct printk_log *msg = log_from_idx(idx);
    
    			len += msg_print_text(msg, prev, true, NULL, 0);
    			prev = msg->flags;
    			idx = log_next(idx);
    			seq++;
    		}
    
    		/* move first record forward until length fits into the buffer */
    		seq = clear_seq;
    		idx = clear_idx;
    		prev = 0;
    		while (len > size && seq < log_next_seq) {
    			struct printk_log *msg = log_from_idx(idx);
    
    			len -= msg_print_text(msg, prev, true, NULL, 0);
    			prev = msg->flags;
    			idx = log_next(idx);
    			seq++;
    		}
    
    		/* last message fitting into this dump */
    		next_seq = log_next_seq;
    
    		len = 0;
    		while (len >= 0 && seq < next_seq) {
    			struct printk_log *msg = log_from_idx(idx);
    			int textlen;
    
    			textlen = msg_print_text(msg, prev, true, text,
    						 LOG_LINE_MAX + PREFIX_MAX);
    			if (textlen < 0) {
    				len = textlen;
    				break;
    			}
    			idx = log_next(idx);
    			seq++;
    			prev = msg->flags;
    
    			raw_spin_unlock_irq(&logbuf_lock);
    			if (copy_to_user(buf + len, text, textlen))
    				len = -EFAULT;
    			else
    				len += textlen;
    			raw_spin_lock_irq(&logbuf_lock);
    
    			if (seq < log_first_seq) {
    				/* messages are gone, move to next one */
    				seq = log_first_seq;
    				idx = log_first_idx;
    				prev = 0;
    			}
    		}
    	}
    
    	if (clear) {
    		clear_seq = log_next_seq;
    		clear_idx = log_next_idx;
    	}
    	raw_spin_unlock_irq(&logbuf_lock);
    
    	kfree(text);
    	return len;
    }
    
    int do_syslog(int type, char __user *buf, int len, int source)
    {
    	bool clear = false;
    	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
    	int error;
    
    	error = check_syslog_permissions(type, source);
    	if (error)
    		goto out;
    
    	switch (type) {
    	case SYSLOG_ACTION_CLOSE:	/* Close log */
    		break;
    	case SYSLOG_ACTION_OPEN:	/* Open log */
    		break;
    	case SYSLOG_ACTION_READ:	/* Read from log */
    		error = -EINVAL;
    		if (!buf || len < 0)
    			goto out;
    		error = 0;
    		if (!len)
    			goto out;
    		if (!access_ok(VERIFY_WRITE, buf, len)) {
    			error = -EFAULT;
    			goto out;
    		}
    		error = wait_event_interruptible(log_wait,
    						 syslog_seq != log_next_seq);
    		if (error)
    			goto out;
    		error = syslog_print(buf, len);
    		break;
    	/* Read/clear last kernel messages */
    	case SYSLOG_ACTION_READ_CLEAR:
    		clear = true;
    		/* FALL THRU */
    	/* Read last kernel messages */
    	case SYSLOG_ACTION_READ_ALL:
    		error = -EINVAL;
    		if (!buf || len < 0)
    			goto out;
    		error = 0;
    		if (!len)
    			goto out;
    		if (!access_ok(VERIFY_WRITE, buf, len)) {
    			error = -EFAULT;
    			goto out;
    		}
    		error = syslog_print_all(buf, len, clear);
    		break;
    	/* Clear ring buffer */
    	case SYSLOG_ACTION_CLEAR:
    		syslog_print_all(NULL, 0, true);
    		break;
    	/* Disable logging to console */
    	case SYSLOG_ACTION_CONSOLE_OFF:
    		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
    			saved_console_loglevel = console_loglevel;
    		console_loglevel = minimum_console_loglevel;
    		break;
    	/* Enable logging to console */
    	case SYSLOG_ACTION_CONSOLE_ON:
    		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
    			console_loglevel = saved_console_loglevel;
    			saved_console_loglevel = LOGLEVEL_DEFAULT;
    		}
    		break;
    	/* Set level of messages printed to console */
    	case SYSLOG_ACTION_CONSOLE_LEVEL:
    		error = -EINVAL;
    		if (len < 1 || len > 8)
    			goto out;
    		if (len < minimum_console_loglevel)
    			len = minimum_console_loglevel;
    		console_loglevel = len;
    		/* Implicitly re-enable logging to console */
    		saved_console_loglevel = LOGLEVEL_DEFAULT;
    		error = 0;
    		break;
    	/* Number of chars in the log buffer */
    	case SYSLOG_ACTION_SIZE_UNREAD:
    		raw_spin_lock_irq(&logbuf_lock);
    		if (syslog_seq < log_first_seq) {
    			/* messages are gone, move to first one */
    			syslog_seq = log_first_seq;
    			syslog_idx = log_first_idx;
    			syslog_prev = 0;
    			syslog_partial = 0;
    		}
    		if (source == SYSLOG_FROM_PROC) {
    			/*
    			 * Short-cut for poll(/"proc/kmsg") which simply checks
    			 * for pending data, not the size; return the count of
    			 * records, not the length.
    			 */
    			error = log_next_seq - syslog_seq;
    		} else {
    			u64 seq = syslog_seq;
    			u32 idx = syslog_idx;
    			enum log_flags prev = syslog_prev;
    
    			error = 0;
    			while (seq < log_next_seq) {
    				struct printk_log *msg = log_from_idx(idx);
    
    				error += msg_print_text(msg, prev, true, NULL, 0);
    				idx = log_next(idx);
    				seq++;
    				prev = msg->flags;
    			}
    			error -= syslog_partial;
    		}
    		raw_spin_unlock_irq(&logbuf_lock);
    		break;
    	/* Size of the log buffer */
    	case SYSLOG_ACTION_SIZE_BUFFER:
    		error = log_buf_len;
    		break;
    	default:
    		error = -EINVAL;
    		break;
    	}
    out:
    	return error;
    }
    
    SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
    {
    	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
    }
    
    /*
     * Call the console drivers, asking them to write out
     * log_buf[start] to log_buf[end - 1].
     * The console_lock must be held.
     */
    static void call_console_drivers(int level,
    				 const char *ext_text, size_t ext_len,
    				 const char *text, size_t len)
    {
    	struct console *con;
    
    	trace_console(text, len);
    
    	if (level >= console_loglevel && !ignore_loglevel)
    		return;
    	if (!console_drivers)
    		return;
    
    	for_each_console(con) {
    		if (exclusive_console && con != exclusive_console)
    			continue;
    		if (!(con->flags & CON_ENABLED))
    			continue;
    		if (!con->write)
    			continue;
    		if (!cpu_online(smp_processor_id()) &&
    		    !(con->flags & CON_ANYTIME))
    			continue;
    		if (con->flags & CON_EXTENDED)
    			con->write(con, ext_text, ext_len);
    		else
    			con->write(con, text, len);
    	}
    }
    
