Skip to content
Snippets Groups Projects
Select Git revision
  • be20f28fbd1a3f09fb16398b304a7a4546f9f97a
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

rt2x00queue.c

Blame
  • i915_gem.c 124.64 KiB
    /*
     * Copyright © 2008-2015 Intel Corporation
     *
     * Permission is hereby granted, free of charge, to any person obtaining a
     * copy of this software and associated documentation files (the "Software"),
     * to deal in the Software without restriction, including without limitation
     * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     * and/or sell copies of the Software, and to permit persons to whom the
     * Software is furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice (including the next
     * paragraph) shall be included in all copies or substantial portions of the
     * Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     * IN THE SOFTWARE.
     *
     * Authors:
     *    Eric Anholt <eric@anholt.net>
     *
     */
    
    #include <drm/drmP.h>
    #include <drm/drm_vma_manager.h>
    #include <drm/i915_drm.h>
    #include "i915_drv.h"
    #include "i915_gem_dmabuf.h"
    #include "i915_vgpu.h"
    #include "i915_trace.h"
    #include "intel_drv.h"
    #include "intel_frontbuffer.h"
    #include "intel_mocs.h"
    #include <linux/reservation.h>
    #include <linux/shmem_fs.h>
    #include <linux/slab.h>
    #include <linux/swap.h>
    #include <linux/pci.h>
    #include <linux/dma-buf.h>
    
    static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
    static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
    
    static bool cpu_cache_is_coherent(struct drm_device *dev,
    				  enum i915_cache_level level)
    {
    	return HAS_LLC(dev) || level != I915_CACHE_NONE;
    }
    
    static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
    {
    	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
    		return false;
    
    	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
    		return true;
    
    	return obj->pin_display;
    }
    
    static int
    insert_mappable_node(struct drm_i915_private *i915,
                         struct drm_mm_node *node, u32 size)
    {
    	memset(node, 0, sizeof(*node));
    	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
    						   size, 0, 0, 0,
    						   i915->ggtt.mappable_end,
    						   DRM_MM_SEARCH_DEFAULT,
    						   DRM_MM_CREATE_DEFAULT);
    }
    
    static void
    remove_mappable_node(struct drm_mm_node *node)
    {
    	drm_mm_remove_node(node);
    }
    
    /* some bookkeeping */
    static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
    				  size_t size)
    {
    	spin_lock(&dev_priv->mm.object_stat_lock);
    	dev_priv->mm.object_count++;
    	dev_priv->mm.object_memory += size;
    	spin_unlock(&dev_priv->mm.object_stat_lock);
    }
    
    static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
    				     size_t size)
    {
    	spin_lock(&dev_priv->mm.object_stat_lock);
    	dev_priv->mm.object_count--;
    	dev_priv->mm.object_memory -= size;
    	spin_unlock(&dev_priv->mm.object_stat_lock);
    }
    
    static int
    i915_gem_wait_for_error(struct i915_gpu_error *error)
    {
    	int ret;
    
    	if (!i915_reset_in_progress(error))
    		return 0;
    
    	/*
    	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
    	 * userspace. If it takes that long something really bad is going on and
    	 * we should simply try to bail out and fail as gracefully as possible.
    	 */
    	ret = wait_event_interruptible_timeout(error->reset_queue,
    					       !i915_reset_in_progress(error),
    					       10*HZ);
    	if (ret == 0) {
    		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
    		return -EIO;
    	} else if (ret < 0) {
    		return ret;
    	} else {
    		return 0;
    	}
    }
    
    int i915_mutex_lock_interruptible(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	int ret;
    
    	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    	if (ret)
    		return ret;
    
    	ret = mutex_lock_interruptible(&dev->struct_mutex);
    	if (ret)
    		return ret;
    
    	return 0;
    }
    
    int
    i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
    			    struct drm_file *file)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct i915_ggtt *ggtt = &dev_priv->ggtt;
    	struct drm_i915_gem_get_aperture *args = data;
    	struct i915_vma *vma;
    	size_t pinned;
    
    	pinned = 0;
    	mutex_lock(&dev->struct_mutex);
    	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
    		if (i915_vma_is_pinned(vma))
    			pinned += vma->node.size;
    	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
    		if (i915_vma_is_pinned(vma))
    			pinned += vma->node.size;
    	mutex_unlock(&dev->struct_mutex);
    
    	args->aper_size = ggtt->base.total;
    	args->aper_available_size = args->aper_size - pinned;
    
    	return 0;
    }
    
    static int
    i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
    {
    	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    	char *vaddr = obj->phys_handle->vaddr;
    	struct sg_table *st;
    	struct scatterlist *sg;
    	int i;
    
    	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
    		return -EINVAL;
    
    	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    		struct page *page;
    		char *src;
    
    		page = shmem_read_mapping_page(mapping, i);
    		if (IS_ERR(page))
    			return PTR_ERR(page);
    
    		src = kmap_atomic(page);
    		memcpy(vaddr, src, PAGE_SIZE);
    		drm_clflush_virt_range(vaddr, PAGE_SIZE);
    		kunmap_atomic(src);
    
    		put_page(page);
    		vaddr += PAGE_SIZE;
    	}
    
    	i915_gem_chipset_flush(to_i915(obj->base.dev));
    
    	st = kmalloc(sizeof(*st), GFP_KERNEL);
    	if (st == NULL)
    		return -ENOMEM;
    
    	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
    		kfree(st);
    		return -ENOMEM;
    	}
    
    	sg = st->sgl;
    	sg->offset = 0;
    	sg->length = obj->base.size;
    
    	sg_dma_address(sg) = obj->phys_handle->busaddr;
    	sg_dma_len(sg) = obj->base.size;
    
    	obj->pages = st;
    	return 0;
    }
    
    static void
    i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
    {
    	int ret;
    
    	BUG_ON(obj->madv == __I915_MADV_PURGED);
    
    	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    	if (WARN_ON(ret)) {
    		/* In the event of a disaster, abandon all caches and
    		 * hope for the best.
    		 */
    		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    	}
    
    	if (obj->madv == I915_MADV_DONTNEED)
    		obj->dirty = 0;
    
    	if (obj->dirty) {
    		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
    		char *vaddr = obj->phys_handle->vaddr;
    		int i;
    
    		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
    			struct page *page;
    			char *dst;
    
    			page = shmem_read_mapping_page(mapping, i);
    			if (IS_ERR(page))
    				continue;
    
    			dst = kmap_atomic(page);
    			drm_clflush_virt_range(vaddr, PAGE_SIZE);
    			memcpy(dst, vaddr, PAGE_SIZE);
    			kunmap_atomic(dst);
    
    			set_page_dirty(page);
    			if (obj->madv == I915_MADV_WILLNEED)
    				mark_page_accessed(page);
    			put_page(page);
    			vaddr += PAGE_SIZE;
    		}
    		obj->dirty = 0;
    	}
    
    	sg_free_table(obj->pages);
    	kfree(obj->pages);
    }
    
    static void
    i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
    {
    	drm_pci_free(obj->base.dev, obj->phys_handle);
    }
    
    static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
    	.get_pages = i915_gem_object_get_pages_phys,
    	.put_pages = i915_gem_object_put_pages_phys,
    	.release = i915_gem_object_release_phys,
    };
    
    int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
    {
    	struct i915_vma *vma;
    	LIST_HEAD(still_in_list);
    	int ret;
    
    	lockdep_assert_held(&obj->base.dev->struct_mutex);
    
    	/* Closed vma are removed from the obj->vma_list - but they may
    	 * still have an active binding on the object. To remove those we
    	 * must wait for all rendering to complete to the object (as unbinding
    	 * must anyway), and retire the requests.
    	 */
    	ret = i915_gem_object_wait_rendering(obj, false);
    	if (ret)
    		return ret;
    
    	i915_gem_retire_requests(to_i915(obj->base.dev));
    
    	while ((vma = list_first_entry_or_null(&obj->vma_list,
    					       struct i915_vma,
    					       obj_link))) {
    		list_move_tail(&vma->obj_link, &still_in_list);
    		ret = i915_vma_unbind(vma);
    		if (ret)
    			break;
    	}
    	list_splice(&still_in_list, &obj->vma_list);
    
    	return ret;
    }
    
    /**
     * Ensures that all rendering to the object has completed and the object is
     * safe to unbind from the GTT or access from the CPU.
     * @obj: i915 gem object
     * @readonly: waiting for just read access or read-write access
     */
    int
    i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
    			       bool readonly)
    {
    	struct reservation_object *resv;
    	struct i915_gem_active *active;
    	unsigned long active_mask;
    	int idx;
    
    	lockdep_assert_held(&obj->base.dev->struct_mutex);
    
    	if (!readonly) {
    		active = obj->last_read;
    		active_mask = i915_gem_object_get_active(obj);
    	} else {
    		active_mask = 1;
    		active = &obj->last_write;
    	}
    
    	for_each_active(active_mask, idx) {
    		int ret;
    
    		ret = i915_gem_active_wait(&active[idx],
    					   &obj->base.dev->struct_mutex);
    		if (ret)
    			return ret;
    	}
    
    	resv = i915_gem_object_get_dmabuf_resv(obj);
    	if (resv) {
    		long err;
    
    		err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
    							  MAX_SCHEDULE_TIMEOUT);
    		if (err < 0)
    			return err;
    	}
    
    	return 0;
    }
    
    /* A nonblocking variant of the above wait. Must be called prior to
     * acquiring the mutex for the object, as the object state may change
     * during this call. A reference must be held by the caller for the object.
     */
    static __must_check int
    __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
    			struct intel_rps_client *rps,
    			bool readonly)
    {
    	struct i915_gem_active *active;
    	unsigned long active_mask;
    	int idx;
    
    	active_mask = __I915_BO_ACTIVE(obj);
    	if (!active_mask)
    		return 0;
    
    	if (!readonly) {
    		active = obj->last_read;
    	} else {
    		active_mask = 1;
    		active = &obj->last_write;
    	}
    
    	for_each_active(active_mask, idx) {
    		int ret;
    
    		ret = i915_gem_active_wait_unlocked(&active[idx],
    						    true, NULL, rps);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static struct intel_rps_client *to_rps_client(struct drm_file *file)
    {
    	struct drm_i915_file_private *fpriv = file->driver_priv;
    
    	return &fpriv->rps;
    }
    
    int
    i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
    			    int align)
    {
    	drm_dma_handle_t *phys;
    	int ret;
    
    	if (obj->phys_handle) {
    		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
    			return -EBUSY;
    
    		return 0;
    	}
    
    	if (obj->madv != I915_MADV_WILLNEED)
    		return -EFAULT;
    
    	if (obj->base.filp == NULL)
    		return -EINVAL;
    
    	ret = i915_gem_object_unbind(obj);
    	if (ret)
    		return ret;
    
    	ret = i915_gem_object_put_pages(obj);
    	if (ret)
    		return ret;
    
