Skip to content
Snippets Groups Projects
Select Git revision
  • b64d39d8b03fea88417d53715ccbebf71d4dcc9f
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

nand_bbt.c

Blame
  • nand_bbt.c 33.10 KiB
    /*
     *  drivers/mtd/nand_bbt.c
     *
     *  Overview:
     *   Bad block table support for the NAND driver
     *
     *  Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     * Description:
     *
     * When nand_scan_bbt is called, then it tries to find the bad block table
     * depending on the options in the bbt descriptor(s). If a bbt is found
     * then the contents are read and the memory based bbt is created. If a
     * mirrored bbt is selected then the mirror is searched too and the
     * versions are compared. If the mirror has a greater version number
     * than the mirror bbt is used to build the memory based bbt.
     * If the tables are not versioned, then we "or" the bad block information.
     * If one of the bbt's is out of date or does not exist it is (re)created.
     * If no bbt exists at all then the device is scanned for factory marked
     * good / bad blocks and the bad block tables are created.
     *
     * For manufacturer created bbts like the one found on M-SYS DOC devices
     * the bbt is searched and read but never created
     *
     * The autogenerated bad block table is located in the last good blocks
     * of the device. The table is mirrored, so it can be updated eventually.
     * The table is marked in the oob area with an ident pattern and a version
     * number which indicates which of both tables is more up to date.
     *
     * The table uses 2 bits per block
     * 11b: 	block is good
     * 00b: 	block is factory marked bad
     * 01b, 10b: 	block is marked bad due to wear
     *
     * The memory bad block table uses the following scheme:
     * 00b:		block is good
     * 01b:		block is marked bad due to wear
     * 10b:		block is reserved (to protect the bbt area)
     * 11b:		block is factory marked bad
     *
     * Multichip devices like DOC store the bad block info per floor.
     *
     * Following assumptions are made:
     * - bbts start at a page boundary, if autolocated on a block boundary
     * - the space necessary for a bbt in FLASH does not exceed a block boundary
     *
     */
    
    #include <linux/slab.h>
    #include <linux/types.h>
    #include <linux/mtd/mtd.h>
    #include <linux/mtd/nand.h>
    #include <linux/mtd/nand_ecc.h>
    #include <linux/mtd/compatmac.h>
    #include <linux/bitops.h>
    #include <linux/delay.h>
    #include <linux/vmalloc.h>
    
    /**
     * check_pattern - [GENERIC] check if a pattern is in the buffer
     * @buf:	the buffer to search
     * @len:	the length of buffer to search
     * @paglen:	the pagelength
     * @td:		search pattern descriptor
     *
     * Check for a pattern at the given place. Used to search bad block
     * tables and good / bad block identifiers.
     * If the SCAN_EMPTY option is set then check, if all bytes except the
     * pattern area contain 0xff
     *
    */
    static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
    {
    	int i, end = 0;
    	uint8_t *p = buf;
    
    	end = paglen + td->offs;
    	if (td->options & NAND_BBT_SCANEMPTY) {
    		for (i = 0; i < end; i++) {
    			if (p[i] != 0xff)
    				return -1;
    		}
    	}
    	p += end;
    
    	/* Compare the pattern */
    	for (i = 0; i < td->len; i++) {
    		if (p[i] != td->pattern[i])
    			return -1;
    	}
    
    	if (td->options & NAND_BBT_SCANEMPTY) {
    		p += td->len;
    		end += td->len;
    		for (i = end; i < len; i++) {
    			if (*p++ != 0xff)
    				return -1;
    		}
    	}
    	return 0;
    }
    
    /**
     * check_short_pattern - [GENERIC] check if a pattern is in the buffer
     * @buf:	the buffer to search
     * @td:		search pattern descriptor
     *
     * Check for a pattern at the given place. Used to search bad block
     * tables and good / bad block identifiers. Same as check_pattern, but
     * no optional empty check
     *
    */
    static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td)
    {
    	int i;
    	uint8_t *p = buf;
    
    	/* Compare the pattern */
    	for (i = 0; i < td->len; i++) {
    		if (p[td->offs + i] != td->pattern[i])
    			return -1;
    	}
    	return 0;
    }
    
    /**
     * read_bbt - [GENERIC] Read the bad block table starting from page
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @page:	the starting page
     * @num:	the number of bbt descriptors to read
     * @bits:	number of bits per block
     * @offs:	offset in the memory table
     * @reserved_block_code:	Pattern to identify reserved blocks
     *
     * Read the bad block table starting from page.
     *
     */
    static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
    		    int bits, int offs, int reserved_block_code)
    {
    	int res, i, j, act = 0;
    	struct nand_chip *this = mtd->priv;
    	size_t retlen, len, totlen;
    	loff_t from;
    	uint8_t msk = (uint8_t) ((1 << bits) - 1);
    
    	totlen = (num * bits) >> 3;
    	from = ((loff_t) page) << this->page_shift;
    
    	while (totlen) {
    		len = min(totlen, (size_t) (1 << this->bbt_erase_shift));
    		res = mtd->read(mtd, from, len, &retlen, buf);
    		if (res < 0) {
    			if (retlen != len) {
    				printk(KERN_INFO "nand_bbt: Error reading bad block table\n");
    				return res;
    			}
    			printk(KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
    		}
    