    /*
     * Zap console related locks when oopsing.
     * To leave time for slow consoles to print a full oops,
     * only zap at most once every 30 seconds.
     */
    static void zap_locks(void)
    {
    	static unsigned long oops_timestamp;
    
    	if (time_after_eq(jiffies, oops_timestamp) &&
    	    !time_after(jiffies, oops_timestamp + 30 * HZ))
    		return;
    
    	oops_timestamp = jiffies;
    
    	debug_locks_off();
    	/* If a crash is occurring, make sure we can't deadlock */
    	raw_spin_lock_init(&logbuf_lock);
    	/* And make sure that we print immediately */
    	sema_init(&console_sem, 1);
    }
    
    int printk_delay_msec __read_mostly;
    
    static inline void printk_delay(void)
    {
    	if (unlikely(printk_delay_msec)) {
    		int m = printk_delay_msec;
    
    		while (m--) {
    			mdelay(1);
    			touch_nmi_watchdog();
    		}
    	}
    }
    
    /*
     * Continuation lines are buffered, and not committed to the record buffer
     * until the line is complete, or a race forces it. The line fragments
     * though, are printed immediately to the consoles to ensure everything has
     * reached the console in case of a kernel crash.
     */
    static struct cont {
    	char buf[LOG_LINE_MAX];
    	size_t len;			/* length == 0 means unused buffer */
    	size_t cons;			/* bytes written to console */
    	struct task_struct *owner;	/* task of first print*/
    	u64 ts_nsec;			/* time of first print */
    	u8 level;			/* log level of first message */
    	u8 facility;			/* log facility of first message */
    	enum log_flags flags;		/* prefix, newline flags */
    	bool flushed:1;			/* buffer sealed and committed */
    } cont;
    
    static void cont_flush(enum log_flags flags)
    {
    	if (cont.flushed)
    		return;
    	if (cont.len == 0)
    		return;
    
    	if (cont.cons) {
    		/*
    		 * If a fragment of this line was directly flushed to the
    		 * console; wait for the console to pick up the rest of the
    		 * line. LOG_NOCONS suppresses a duplicated output.
    		 */
    		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
    			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
    		cont.flags = flags;
    		cont.flushed = true;
    	} else {
    		/*
    		 * If no fragment of this line ever reached the console,
    		 * just submit it to the store and free the buffer.
    		 */
    		log_store(cont.facility, cont.level, flags, 0,
    			  NULL, 0, cont.buf, cont.len);
    		cont.len = 0;
    	}
    }
    
    static bool cont_add(int facility, int level, const char *text, size_t len)
    {
    	if (cont.len && cont.flushed)
    		return false;
    
    	/*
    	 * If ext consoles are present, flush and skip in-kernel
    	 * continuation.  See nr_ext_console_drivers definition.  Also, if
    	 * the line gets too long, split it up in separate records.
    	 */
    	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
    		cont_flush(LOG_CONT);
    		return false;
    	}
    
    	if (!cont.len) {
    		cont.facility = facility;
    		cont.level = level;
    		cont.owner = current;
    		cont.ts_nsec = local_clock();
    		cont.flags = 0;
    		cont.cons = 0;
    		cont.flushed = false;
    	}
    
    	memcpy(cont.buf + cont.len, text, len);
    	cont.len += len;
    
    	if (cont.len > (sizeof(cont.buf) * 80) / 100)
    		cont_flush(LOG_CONT);
    
    	return true;
    }
    
    static size_t cont_print_text(char *text, size_t size)
    {
    	size_t textlen = 0;
    	size_t len;
    
    	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
    		textlen += print_time(cont.ts_nsec, text);
    		size -= textlen;
    	}
    
    	len = cont.len - cont.cons;
    	if (len > 0) {
    		if (len+1 > size)
    			len = size-1;
    		memcpy(text + textlen, cont.buf + cont.cons, len);
    		textlen += len;
    		cont.cons = cont.len;
    	}
    
    	if (cont.flushed) {
    		if (cont.flags & LOG_NEWLINE)
    			text[textlen++] = '\n';
    		/* got everything, release buffer */
    		cont.len = 0;
    	}
    	return textlen;
    }
    
    asmlinkage int vprintk_emit(int facility, int level,
    			    const char *dict, size_t dictlen,
    			    const char *fmt, va_list args)
    {
    	static bool recursion_bug;
    	static char textbuf[LOG_LINE_MAX];
    	char *text = textbuf;
    	size_t text_len = 0;
    	enum log_flags lflags = 0;
    	unsigned long flags;
    	int this_cpu;
    	int printed_len = 0;
    	int nmi_message_lost;
    	bool in_sched = false;
    	/* cpu currently holding logbuf_lock in this function */
    	static unsigned int logbuf_cpu = UINT_MAX;
    
    	if (level == LOGLEVEL_SCHED) {
    		level = LOGLEVEL_DEFAULT;
    		in_sched = true;
    	}
    
    	boot_delay_msec(level);
    	printk_delay();
    
    	local_irq_save(flags);
    	this_cpu = smp_processor_id();
    
    	/*
    	 * Ouch, printk recursed into itself!
    	 */
    	if (unlikely(logbuf_cpu == this_cpu)) {
    		/*
    		 * If a crash is occurring during printk() on this CPU,
    		 * then try to get the crash message out but make sure
    		 * we can't deadlock. Otherwise just return to avoid the
    		 * recursion and return - but flag the recursion so that
    		 * it can be printed at the next appropriate moment:
    		 */
    		if (!oops_in_progress && !lockdep_recursing(current)) {
    			recursion_bug = true;
    			local_irq_restore(flags);
    			return 0;
    		}
    		zap_locks();
    	}
    
    	lockdep_off();
    	/* This stops the holder of console_sem just where we want him */
    	raw_spin_lock(&logbuf_lock);
    	logbuf_cpu = this_cpu;
    
    	if (unlikely(recursion_bug)) {
    		static const char recursion_msg[] =
    			"BUG: recent printk recursion!";
    
    		recursion_bug = false;
    		/* emit KERN_CRIT message */
    		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
    					 NULL, 0, recursion_msg,
    					 strlen(recursion_msg));
    	}
    
    	nmi_message_lost = get_nmi_message_lost();
    	if (unlikely(nmi_message_lost)) {
    		text_len = scnprintf(textbuf, sizeof(textbuf),
    				     "BAD LUCK: lost %d message(s) from NMI context!",
    				     nmi_message_lost);
    		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
    					 NULL, 0, textbuf, text_len);
    	}
    
    	/*
    	 * The printf needs to come first; we need the syslog
    	 * prefix which might be passed-in as a parameter.
    	 */
    	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
    
    	/* mark and strip a trailing newline */
    	if (text_len && text[text_len-1] == '\n') {
    		text_len--;
    		lflags |= LOG_NEWLINE;
    	}
    
    	/* strip kernel syslog prefix and extract log level or control flags */
    	if (facility == 0) {
    		int kern_level = printk_get_level(text);
    
    		if (kern_level) {
    			const char *end_of_header = printk_skip_level(text);
    			switch (kern_level) {
    			case '0' ... '7':
    				if (level == LOGLEVEL_DEFAULT)
    					level = kern_level - '0';
    				/* fallthrough */
    			case 'd':	/* KERN_DEFAULT */
    				lflags |= LOG_PREFIX;
    			}
    			/*
    			 * No need to check length here because vscnprintf
    			 * put '\0' at the end of the string. Only valid and
    			 * newly printed level is detected.
    			 */
    			text_len -= end_of_header - text;
    			text = (char *)end_of_header;
    		}
    	}
    
    	if (level == LOGLEVEL_DEFAULT)
    		level = default_message_loglevel;
    
    	if (dict)
    		lflags |= LOG_PREFIX|LOG_NEWLINE;
    
    	if (!(lflags & LOG_NEWLINE)) {
    		/*
    		 * Flush the conflicting buffer. An earlier newline was missing,
    		 * or another task also prints continuation lines.
    		 */
    		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
    			cont_flush(LOG_NEWLINE);
    