    	/* create a new object */
    	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
    	if (!phys)
    		return -ENOMEM;
    
    	obj->phys_handle = phys;
    	obj->ops = &i915_gem_phys_ops;
    
    	return i915_gem_object_get_pages(obj);
    }
    
    static int
    i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
    		     struct drm_i915_gem_pwrite *args,
    		     struct drm_file *file_priv)
    {
    	struct drm_device *dev = obj->base.dev;
    	void *vaddr = obj->phys_handle->vaddr + args->offset;
    	char __user *user_data = u64_to_user_ptr(args->data_ptr);
    	int ret = 0;
    
    	/* We manually control the domain here and pretend that it
    	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
    	 */
    	ret = i915_gem_object_wait_rendering(obj, false);
    	if (ret)
    		return ret;
    
    	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
    		unsigned long unwritten;
    
    		/* The physical object once assigned is fixed for the lifetime
    		 * of the obj, so we can safely drop the lock and continue
    		 * to access vaddr.
    		 */
    		mutex_unlock(&dev->struct_mutex);
    		unwritten = copy_from_user(vaddr, user_data, args->size);
    		mutex_lock(&dev->struct_mutex);
    		if (unwritten) {
    			ret = -EFAULT;
    			goto out;
    		}
    	}
    
    	drm_clflush_virt_range(vaddr, args->size);
    	i915_gem_chipset_flush(to_i915(dev));
    
    out:
    	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    	return ret;
    }
    
    void *i915_gem_object_alloc(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
    }
    
    void i915_gem_object_free(struct drm_i915_gem_object *obj)
    {
    	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
    	kmem_cache_free(dev_priv->objects, obj);
    }
    
    static int
    i915_gem_create(struct drm_file *file,
    		struct drm_device *dev,
    		uint64_t size,
    		uint32_t *handle_p)
    {
    	struct drm_i915_gem_object *obj;
    	int ret;
    	u32 handle;
    
    	size = roundup(size, PAGE_SIZE);
    	if (size == 0)
    		return -EINVAL;
    
    	/* Allocate the new object */
    	obj = i915_gem_object_create(dev, size);
    	if (IS_ERR(obj))
    		return PTR_ERR(obj);
    
    	ret = drm_gem_handle_create(file, &obj->base, &handle);
    	/* drop reference from allocate - handle holds it now */
    	i915_gem_object_put_unlocked(obj);
    	if (ret)
    		return ret;
    
    	*handle_p = handle;
    	return 0;
    }
    
    int
    i915_gem_dumb_create(struct drm_file *file,
    		     struct drm_device *dev,
    		     struct drm_mode_create_dumb *args)
    {
    	/* have to work out size/pitch and return them */
    	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
    	args->size = args->pitch * args->height;
    	return i915_gem_create(file, dev,
    			       args->size, &args->handle);
    }
    
    /**
     * Creates a new mm object and returns a handle to it.
     * @dev: drm device pointer
     * @data: ioctl data blob
     * @file: drm file pointer
     */
    int
    i915_gem_create_ioctl(struct drm_device *dev, void *data,
    		      struct drm_file *file)
    {
    	struct drm_i915_gem_create *args = data;
    
    	return i915_gem_create(file, dev,
    			       args->size, &args->handle);
    }
    
    static inline int
    __copy_to_user_swizzled(char __user *cpu_vaddr,
    			const char *gpu_vaddr, int gpu_offset,
    			int length)
    {
    	int ret, cpu_offset = 0;
    
    	while (length > 0) {
    		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    		int this_length = min(cacheline_end - gpu_offset, length);
    		int swizzled_gpu_offset = gpu_offset ^ 64;
    
    		ret = __copy_to_user(cpu_vaddr + cpu_offset,
    				     gpu_vaddr + swizzled_gpu_offset,
    				     this_length);
    		if (ret)
    			return ret + length;
    
    		cpu_offset += this_length;
    		gpu_offset += this_length;
    		length -= this_length;
    	}
    
    	return 0;
    }
    
    static inline int
    __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
    			  const char __user *cpu_vaddr,
    			  int length)
    {
    	int ret, cpu_offset = 0;
    
    	while (length > 0) {
    		int cacheline_end = ALIGN(gpu_offset + 1, 64);
    		int this_length = min(cacheline_end - gpu_offset, length);
    		int swizzled_gpu_offset = gpu_offset ^ 64;
    
    		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
    				       cpu_vaddr + cpu_offset,
    				       this_length);
    		if (ret)
    			return ret + length;
    
    		cpu_offset += this_length;
    		gpu_offset += this_length;
    		length -= this_length;
    	}
    
    	return 0;
    }
    
    /*
     * Pins the specified object's pages and synchronizes the object with
     * GPU accesses. Sets needs_clflush to non-zero if the caller should
     * flush the object from the CPU cache.
     */
    int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
    				    int *needs_clflush)
    {
    	int ret;
    
    	*needs_clflush = 0;
    
    	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
    		return -EINVAL;
    
    	ret = i915_gem_object_wait_rendering(obj, true);
    	if (ret)
    		return ret;
    
    	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
    		/* If we're not in the cpu read domain, set ourself into the gtt
    		 * read domain and manually flush cachelines (if required). This
    		 * optimizes for the case when the gpu will dirty the data
    		 * anyway again before the next pread happens. */
    		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
    							obj->cache_level);
    	}
    
    	ret = i915_gem_object_get_pages(obj);
    	if (ret)
    		return ret;
    
    	i915_gem_object_pin_pages(obj);
    
    	return ret;
    }
    
    /* Per-page copy function for the shmem pread fastpath.
     * Flushes invalid cachelines before reading the target if
     * needs_clflush is set. */
    static int
    shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
    		 char __user *user_data,
    		 bool page_do_bit17_swizzling, bool needs_clflush)
    {
    	char *vaddr;
    	int ret;
    
    	if (unlikely(page_do_bit17_swizzling))
    		return -EINVAL;
    
    	vaddr = kmap_atomic(page);
    	if (needs_clflush)
    		drm_clflush_virt_range(vaddr + shmem_page_offset,
    				       page_length);
    	ret = __copy_to_user_inatomic(user_data,
    				      vaddr + shmem_page_offset,
    				      page_length);
    	kunmap_atomic(vaddr);
    
    	return ret ? -EFAULT : 0;
    }
    
    static void
    shmem_clflush_swizzled_range(char *addr, unsigned long length,
    			     bool swizzled)
    {
    	if (unlikely(swizzled)) {
    		unsigned long start = (unsigned long) addr;
    		unsigned long end = (unsigned long) addr + length;
    
    		/* For swizzling simply ensure that we always flush both
    		 * channels. Lame, but simple and it works. Swizzled
    		 * pwrite/pread is far from a hotpath - current userspace
    		 * doesn't use it at all. */
    		start = round_down(start, 128);
    		end = round_up(end, 128);
    
    		drm_clflush_virt_range((void *)start, end - start);
    	} else {
    		drm_clflush_virt_range(addr, length);
    	}
    
    }
    
    /* Only difference to the fast-path function is that this can handle bit17
     * and uses non-atomic copy and kmap functions. */
    static int
    shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
    		 char __user *user_data,
    		 bool page_do_bit17_swizzling, bool needs_clflush)
    {
    	char *vaddr;
    	int ret;
    
    	vaddr = kmap(page);
    	if (needs_clflush)
    		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    					     page_length,
    					     page_do_bit17_swizzling);
    
    	if (page_do_bit17_swizzling)
    		ret = __copy_to_user_swizzled(user_data,
    					      vaddr, shmem_page_offset,
    					      page_length);
    	else
    		ret = __copy_to_user(user_data,
    				     vaddr + shmem_page_offset,
    				     page_length);
    	kunmap(page);
    
    	return ret ? - EFAULT : 0;
    }
    
    static inline unsigned long
    slow_user_access(struct io_mapping *mapping,
    		 uint64_t page_base, int page_offset,
    		 char __user *user_data,
    		 unsigned long length, bool pwrite)
    {
    	void __iomem *ioaddr;
    	void *vaddr;
    	uint64_t unwritten;
    
    	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
    	/* We can use the cpu mem copy function because this is X86. */
    	vaddr = (void __force *)ioaddr + page_offset;
    	if (pwrite)
    		unwritten = __copy_from_user(vaddr, user_data, length);
    	else
    		unwritten = __copy_to_user(user_data, vaddr, length);
    
    	io_mapping_unmap(ioaddr);
    	return unwritten;
    }
    
    static int
    i915_gem_gtt_pread(struct drm_device *dev,
    		   struct drm_i915_gem_object *obj, uint64_t size,
    		   uint64_t data_offset, uint64_t data_ptr)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct i915_ggtt *ggtt = &dev_priv->ggtt;
    	struct drm_mm_node node;
    	char __user *user_data;
    	uint64_t remain;
    	uint64_t offset;
    	int ret;
    
    	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
    	if (ret) {
    		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
    		if (ret)
    			goto out;
    
    		ret = i915_gem_object_get_pages(obj);
    		if (ret) {
    			remove_mappable_node(&node);
    			goto out;
    		}
    
    		i915_gem_object_pin_pages(obj);
    	} else {
    		node.start = i915_gem_obj_ggtt_offset(obj);
    		node.allocated = false;
    		ret = i915_gem_object_put_fence(obj);
    		if (ret)
    			goto out_unpin;
    	}
    
    	ret = i915_gem_object_set_to_gtt_domain(obj, false);
    	if (ret)
    		goto out_unpin;
    
    	user_data = u64_to_user_ptr(data_ptr);
    	remain = size;
    	offset = data_offset;
    
    	mutex_unlock(&dev->struct_mutex);
    	if (likely(!i915.prefault_disable)) {
    		ret = fault_in_multipages_writeable(user_data, remain);
    		if (ret) {
    			mutex_lock(&dev->struct_mutex);
    			goto out_unpin;
    		}
    	}
    
    	while (remain > 0) {
    		/* Operation in this page
    		 *
    		 * page_base = page offset within aperture
    		 * page_offset = offset within page
    		 * page_length = bytes to copy for this page
    		 */
    		u32 page_base = node.start;
    		unsigned page_offset = offset_in_page(offset);
    		unsigned page_length = PAGE_SIZE - page_offset;
    		page_length = remain < page_length ? remain : page_length;
    		if (node.allocated) {
    			wmb();
    			ggtt->base.insert_page(&ggtt->base,
    					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    					       node.start,
    					       I915_CACHE_NONE, 0);
    			wmb();
    		} else {
    			page_base += offset & PAGE_MASK;
    		}
    		/* This is a slow read/write as it tries to read from
    		 * and write to user memory which may result into page
    		 * faults, and so we cannot perform this under struct_mutex.
    		 */
    		if (slow_user_access(ggtt->mappable, page_base,
    				     page_offset, user_data,
    				     page_length, false)) {
    			ret = -EFAULT;
    			break;
    		}
    
    		remain -= page_length;
    		user_data += page_length;
    		offset += page_length;
    	}
    
    	mutex_lock(&dev->struct_mutex);
    	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
    		/* The user has modified the object whilst we tried
    		 * reading from it, and we now have no idea what domain
    		 * the pages should be in. As we have just been touching
    		 * them directly, flush everything back to the GTT
    		 * domain.
    		 */
    		ret = i915_gem_object_set_to_gtt_domain(obj, false);
    	}
    
    out_unpin:
    	if (node.allocated) {
    		wmb();
    		ggtt->base.clear_range(&ggtt->base,
    				       node.start, node.size,
    				       true);
    		i915_gem_object_unpin_pages(obj);
    		remove_mappable_node(&node);
    	} else {
    		i915_gem_object_ggtt_unpin(obj);
    	}
    out:
    	return ret;
    }
    
    static int
    i915_gem_shmem_pread(struct drm_device *dev,
    		     struct drm_i915_gem_object *obj,
    		     struct drm_i915_gem_pread *args,
    		     struct drm_file *file)
    {
    	char __user *user_data;
    	ssize_t remain;
    	loff_t offset;
    	int shmem_page_offset, page_length, ret = 0;
    	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    	int prefaulted = 0;
    	int needs_clflush = 0;
    	struct sg_page_iter sg_iter;
    
    	if (!i915_gem_object_has_struct_page(obj))
    		return -ENODEV;
    
    	user_data = u64_to_user_ptr(args->data_ptr);
    	remain = args->size;
    