    		/* Analyse data */
    		for (i = 0; i < len; i++) {
    			uint8_t dat = buf[i];
    			for (j = 0; j < 8; j += bits, act += 2) {
    				uint8_t tmp = (dat >> j) & msk;
    				if (tmp == msk)
    					continue;
    				if (reserved_block_code && (tmp == reserved_block_code)) {
    					printk(KERN_DEBUG "nand_read_bbt: Reserved block at 0x%012llx\n",
    					       (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
    					this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
    					mtd->ecc_stats.bbtblocks++;
    					continue;
    				}
    				/* Leave it for now, if its matured we can move this
    				 * message to MTD_DEBUG_LEVEL0 */
    				printk(KERN_DEBUG "nand_read_bbt: Bad block at 0x%012llx\n",
    				       (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
    				/* Factory marked bad or worn out ? */
    				if (tmp == 0)
    					this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
    				else
    					this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
    				mtd->ecc_stats.badblocks++;
    			}
    		}
    		totlen -= len;
    		from += len;
    	}
    	return 0;
    }
    
    /**
     * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @td:		descriptor for the bad block table
     * @chip:	read the table for a specific chip, -1 read all chips.
     *		Applies only if NAND_BBT_PERCHIP option is set
     *
     * Read the bad block table for all chips starting at a given page
     * We assume that the bbt bits are in consecutive order.
    */
    static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
    {
    	struct nand_chip *this = mtd->priv;
    	int res = 0, i;
    	int bits;
    
    	bits = td->options & NAND_BBT_NRBITS_MSK;
    	if (td->options & NAND_BBT_PERCHIP) {
    		int offs = 0;
    		for (i = 0; i < this->numchips; i++) {
    			if (chip == -1 || chip == i)
    				res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
    			if (res)
    				return res;
    			offs += this->chipsize >> (this->bbt_erase_shift + 2);
    		}
    	} else {
    		res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
    		if (res)
    			return res;
    	}
    	return 0;
    }
    
    /*
     * Scan read raw data from flash
     */
    static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
    			 size_t len)
    {
    	struct mtd_oob_ops ops;
    	int res;
    
    	ops.mode = MTD_OOB_RAW;
    	ops.ooboffs = 0;
    	ops.ooblen = mtd->oobsize;
    
    
    	while (len > 0) {
    		if (len <= mtd->writesize) {
    			ops.oobbuf = buf + len;
    			ops.datbuf = buf;
    			ops.len = len;
    			return mtd->read_oob(mtd, offs, &ops);
    		} else {
    			ops.oobbuf = buf + mtd->writesize;
    			ops.datbuf = buf;
    			ops.len = mtd->writesize;
    			res = mtd->read_oob(mtd, offs, &ops);
    
    			if (res)
    				return res;
    		}
    
    		buf += mtd->oobsize + mtd->writesize;
    		len -= mtd->writesize;
    	}
    	return 0;
    }
    
    /*
     * Scan write data with oob to flash
     */
    static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len,
    			  uint8_t *buf, uint8_t *oob)
    {
    	struct mtd_oob_ops ops;
    
    	ops.mode = MTD_OOB_PLACE;
    	ops.ooboffs = 0;
    	ops.ooblen = mtd->oobsize;
    	ops.datbuf = buf;
    	ops.oobbuf = oob;
    	ops.len = len;
    
    	return mtd->write_oob(mtd, offs, &ops);
    }
    
    /**
     * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @td:		descriptor for the bad block table
     * @md:		descriptor for the bad block table mirror
     *
     * Read the bad block table(s) for all chips starting at a given page
     * We assume that the bbt bits are in consecutive order.
     *
    */
    static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf,
    			 struct nand_bbt_descr *td, struct nand_bbt_descr *md)
    {
    	struct nand_chip *this = mtd->priv;
    
    	/* Read the primary version, if available */
    	if (td->options & NAND_BBT_VERSION) {
    		scan_read_raw(mtd, buf, (loff_t)td->pages[0] << this->page_shift,
    			      mtd->writesize);
    		td->version[0] = buf[mtd->writesize + td->veroffs];
    		printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n",
    		       td->pages[0], td->version[0]);
    	}
    
    	/* Read the mirror version, if available */
    	if (md && (md->options & NAND_BBT_VERSION)) {
    		scan_read_raw(mtd, buf, (loff_t)md->pages[0] << this->page_shift,
    			      mtd->writesize);
    		md->version[0] = buf[mtd->writesize + md->veroffs];
    		printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n",
    		       md->pages[0], md->version[0]);
    	}
    	return 1;
    }
    