    		/* buffer line if possible, otherwise store it right away */
    		if (cont_add(facility, level, text, text_len))
    			printed_len += text_len;
    		else
    			printed_len += log_store(facility, level,
    						 lflags | LOG_CONT, 0,
    						 dict, dictlen, text, text_len);
    	} else {
    		bool stored = false;
    
    		/*
    		 * If an earlier newline was missing and it was the same task,
    		 * either merge it with the current buffer and flush, or if
    		 * there was a race with interrupts (prefix == true) then just
    		 * flush it out and store this line separately.
    		 * If the preceding printk was from a different task and missed
    		 * a newline, flush and append the newline.
    		 */
    		if (cont.len) {
    			if (cont.owner == current && !(lflags & LOG_PREFIX))
    				stored = cont_add(facility, level, text,
    						  text_len);
    			cont_flush(LOG_NEWLINE);
    		}
    
    		if (stored)
    			printed_len += text_len;
    		else
    			printed_len += log_store(facility, level, lflags, 0,
    						 dict, dictlen, text, text_len);
    	}
    
    	logbuf_cpu = UINT_MAX;
    	raw_spin_unlock(&logbuf_lock);
    	lockdep_on();
    	local_irq_restore(flags);
    
    	/* If called from the scheduler, we can not call up(). */
    	if (!in_sched) {
    		lockdep_off();
    		/*
    		 * Try to acquire and then immediately release the console
    		 * semaphore.  The release will print out buffers and wake up
    		 * /dev/kmsg and syslog() users.
    		 */
    		if (console_trylock())
    			console_unlock();
    		lockdep_on();
    	}
    
    	return printed_len;
    }
    EXPORT_SYMBOL(vprintk_emit);
    
    asmlinkage int vprintk(const char *fmt, va_list args)
    {
    	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
    }
    EXPORT_SYMBOL(vprintk);
    
    asmlinkage int printk_emit(int facility, int level,
    			   const char *dict, size_t dictlen,
    			   const char *fmt, ...)
    {
    	va_list args;
    	int r;
    
    	va_start(args, fmt);
    	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
    	va_end(args);
    
    	return r;
    }
    EXPORT_SYMBOL(printk_emit);
    
    int vprintk_default(const char *fmt, va_list args)
    {
    	int r;
    
    #ifdef CONFIG_KGDB_KDB
    	if (unlikely(kdb_trap_printk)) {
    		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
    		return r;
    	}
    #endif
    	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
    
    	return r;
    }
    EXPORT_SYMBOL_GPL(vprintk_default);
    
    /**
     * printk - print a kernel message
     * @fmt: format string
     *
     * This is printk(). It can be called from any context. We want it to work.
     *
     * We try to grab the console_lock. If we succeed, it's easy - we log the
     * output and call the console drivers.  If we fail to get the semaphore, we
     * place the output into the log buffer and return. The current holder of
     * the console_sem will notice the new output in console_unlock(); and will
     * send it to the consoles before releasing the lock.
     *
     * One effect of this deferred printing is that code which calls printk() and
     * then changes console_loglevel may break. This is because console_loglevel
     * is inspected when the actual printing occurs.
     *
     * See also:
     * printf(3)
     *
     * See the vsnprintf() documentation for format string extensions over C99.
     */
    asmlinkage __visible int printk(const char *fmt, ...)
    {
    	va_list args;
    	int r;
    
    	va_start(args, fmt);
    	r = vprintk_func(fmt, args);
    	va_end(args);
    
    	return r;
    }
    EXPORT_SYMBOL(printk);
    
    #else /* CONFIG_PRINTK */
    
    #define LOG_LINE_MAX		0
    #define PREFIX_MAX		0
    
    static u64 syslog_seq;
    static u32 syslog_idx;
    static u64 console_seq;
    static u32 console_idx;
    static enum log_flags syslog_prev;
    static u64 log_first_seq;
    static u32 log_first_idx;
    static u64 log_next_seq;
    static enum log_flags console_prev;
    static struct cont {
    	size_t len;
    	size_t cons;
    	u8 level;
    	bool flushed:1;
    } cont;
    static char *log_text(const struct printk_log *msg) { return NULL; }
    static char *log_dict(const struct printk_log *msg) { return NULL; }
    static struct printk_log *log_from_idx(u32 idx) { return NULL; }
    static u32 log_next(u32 idx) { return 0; }
    static ssize_t msg_print_ext_header(char *buf, size_t size,
    				    struct printk_log *msg, u64 seq,
    				    enum log_flags prev_flags) { return 0; }
    static ssize_t msg_print_ext_body(char *buf, size_t size,
    				  char *dict, size_t dict_len,
    				  char *text, size_t text_len) { return 0; }
    static void call_console_drivers(int level,
    				 const char *ext_text, size_t ext_len,
    				 const char *text, size_t len) {}
    static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
    			     bool syslog, char *buf, size_t size) { return 0; }
    static size_t cont_print_text(char *text, size_t size) { return 0; }
    
    /* Still needs to be defined for users */
    DEFINE_PER_CPU(printk_func_t, printk_func);
    
    #endif /* CONFIG_PRINTK */
    
    #ifdef CONFIG_EARLY_PRINTK
    struct console *early_console;
    
    asmlinkage __visible void early_printk(const char *fmt, ...)
    {
    	va_list ap;
    	char buf[512];
    	int n;
    
    	if (!early_console)
    		return;
    
    	va_start(ap, fmt);
    	n = vscnprintf(buf, sizeof(buf), fmt, ap);
    	va_end(ap);
    
    	early_console->write(early_console, buf, n);
    }
    #endif
    
    static int __add_preferred_console(char *name, int idx, char *options,
    				   char *brl_options)
    {
    	struct console_cmdline *c;
    	int i;
    
    	/*
    	 *	See if this tty is not yet registered, and
    	 *	if we have a slot free.
    	 */
    	for (i = 0, c = console_cmdline;
    	     i < MAX_CMDLINECONSOLES && c->name[0];
    	     i++, c++) {
    		if (strcmp(c->name, name) == 0 && c->index == idx) {
    			if (!brl_options)
    				selected_console = i;
    			return 0;
    		}
    	}
    	if (i == MAX_CMDLINECONSOLES)
    		return -E2BIG;
    	if (!brl_options)
    		selected_console = i;
    	strlcpy(c->name, name, sizeof(c->name));
    	c->options = options;
    	braille_set_options(c, brl_options);
    
    	c->index = idx;
    	return 0;
    }
    /*
     * Set up a console.  Called via do_early_param() in init/main.c
     * for each "console=" parameter in the boot command line.
     */
    static int __init console_setup(char *str)
    {
    	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
    	char *s, *options, *brl_options = NULL;
    	int idx;
    
    	if (_braille_console_setup(&str, &brl_options))
    		return 1;
    