    	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    
    	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
    	if (ret)
    		return ret;
    
    	offset = args->offset;
    
    	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    			 offset >> PAGE_SHIFT) {
    		struct page *page = sg_page_iter_page(&sg_iter);
    
    		if (remain <= 0)
    			break;
    
    		/* Operation in this page
    		 *
    		 * shmem_page_offset = offset within page in shmem file
    		 * page_length = bytes to copy for this page
    		 */
    		shmem_page_offset = offset_in_page(offset);
    		page_length = remain;
    		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    			page_length = PAGE_SIZE - shmem_page_offset;
    
    		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    			(page_to_phys(page) & (1 << 17)) != 0;
    
    		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
    				       user_data, page_do_bit17_swizzling,
    				       needs_clflush);
    		if (ret == 0)
    			goto next_page;
    
    		mutex_unlock(&dev->struct_mutex);
    
    		if (likely(!i915.prefault_disable) && !prefaulted) {
    			ret = fault_in_multipages_writeable(user_data, remain);
    			/* Userspace is tricking us, but we've already clobbered
    			 * its pages with the prefault and promised to write the
    			 * data up to the first fault. Hence ignore any errors
    			 * and just continue. */
    			(void)ret;
    			prefaulted = 1;
    		}
    
    		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
    				       user_data, page_do_bit17_swizzling,
    				       needs_clflush);
    
    		mutex_lock(&dev->struct_mutex);
    
    		if (ret)
    			goto out;
    
    next_page:
    		remain -= page_length;
    		user_data += page_length;
    		offset += page_length;
    	}
    
    out:
    	i915_gem_object_unpin_pages(obj);
    
    	return ret;
    }
    
    /**
     * Reads data from the object referenced by handle.
     * @dev: drm device pointer
     * @data: ioctl data blob
     * @file: drm file pointer
     *
     * On error, the contents of *data are undefined.
     */
    int
    i915_gem_pread_ioctl(struct drm_device *dev, void *data,
    		     struct drm_file *file)
    {
    	struct drm_i915_gem_pread *args = data;
    	struct drm_i915_gem_object *obj;
    	int ret = 0;
    
    	if (args->size == 0)
    		return 0;
    
    	if (!access_ok(VERIFY_WRITE,
    		       u64_to_user_ptr(args->data_ptr),
    		       args->size))
    		return -EFAULT;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	/* Bounds check source.  */
    	if (args->offset > obj->base.size ||
    	    args->size > obj->base.size - args->offset) {
    		ret = -EINVAL;
    		goto err;
    	}
    
    	trace_i915_gem_object_pread(obj, args->offset, args->size);
    
    	ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
    	if (ret)
    		goto err;
    
    	ret = i915_mutex_lock_interruptible(dev);
    	if (ret)
    		goto err;
    
    	ret = i915_gem_shmem_pread(dev, obj, args, file);
    
    	/* pread for non shmem backed objects */
    	if (ret == -EFAULT || ret == -ENODEV) {
    		intel_runtime_pm_get(to_i915(dev));
    		ret = i915_gem_gtt_pread(dev, obj, args->size,
    					args->offset, args->data_ptr);
    		intel_runtime_pm_put(to_i915(dev));
    	}
    
    	i915_gem_object_put(obj);
    	mutex_unlock(&dev->struct_mutex);
    
    	return ret;
    
    err:
    	i915_gem_object_put_unlocked(obj);
    	return ret;
    }
    
    /* This is the fast write path which cannot handle
     * page faults in the source data
     */
    
    static inline int
    fast_user_write(struct io_mapping *mapping,
    		loff_t page_base, int page_offset,
    		char __user *user_data,
    		int length)
    {
    	void __iomem *vaddr_atomic;
    	void *vaddr;
    	unsigned long unwritten;
    
    	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
    	/* We can use the cpu mem copy function because this is X86. */
    	vaddr = (void __force*)vaddr_atomic + page_offset;
    	unwritten = __copy_from_user_inatomic_nocache(vaddr,
    						      user_data, length);
    	io_mapping_unmap_atomic(vaddr_atomic);
    	return unwritten;
    }
    
    /**
     * This is the fast pwrite path, where we copy the data directly from the
     * user into the GTT, uncached.
     * @i915: i915 device private data
     * @obj: i915 gem object
     * @args: pwrite arguments structure
     * @file: drm file pointer
     */
    static int
    i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
    			 struct drm_i915_gem_object *obj,
    			 struct drm_i915_gem_pwrite *args,
    			 struct drm_file *file)
    {
    	struct i915_ggtt *ggtt = &i915->ggtt;
    	struct drm_device *dev = obj->base.dev;
    	struct drm_mm_node node;
    	uint64_t remain, offset;
    	char __user *user_data;
    	int ret;
    	bool hit_slow_path = false;
    
    	if (i915_gem_object_is_tiled(obj))
    		return -EFAULT;
    
    	ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
    				       PIN_MAPPABLE | PIN_NONBLOCK);
    	if (ret) {
    		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
    		if (ret)
    			goto out;
    
    		ret = i915_gem_object_get_pages(obj);
    		if (ret) {
    			remove_mappable_node(&node);
    			goto out;
    		}
    
    		i915_gem_object_pin_pages(obj);
    	} else {
    		node.start = i915_gem_obj_ggtt_offset(obj);
    		node.allocated = false;
    		ret = i915_gem_object_put_fence(obj);
    		if (ret)
    			goto out_unpin;
    	}
    
    	ret = i915_gem_object_set_to_gtt_domain(obj, true);
    	if (ret)
    		goto out_unpin;
    
    	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
    	obj->dirty = true;
    
    	user_data = u64_to_user_ptr(args->data_ptr);
    	offset = args->offset;
    	remain = args->size;
    	while (remain) {
    		/* Operation in this page
    		 *
    		 * page_base = page offset within aperture
    		 * page_offset = offset within page
    		 * page_length = bytes to copy for this page
    		 */
    		u32 page_base = node.start;
    		unsigned page_offset = offset_in_page(offset);
    		unsigned page_length = PAGE_SIZE - page_offset;
    		page_length = remain < page_length ? remain : page_length;
    		if (node.allocated) {
    			wmb(); /* flush the write before we modify the GGTT */
    			ggtt->base.insert_page(&ggtt->base,
    					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
    					       node.start, I915_CACHE_NONE, 0);
    			wmb(); /* flush modifications to the GGTT (insert_page) */
    		} else {
    			page_base += offset & PAGE_MASK;
    		}
    		/* If we get a fault while copying data, then (presumably) our
    		 * source page isn't available.  Return the error and we'll
    		 * retry in the slow path.
    		 * If the object is non-shmem backed, we retry again with the
    		 * path that handles page fault.
    		 */
    		if (fast_user_write(ggtt->mappable, page_base,
    				    page_offset, user_data, page_length)) {
    			hit_slow_path = true;
    			mutex_unlock(&dev->struct_mutex);
    			if (slow_user_access(ggtt->mappable,
    					     page_base,
    					     page_offset, user_data,
    					     page_length, true)) {
    				ret = -EFAULT;
    				mutex_lock(&dev->struct_mutex);
    				goto out_flush;
    			}
    
    			mutex_lock(&dev->struct_mutex);
    		}
    
    		remain -= page_length;
    		user_data += page_length;
    		offset += page_length;
    	}
    
    out_flush:
    	if (hit_slow_path) {
    		if (ret == 0 &&
    		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
    			/* The user has modified the object whilst we tried
    			 * reading from it, and we now have no idea what domain
    			 * the pages should be in. As we have just been touching
    			 * them directly, flush everything back to the GTT
    			 * domain.
    			 */
    			ret = i915_gem_object_set_to_gtt_domain(obj, false);
    		}
    	}
    
    	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    out_unpin:
    	if (node.allocated) {
    		wmb();
    		ggtt->base.clear_range(&ggtt->base,
    				       node.start, node.size,
    				       true);
    		i915_gem_object_unpin_pages(obj);
    		remove_mappable_node(&node);
    	} else {
    		i915_gem_object_ggtt_unpin(obj);
    	}
    out:
    	return ret;
    }
    
    /* Per-page copy function for the shmem pwrite fastpath.
     * Flushes invalid cachelines before writing to the target if
     * needs_clflush_before is set and flushes out any written cachelines after
     * writing if needs_clflush is set. */
    static int
    shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
    		  char __user *user_data,
    		  bool page_do_bit17_swizzling,
    		  bool needs_clflush_before,
    		  bool needs_clflush_after)
    {
    	char *vaddr;
    	int ret;
    
    	if (unlikely(page_do_bit17_swizzling))
    		return -EINVAL;
    
    	vaddr = kmap_atomic(page);
    	if (needs_clflush_before)
    		drm_clflush_virt_range(vaddr + shmem_page_offset,
    				       page_length);
    	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
    					user_data, page_length);
    	if (needs_clflush_after)
    		drm_clflush_virt_range(vaddr + shmem_page_offset,
    				       page_length);
    	kunmap_atomic(vaddr);
    
    	return ret ? -EFAULT : 0;
    }
    
    /* Only difference to the fast-path function is that this can handle bit17
     * and uses non-atomic copy and kmap functions. */
    static int
    shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
    		  char __user *user_data,
    		  bool page_do_bit17_swizzling,
    		  bool needs_clflush_before,
    		  bool needs_clflush_after)
    {
    	char *vaddr;
    	int ret;
    
    	vaddr = kmap(page);
    	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
    		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    					     page_length,
    					     page_do_bit17_swizzling);
    	if (page_do_bit17_swizzling)
    		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
    						user_data,
    						page_length);
    	else
    		ret = __copy_from_user(vaddr + shmem_page_offset,
    				       user_data,
    				       page_length);
    	if (needs_clflush_after)
    		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
    					     page_length,
    					     page_do_bit17_swizzling);
    	kunmap(page);
    
    	return ret ? -EFAULT : 0;
    }
    
    static int
    i915_gem_shmem_pwrite(struct drm_device *dev,
    		      struct drm_i915_gem_object *obj,
    		      struct drm_i915_gem_pwrite *args,
    		      struct drm_file *file)
    {
    	ssize_t remain;
    	loff_t offset;
    	char __user *user_data;
    	int shmem_page_offset, page_length, ret = 0;
    	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
    	int hit_slowpath = 0;
    	int needs_clflush_after = 0;
    	int needs_clflush_before = 0;
    	struct sg_page_iter sg_iter;
    
    	user_data = u64_to_user_ptr(args->data_ptr);
    	remain = args->size;
    