    /*
     * Scan a given block full
     */
    static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd,
    			   loff_t offs, uint8_t *buf, size_t readlen,
    			   int scanlen, int len)
    {
    	int ret, j;
    
    	ret = scan_read_raw(mtd, buf, offs, readlen);
    	if (ret)
    		return ret;
    
    	for (j = 0; j < len; j++, buf += scanlen) {
    		if (check_pattern(buf, scanlen, mtd->writesize, bd))
    			return 1;
    	}
    	return 0;
    }
    
    /*
     * Scan a given block partially
     */
    static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
    			   loff_t offs, uint8_t *buf, int len)
    {
    	struct mtd_oob_ops ops;
    	int j, ret;
    
    	ops.ooblen = mtd->oobsize;
    	ops.oobbuf = buf;
    	ops.ooboffs = 0;
    	ops.datbuf = NULL;
    	ops.mode = MTD_OOB_PLACE;
    
    	for (j = 0; j < len; j++) {
    		/*
    		 * Read the full oob until read_oob is fixed to
    		 * handle single byte reads for 16 bit
    		 * buswidth
    		 */
    		ret = mtd->read_oob(mtd, offs, &ops);
    		if (ret)
    			return ret;
    
    		if (check_short_pattern(buf, bd))
    			return 1;
    
    		offs += mtd->writesize;
    	}
    	return 0;
    }
    
    /**
     * create_bbt - [GENERIC] Create a bad block table by scanning the device
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @bd:		descriptor for the good/bad block search pattern
     * @chip:	create the table for a specific chip, -1 read all chips.
     *		Applies only if NAND_BBT_PERCHIP option is set
     *
     * Create a bad block table by scanning the device
     * for the given good/bad block identify pattern
     */
    static int create_bbt(struct mtd_info *mtd, uint8_t *buf,
    	struct nand_bbt_descr *bd, int chip)
    {
    	struct nand_chip *this = mtd->priv;
    	int i, numblocks, len, scanlen;
    	int startblock;
    	loff_t from;
    	size_t readlen;
    
    	printk(KERN_INFO "Scanning device for bad blocks\n");
    
    	if (bd->options & NAND_BBT_SCANALLPAGES)
    		len = 1 << (this->bbt_erase_shift - this->page_shift);
    	else {
    		if (bd->options & NAND_BBT_SCAN2NDPAGE)
    			len = 2;
    		else
    			len = 1;
    	}
    
    	if (!(bd->options & NAND_BBT_SCANEMPTY)) {
    		/* We need only read few bytes from the OOB area */
    		scanlen = 0;
    		readlen = bd->len;
    	} else {
    		/* Full page content should be read */
    		scanlen = mtd->writesize + mtd->oobsize;
    		readlen = len * mtd->writesize;
    	}
    
    	if (chip == -1) {
    		/* Note that numblocks is 2 * (real numblocks) here, see i+=2
    		 * below as it makes shifting and masking less painful */
    		numblocks = mtd->size >> (this->bbt_erase_shift - 1);
    		startblock = 0;
    		from = 0;
    	} else {
    		if (chip >= this->numchips) {
    			printk(KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
    			       chip + 1, this->numchips);
    			return -EINVAL;
    		}
    		numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
    		startblock = chip * numblocks;
    		numblocks += startblock;
    		from = (loff_t)startblock << (this->bbt_erase_shift - 1);
    	}
    
    	for (i = startblock; i < numblocks;) {
    		int ret;
    
    		if (bd->options & NAND_BBT_SCANALLPAGES)
    			ret = scan_block_full(mtd, bd, from, buf, readlen,
    					      scanlen, len);
    		else
    			ret = scan_block_fast(mtd, bd, from, buf, len);
    
    		if (ret < 0)
    			return ret;
    
    		if (ret) {
    			this->bbt[i >> 3] |= 0x03 << (i & 0x6);
    			printk(KERN_WARNING "Bad eraseblock %d at 0x%012llx\n",
    			       i >> 1, (unsigned long long)from);
    			mtd->ecc_stats.badblocks++;
    		}
    
    		i += 2;
    		from += (1 << this->bbt_erase_shift);
    	}
    	return 0;
    }
    
    /**
     * search_bbt - [GENERIC] scan the device for a specific bad block table
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @td:		descriptor for the bad block table
     *
     * Read the bad block table by searching for a given ident pattern.
     * Search is preformed either from the beginning up or from the end of
     * the device downwards. The search starts always at the start of a
     * block.
     * If the option NAND_BBT_PERCHIP is given, each chip is searched
     * for a bbt, which contains the bad block information of this chip.
     * This is necessary to provide support for certain DOC devices.
     *
     * The bbt ident pattern resides in the oob area of the first page
     * in a block.
     */
    static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
    {
    	struct nand_chip *this = mtd->priv;
    	int i, chips;
    	int bits, startblock, block, dir;
    	int scanlen = mtd->writesize + mtd->oobsize;
    	int bbtblocks;
    	int blocktopage = this->bbt_erase_shift - this->page_shift;
    