    	/*
    	 * Decode str into name, index, options.
    	 */
    	if (str[0] >= '0' && str[0] <= '9') {
    		strcpy(buf, "ttyS");
    		strncpy(buf + 4, str, sizeof(buf) - 5);
    	} else {
    		strncpy(buf, str, sizeof(buf) - 1);
    	}
    	buf[sizeof(buf) - 1] = 0;
    	options = strchr(str, ',');
    	if (options)
    		*(options++) = 0;
    #ifdef __sparc__
    	if (!strcmp(str, "ttya"))
    		strcpy(buf, "ttyS0");
    	if (!strcmp(str, "ttyb"))
    		strcpy(buf, "ttyS1");
    #endif
    	for (s = buf; *s; s++)
    		if (isdigit(*s) || *s == ',')
    			break;
    	idx = simple_strtoul(s, NULL, 10);
    	*s = 0;
    
    	__add_preferred_console(buf, idx, options, brl_options);
    	console_set_on_cmdline = 1;
    	return 1;
    }
    __setup("console=", console_setup);
    
    /**
     * add_preferred_console - add a device to the list of preferred consoles.
     * @name: device name
     * @idx: device index
     * @options: options for this console
     *
     * The last preferred console added will be used for kernel messages
     * and stdin/out/err for init.  Normally this is used by console_setup
     * above to handle user-supplied console arguments; however it can also
     * be used by arch-specific code either to override the user or more
     * commonly to provide a default console (ie from PROM variables) when
     * the user has not supplied one.
     */
    int add_preferred_console(char *name, int idx, char *options)
    {
    	return __add_preferred_console(name, idx, options, NULL);
    }
    
    bool console_suspend_enabled = true;
    EXPORT_SYMBOL(console_suspend_enabled);
    
    static int __init console_suspend_disable(char *str)
    {
    	console_suspend_enabled = false;
    	return 1;
    }
    __setup("no_console_suspend", console_suspend_disable);
    module_param_named(console_suspend, console_suspend_enabled,
    		bool, S_IRUGO | S_IWUSR);
    MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
    	" and hibernate operations");
    
    /**
     * suspend_console - suspend the console subsystem
     *
     * This disables printk() while we go into suspend states
     */
    void suspend_console(void)
    {
    	if (!console_suspend_enabled)
    		return;
    	printk("Suspending console(s) (use no_console_suspend to debug)\n");
    	console_lock();
    	console_suspended = 1;
    	up_console_sem();
    }
    
    void resume_console(void)
    {
    	if (!console_suspend_enabled)
    		return;
    	down_console_sem();
    	console_suspended = 0;
    	console_unlock();
    }
    
    /**
     * console_cpu_notify - print deferred console messages after CPU hotplug
     * @self: notifier struct
     * @action: CPU hotplug event
     * @hcpu: unused
     *
     * If printk() is called from a CPU that is not online yet, the messages
     * will be spooled but will not show up on the console.  This function is
     * called when a new CPU comes online (or fails to come up), and ensures
     * that any such output gets printed.
     */
    static int console_cpu_notify(struct notifier_block *self,
    	unsigned long action, void *hcpu)
    {
    	switch (action) {
    	case CPU_ONLINE:
    	case CPU_DEAD:
    	case CPU_DOWN_FAILED:
    	case CPU_UP_CANCELED:
    		console_lock();
    		console_unlock();
    	}
    	return NOTIFY_OK;
    }
    
    /**
     * console_lock - lock the console system for exclusive use.
     *
     * Acquires a lock which guarantees that the caller has
     * exclusive access to the console system and the console_drivers list.
     *
     * Can sleep, returns nothing.
     */
    void console_lock(void)
    {
    	might_sleep();
    
    	down_console_sem();
    	if (console_suspended)
    		return;
    	console_locked = 1;
    	console_may_schedule = 1;
    }
    EXPORT_SYMBOL(console_lock);
    
    /**
     * console_trylock - try to lock the console system for exclusive use.
     *
     * Try to acquire a lock which guarantees that the caller has exclusive
     * access to the console system and the console_drivers list.
     *
     * returns 1 on success, and 0 on failure to acquire the lock.
     */
    int console_trylock(void)
    {
    	if (down_trylock_console_sem())
    		return 0;
    	if (console_suspended) {
    		up_console_sem();
    		return 0;
    	}
    	console_locked = 1;
    	/*
    	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
    	 * safe to schedule (e.g. calling printk while holding a spin_lock),
    	 * because preempt_disable()/preempt_enable() are just barriers there
    	 * and preempt_count() is always 0.
    	 *
    	 * RCU read sections have a separate preemption counter when
    	 * PREEMPT_RCU enabled thus we must take extra care and check
    	 * rcu_preempt_depth(), otherwise RCU read sections modify
    	 * preempt_count().
    	 */
    	console_may_schedule = !oops_in_progress &&
    			preemptible() &&
    			!rcu_preempt_depth();
    	return 1;
    }
    EXPORT_SYMBOL(console_trylock);
    
    int is_console_locked(void)
    {
    	return console_locked;
    }
    
    /*
     * Check if we have any console that is capable of printing while cpu is
     * booting or shutting down. Requires console_sem.
     */
    static int have_callable_console(void)
    {
    	struct console *con;
    
    	for_each_console(con)
    		if ((con->flags & CON_ENABLED) &&
    				(con->flags & CON_ANYTIME))
    			return 1;
    
    	return 0;
    }
    
    /*
     * Can we actually use the console at this time on this cpu?
     *
     * Console drivers may assume that per-cpu resources have been allocated. So
     * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
     * call them until this CPU is officially up.
     */
    static inline int can_use_console(void)
    {
    	return cpu_online(raw_smp_processor_id()) || have_callable_console();
    }
    
    static void console_cont_flush(char *text, size_t size)
    {
    	unsigned long flags;
    	size_t len;
    
    	raw_spin_lock_irqsave(&logbuf_lock, flags);
    
    	if (!cont.len)
    		goto out;
    
    	/*
    	 * We still queue earlier records, likely because the console was
    	 * busy. The earlier ones need to be printed before this one, we
    	 * did not flush any fragment so far, so just let it queue up.
    	 */
    	if (console_seq < log_next_seq && !cont.cons)
    		goto out;
    
    	len = cont_print_text(text, size);
    	raw_spin_unlock(&logbuf_lock);
    	stop_critical_timings();
    	call_console_drivers(cont.level, NULL, 0, text, len);
    	start_critical_timings();
    	local_irq_restore(flags);
    	return;
    out:
    	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    }
    