    	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
    
    	ret = i915_gem_object_wait_rendering(obj, false);
    	if (ret)
    		return ret;
    
    	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    		/* If we're not in the cpu write domain, set ourself into the gtt
    		 * write domain and manually flush cachelines (if required). This
    		 * optimizes for the case when the gpu will use the data
    		 * right away and we therefore have to clflush anyway. */
    		needs_clflush_after = cpu_write_needs_clflush(obj);
    	}
    	/* Same trick applies to invalidate partially written cachelines read
    	 * before writing. */
    	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
    		needs_clflush_before =
    			!cpu_cache_is_coherent(dev, obj->cache_level);
    
    	ret = i915_gem_object_get_pages(obj);
    	if (ret)
    		return ret;
    
    	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
    
    	i915_gem_object_pin_pages(obj);
    
    	offset = args->offset;
    	obj->dirty = 1;
    
    	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
    			 offset >> PAGE_SHIFT) {
    		struct page *page = sg_page_iter_page(&sg_iter);
    		int partial_cacheline_write;
    
    		if (remain <= 0)
    			break;
    
    		/* Operation in this page
    		 *
    		 * shmem_page_offset = offset within page in shmem file
    		 * page_length = bytes to copy for this page
    		 */
    		shmem_page_offset = offset_in_page(offset);
    
    		page_length = remain;
    		if ((shmem_page_offset + page_length) > PAGE_SIZE)
    			page_length = PAGE_SIZE - shmem_page_offset;
    
    		/* If we don't overwrite a cacheline completely we need to be
    		 * careful to have up-to-date data by first clflushing. Don't
    		 * overcomplicate things and flush the entire patch. */
    		partial_cacheline_write = needs_clflush_before &&
    			((shmem_page_offset | page_length)
    				& (boot_cpu_data.x86_clflush_size - 1));
    
    		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
    			(page_to_phys(page) & (1 << 17)) != 0;
    
    		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
    					user_data, page_do_bit17_swizzling,
    					partial_cacheline_write,
    					needs_clflush_after);
    		if (ret == 0)
    			goto next_page;
    
    		hit_slowpath = 1;
    		mutex_unlock(&dev->struct_mutex);
    		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
    					user_data, page_do_bit17_swizzling,
    					partial_cacheline_write,
    					needs_clflush_after);
    
    		mutex_lock(&dev->struct_mutex);
    
    		if (ret)
    			goto out;
    
    next_page:
    		remain -= page_length;
    		user_data += page_length;
    		offset += page_length;
    	}
    
    out:
    	i915_gem_object_unpin_pages(obj);
    
    	if (hit_slowpath) {
    		/*
    		 * Fixup: Flush cpu caches in case we didn't flush the dirty
    		 * cachelines in-line while writing and the object moved
    		 * out of the cpu write domain while we've dropped the lock.
    		 */
    		if (!needs_clflush_after &&
    		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
    			if (i915_gem_clflush_object(obj, obj->pin_display))
    				needs_clflush_after = true;
    		}
    	}
    
    	if (needs_clflush_after)
    		i915_gem_chipset_flush(to_i915(dev));
    	else
    		obj->cache_dirty = true;
    
    	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    	return ret;
    }
    
    /**
     * Writes data to the object referenced by handle.
     * @dev: drm device
     * @data: ioctl data blob
     * @file: drm file
     *
     * On error, the contents of the buffer that were to be modified are undefined.
     */
    int
    i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
    		      struct drm_file *file)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct drm_i915_gem_pwrite *args = data;
    	struct drm_i915_gem_object *obj;
    	int ret;
    
    	if (args->size == 0)
    		return 0;
    
    	if (!access_ok(VERIFY_READ,
    		       u64_to_user_ptr(args->data_ptr),
    		       args->size))
    		return -EFAULT;
    
    	if (likely(!i915.prefault_disable)) {
    		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
    						   args->size);
    		if (ret)
    			return -EFAULT;
    	}
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	/* Bounds check destination. */
    	if (args->offset > obj->base.size ||
    	    args->size > obj->base.size - args->offset) {
    		ret = -EINVAL;
    		goto err;
    	}
    
    	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
    
    	ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
    	if (ret)
    		goto err;
    
    	intel_runtime_pm_get(dev_priv);
    
    	ret = i915_mutex_lock_interruptible(dev);
    	if (ret)
    		goto err_rpm;
    
    	ret = -EFAULT;
    	/* We can only do the GTT pwrite on untiled buffers, as otherwise
    	 * it would end up going through the fenced access, and we'll get
    	 * different detiling behavior between reading and writing.
    	 * pread/pwrite currently are reading and writing from the CPU
    	 * perspective, requiring manual detiling by the client.
    	 */
    	if (!i915_gem_object_has_struct_page(obj) ||
    	    cpu_write_needs_clflush(obj)) {
    		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
    		/* Note that the gtt paths might fail with non-page-backed user
    		 * pointers (e.g. gtt mappings when moving data between
    		 * textures). Fallback to the shmem path in that case. */
    	}
    
    	if (ret == -EFAULT || ret == -ENOSPC) {
    		if (obj->phys_handle)
    			ret = i915_gem_phys_pwrite(obj, args, file);
    		else if (i915_gem_object_has_struct_page(obj))
    			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
    		else
    			ret = -ENODEV;
    	}
    
    	i915_gem_object_put(obj);
    	mutex_unlock(&dev->struct_mutex);
    	intel_runtime_pm_put(dev_priv);
    
    	return ret;
    
    err_rpm:
    	intel_runtime_pm_put(dev_priv);
    err:
    	i915_gem_object_put_unlocked(obj);
    	return ret;
    }
    
    static enum fb_op_origin
    write_origin(struct drm_i915_gem_object *obj, unsigned domain)
    {
    	return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
    	       ORIGIN_GTT : ORIGIN_CPU;
    }
    
    /**
     * Called when user space prepares to use an object with the CPU, either
     * through the mmap ioctl's mapping or a GTT mapping.
     * @dev: drm device
     * @data: ioctl data blob
     * @file: drm file
     */
    int
    i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
    			  struct drm_file *file)
    {
    	struct drm_i915_gem_set_domain *args = data;
    	struct drm_i915_gem_object *obj;
    	uint32_t read_domains = args->read_domains;
    	uint32_t write_domain = args->write_domain;
    	int ret;
    
    	/* Only handle setting domains to types used by the CPU. */
    	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
    		return -EINVAL;
    
    	/* Having something in the write domain implies it's in the read
    	 * domain, and only that read domain.  Enforce that in the request.
    	 */
    	if (write_domain != 0 && read_domains != write_domain)
    		return -EINVAL;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	/* Try to flush the object off the GPU without holding the lock.
    	 * We will repeat the flush holding the lock in the normal manner
    	 * to catch cases where we are gazumped.
    	 */
    	ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
    	if (ret)
    		goto err;
    
    	ret = i915_mutex_lock_interruptible(dev);
    	if (ret)
    		goto err;
    
    	if (read_domains & I915_GEM_DOMAIN_GTT)
    		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
    	else
    		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
    
    	if (write_domain != 0)
    		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
    
    	i915_gem_object_put(obj);
    	mutex_unlock(&dev->struct_mutex);
    	return ret;
    
    err:
    	i915_gem_object_put_unlocked(obj);
    	return ret;
    }
    
    /**
     * Called when user space has done writes to this buffer
     * @dev: drm device
     * @data: ioctl data blob
     * @file: drm file
     */
    int
    i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
    			 struct drm_file *file)
    {
    	struct drm_i915_gem_sw_finish *args = data;
    	struct drm_i915_gem_object *obj;
    	int err = 0;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	/* Pinned buffers may be scanout, so flush the cache */
    	if (READ_ONCE(obj->pin_display)) {
    		err = i915_mutex_lock_interruptible(dev);
    		if (!err) {
    			i915_gem_object_flush_cpu_write_domain(obj);
    			mutex_unlock(&dev->struct_mutex);
    		}
    	}
    
    	i915_gem_object_put_unlocked(obj);
    	return err;
    }
    
    /**
     * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
     *			 it is mapped to.
     * @dev: drm device
     * @data: ioctl data blob
     * @file: drm file
     *
     * While the mapping holds a reference on the contents of the object, it doesn't
     * imply a ref on the object itself.
     *
     * IMPORTANT:
     *
     * DRM driver writers who look a this function as an example for how to do GEM
     * mmap support, please don't implement mmap support like here. The modern way
     * to implement DRM mmap support is with an mmap offset ioctl (like
     * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
     * That way debug tooling like valgrind will understand what's going on, hiding
     * the mmap call in a driver private ioctl will break that. The i915 driver only
     * does cpu mmaps this way because we didn't know better.
     */
    int
    i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
    		    struct drm_file *file)
    {
    	struct drm_i915_gem_mmap *args = data;
    	struct drm_i915_gem_object *obj;
    	unsigned long addr;
    
    	if (args->flags & ~(I915_MMAP_WC))
    		return -EINVAL;
    
    	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
    		return -ENODEV;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	/* prime objects have no backing filp to GEM mmap
    	 * pages from.
    	 */
    	if (!obj->base.filp) {
    		i915_gem_object_put_unlocked(obj);
    		return -EINVAL;
    	}
    
    	addr = vm_mmap(obj->base.filp, 0, args->size,
    		       PROT_READ | PROT_WRITE, MAP_SHARED,
    		       args->offset);
    	if (args->flags & I915_MMAP_WC) {
    		struct mm_struct *mm = current->mm;
    		struct vm_area_struct *vma;
    
    		if (down_write_killable(&mm->mmap_sem)) {
    			i915_gem_object_put_unlocked(obj);
    			return -EINTR;
    		}
    		vma = find_vma(mm, addr);
    		if (vma)
    			vma->vm_page_prot =
    				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
    		else
    			addr = -ENOMEM;
    		up_write(&mm->mmap_sem);
    