    	/* Search direction top -> down ? */
    	if (td->options & NAND_BBT_LASTBLOCK) {
    		startblock = (mtd->size >> this->bbt_erase_shift) - 1;
    		dir = -1;
    	} else {
    		startblock = 0;
    		dir = 1;
    	}
    
    	/* Do we have a bbt per chip ? */
    	if (td->options & NAND_BBT_PERCHIP) {
    		chips = this->numchips;
    		bbtblocks = this->chipsize >> this->bbt_erase_shift;
    		startblock &= bbtblocks - 1;
    	} else {
    		chips = 1;
    		bbtblocks = mtd->size >> this->bbt_erase_shift;
    	}
    
    	/* Number of bits for each erase block in the bbt */
    	bits = td->options & NAND_BBT_NRBITS_MSK;
    
    	for (i = 0; i < chips; i++) {
    		/* Reset version information */
    		td->version[i] = 0;
    		td->pages[i] = -1;
    		/* Scan the maximum number of blocks */
    		for (block = 0; block < td->maxblocks; block++) {
    
    			int actblock = startblock + dir * block;
    			loff_t offs = (loff_t)actblock << this->bbt_erase_shift;
    
    			/* Read first page */
    			scan_read_raw(mtd, buf, offs, mtd->writesize);
    			if (!check_pattern(buf, scanlen, mtd->writesize, td)) {
    				td->pages[i] = actblock << blocktopage;
    				if (td->options & NAND_BBT_VERSION) {
    					td->version[i] = buf[mtd->writesize + td->veroffs];
    				}
    				break;
    			}
    		}
    		startblock += this->chipsize >> this->bbt_erase_shift;
    	}
    	/* Check, if we found a bbt for each requested chip */
    	for (i = 0; i < chips; i++) {
    		if (td->pages[i] == -1)
    			printk(KERN_WARNING "Bad block table not found for chip %d\n", i);
    		else
    			printk(KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i],
    			       td->version[i]);
    	}
    	return 0;
    }
    
    /**
     * search_read_bbts - [GENERIC] scan the device for bad block table(s)
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @td:		descriptor for the bad block table
     * @md:		descriptor for the bad block table mirror
     *
     * Search and read the bad block table(s)
    */
    static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md)
    {
    	/* Search the primary table */
    	search_bbt(mtd, buf, td);
    
    	/* Search the mirror table */
    	if (md)
    		search_bbt(mtd, buf, md);
    
    	/* Force result check */
    	return 1;
    }
    
    /**
     * write_bbt - [GENERIC] (Re)write the bad block table
     *
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @td:		descriptor for the bad block table
     * @md:		descriptor for the bad block table mirror
     * @chipsel:	selector for a specific chip, -1 for all
     *
     * (Re)write the bad block table
     *
    */
    static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
    		     struct nand_bbt_descr *td, struct nand_bbt_descr *md,
    		     int chipsel)
    {
    	struct nand_chip *this = mtd->priv;
    	struct erase_info einfo;
    	int i, j, res, chip = 0;
    	int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
    	int nrchips, bbtoffs, pageoffs, ooboffs;
    	uint8_t msk[4];
    	uint8_t rcode = td->reserved_block_code;
    	size_t retlen, len = 0;
    	loff_t to;
    	struct mtd_oob_ops ops;
    
    	ops.ooblen = mtd->oobsize;
    	ops.ooboffs = 0;
    	ops.datbuf = NULL;
    	ops.mode = MTD_OOB_PLACE;
    
    	if (!rcode)
    		rcode = 0xff;
    	/* Write bad block table per chip rather than per device ? */
    	if (td->options & NAND_BBT_PERCHIP) {
    		numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
    		/* Full device write or specific chip ? */
    		if (chipsel == -1) {
    			nrchips = this->numchips;
    		} else {
    			nrchips = chipsel + 1;
    			chip = chipsel;
    		}
    	} else {
    		numblocks = (int)(mtd->size >> this->bbt_erase_shift);
    		nrchips = 1;
    	}
    
    	/* Loop through the chips */
    	for (; chip < nrchips; chip++) {
    
    		/* There was already a version of the table, reuse the page
    		 * This applies for absolute placement too, as we have the
    		 * page nr. in td->pages.
    		 */
    		if (td->pages[chip] != -1) {
    			page = td->pages[chip];
    			goto write;
    		}
    