    /**
     * console_unlock - unlock the console system
     *
     * Releases the console_lock which the caller holds on the console system
     * and the console driver list.
     *
     * While the console_lock was held, console output may have been buffered
     * by printk().  If this is the case, console_unlock(); emits
     * the output prior to releasing the lock.
     *
     * If there is output waiting, we wake /dev/kmsg and syslog() users.
     *
     * console_unlock(); may be called from any context.
     */
    void console_unlock(void)
    {
    	static char ext_text[CONSOLE_EXT_LOG_MAX];
    	static char text[LOG_LINE_MAX + PREFIX_MAX];
    	static u64 seen_seq;
    	unsigned long flags;
    	bool wake_klogd = false;
    	bool do_cond_resched, retry;
    
    	if (console_suspended) {
    		up_console_sem();
    		return;
    	}
    
    	/*
    	 * Console drivers are called under logbuf_lock, so
    	 * @console_may_schedule should be cleared before; however, we may
    	 * end up dumping a lot of lines, for example, if called from
    	 * console registration path, and should invoke cond_resched()
    	 * between lines if allowable.  Not doing so can cause a very long
    	 * scheduling stall on a slow console leading to RCU stall and
    	 * softlockup warnings which exacerbate the issue with more
    	 * messages practically incapacitating the system.
    	 */
    	do_cond_resched = console_may_schedule;
    	console_may_schedule = 0;
    
    again:
    	/*
    	 * We released the console_sem lock, so we need to recheck if
    	 * cpu is online and (if not) is there at least one CON_ANYTIME
    	 * console.
    	 */
    	if (!can_use_console()) {
    		console_locked = 0;
    		up_console_sem();
    		return;
    	}
    
    	/* flush buffered message fragment immediately to console */
    	console_cont_flush(text, sizeof(text));
    
    	for (;;) {
    		struct printk_log *msg;
    		size_t ext_len = 0;
    		size_t len;
    		int level;
    
    		raw_spin_lock_irqsave(&logbuf_lock, flags);
    		if (seen_seq != log_next_seq) {
    			wake_klogd = true;
    			seen_seq = log_next_seq;
    		}
    
    		if (console_seq < log_first_seq) {
    			len = sprintf(text, "** %u printk messages dropped ** ",
    				      (unsigned)(log_first_seq - console_seq));
    
    			/* messages are gone, move to first one */
    			console_seq = log_first_seq;
    			console_idx = log_first_idx;
    			console_prev = 0;
    		} else {
    			len = 0;
    		}
    skip:
    		if (console_seq == log_next_seq)
    			break;
    
    		msg = log_from_idx(console_idx);
    		if (msg->flags & LOG_NOCONS) {
    			/*
    			 * Skip record we have buffered and already printed
    			 * directly to the console when we received it.
    			 */
    			console_idx = log_next(console_idx);
    			console_seq++;
    			/*
    			 * We will get here again when we register a new
    			 * CON_PRINTBUFFER console. Clear the flag so we
    			 * will properly dump everything later.
    			 */
    			msg->flags &= ~LOG_NOCONS;
    			console_prev = msg->flags;
    			goto skip;
    		}
    
    		level = msg->level;
    		len += msg_print_text(msg, console_prev, false,
    				      text + len, sizeof(text) - len);
    		if (nr_ext_console_drivers) {
    			ext_len = msg_print_ext_header(ext_text,
    						sizeof(ext_text),
    						msg, console_seq, console_prev);
    			ext_len += msg_print_ext_body(ext_text + ext_len,
    						sizeof(ext_text) - ext_len,
    						log_dict(msg), msg->dict_len,
    						log_text(msg), msg->text_len);
    		}
    		console_idx = log_next(console_idx);
    		console_seq++;
    		console_prev = msg->flags;
    		raw_spin_unlock(&logbuf_lock);
    
    		stop_critical_timings();	/* don't trace print latency */
    		call_console_drivers(level, ext_text, ext_len, text, len);
    		start_critical_timings();
    		local_irq_restore(flags);
    
    		if (do_cond_resched)
    			cond_resched();
    	}
    	console_locked = 0;
    
    	/* Release the exclusive_console once it is used */
    	if (unlikely(exclusive_console))
    		exclusive_console = NULL;
    
    	raw_spin_unlock(&logbuf_lock);
    
    	up_console_sem();
    
    	/*
    	 * Someone could have filled up the buffer again, so re-check if there's
    	 * something to flush. In case we cannot trylock the console_sem again,
    	 * there's a new owner and the console_unlock() from them will do the
    	 * flush, no worries.
    	 */
    	raw_spin_lock(&logbuf_lock);
    	retry = console_seq != log_next_seq;
    	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    
    	if (retry && console_trylock())
    		goto again;
    
    	if (wake_klogd)
    		wake_up_klogd();
    }
    EXPORT_SYMBOL(console_unlock);
    
    /**
     * console_conditional_schedule - yield the CPU if required
     *
     * If the console code is currently allowed to sleep, and
     * if this CPU should yield the CPU to another task, do
     * so here.
     *
     * Must be called within console_lock();.
     */
    void __sched console_conditional_schedule(void)
    {
    	if (console_may_schedule)
    		cond_resched();
    }
    EXPORT_SYMBOL(console_conditional_schedule);
    
    void console_unblank(void)
    {
    	struct console *c;
    
    	/*
    	 * console_unblank can no longer be called in interrupt context unless
    	 * oops_in_progress is set to 1..
    	 */
    	if (oops_in_progress) {
    		if (down_trylock_console_sem() != 0)
    			return;
    	} else
    		console_lock();
    
    	console_locked = 1;
    	console_may_schedule = 0;
    	for_each_console(c)
    		if ((c->flags & CON_ENABLED) && c->unblank)
    			c->unblank();
    	console_unlock();
    }
    
    /**
     * console_flush_on_panic - flush console content on panic
     *
     * Immediately output all pending messages no matter what.
     */
    void console_flush_on_panic(void)
    {
    	/*
    	 * If someone else is holding the console lock, trylock will fail
    	 * and may_schedule may be set.  Ignore and proceed to unlock so
    	 * that messages are flushed out.  As this can be called from any
    	 * context and we don't want to get preempted while flushing,
    	 * ensure may_schedule is cleared.
    	 */
    	console_trylock();
    	console_may_schedule = 0;
    	console_unlock();
    }
    
    /*
     * Return the console tty driver structure and its associated index
     */
    struct tty_driver *console_device(int *index)
    {
    	struct console *c;
    	struct tty_driver *driver = NULL;
    
    	console_lock();
    	for_each_console(c) {
    		if (!c->device)
    			continue;
    		driver = c->device(c, index);
    		if (driver)
    			break;
    	}
    	console_unlock();
    	return driver;
    }
    
    /*
     * Prevent further output on the passed console device so that (for example)
     * serial drivers can disable console output before suspending a port, and can
     * re-enable output afterwards.
     */
    void console_stop(struct console *console)
    {
    	console_lock();
    	console->flags &= ~CON_ENABLED;
    	console_unlock();
    }
    EXPORT_SYMBOL(console_stop);
    
    void console_start(struct console *console)
    {
    	console_lock();
    	console->flags |= CON_ENABLED;
    	console_unlock();
    }
    EXPORT_SYMBOL(console_start);
    
    static int __read_mostly keep_bootcon;
    
    static int __init keep_bootcon_setup(char *str)
    {
    	keep_bootcon = 1;
    	pr_info("debug: skip boot console de-registration.\n");
    
    	return 0;
    }
    
    early_param("keep_bootcon", keep_bootcon_setup);
    