    		/* This may race, but that's ok, it only gets set */
    		WRITE_ONCE(obj->has_wc_mmap, true);
    	}
    	i915_gem_object_put_unlocked(obj);
    	if (IS_ERR((void *)addr))
    		return addr;
    
    	args->addr_ptr = (uint64_t) addr;
    
    	return 0;
    }
    
    /**
     * i915_gem_fault - fault a page into the GTT
     * @vma: VMA in question
     * @vmf: fault info
     *
     * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
     * from userspace.  The fault handler takes care of binding the object to
     * the GTT (if needed), allocating and programming a fence register (again,
     * only if needed based on whether the old reg is still valid or the object
     * is tiled) and inserting a new PTE into the faulting process.
     *
     * Note that the faulting process may involve evicting existing objects
     * from the GTT and/or fence registers to make room.  So performance may
     * suffer if the GTT working set is large or there are few fence registers
     * left.
     */
    int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
    {
    	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
    	struct drm_device *dev = obj->base.dev;
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct i915_ggtt *ggtt = &dev_priv->ggtt;
    	struct i915_ggtt_view view = i915_ggtt_view_normal;
    	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
    	pgoff_t page_offset;
    	unsigned long pfn;
    	int ret;
    
    	/* We don't use vmf->pgoff since that has the fake offset */
    	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
    		PAGE_SHIFT;
    
    	trace_i915_gem_object_fault(obj, page_offset, true, write);
    
    	/* Try to flush the object off the GPU first without holding the lock.
    	 * Upon acquiring the lock, we will perform our sanity checks and then
    	 * repeat the flush holding the lock in the normal manner to catch cases
    	 * where we are gazumped.
    	 */
    	ret = __unsafe_wait_rendering(obj, NULL, !write);
    	if (ret)
    		goto err;
    
    	intel_runtime_pm_get(dev_priv);
    
    	ret = i915_mutex_lock_interruptible(dev);
    	if (ret)
    		goto err_rpm;
    
    	/* Access to snoopable pages through the GTT is incoherent. */
    	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
    		ret = -EFAULT;
    		goto err_unlock;
    	}
    
    	/* Use a partial view if the object is bigger than the aperture. */
    	if (obj->base.size >= ggtt->mappable_end &&
    	    !i915_gem_object_is_tiled(obj)) {
    		static const unsigned int chunk_size = 256; // 1 MiB
    
    		memset(&view, 0, sizeof(view));
    		view.type = I915_GGTT_VIEW_PARTIAL;
    		view.params.partial.offset = rounddown(page_offset, chunk_size);
    		view.params.partial.size =
    			min_t(unsigned int,
    			      chunk_size,
    			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
    			      view.params.partial.offset);
    	}
    
    	/* Now pin it into the GTT if needed */
    	ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
    	if (ret)
    		goto err_unlock;
    
    	ret = i915_gem_object_set_to_gtt_domain(obj, write);
    	if (ret)
    		goto err_unpin;
    
    	ret = i915_gem_object_get_fence(obj);
    	if (ret)
    		goto err_unpin;
    
    	/* Finally, remap it using the new GTT offset */
    	pfn = ggtt->mappable_base +
    		i915_gem_obj_ggtt_offset_view(obj, &view);
    	pfn >>= PAGE_SHIFT;
    
    	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
    		/* Overriding existing pages in partial view does not cause
    		 * us any trouble as TLBs are still valid because the fault
    		 * is due to userspace losing part of the mapping or never
    		 * having accessed it before (at this partials' range).
    		 */
    		unsigned long base = vma->vm_start +
    				     (view.params.partial.offset << PAGE_SHIFT);
    		unsigned int i;
    
    		for (i = 0; i < view.params.partial.size; i++) {
    			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
    			if (ret)
    				break;
    		}
    
    		obj->fault_mappable = true;
    	} else {
    		if (!obj->fault_mappable) {
    			unsigned long size = min_t(unsigned long,
    						   vma->vm_end - vma->vm_start,
    						   obj->base.size);
    			int i;
    
    			for (i = 0; i < size >> PAGE_SHIFT; i++) {
    				ret = vm_insert_pfn(vma,
    						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
    						    pfn + i);
    				if (ret)
    					break;
    			}
    
    			obj->fault_mappable = true;
    		} else
    			ret = vm_insert_pfn(vma,
    					    (unsigned long)vmf->virtual_address,
    					    pfn + page_offset);
    	}
    err_unpin:
    	i915_gem_object_ggtt_unpin_view(obj, &view);
    err_unlock:
    	mutex_unlock(&dev->struct_mutex);
    err_rpm:
    	intel_runtime_pm_put(dev_priv);
    err:
    	switch (ret) {
    	case -EIO:
    		/*
    		 * We eat errors when the gpu is terminally wedged to avoid
    		 * userspace unduly crashing (gl has no provisions for mmaps to
    		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
    		 * and so needs to be reported.
    		 */
    		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
    			ret = VM_FAULT_SIGBUS;
    			break;
    		}
    	case -EAGAIN:
    		/*
    		 * EAGAIN means the gpu is hung and we'll wait for the error
    		 * handler to reset everything when re-faulting in
    		 * i915_mutex_lock_interruptible.
    		 */
    	case 0:
    	case -ERESTARTSYS:
    	case -EINTR:
    	case -EBUSY:
    		/*
    		 * EBUSY is ok: this just means that another thread
    		 * already did the job.
    		 */
    		ret = VM_FAULT_NOPAGE;
    		break;
    	case -ENOMEM:
    		ret = VM_FAULT_OOM;
    		break;
    	case -ENOSPC:
    	case -EFAULT:
    		ret = VM_FAULT_SIGBUS;
    		break;
    	default:
    		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
    		ret = VM_FAULT_SIGBUS;
    		break;
    	}
    	return ret;
    }
    
    /**
     * i915_gem_release_mmap - remove physical page mappings
     * @obj: obj in question
     *
     * Preserve the reservation of the mmapping with the DRM core code, but
     * relinquish ownership of the pages back to the system.
     *
     * It is vital that we remove the page mapping if we have mapped a tiled
     * object through the GTT and then lose the fence register due to
     * resource pressure. Similarly if the object has been moved out of the
     * aperture, than pages mapped into userspace must be revoked. Removing the
     * mapping will then trigger a page fault on the next user access, allowing
     * fixup by i915_gem_fault().
     */
    void
    i915_gem_release_mmap(struct drm_i915_gem_object *obj)
    {
    	/* Serialisation between user GTT access and our code depends upon
    	 * revoking the CPU's PTE whilst the mutex is held. The next user
    	 * pagefault then has to wait until we release the mutex.
    	 */
    	lockdep_assert_held(&obj->base.dev->struct_mutex);
    
    	if (!obj->fault_mappable)
    		return;
    
    	drm_vma_node_unmap(&obj->base.vma_node,
    			   obj->base.dev->anon_inode->i_mapping);
    
    	/* Ensure that the CPU's PTE are revoked and there are not outstanding
    	 * memory transactions from userspace before we return. The TLB
    	 * flushing implied above by changing the PTE above *should* be
    	 * sufficient, an extra barrier here just provides us with a bit
    	 * of paranoid documentation about our requirement to serialise
    	 * memory writes before touching registers / GSM.
    	 */
    	wmb();
    
    	obj->fault_mappable = false;
    }
    
    void
    i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
    {
    	struct drm_i915_gem_object *obj;
    
    	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
    		i915_gem_release_mmap(obj);
    }
    
    /**
     * i915_gem_get_ggtt_size - return required global GTT size for an object
     * @dev_priv: i915 device
     * @size: object size
     * @tiling_mode: tiling mode
     *
     * Return the required global GTT size for an object, taking into account
     * potential fence register mapping.
     */
    u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
    			   u64 size, int tiling_mode)
    {
    	u64 ggtt_size;
    
    	GEM_BUG_ON(size == 0);
    
    	if (INTEL_GEN(dev_priv) >= 4 ||
    	    tiling_mode == I915_TILING_NONE)
    		return size;
    
    	/* Previous chips need a power-of-two fence region when tiling */
    	if (IS_GEN3(dev_priv))
    		ggtt_size = 1024*1024;
    	else
    		ggtt_size = 512*1024;
    
    	while (ggtt_size < size)
    		ggtt_size <<= 1;
    
    	return ggtt_size;
    }
    
    /**
     * i915_gem_get_ggtt_alignment - return required global GTT alignment
     * @dev_priv: i915 device
     * @size: object size
     * @tiling_mode: tiling mode
     * @fenced: is fenced alignment required or not
     *
     * Return the required global GTT alignment for an object, taking into account
     * potential fence register mapping.
     */
    u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
    				int tiling_mode, bool fenced)
    {
    	GEM_BUG_ON(size == 0);
    
    	/*
    	 * Minimum alignment is 4k (GTT page size), but might be greater
    	 * if a fence register is needed for the object.
    	 */
    	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
    	    tiling_mode == I915_TILING_NONE)
    		return 4096;
    
    	/*
    	 * Previous chips need to be aligned to the size of the smallest
    	 * fence register that can contain the object.
    	 */
    	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
    }
    
    static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
    {
    	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
    	int err;
    
    	err = drm_gem_create_mmap_offset(&obj->base);
    	if (!err)
    		return 0;
    
    	/* We can idle the GPU locklessly to flush stale objects, but in order
    	 * to claim that space for ourselves, we need to take the big
    	 * struct_mutex to free the requests+objects and allocate our slot.
    	 */
    	err = i915_gem_wait_for_idle(dev_priv, true);
    	if (err)
    		return err;
    
    	err = i915_mutex_lock_interruptible(&dev_priv->drm);
    	if (!err) {
    		i915_gem_retire_requests(dev_priv);
    		err = drm_gem_create_mmap_offset(&obj->base);
    		mutex_unlock(&dev_priv->drm.struct_mutex);
    	}
    
    	return err;
    }
    
    static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
    {
    	drm_gem_free_mmap_offset(&obj->base);
    }
    
    int
    i915_gem_mmap_gtt(struct drm_file *file,
    		  struct drm_device *dev,
    		  uint32_t handle,
    		  uint64_t *offset)
    {
    	struct drm_i915_gem_object *obj;
    	int ret;
    
    	obj = i915_gem_object_lookup(file, handle);
    	if (!obj)
    		return -ENOENT;
    
    	ret = i915_gem_object_create_mmap_offset(obj);
    	if (ret == 0)
    		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
    
    	i915_gem_object_put_unlocked(obj);
    	return ret;
    }
    
    /**
     * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
     * @dev: DRM device
     * @data: GTT mapping ioctl data
     * @file: GEM object info
     *
     * Simply returns the fake offset to userspace so it can mmap it.
     * The mmap call will end up in drm_gem_mmap(), which will set things
     * up so we can get faults in the handler above.
     *
     * The fault handler will take care of binding the object into the GTT
     * (since it may have been evicted to make room for something), allocating
     * a fence register, and mapping the appropriate aperture address into
     * userspace.
     */
    int
    i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
    			struct drm_file *file)
    {
    	struct drm_i915_gem_mmap_gtt *args = data;
    