    		/* Automatic placement of the bad block table */
    		/* Search direction top -> down ? */
    		if (td->options & NAND_BBT_LASTBLOCK) {
    			startblock = numblocks * (chip + 1) - 1;
    			dir = -1;
    		} else {
    			startblock = chip * numblocks;
    			dir = 1;
    		}
    
    		for (i = 0; i < td->maxblocks; i++) {
    			int block = startblock + dir * i;
    			/* Check, if the block is bad */
    			switch ((this->bbt[block >> 2] >>
    				 (2 * (block & 0x03))) & 0x03) {
    			case 0x01:
    			case 0x03:
    				continue;
    			}
    			page = block <<
    				(this->bbt_erase_shift - this->page_shift);
    			/* Check, if the block is used by the mirror table */
    			if (!md || md->pages[chip] != page)
    				goto write;
    		}
    		printk(KERN_ERR "No space left to write bad block table\n");
    		return -ENOSPC;
    	write:
    
    		/* Set up shift count and masks for the flash table */
    		bits = td->options & NAND_BBT_NRBITS_MSK;
    		msk[2] = ~rcode;
    		switch (bits) {
    		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01;
    			msk[3] = 0x01;
    			break;
    		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01;
    			msk[3] = 0x03;
    			break;
    		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C;
    			msk[3] = 0x0f;
    			break;
    		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F;
    			msk[3] = 0xff;
    			break;
    		default: return -EINVAL;
    		}
    
    		bbtoffs = chip * (numblocks >> 2);
    
    		to = ((loff_t) page) << this->page_shift;
    
    		/* Must we save the block contents ? */
    		if (td->options & NAND_BBT_SAVECONTENT) {
    			/* Make it block aligned */
    			to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
    			len = 1 << this->bbt_erase_shift;
    			res = mtd->read(mtd, to, len, &retlen, buf);
    			if (res < 0) {
    				if (retlen != len) {
    					printk(KERN_INFO "nand_bbt: Error "
    					       "reading block for writing "
    					       "the bad block table\n");
    					return res;
    				}
    				printk(KERN_WARNING "nand_bbt: ECC error "
    				       "while reading block for writing "
    				       "bad block table\n");
    			}
    			/* Read oob data */
    			ops.ooblen = (len >> this->page_shift) * mtd->oobsize;
    			ops.oobbuf = &buf[len];
    			res = mtd->read_oob(mtd, to + mtd->writesize, &ops);
    			if (res < 0 || ops.oobretlen != ops.ooblen)
    				goto outerr;
    
    			/* Calc the byte offset in the buffer */
    			pageoffs = page - (int)(to >> this->page_shift);
    			offs = pageoffs << this->page_shift;
    			/* Preset the bbt area with 0xff */
    			memset(&buf[offs], 0xff, (size_t) (numblocks >> sft));
    			ooboffs = len + (pageoffs * mtd->oobsize);
    
    		} else {
    			/* Calc length */
    			len = (size_t) (numblocks >> sft);
    			/* Make it page aligned ! */
    			len = (len + (mtd->writesize - 1)) &
    				~(mtd->writesize - 1);
    			/* Preset the buffer with 0xff */
    			memset(buf, 0xff, len +
    			       (len >> this->page_shift)* mtd->oobsize);
    			offs = 0;
    			ooboffs = len;
    			/* Pattern is located in oob area of first page */
    			memcpy(&buf[ooboffs + td->offs], td->pattern, td->len);
    		}
    
    		if (td->options & NAND_BBT_VERSION)
    			buf[ooboffs + td->veroffs] = td->version[chip];
    
    		/* walk through the memory table */
    		for (i = 0; i < numblocks;) {
    			uint8_t dat;
    			dat = this->bbt[bbtoffs + (i >> 2)];
    			for (j = 0; j < 4; j++, i++) {
    				int sftcnt = (i << (3 - sft)) & sftmsk;
    				/* Do not store the reserved bbt blocks ! */
    				buf[offs + (i >> sft)] &=
    					~(msk[dat & 0x03] << sftcnt);
    				dat >>= 2;
    			}
    		}
    
    		memset(&einfo, 0, sizeof(einfo));
    		einfo.mtd = mtd;
    		einfo.addr = to;
    		einfo.len = 1 << this->bbt_erase_shift;
    		res = nand_erase_nand(mtd, &einfo, 1);
    		if (res < 0)
    			goto outerr;
    
    		res = scan_write_bbt(mtd, to, len, buf, &buf[len]);
    		if (res < 0)
    			goto outerr;
    
    		printk(KERN_DEBUG "Bad block table written to 0x%012llx, version "
    		       "0x%02X\n", (unsigned long long)to, td->version[chip]);
    
    		/* Mark it as used */
    		td->pages[chip] = page;
    	}
    	return 0;
    
     outerr:
    	printk(KERN_WARNING
    	       "nand_bbt: Error while writing bad block table %d\n", res);
    	return res;
    }
    