    /*
     * The console driver calls this routine during kernel initialization
     * to register the console printing procedure with printk() and to
     * print any messages that were printed by the kernel before the
     * console driver was initialized.
     *
     * This can happen pretty early during the boot process (because of
     * early_printk) - sometimes before setup_arch() completes - be careful
     * of what kernel features are used - they may not be initialised yet.
     *
     * There are two types of consoles - bootconsoles (early_printk) and
     * "real" consoles (everything which is not a bootconsole) which are
     * handled differently.
     *  - Any number of bootconsoles can be registered at any time.
     *  - As soon as a "real" console is registered, all bootconsoles
     *    will be unregistered automatically.
     *  - Once a "real" console is registered, any attempt to register a
     *    bootconsoles will be rejected
     */
    void register_console(struct console *newcon)
    {
    	int i;
    	unsigned long flags;
    	struct console *bcon = NULL;
    	struct console_cmdline *c;
    
    	if (console_drivers)
    		for_each_console(bcon)
    			if (WARN(bcon == newcon,
    					"console '%s%d' already registered\n",
    					bcon->name, bcon->index))
    				return;
    
    	/*
    	 * before we register a new CON_BOOT console, make sure we don't
    	 * already have a valid console
    	 */
    	if (console_drivers && newcon->flags & CON_BOOT) {
    		/* find the last or real console */
    		for_each_console(bcon) {
    			if (!(bcon->flags & CON_BOOT)) {
    				pr_info("Too late to register bootconsole %s%d\n",
    					newcon->name, newcon->index);
    				return;
    			}
    		}
    	}
    
    	if (console_drivers && console_drivers->flags & CON_BOOT)
    		bcon = console_drivers;
    
    	if (preferred_console < 0 || bcon || !console_drivers)
    		preferred_console = selected_console;
    
    	/*
    	 *	See if we want to use this console driver. If we
    	 *	didn't select a console we take the first one
    	 *	that registers here.
    	 */
    	if (preferred_console < 0) {
    		if (newcon->index < 0)
    			newcon->index = 0;
    		if (newcon->setup == NULL ||
    		    newcon->setup(newcon, NULL) == 0) {
    			newcon->flags |= CON_ENABLED;
    			if (newcon->device) {
    				newcon->flags |= CON_CONSDEV;
    				preferred_console = 0;
    			}
    		}
    	}
    
    	/*
    	 *	See if this console matches one we selected on
    	 *	the command line.
    	 */
    	for (i = 0, c = console_cmdline;
    	     i < MAX_CMDLINECONSOLES && c->name[0];
    	     i++, c++) {
    		if (!newcon->match ||
    		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
    			/* default matching */
    			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
    			if (strcmp(c->name, newcon->name) != 0)
    				continue;
    			if (newcon->index >= 0 &&
    			    newcon->index != c->index)
    				continue;
    			if (newcon->index < 0)
    				newcon->index = c->index;
    
    			if (_braille_register_console(newcon, c))
    				return;
    
    			if (newcon->setup &&
    			    newcon->setup(newcon, c->options) != 0)
    				break;
    		}
    
    		newcon->flags |= CON_ENABLED;
    		if (i == selected_console) {
    			newcon->flags |= CON_CONSDEV;
    			preferred_console = selected_console;
    		}
    		break;
    	}
    
    	if (!(newcon->flags & CON_ENABLED))
    		return;
    
    	/*
    	 * If we have a bootconsole, and are switching to a real console,
    	 * don't print everything out again, since when the boot console, and
    	 * the real console are the same physical device, it's annoying to
    	 * see the beginning boot messages twice
    	 */
    	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
    		newcon->flags &= ~CON_PRINTBUFFER;
    
    	/*
    	 *	Put this console in the list - keep the
    	 *	preferred driver at the head of the list.
    	 */
    	console_lock();
    	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
    		newcon->next = console_drivers;
    		console_drivers = newcon;
    		if (newcon->next)
    			newcon->next->flags &= ~CON_CONSDEV;
    	} else {
    		newcon->next = console_drivers->next;
    		console_drivers->next = newcon;
    	}
    
    	if (newcon->flags & CON_EXTENDED)
    		if (!nr_ext_console_drivers++)
    			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
    
    	if (newcon->flags & CON_PRINTBUFFER) {
    		/*
    		 * console_unlock(); will print out the buffered messages
    		 * for us.
    		 */
    		raw_spin_lock_irqsave(&logbuf_lock, flags);
    		console_seq = syslog_seq;
    		console_idx = syslog_idx;
    		console_prev = syslog_prev;
    		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    		/*
    		 * We're about to replay the log buffer.  Only do this to the
    		 * just-registered console to avoid excessive message spam to
    		 * the already-registered consoles.
    		 */
    		exclusive_console = newcon;
    	}
    	console_unlock();
    	console_sysfs_notify();
    
    	/*
    	 * By unregistering the bootconsoles after we enable the real console
    	 * we get the "console xxx enabled" message on all the consoles -
    	 * boot consoles, real consoles, etc - this is to ensure that end
    	 * users know there might be something in the kernel's log buffer that
    	 * went to the bootconsole (that they do not see on the real console)
    	 */
    	pr_info("%sconsole [%s%d] enabled\n",
    		(newcon->flags & CON_BOOT) ? "boot" : "" ,
    		newcon->name, newcon->index);
    	if (bcon &&
    	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
    	    !keep_bootcon) {
    		/* We need to iterate through all boot consoles, to make
    		 * sure we print everything out, before we unregister them.
    		 */
    		for_each_console(bcon)
    			if (bcon->flags & CON_BOOT)
    				unregister_console(bcon);
    	}
    }
    EXPORT_SYMBOL(register_console);
    
    int unregister_console(struct console *console)
    {
            struct console *a, *b;
    	int res;
    
    	pr_info("%sconsole [%s%d] disabled\n",
    		(console->flags & CON_BOOT) ? "boot" : "" ,
    		console->name, console->index);
    
    	res = _braille_unregister_console(console);
    	if (res)
    		return res;
    
    	res = 1;
    	console_lock();
    	if (console_drivers == console) {
    		console_drivers=console->next;
    		res = 0;
    	} else if (console_drivers) {
    		for (a=console_drivers->next, b=console_drivers ;
    		     a; b=a, a=b->next) {
    			if (a == console) {
    				b->next = a->next;
    				res = 0;
    				break;
    			}
    		}
    	}
    
    	if (!res && (console->flags & CON_EXTENDED))
    		nr_ext_console_drivers--;
    
    	/*
    	 * If this isn't the last console and it has CON_CONSDEV set, we
    	 * need to set it on the next preferred console.
    	 */
    	if (console_drivers != NULL && console->flags & CON_CONSDEV)
    		console_drivers->flags |= CON_CONSDEV;
    
    	console->flags &= ~CON_ENABLED;
    	console_unlock();
    	console_sysfs_notify();
    	return res;
    }
    EXPORT_SYMBOL(unregister_console);
    