    	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
    }
    
    /* Immediately discard the backing storage */
    static void
    i915_gem_object_truncate(struct drm_i915_gem_object *obj)
    {
    	i915_gem_object_free_mmap_offset(obj);
    
    	if (obj->base.filp == NULL)
    		return;
    
    	/* Our goal here is to return as much of the memory as
    	 * is possible back to the system as we are called from OOM.
    	 * To do this we must instruct the shmfs to drop all of its
    	 * backing pages, *now*.
    	 */
    	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
    	obj->madv = __I915_MADV_PURGED;
    }
    
    /* Try to discard unwanted pages */
    static void
    i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
    {
    	struct address_space *mapping;
    
    	switch (obj->madv) {
    	case I915_MADV_DONTNEED:
    		i915_gem_object_truncate(obj);
    	case __I915_MADV_PURGED:
    		return;
    	}
    
    	if (obj->base.filp == NULL)
    		return;
    
    	mapping = file_inode(obj->base.filp)->i_mapping,
    	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
    }
    
    static void
    i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
    {
    	struct sgt_iter sgt_iter;
    	struct page *page;
    	int ret;
    
    	BUG_ON(obj->madv == __I915_MADV_PURGED);
    
    	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    	if (WARN_ON(ret)) {
    		/* In the event of a disaster, abandon all caches and
    		 * hope for the best.
    		 */
    		i915_gem_clflush_object(obj, true);
    		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    	}
    
    	i915_gem_gtt_finish_object(obj);
    
    	if (i915_gem_object_needs_bit17_swizzle(obj))
    		i915_gem_object_save_bit_17_swizzle(obj);
    
    	if (obj->madv == I915_MADV_DONTNEED)
    		obj->dirty = 0;
    
    	for_each_sgt_page(page, sgt_iter, obj->pages) {
    		if (obj->dirty)
    			set_page_dirty(page);
    
    		if (obj->madv == I915_MADV_WILLNEED)
    			mark_page_accessed(page);
    
    		put_page(page);
    	}
    	obj->dirty = 0;
    
    	sg_free_table(obj->pages);
    	kfree(obj->pages);
    }
    
    int
    i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
    {
    	const struct drm_i915_gem_object_ops *ops = obj->ops;
    
    	if (obj->pages == NULL)
    		return 0;
    
    	if (obj->pages_pin_count)
    		return -EBUSY;
    
    	GEM_BUG_ON(obj->bind_count);
    
    	/* ->put_pages might need to allocate memory for the bit17 swizzle
    	 * array, hence protect them from being reaped by removing them from gtt
    	 * lists early. */
    	list_del(&obj->global_list);
    
    	if (obj->mapping) {
    		/* low bits are ignored by is_vmalloc_addr and kmap_to_page */
    		if (is_vmalloc_addr(obj->mapping))
    			vunmap(obj->mapping);
    		else
    			kunmap(kmap_to_page(obj->mapping));
    		obj->mapping = NULL;
    	}
    
    	ops->put_pages(obj);
    	obj->pages = NULL;
    
    	i915_gem_object_invalidate(obj);
    
    	return 0;
    }
    
    static int
    i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
    {
    	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
    	int page_count, i;
    	struct address_space *mapping;
    	struct sg_table *st;
    	struct scatterlist *sg;
    	struct sgt_iter sgt_iter;
    	struct page *page;
    	unsigned long last_pfn = 0;	/* suppress gcc warning */
    	int ret;
    	gfp_t gfp;
    
    	/* Assert that the object is not currently in any GPU domain. As it
    	 * wasn't in the GTT, there shouldn't be any way it could have been in
    	 * a GPU cache
    	 */
    	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
    	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
    
    	st = kmalloc(sizeof(*st), GFP_KERNEL);
    	if (st == NULL)
    		return -ENOMEM;
    
    	page_count = obj->base.size / PAGE_SIZE;
    	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
    		kfree(st);
    		return -ENOMEM;
    	}
    
    	/* Get the list of pages out of our struct file.  They'll be pinned
    	 * at this point until we release them.
    	 *
    	 * Fail silently without starting the shrinker
    	 */
    	mapping = file_inode(obj->base.filp)->i_mapping;
    	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
    	gfp |= __GFP_NORETRY | __GFP_NOWARN;
    	sg = st->sgl;
    	st->nents = 0;
    	for (i = 0; i < page_count; i++) {
    		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
    		if (IS_ERR(page)) {
    			i915_gem_shrink(dev_priv,
    					page_count,
    					I915_SHRINK_BOUND |
    					I915_SHRINK_UNBOUND |
    					I915_SHRINK_PURGEABLE);
    			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
    		}
    		if (IS_ERR(page)) {
    			/* We've tried hard to allocate the memory by reaping
    			 * our own buffer, now let the real VM do its job and
    			 * go down in flames if truly OOM.
    			 */
    			i915_gem_shrink_all(dev_priv);
    			page = shmem_read_mapping_page(mapping, i);
    			if (IS_ERR(page)) {
    				ret = PTR_ERR(page);
    				goto err_pages;
    			}
    		}
    #ifdef CONFIG_SWIOTLB
    		if (swiotlb_nr_tbl()) {
    			st->nents++;
    			sg_set_page(sg, page, PAGE_SIZE, 0);
    			sg = sg_next(sg);
    			continue;
    		}
    #endif
    		if (!i || page_to_pfn(page) != last_pfn + 1) {
    			if (i)
    				sg = sg_next(sg);
    			st->nents++;
    			sg_set_page(sg, page, PAGE_SIZE, 0);
    		} else {
    			sg->length += PAGE_SIZE;
    		}
    		last_pfn = page_to_pfn(page);
    
    		/* Check that the i965g/gm workaround works. */
    		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
    	}
    #ifdef CONFIG_SWIOTLB
    	if (!swiotlb_nr_tbl())
    #endif
    		sg_mark_end(sg);
    	obj->pages = st;
    
    	ret = i915_gem_gtt_prepare_object(obj);
    	if (ret)
    		goto err_pages;
    
    	if (i915_gem_object_needs_bit17_swizzle(obj))
    		i915_gem_object_do_bit_17_swizzle(obj);
    
    	if (i915_gem_object_is_tiled(obj) &&
    	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
    		i915_gem_object_pin_pages(obj);
    
    	return 0;
    
    err_pages:
    	sg_mark_end(sg);
    	for_each_sgt_page(page, sgt_iter, st)
    		put_page(page);
    	sg_free_table(st);
    	kfree(st);
    
    	/* shmemfs first checks if there is enough memory to allocate the page
    	 * and reports ENOSPC should there be insufficient, along with the usual
    	 * ENOMEM for a genuine allocation failure.
    	 *
    	 * We use ENOSPC in our driver to mean that we have run out of aperture
    	 * space and so want to translate the error from shmemfs back to our
    	 * usual understanding of ENOMEM.
    	 */
    	if (ret == -ENOSPC)
    		ret = -ENOMEM;
    
    	return ret;
    }
    
    /* Ensure that the associated pages are gathered from the backing storage
     * and pinned into our object. i915_gem_object_get_pages() may be called
     * multiple times before they are released by a single call to
     * i915_gem_object_put_pages() - once the pages are no longer referenced
     * either as a result of memory pressure (reaping pages under the shrinker)
     * or as the object is itself released.
     */
    int
    i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
    {
    	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
    	const struct drm_i915_gem_object_ops *ops = obj->ops;
    	int ret;
    
    	if (obj->pages)
    		return 0;
    
    	if (obj->madv != I915_MADV_WILLNEED) {
    		DRM_DEBUG("Attempting to obtain a purgeable object\n");
    		return -EFAULT;
    	}
    
    	BUG_ON(obj->pages_pin_count);
    
    	ret = ops->get_pages(obj);
    	if (ret)
    		return ret;
    
    	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
    
    	obj->get_page.sg = obj->pages->sgl;
    	obj->get_page.last = 0;
    
    	return 0;
    }
    
    /* The 'mapping' part of i915_gem_object_pin_map() below */
    static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
    				 enum i915_map_type type)
    {
    	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
    	struct sg_table *sgt = obj->pages;
    	struct sgt_iter sgt_iter;
    	struct page *page;
    	struct page *stack_pages[32];
    	struct page **pages = stack_pages;
    	unsigned long i = 0;
    	pgprot_t pgprot;
    	void *addr;
    
    	/* A single page can always be kmapped */
    	if (n_pages == 1 && type == I915_MAP_WB)
    		return kmap(sg_page(sgt->sgl));
    
    	if (n_pages > ARRAY_SIZE(stack_pages)) {
    		/* Too big for stack -- allocate temporary array instead */
    		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
    		if (!pages)
    			return NULL;
    	}
    
    	for_each_sgt_page(page, sgt_iter, sgt)
    		pages[i++] = page;
    
    	/* Check that we have the expected number of pages */
    	GEM_BUG_ON(i != n_pages);
    
    	switch (type) {
    	case I915_MAP_WB:
    		pgprot = PAGE_KERNEL;
    		break;
    	case I915_MAP_WC:
    		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
    		break;
    	}
    	addr = vmap(pages, n_pages, 0, pgprot);
    
    	if (pages != stack_pages)
    		drm_free_large(pages);
    
    	return addr;
    }
    
    /* get, pin, and map the pages of the object into kernel space */
    void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
    			      enum i915_map_type type)
    {
    	enum i915_map_type has_type;
    	bool pinned;
    	void *ptr;
    	int ret;
    
    	lockdep_assert_held(&obj->base.dev->struct_mutex);
    	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
    
    	ret = i915_gem_object_get_pages(obj);
    	if (ret)
    		return ERR_PTR(ret);
    
    	i915_gem_object_pin_pages(obj);
    	pinned = obj->pages_pin_count > 1;
    
    	ptr = ptr_unpack_bits(obj->mapping, has_type);
    	if (ptr && has_type != type) {
    		if (pinned) {
    			ret = -EBUSY;
    			goto err;
    		}
    
    		if (is_vmalloc_addr(ptr))
    			vunmap(ptr);
    		else
    			kunmap(kmap_to_page(ptr));
    
    		ptr = obj->mapping = NULL;
    	}
    
    	if (!ptr) {
    		ptr = i915_gem_object_map(obj, type);
    		if (!ptr) {
    			ret = -ENOMEM;
    			goto err;
    		}
    
    		obj->mapping = ptr_pack_bits(ptr, type);
    	}
    
    	return ptr;
    
    err:
    	i915_gem_object_unpin_pages(obj);
    	return ERR_PTR(ret);
    }
    
    static void
    i915_gem_object_retire__write(struct i915_gem_active *active,
    			      struct drm_i915_gem_request *request)
    {
    	struct drm_i915_gem_object *obj =
    		container_of(active, struct drm_i915_gem_object, last_write);
    
    	intel_fb_obj_flush(obj, true, ORIGIN_CS);
    }
    
    static void
    i915_gem_object_retire__read(struct i915_gem_active *active,
    			     struct drm_i915_gem_request *request)
    {
    	int idx = request->engine->id;
    	struct drm_i915_gem_object *obj =
    		container_of(active, struct drm_i915_gem_object, last_read[idx]);
    