    /**
     * nand_memory_bbt - [GENERIC] create a memory based bad block table
     * @mtd:	MTD device structure
     * @bd:		descriptor for the good/bad block search pattern
     *
     * The function creates a memory based bbt by scanning the device
     * for manufacturer / software marked good / bad blocks
    */
    static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
    {
    	struct nand_chip *this = mtd->priv;
    
    	bd->options &= ~NAND_BBT_SCANEMPTY;
    	return create_bbt(mtd, this->buffers->databuf, bd, -1);
    }
    
    /**
     * check_create - [GENERIC] create and write bbt(s) if necessary
     * @mtd:	MTD device structure
     * @buf:	temporary buffer
     * @bd:		descriptor for the good/bad block search pattern
     *
     * The function checks the results of the previous call to read_bbt
     * and creates / updates the bbt(s) if necessary
     * Creation is necessary if no bbt was found for the chip/device
     * Update is necessary if one of the tables is missing or the
     * version nr. of one table is less than the other
    */
    static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
    {
    	int i, chips, writeops, chipsel, res;
    	struct nand_chip *this = mtd->priv;
    	struct nand_bbt_descr *td = this->bbt_td;
    	struct nand_bbt_descr *md = this->bbt_md;
    	struct nand_bbt_descr *rd, *rd2;
    
    	/* Do we have a bbt per chip ? */
    	if (td->options & NAND_BBT_PERCHIP)
    		chips = this->numchips;
    	else
    		chips = 1;
    
    	for (i = 0; i < chips; i++) {
    		writeops = 0;
    		rd = NULL;
    		rd2 = NULL;
    		/* Per chip or per device ? */
    		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
    		/* Mirrored table avilable ? */
    		if (md) {
    			if (td->pages[i] == -1 && md->pages[i] == -1) {
    				writeops = 0x03;
    				goto create;
    			}
    
    			if (td->pages[i] == -1) {
    				rd = md;
    				td->version[i] = md->version[i];
    				writeops = 1;
    				goto writecheck;
    			}
    
    			if (md->pages[i] == -1) {
    				rd = td;
    				md->version[i] = td->version[i];
    				writeops = 2;
    				goto writecheck;
    			}
    
    			if (td->version[i] == md->version[i]) {
    				rd = td;
    				if (!(td->options & NAND_BBT_VERSION))
    					rd2 = md;
    				goto writecheck;
    			}
    
    			if (((int8_t) (td->version[i] - md->version[i])) > 0) {
    				rd = td;
    				md->version[i] = td->version[i];
    				writeops = 2;
    			} else {
    				rd = md;
    				td->version[i] = md->version[i];
    				writeops = 1;
    			}
    
    			goto writecheck;
    
    		} else {
    			if (td->pages[i] == -1) {
    				writeops = 0x01;
    				goto create;
    			}
    			rd = td;
    			goto writecheck;
    		}
    	create:
    		/* Create the bad block table by scanning the device ? */
    		if (!(td->options & NAND_BBT_CREATE))
    			continue;
    
    		/* Create the table in memory by scanning the chip(s) */
    		create_bbt(mtd, buf, bd, chipsel);
    
    		td->version[i] = 1;
    		if (md)
    			md->version[i] = 1;
    	writecheck:
    		/* read back first ? */
    		if (rd)
    			read_abs_bbt(mtd, buf, rd, chipsel);
    		/* If they weren't versioned, read both. */
    		if (rd2)
    			read_abs_bbt(mtd, buf, rd2, chipsel);
    
    		/* Write the bad block table to the device ? */
    		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
    			res = write_bbt(mtd, buf, td, md, chipsel);
    			if (res < 0)
    				return res;
    		}
    
    		/* Write the mirror bad block table to the device ? */
    		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
    			res = write_bbt(mtd, buf, md, td, chipsel);
    			if (res < 0)
    				return res;
    		}
    	}
    	return 0;
    }
    
    /**
     * mark_bbt_regions - [GENERIC] mark the bad block table regions
     * @mtd:	MTD device structure
     * @td:		bad block table descriptor
     *
     * The bad block table regions are marked as "bad" to prevent
     * accidental erasures / writes. The regions are identified by
     * the mark 0x02.
    */
    static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
    {
    	struct nand_chip *this = mtd->priv;
    	int i, j, chips, block, nrblocks, update;
    	uint8_t oldval, newval;
    