    /*
     * Some boot consoles access data that is in the init section and which will
     * be discarded after the initcalls have been run. To make sure that no code
     * will access this data, unregister the boot consoles in a late initcall.
     *
     * If for some reason, such as deferred probe or the driver being a loadable
     * module, the real console hasn't registered yet at this point, there will
     * be a brief interval in which no messages are logged to the console, which
     * makes it difficult to diagnose problems that occur during this time.
     *
     * To mitigate this problem somewhat, only unregister consoles whose memory
     * intersects with the init section. Note that code exists elsewhere to get
     * rid of the boot console as soon as the proper console shows up, so there
     * won't be side-effects from postponing the removal.
     */
    static int __init printk_late_init(void)
    {
    	struct console *con;
    
    	for_each_console(con) {
    		if (!keep_bootcon && con->flags & CON_BOOT) {
    			/*
    			 * Make sure to unregister boot consoles whose data
    			 * resides in the init section before the init section
    			 * is discarded. Boot consoles whose data will stick
    			 * around will automatically be unregistered when the
    			 * proper console replaces them.
    			 */
    			if (init_section_intersects(con, sizeof(*con)))
    				unregister_console(con);
    		}
    	}
    	hotcpu_notifier(console_cpu_notify, 0);
    	return 0;
    }
    late_initcall(printk_late_init);
    
    #if defined CONFIG_PRINTK
    /*
     * Delayed printk version, for scheduler-internal messages:
     */
    #define PRINTK_PENDING_WAKEUP	0x01
    #define PRINTK_PENDING_OUTPUT	0x02
    
    static DEFINE_PER_CPU(int, printk_pending);
    
    static void wake_up_klogd_work_func(struct irq_work *irq_work)
    {
    	int pending = __this_cpu_xchg(printk_pending, 0);
    
    	if (pending & PRINTK_PENDING_OUTPUT) {
    		/* If trylock fails, someone else is doing the printing */
    		if (console_trylock())
    			console_unlock();
    	}
    
    	if (pending & PRINTK_PENDING_WAKEUP)
    		wake_up_interruptible(&log_wait);
    }
    
    static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
    	.func = wake_up_klogd_work_func,
    	.flags = IRQ_WORK_LAZY,
    };
    
    void wake_up_klogd(void)
    {
    	preempt_disable();
    	if (waitqueue_active(&log_wait)) {
    		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
    		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
    	}
    	preempt_enable();
    }
    
    int printk_deferred(const char *fmt, ...)
    {
    	va_list args;
    	int r;
    
    	preempt_disable();
    	va_start(args, fmt);
    	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
    	va_end(args);
    
    	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
    	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
    	preempt_enable();
    
    	return r;
    }
    
    /*
     * printk rate limiting, lifted from the networking subsystem.
     *
     * This enforces a rate limit: not more than 10 kernel messages
     * every 5s to make a denial-of-service attack impossible.
     */
    DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
    
    int __printk_ratelimit(const char *func)
    {
    	return ___ratelimit(&printk_ratelimit_state, func);
    }
    EXPORT_SYMBOL(__printk_ratelimit);
    
    /**
     * printk_timed_ratelimit - caller-controlled printk ratelimiting
     * @caller_jiffies: pointer to caller's state
     * @interval_msecs: minimum interval between prints
     *
     * printk_timed_ratelimit() returns true if more than @interval_msecs
     * milliseconds have elapsed since the last time printk_timed_ratelimit()
     * returned true.
     */
    bool printk_timed_ratelimit(unsigned long *caller_jiffies,
    			unsigned int interval_msecs)
    {
    	unsigned long elapsed = jiffies - *caller_jiffies;
    
    	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
    		return false;
    
    	*caller_jiffies = jiffies;
    	return true;
    }
    EXPORT_SYMBOL(printk_timed_ratelimit);
    
    static DEFINE_SPINLOCK(dump_list_lock);
    static LIST_HEAD(dump_list);
    
    /**
     * kmsg_dump_register - register a kernel log dumper.
     * @dumper: pointer to the kmsg_dumper structure
     *
     * Adds a kernel log dumper to the system. The dump callback in the
     * structure will be called when the kernel oopses or panics and must be
     * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
     */
    int kmsg_dump_register(struct kmsg_dumper *dumper)
    {
    	unsigned long flags;
    	int err = -EBUSY;
    
    	/* The dump callback needs to be set */
    	if (!dumper->dump)
    		return -EINVAL;
    
    	spin_lock_irqsave(&dump_list_lock, flags);
    	/* Don't allow registering multiple times */
    	if (!dumper->registered) {
    		dumper->registered = 1;
    		list_add_tail_rcu(&dumper->list, &dump_list);
    		err = 0;
    	}
    	spin_unlock_irqrestore(&dump_list_lock, flags);
    
    	return err;
    }
    EXPORT_SYMBOL_GPL(kmsg_dump_register);
    
    /**
     * kmsg_dump_unregister - unregister a kmsg dumper.
     * @dumper: pointer to the kmsg_dumper structure
     *
     * Removes a dump device from the system. Returns zero on success and
     * %-EINVAL otherwise.
     */
    int kmsg_dump_unregister(struct kmsg_dumper *dumper)
    {
    	unsigned long flags;
    	int err = -EINVAL;
    
    	spin_lock_irqsave(&dump_list_lock, flags);
    	if (dumper->registered) {
    		dumper->registered = 0;
    		list_del_rcu(&dumper->list);
    		err = 0;
    	}
    	spin_unlock_irqrestore(&dump_list_lock, flags);
    	synchronize_rcu();
    
    	return err;
    }
    EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
    
    static bool always_kmsg_dump;
    module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
    
    /**
     * kmsg_dump - dump kernel log to kernel message dumpers.
     * @reason: the reason (oops, panic etc) for dumping
     *
     * Call each of the registered dumper's dump() callback, which can
     * retrieve the kmsg records with kmsg_dump_get_line() or
     * kmsg_dump_get_buffer().
     */
    void kmsg_dump(enum kmsg_dump_reason reason)
    {
    	struct kmsg_dumper *dumper;
    	unsigned long flags;
    
    	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
    		return;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(dumper, &dump_list, list) {
    		if (dumper->max_reason && reason > dumper->max_reason)
    			continue;
    
    		/* initialize iterator with data about the stored records */
    		dumper->active = true;
    
    		raw_spin_lock_irqsave(&logbuf_lock, flags);
    		dumper->cur_seq = clear_seq;
    		dumper->cur_idx = clear_idx;
    		dumper->next_seq = log_next_seq;
    		dumper->next_idx = log_next_idx;
    		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    
    		/* invoke dumper which will iterate over records */
    		dumper->dump(dumper, reason);
    
    		/* reset iterator */
    		dumper->active = false;
    	}
    	rcu_read_unlock();
    }
    
    /**
     * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
     * @dumper: registered kmsg dumper
     * @syslog: include the "<4>" prefixes
     * @line: buffer to copy the line to
     * @size: maximum size of the buffer
     * @len: length of line placed into buffer
     *
     * Start at the beginning of the kmsg buffer, with the oldest kmsg
     * record, and copy one record into the provided buffer.
     *
     * Consecutive calls will return the next available record moving
     * towards the end of the buffer with the youngest messages.
     *
     * A return value of FALSE indicates that there are no more records to
     * read.
     *
     * The function is similar to kmsg_dump_get_line(), but grabs no locks.
     */
    bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
    			       char *line, size_t size, size_t *len)
    {
    	struct printk_log *msg;
    	size_t l = 0;
    	bool ret = false;
    
    	if (!dumper->active)
    		goto out;
    
    	if (dumper->cur_seq < log_first_seq) {
    		/* messages are gone, move to first available one */
    		dumper->cur_seq = log_first_seq;
    		dumper->cur_idx = log_first_idx;
    	}
    