    	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
    
    	i915_gem_object_clear_active(obj, idx);
    	if (i915_gem_object_is_active(obj))
    		return;
    
    	/* Bump our place on the bound list to keep it roughly in LRU order
    	 * so that we don't steal from recently used but inactive objects
    	 * (unless we are forced to ofc!)
    	 */
    	if (obj->bind_count)
    		list_move_tail(&obj->global_list,
    			       &request->i915->mm.bound_list);
    
    	i915_gem_object_put(obj);
    }
    
    static bool i915_context_is_banned(const struct i915_gem_context *ctx)
    {
    	unsigned long elapsed;
    
    	if (ctx->hang_stats.banned)
    		return true;
    
    	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
    	if (ctx->hang_stats.ban_period_seconds &&
    	    elapsed <= ctx->hang_stats.ban_period_seconds) {
    		DRM_DEBUG("context hanging too fast, banning!\n");
    		return true;
    	}
    
    	return false;
    }
    
    static void i915_set_reset_status(struct i915_gem_context *ctx,
    				  const bool guilty)
    {
    	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
    
    	if (guilty) {
    		hs->banned = i915_context_is_banned(ctx);
    		hs->batch_active++;
    		hs->guilty_ts = get_seconds();
    	} else {
    		hs->batch_pending++;
    	}
    }
    
    struct drm_i915_gem_request *
    i915_gem_find_active_request(struct intel_engine_cs *engine)
    {
    	struct drm_i915_gem_request *request;
    
    	/* We are called by the error capture and reset at a random
    	 * point in time. In particular, note that neither is crucially
    	 * ordered with an interrupt. After a hang, the GPU is dead and we
    	 * assume that no more writes can happen (we waited long enough for
    	 * all writes that were in transaction to be flushed) - adding an
    	 * extra delay for a recent interrupt is pointless. Hence, we do
    	 * not need an engine->irq_seqno_barrier() before the seqno reads.
    	 */
    	list_for_each_entry(request, &engine->request_list, link) {
    		if (i915_gem_request_completed(request))
    			continue;
    
    		return request;
    	}
    
    	return NULL;
    }
    
    static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
    {
    	struct drm_i915_gem_request *request;
    	bool ring_hung;
    
    	request = i915_gem_find_active_request(engine);
    	if (request == NULL)
    		return;
    
    	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
    
    	i915_set_reset_status(request->ctx, ring_hung);
    	list_for_each_entry_continue(request, &engine->request_list, link)
    		i915_set_reset_status(request->ctx, false);
    }
    
    static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
    {
    	struct drm_i915_gem_request *request;
    	struct intel_ring *ring;
    
    	/* Mark all pending requests as complete so that any concurrent
    	 * (lockless) lookup doesn't try and wait upon the request as we
    	 * reset it.
    	 */
    	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
    
    	/*
    	 * Clear the execlists queue up before freeing the requests, as those
    	 * are the ones that keep the context and ringbuffer backing objects
    	 * pinned in place.
    	 */
    
    	if (i915.enable_execlists) {
    		/* Ensure irq handler finishes or is cancelled. */
    		tasklet_kill(&engine->irq_tasklet);
    
    		intel_execlists_cancel_requests(engine);
    	}
    
    	/*
    	 * We must free the requests after all the corresponding objects have
    	 * been moved off active lists. Which is the same order as the normal
    	 * retire_requests function does. This is important if object hold
    	 * implicit references on things like e.g. ppgtt address spaces through
    	 * the request.
    	 */
    	request = i915_gem_active_raw(&engine->last_request,
    				      &engine->i915->drm.struct_mutex);
    	if (request)
    		i915_gem_request_retire_upto(request);
    	GEM_BUG_ON(intel_engine_is_active(engine));
    
    	/* Having flushed all requests from all queues, we know that all
    	 * ringbuffers must now be empty. However, since we do not reclaim
    	 * all space when retiring the request (to prevent HEADs colliding
    	 * with rapid ringbuffer wraparound) the amount of available space
    	 * upon reset is less than when we start. Do one more pass over
    	 * all the ringbuffers to reset last_retired_head.
    	 */
    	list_for_each_entry(ring, &engine->buffers, link) {
    		ring->last_retired_head = ring->tail;
    		intel_ring_update_space(ring);
    	}
    
    	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
    }
    
    void i915_gem_reset(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct intel_engine_cs *engine;
    
    	/*
    	 * Before we free the objects from the requests, we need to inspect
    	 * them for finding the guilty party. As the requests only borrow
    	 * their reference to the objects, the inspection must be done first.
    	 */
    	for_each_engine(engine, dev_priv)
    		i915_gem_reset_engine_status(engine);
    
    	for_each_engine(engine, dev_priv)
    		i915_gem_reset_engine_cleanup(engine);
    	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
    
    	i915_gem_context_reset(dev);
    
    	i915_gem_restore_fences(dev);
    }
    
    static void
    i915_gem_retire_work_handler(struct work_struct *work)
    {
    	struct drm_i915_private *dev_priv =
    		container_of(work, typeof(*dev_priv), gt.retire_work.work);
    	struct drm_device *dev = &dev_priv->drm;
    
    	/* Come back later if the device is busy... */
    	if (mutex_trylock(&dev->struct_mutex)) {
    		i915_gem_retire_requests(dev_priv);
    		mutex_unlock(&dev->struct_mutex);
    	}
    
    	/* Keep the retire handler running until we are finally idle.
    	 * We do not need to do this test under locking as in the worst-case
    	 * we queue the retire worker once too often.
    	 */
    	if (READ_ONCE(dev_priv->gt.awake)) {
    		i915_queue_hangcheck(dev_priv);
    		queue_delayed_work(dev_priv->wq,
    				   &dev_priv->gt.retire_work,
    				   round_jiffies_up_relative(HZ));
    	}
    }
    
    static void
    i915_gem_idle_work_handler(struct work_struct *work)
    {
    	struct drm_i915_private *dev_priv =
    		container_of(work, typeof(*dev_priv), gt.idle_work.work);
    	struct drm_device *dev = &dev_priv->drm;
    	struct intel_engine_cs *engine;
    	bool rearm_hangcheck;
    
    	if (!READ_ONCE(dev_priv->gt.awake))
    		return;
    
    	if (READ_ONCE(dev_priv->gt.active_engines))
    		return;
    
    	rearm_hangcheck =
    		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
    
    	if (!mutex_trylock(&dev->struct_mutex)) {
    		/* Currently busy, come back later */
    		mod_delayed_work(dev_priv->wq,
    				 &dev_priv->gt.idle_work,
    				 msecs_to_jiffies(50));
    		goto out_rearm;
    	}
    
    	if (dev_priv->gt.active_engines)
    		goto out_unlock;
    
    	for_each_engine(engine, dev_priv)
    		i915_gem_batch_pool_fini(&engine->batch_pool);
    
    	GEM_BUG_ON(!dev_priv->gt.awake);
    	dev_priv->gt.awake = false;
    	rearm_hangcheck = false;
    
    	if (INTEL_GEN(dev_priv) >= 6)
    		gen6_rps_idle(dev_priv);
    	intel_runtime_pm_put(dev_priv);
    out_unlock:
    	mutex_unlock(&dev->struct_mutex);
    
    out_rearm:
    	if (rearm_hangcheck) {
    		GEM_BUG_ON(!dev_priv->gt.awake);
    		i915_queue_hangcheck(dev_priv);
    	}
    }
    
    void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
    {
    	struct drm_i915_gem_object *obj = to_intel_bo(gem);
    	struct drm_i915_file_private *fpriv = file->driver_priv;
    	struct i915_vma *vma, *vn;
    
    	mutex_lock(&obj->base.dev->struct_mutex);
    	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
    		if (vma->vm->file == fpriv)
    			i915_vma_close(vma);
    	mutex_unlock(&obj->base.dev->struct_mutex);
    }
    
    /**
     * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
     * @dev: drm device pointer
     * @data: ioctl data blob
     * @file: drm file pointer
     *
     * Returns 0 if successful, else an error is returned with the remaining time in
     * the timeout parameter.
     *  -ETIME: object is still busy after timeout
     *  -ERESTARTSYS: signal interrupted the wait
     *  -ENONENT: object doesn't exist
     * Also possible, but rare:
     *  -EAGAIN: GPU wedged
     *  -ENOMEM: damn
     *  -ENODEV: Internal IRQ fail
     *  -E?: The add request failed
     *
     * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
     * non-zero timeout parameter the wait ioctl will wait for the given number of
     * nanoseconds on an object becoming unbusy. Since the wait itself does so
     * without holding struct_mutex the object may become re-busied before this
     * function completes. A similar but shorter * race condition exists in the busy
     * ioctl
     */
    int
    i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
    {
    	struct drm_i915_gem_wait *args = data;
    	struct intel_rps_client *rps = to_rps_client(file);
    	struct drm_i915_gem_object *obj;
    	unsigned long active;
    	int idx, ret = 0;
    
    	if (args->flags != 0)
    		return -EINVAL;
    
    	obj = i915_gem_object_lookup(file, args->bo_handle);
    	if (!obj)
    		return -ENOENT;
    
    	active = __I915_BO_ACTIVE(obj);
    	for_each_active(active, idx) {
    		s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
    		ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
    						    timeout, rps);
    		if (ret)
    			break;
    	}
    
    	i915_gem_object_put_unlocked(obj);
    	return ret;
    }
    
    static int
    __i915_gem_object_sync(struct drm_i915_gem_request *to,
    		       struct drm_i915_gem_request *from)
    {
    	int ret;
    
    	if (to->engine == from->engine)
    		return 0;
    
    	if (!i915.semaphores) {
    		ret = i915_wait_request(from,
    					from->i915->mm.interruptible,
    					NULL,
    					NO_WAITBOOST);
    		if (ret)
    			return ret;
    	} else {
    		int idx = intel_engine_sync_index(from->engine, to->engine);
    		if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
    			return 0;
    
    		trace_i915_gem_ring_sync_to(to, from);
    		ret = to->engine->semaphore.sync_to(to, from);
    		if (ret)
    			return ret;
    
    		from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
    	}
    
    	return 0;
    }
    
    /**
     * i915_gem_object_sync - sync an object to a ring.
     *
     * @obj: object which may be in use on another ring.
     * @to: request we are wishing to use
     *
     * This code is meant to abstract object synchronization with the GPU.
     * Conceptually we serialise writes between engines inside the GPU.
     * We only allow one engine to write into a buffer at any time, but
     * multiple readers. To ensure each has a coherent view of memory, we must:
     *
     * - If there is an outstanding write request to the object, the new
     *   request must wait for it to complete (either CPU or in hw, requests
     *   on the same ring will be naturally ordered).
     *
     * - If we are a write request (pending_write_domain is set), the new
     *   request must wait for outstanding read requests to complete.
     *
     * Returns 0 if successful, else propagates up the lower layer error.
     */
    int
    i915_gem_object_sync(struct drm_i915_gem_object *obj,
    		     struct drm_i915_gem_request *to)
    {
    	struct i915_gem_active *active;
    	unsigned long active_mask;
    	int idx;
    
    	lockdep_assert_held(&obj->base.dev->struct_mutex);
    
    	active_mask = i915_gem_object_get_active(obj);
    	if (!active_mask)
    		return 0;
    
    	if (obj->base.pending_write_domain) {
    		active = obj->last_read;
    	} else {
    		active_mask = 1;
    		active = &obj->last_write;
    	}
    
    	for_each_active(active_mask, idx) {
    		struct drm_i915_gem_request *request;
    		int ret;
    
    		request = i915_gem_active_peek(&active[idx],
    					       &obj->base.dev->struct_mutex);
    		if (!request)
    			continue;
    
    		ret = __i915_gem_object_sync(to, request);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
    {
    	u32 old_write_domain, old_read_domains;
    