    	/* Do we have a bbt per chip ? */
    	if (td->options & NAND_BBT_PERCHIP) {
    		chips = this->numchips;
    		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
    	} else {
    		chips = 1;
    		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
    	}
    
    	for (i = 0; i < chips; i++) {
    		if ((td->options & NAND_BBT_ABSPAGE) ||
    		    !(td->options & NAND_BBT_WRITE)) {
    			if (td->pages[i] == -1)
    				continue;
    			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
    			block <<= 1;
    			oldval = this->bbt[(block >> 3)];
    			newval = oldval | (0x2 << (block & 0x06));
    			this->bbt[(block >> 3)] = newval;
    			if ((oldval != newval) && td->reserved_block_code)
    				nand_update_bbt(mtd, (loff_t)block << (this->bbt_erase_shift - 1));
    			continue;
    		}
    		update = 0;
    		if (td->options & NAND_BBT_LASTBLOCK)
    			block = ((i + 1) * nrblocks) - td->maxblocks;
    		else
    			block = i * nrblocks;
    		block <<= 1;
    		for (j = 0; j < td->maxblocks; j++) {
    			oldval = this->bbt[(block >> 3)];
    			newval = oldval | (0x2 << (block & 0x06));
    			this->bbt[(block >> 3)] = newval;
    			if (oldval != newval)
    				update = 1;
    			block += 2;
    		}
    		/* If we want reserved blocks to be recorded to flash, and some
    		   new ones have been marked, then we need to update the stored
    		   bbts.  This should only happen once. */
    		if (update && td->reserved_block_code)
    			nand_update_bbt(mtd, (loff_t)(block - 2) << (this->bbt_erase_shift - 1));
    	}
    }
    
    /**
     * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
     * @mtd:	MTD device structure
     * @bd:		descriptor for the good/bad block search pattern
     *
     * The function checks, if a bad block table(s) is/are already
     * available. If not it scans the device for manufacturer
     * marked good / bad blocks and writes the bad block table(s) to
     * the selected place.
     *
     * The bad block table memory is allocated here. It must be freed
     * by calling the nand_free_bbt function.
     *
    */
    int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
    {
    	struct nand_chip *this = mtd->priv;
    	int len, res = 0;
    	uint8_t *buf;
    	struct nand_bbt_descr *td = this->bbt_td;
    	struct nand_bbt_descr *md = this->bbt_md;
    
    	len = mtd->size >> (this->bbt_erase_shift + 2);
    	/* Allocate memory (2bit per block) and clear the memory bad block table */
    	this->bbt = kzalloc(len, GFP_KERNEL);
    	if (!this->bbt) {
    		printk(KERN_ERR "nand_scan_bbt: Out of memory\n");
    		return -ENOMEM;
    	}
    
    	/* If no primary table decriptor is given, scan the device
    	 * to build a memory based bad block table
    	 */
    	if (!td) {
    		if ((res = nand_memory_bbt(mtd, bd))) {
    			printk(KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
    			kfree(this->bbt);
    			this->bbt = NULL;
    		}
    		return res;
    	}
    
    	/* Allocate a temporary buffer for one eraseblock incl. oob */
    	len = (1 << this->bbt_erase_shift);
    	len += (len >> this->page_shift) * mtd->oobsize;
    	buf = vmalloc(len);
    	if (!buf) {
    		printk(KERN_ERR "nand_bbt: Out of memory\n");
    		kfree(this->bbt);
    		this->bbt = NULL;
    		return -ENOMEM;
    	}
    
    	/* Is the bbt at a given page ? */
    	if (td->options & NAND_BBT_ABSPAGE) {
    		res = read_abs_bbts(mtd, buf, td, md);
    	} else {
    		/* Search the bad block table using a pattern in oob */
    		res = search_read_bbts(mtd, buf, td, md);
    	}
    
    	if (res)
    		res = check_create(mtd, buf, bd);
    
    	/* Prevent the bbt regions from erasing / writing */
    	mark_bbt_region(mtd, td);
    	if (md)
    		mark_bbt_region(mtd, md);
    
    	vfree(buf);
    	return res;
    }
    
    /**
     * nand_update_bbt - [NAND Interface] update bad block table(s)
     * @mtd:	MTD device structure
     * @offs:	the offset of the newly marked block
     *
     * The function updates the bad block table(s)
    */
    int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
    {
    	struct nand_chip *this = mtd->priv;
    	int len, res = 0, writeops = 0;
    	int chip, chipsel;
    	uint8_t *buf;
    	struct nand_bbt_descr *td = this->bbt_td;
    	struct nand_bbt_descr *md = this->bbt_md;
    
    	if (!this->bbt || !td)
    		return -EINVAL;
    
    	/* Allocate a temporary buffer for one eraseblock incl. oob */
    	len = (1 << this->bbt_erase_shift);
    	len += (len >> this->page_shift) * mtd->oobsize;
    	buf = kmalloc(len, GFP_KERNEL);
    	if (!buf) {
    		printk(KERN_ERR "nand_update_bbt: Out of memory\n");
    		return -ENOMEM;
    	}
    
    	writeops = md != NULL ? 0x03 : 0x01;
    
    	/* Do we have a bbt per chip ? */
    	if (td->options & NAND_BBT_PERCHIP) {
    		chip = (int)(offs >> this->chip_shift);
    		chipsel = chip;
    	} else {
    		chip = 0;
    		chipsel = -1;
    	}
    
    	td->version[chip]++;
    	if (md)
    		md->version[chip]++;
    