    	/* last entry */
    	if (dumper->cur_seq >= log_next_seq)
    		goto out;
    
    	msg = log_from_idx(dumper->cur_idx);
    	l = msg_print_text(msg, 0, syslog, line, size);
    
    	dumper->cur_idx = log_next(dumper->cur_idx);
    	dumper->cur_seq++;
    	ret = true;
    out:
    	if (len)
    		*len = l;
    	return ret;
    }
    
    /**
     * kmsg_dump_get_line - retrieve one kmsg log line
     * @dumper: registered kmsg dumper
     * @syslog: include the "<4>" prefixes
     * @line: buffer to copy the line to
     * @size: maximum size of the buffer
     * @len: length of line placed into buffer
     *
     * Start at the beginning of the kmsg buffer, with the oldest kmsg
     * record, and copy one record into the provided buffer.
     *
     * Consecutive calls will return the next available record moving
     * towards the end of the buffer with the youngest messages.
     *
     * A return value of FALSE indicates that there are no more records to
     * read.
     */
    bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
    			char *line, size_t size, size_t *len)
    {
    	unsigned long flags;
    	bool ret;
    
    	raw_spin_lock_irqsave(&logbuf_lock, flags);
    	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
    	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
    
    /**
     * kmsg_dump_get_buffer - copy kmsg log lines
     * @dumper: registered kmsg dumper
     * @syslog: include the "<4>" prefixes
     * @buf: buffer to copy the line to
     * @size: maximum size of the buffer
     * @len: length of line placed into buffer
     *
     * Start at the end of the kmsg buffer and fill the provided buffer
     * with as many of the the *youngest* kmsg records that fit into it.
     * If the buffer is large enough, all available kmsg records will be
     * copied with a single call.
     *
     * Consecutive calls will fill the buffer with the next block of
     * available older records, not including the earlier retrieved ones.
     *
     * A return value of FALSE indicates that there are no more records to
     * read.
     */
    bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
    			  char *buf, size_t size, size_t *len)
    {
    	unsigned long flags;
    	u64 seq;
    	u32 idx;
    	u64 next_seq;
    	u32 next_idx;
    	enum log_flags prev;
    	size_t l = 0;
    	bool ret = false;
    
    	if (!dumper->active)
    		goto out;
    
    	raw_spin_lock_irqsave(&logbuf_lock, flags);
    	if (dumper->cur_seq < log_first_seq) {
    		/* messages are gone, move to first available one */
    		dumper->cur_seq = log_first_seq;
    		dumper->cur_idx = log_first_idx;
    	}
    
    	/* last entry */
    	if (dumper->cur_seq >= dumper->next_seq) {
    		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    		goto out;
    	}
    
    	/* calculate length of entire buffer */
    	seq = dumper->cur_seq;
    	idx = dumper->cur_idx;
    	prev = 0;
    	while (seq < dumper->next_seq) {
    		struct printk_log *msg = log_from_idx(idx);
    
    		l += msg_print_text(msg, prev, true, NULL, 0);
    		idx = log_next(idx);
    		seq++;
    		prev = msg->flags;
    	}
    
    	/* move first record forward until length fits into the buffer */
    	seq = dumper->cur_seq;
    	idx = dumper->cur_idx;
    	prev = 0;
    	while (l > size && seq < dumper->next_seq) {
    		struct printk_log *msg = log_from_idx(idx);
    
    		l -= msg_print_text(msg, prev, true, NULL, 0);
    		idx = log_next(idx);
    		seq++;
    		prev = msg->flags;
    	}
    
    	/* last message in next interation */
    	next_seq = seq;
    	next_idx = idx;
    
    	l = 0;
    	while (seq < dumper->next_seq) {
    		struct printk_log *msg = log_from_idx(idx);
    
    		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
    		idx = log_next(idx);
    		seq++;
    		prev = msg->flags;
    	}
    
    	dumper->next_seq = next_seq;
    	dumper->next_idx = next_idx;
    	ret = true;
    	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    out:
    	if (len)
    		*len = l;
    	return ret;
    }
    EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
    
    /**
     * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
     * @dumper: registered kmsg dumper
     *
     * Reset the dumper's iterator so that kmsg_dump_get_line() and
     * kmsg_dump_get_buffer() can be called again and used multiple
     * times within the same dumper.dump() callback.
     *
     * The function is similar to kmsg_dump_rewind(), but grabs no locks.
     */
    void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
    {
    	dumper->cur_seq = clear_seq;
    	dumper->cur_idx = clear_idx;
    	dumper->next_seq = log_next_seq;
    	dumper->next_idx = log_next_idx;
    }
    
    /**
     * kmsg_dump_rewind - reset the interator
     * @dumper: registered kmsg dumper
     *
     * Reset the dumper's iterator so that kmsg_dump_get_line() and
     * kmsg_dump_get_buffer() can be called again and used multiple
     * times within the same dumper.dump() callback.
     */
    void kmsg_dump_rewind(struct kmsg_dumper *dumper)
    {
    	unsigned long flags;
    
    	raw_spin_lock_irqsave(&logbuf_lock, flags);
    	kmsg_dump_rewind_nolock(dumper);
    	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
    }
    EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
    
    static char dump_stack_arch_desc_str[128];
    
    /**
     * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
     * @fmt: printf-style format string
     * @...: arguments for the format string
     *
     * The configured string will be printed right after utsname during task
     * dumps.  Usually used to add arch-specific system identifiers.  If an
     * arch wants to make use of such an ID string, it should initialize this
     * as soon as possible during boot.
     */
    void __init dump_stack_set_arch_desc(const char *fmt, ...)
    {
    	va_list args;
    
    	va_start(args, fmt);
    	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
    		  fmt, args);
    	va_end(args);
    }
    
    /**
     * dump_stack_print_info - print generic debug info for dump_stack()
     * @log_lvl: log level
     *
     * Arch-specific dump_stack() implementations can use this function to
     * print out the same debug information as the generic dump_stack().
     */
    void dump_stack_print_info(const char *log_lvl)
    {
    	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
    	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
    	       print_tainted(), init_utsname()->release,
    	       (int)strcspn(init_utsname()->version, " "),
    	       init_utsname()->version);
    
    	if (dump_stack_arch_desc_str[0] != '\0')
    		printk("%sHardware name: %s\n",
    		       log_lvl, dump_stack_arch_desc_str);
    
    	print_worker_info(log_lvl, current);
    }
    
    /**
     * show_regs_print_info - print generic debug info for show_regs()
     * @log_lvl: log level
     *
     * show_regs() implementations can use this function to print out generic
     * debug information.
     */
    void show_regs_print_info(const char *log_lvl)
    {
    	dump_stack_print_info(log_lvl);
    
    	printk("%stask: %p ti: %p task.ti: %p\n",
    	       log_lvl, current, current_thread_info(),
    	       task_thread_info(current));
    }
    
    #endif