    	/* Write the bad block table to the device ? */
    	if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
    		res = write_bbt(mtd, buf, td, md, chipsel);
    		if (res < 0)
    			goto out;
    	}
    	/* Write the mirror bad block table to the device ? */
    	if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
    		res = write_bbt(mtd, buf, md, td, chipsel);
    	}
    
     out:
    	kfree(buf);
    	return res;
    }
    
    /* Define some generic bad / good block scan pattern which are used
     * while scanning a device for factory marked good / bad blocks. */
    static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
    
    static struct nand_bbt_descr smallpage_memorybased = {
    	.options = NAND_BBT_SCAN2NDPAGE,
    	.offs = 5,
    	.len = 1,
    	.pattern = scan_ff_pattern
    };
    
    static struct nand_bbt_descr largepage_memorybased = {
    	.options = 0,
    	.offs = 0,
    	.len = 2,
    	.pattern = scan_ff_pattern
    };
    
    static struct nand_bbt_descr smallpage_flashbased = {
    	.options = NAND_BBT_SCAN2NDPAGE,
    	.offs = 5,
    	.len = 1,
    	.pattern = scan_ff_pattern
    };
    
    static struct nand_bbt_descr largepage_flashbased = {
    	.options = NAND_BBT_SCAN2NDPAGE,
    	.offs = 0,
    	.len = 2,
    	.pattern = scan_ff_pattern
    };
    
    static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
    
    static struct nand_bbt_descr agand_flashbased = {
    	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
    	.offs = 0x20,
    	.len = 6,
    	.pattern = scan_agand_pattern
    };
    
    /* Generic flash bbt decriptors
    */
    static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
    static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
    
    static struct nand_bbt_descr bbt_main_descr = {
    	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
    		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
    	.offs =	8,
    	.len = 4,
    	.veroffs = 12,
    	.maxblocks = 4,
    	.pattern = bbt_pattern
    };
    
    static struct nand_bbt_descr bbt_mirror_descr = {
    	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
    		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
    	.offs =	8,
    	.len = 4,
    	.veroffs = 12,
    	.maxblocks = 4,
    	.pattern = mirror_pattern
    };
    
    /**
     * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
     * @mtd:	MTD device structure
     *
     * This function selects the default bad block table
     * support for the device and calls the nand_scan_bbt function
     *
    */
    int nand_default_bbt(struct mtd_info *mtd)
    {
    	struct nand_chip *this = mtd->priv;
    
    	/* Default for AG-AND. We must use a flash based
    	 * bad block table as the devices have factory marked
    	 * _good_ blocks. Erasing those blocks leads to loss
    	 * of the good / bad information, so we _must_ store
    	 * this information in a good / bad table during
    	 * startup
    	 */
    	if (this->options & NAND_IS_AND) {
    		/* Use the default pattern descriptors */
    		if (!this->bbt_td) {
    			this->bbt_td = &bbt_main_descr;
    			this->bbt_md = &bbt_mirror_descr;
    		}
    		this->options |= NAND_USE_FLASH_BBT;
    		return nand_scan_bbt(mtd, &agand_flashbased);
    	}
    
    	/* Is a flash based bad block table requested ? */
    	if (this->options & NAND_USE_FLASH_BBT) {
    		/* Use the default pattern descriptors */
    		if (!this->bbt_td) {
    			this->bbt_td = &bbt_main_descr;
    			this->bbt_md = &bbt_mirror_descr;
    		}
    		if (!this->badblock_pattern) {
    			this->badblock_pattern = (mtd->writesize > 512) ? &largepage_flashbased : &smallpage_flashbased;
    		}
    	} else {
    		this->bbt_td = NULL;
    		this->bbt_md = NULL;
    		if (!this->badblock_pattern) {
    			this->badblock_pattern = (mtd->writesize > 512) ?
    			    &largepage_memorybased : &smallpage_memorybased;
    		}
    	}
    	return nand_scan_bbt(mtd, this->badblock_pattern);
    }
    
    /**
     * nand_isbad_bbt - [NAND Interface] Check if a block is bad
     * @mtd:	MTD device structure
     * @offs:	offset in the device
     * @allowbbt:	allow access to bad block table region
     *
    */
    int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
    {
    	struct nand_chip *this = mtd->priv;
    	int block;
    	uint8_t res;
    
    	/* Get block number * 2 */
    	block = (int)(offs >> (this->bbt_erase_shift - 1));
    	res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
    
    	DEBUG(MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
    	      (unsigned int)offs, block >> 1, res);
    
    	switch ((int)res) {
    	case 0x00:
    		return 0;
    	case 0x01:
    		return 1;
    	case 0x02:
    		return allowbbt ? 0 : 1;
    	}
    	return 1;
    }
    
    EXPORT_SYMBOL(nand_scan_bbt);
    EXPORT_SYMBOL(nand_default_bbt);