    	/* Force a pagefault for domain tracking on next user access */
    	i915_gem_release_mmap(obj);
    
    	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
    		return;
    
    	old_read_domains = obj->base.read_domains;
    	old_write_domain = obj->base.write_domain;
    
    	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
    	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
    
    	trace_i915_gem_object_change_domain(obj,
    					    old_read_domains,
    					    old_write_domain);
    }
    
    static void __i915_vma_iounmap(struct i915_vma *vma)
    {
    	GEM_BUG_ON(i915_vma_is_pinned(vma));
    
    	if (vma->iomap == NULL)
    		return;
    
    	io_mapping_unmap(vma->iomap);
    	vma->iomap = NULL;
    }
    
    int i915_vma_unbind(struct i915_vma *vma)
    {
    	struct drm_i915_gem_object *obj = vma->obj;
    	unsigned long active;
    	int ret;
    
    	/* First wait upon any activity as retiring the request may
    	 * have side-effects such as unpinning or even unbinding this vma.
    	 */
    	active = i915_vma_get_active(vma);
    	if (active) {
    		int idx;
    
    		/* When a closed VMA is retired, it is unbound - eek.
    		 * In order to prevent it from being recursively closed,
    		 * take a pin on the vma so that the second unbind is
    		 * aborted.
    		 */
    		__i915_vma_pin(vma);
    
    		for_each_active(active, idx) {
    			ret = i915_gem_active_retire(&vma->last_read[idx],
    						   &vma->vm->dev->struct_mutex);
    			if (ret)
    				break;
    		}
    
    		__i915_vma_unpin(vma);
    		if (ret)
    			return ret;
    
    		GEM_BUG_ON(i915_vma_is_active(vma));
    	}
    
    	if (i915_vma_is_pinned(vma))
    		return -EBUSY;
    
    	if (!drm_mm_node_allocated(&vma->node))
    		goto destroy;
    
    	GEM_BUG_ON(obj->bind_count == 0);
    	GEM_BUG_ON(!obj->pages);
    
    	if (i915_vma_is_ggtt(vma) &&
    	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
    		i915_gem_object_finish_gtt(obj);
    
    		/* release the fence reg _after_ flushing */
    		ret = i915_gem_object_put_fence(obj);
    		if (ret)
    			return ret;
    
    		__i915_vma_iounmap(vma);
    	}
    
    	if (likely(!vma->vm->closed)) {
    		trace_i915_vma_unbind(vma);
    		vma->vm->unbind_vma(vma);
    	}
    	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
    
    	drm_mm_remove_node(&vma->node);
    	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
    
    	if (i915_vma_is_ggtt(vma)) {
    		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
    			obj->map_and_fenceable = false;
    		} else if (vma->ggtt_view.pages) {
    			sg_free_table(vma->ggtt_view.pages);
    			kfree(vma->ggtt_view.pages);
    		}
    		vma->ggtt_view.pages = NULL;
    	}
    
    	/* Since the unbound list is global, only move to that list if
    	 * no more VMAs exist. */
    	if (--obj->bind_count == 0)
    		list_move_tail(&obj->global_list,
    			       &to_i915(obj->base.dev)->mm.unbound_list);
    
    	/* And finally now the object is completely decoupled from this vma,
    	 * we can drop its hold on the backing storage and allow it to be
    	 * reaped by the shrinker.
    	 */
    	i915_gem_object_unpin_pages(obj);
    
    destroy:
    	if (unlikely(i915_vma_is_closed(vma)))
    		i915_vma_destroy(vma);
    
    	return 0;
    }
    
    int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
    			   bool interruptible)
    {
    	struct intel_engine_cs *engine;
    	int ret;
    
    	for_each_engine(engine, dev_priv) {
    		if (engine->last_context == NULL)
    			continue;
    
    		ret = intel_engine_idle(engine, interruptible);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
    				     unsigned long cache_level)
    {
    	struct drm_mm_node *gtt_space = &vma->node;
    	struct drm_mm_node *other;
    
    	/*
    	 * On some machines we have to be careful when putting differing types
    	 * of snoopable memory together to avoid the prefetcher crossing memory
    	 * domains and dying. During vm initialisation, we decide whether or not
    	 * these constraints apply and set the drm_mm.color_adjust
    	 * appropriately.
    	 */
    	if (vma->vm->mm.color_adjust == NULL)
    		return true;
    
    	if (!drm_mm_node_allocated(gtt_space))
    		return true;
    
    	if (list_empty(&gtt_space->node_list))
    		return true;
    
    	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
    	if (other->allocated && !other->hole_follows && other->color != cache_level)
    		return false;
    
    	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
    	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
    		return false;
    
    	return true;
    }
    
    /**
     * i915_vma_insert - finds a slot for the vma in its address space
     * @vma: the vma
     * @size: requested size in bytes (can be larger than the VMA)
     * @alignment: required alignment
     * @flags: mask of PIN_* flags to use
     *
     * First we try to allocate some free space that meets the requirements for
     * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
     * preferrably the oldest idle entry to make room for the new VMA.
     *
     * Returns:
     * 0 on success, negative error code otherwise.
     */
    static int
    i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
    {
    	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
    	struct drm_i915_gem_object *obj = vma->obj;
    	u64 start, end;
    	u64 min_alignment;
    	int ret;
    
    	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
    	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
    
    	size = max(size, vma->size);
    	if (flags & PIN_MAPPABLE)
    		size = i915_gem_get_ggtt_size(dev_priv, size,
    					      i915_gem_object_get_tiling(obj));
    
    	min_alignment =
    		i915_gem_get_ggtt_alignment(dev_priv, size,
    					    i915_gem_object_get_tiling(obj),
    					    flags & PIN_MAPPABLE);
    	if (alignment == 0)
    		alignment = min_alignment;
    	if (alignment & (min_alignment - 1)) {
    		DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
    			  alignment, min_alignment);
    		return -EINVAL;
    	}
    
    	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
    
    	end = vma->vm->total;
    	if (flags & PIN_MAPPABLE)
    		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
    	if (flags & PIN_ZONE_4G)
    		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
    
    	/* If binding the object/GGTT view requires more space than the entire
    	 * aperture has, reject it early before evicting everything in a vain
    	 * attempt to find space.
    	 */
    	if (size > end) {
    		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
    			  size, obj->base.size,
    			  flags & PIN_MAPPABLE ? "mappable" : "total",
    			  end);
    		return -E2BIG;
    	}
    
    	ret = i915_gem_object_get_pages(obj);
    	if (ret)
    		return ret;
    
    	i915_gem_object_pin_pages(obj);
    
    	if (flags & PIN_OFFSET_FIXED) {
    		u64 offset = flags & PIN_OFFSET_MASK;
    		if (offset & (alignment - 1) || offset > end - size) {
    			ret = -EINVAL;
    			goto err_unpin;
    		}
    
    		vma->node.start = offset;
    		vma->node.size = size;
    		vma->node.color = obj->cache_level;
    		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
    		if (ret) {
    			ret = i915_gem_evict_for_vma(vma);
    			if (ret == 0)
    				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
    			if (ret)
    				goto err_unpin;
    		}
    	} else {
    		u32 search_flag, alloc_flag;
    
    		if (flags & PIN_HIGH) {
    			search_flag = DRM_MM_SEARCH_BELOW;
    			alloc_flag = DRM_MM_CREATE_TOP;
    		} else {
    			search_flag = DRM_MM_SEARCH_DEFAULT;
    			alloc_flag = DRM_MM_CREATE_DEFAULT;
    		}
    
    		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
    		 * so we know that we always have a minimum alignment of 4096.
    		 * The drm_mm range manager is optimised to return results
    		 * with zero alignment, so where possible use the optimal
    		 * path.
    		 */
    		if (alignment <= 4096)
    			alignment = 0;
    
    search_free:
    		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
    							  &vma->node,
    							  size, alignment,
    							  obj->cache_level,
    							  start, end,
    							  search_flag,
    							  alloc_flag);
    		if (ret) {
    			ret = i915_gem_evict_something(vma->vm, size, alignment,
    						       obj->cache_level,
    						       start, end,
    						       flags);
    			if (ret == 0)
    				goto search_free;
    
    			goto err_unpin;
    		}
    	}
    	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
    
    	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
    	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
    	obj->bind_count++;
    
    	return 0;
    
    err_unpin:
    	i915_gem_object_unpin_pages(obj);
    	return ret;
    }
    
    bool
    i915_gem_clflush_object(struct drm_i915_gem_object *obj,
    			bool force)
    {
    	/* If we don't have a page list set up, then we're not pinned
    	 * to GPU, and we can ignore the cache flush because it'll happen
    	 * again at bind time.
    	 */
    	if (obj->pages == NULL)
    		return false;
    
    	/*
    	 * Stolen memory is always coherent with the GPU as it is explicitly
    	 * marked as wc by the system, or the system is cache-coherent.
    	 */
    	if (obj->stolen || obj->phys_handle)
    		return false;
    
    	/* If the GPU is snooping the contents of the CPU cache,
    	 * we do not need to manually clear the CPU cache lines.  However,
    	 * the caches are only snooped when the render cache is
    	 * flushed/invalidated.  As we always have to emit invalidations
    	 * and flushes when moving into and out of the RENDER domain, correct
    	 * snooping behaviour occurs naturally as the result of our domain
    	 * tracking.
    	 */
    	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
    		obj->cache_dirty = true;
    		return false;
    	}
    
    	trace_i915_gem_object_clflush(obj);
    	drm_clflush_sg(obj->pages);
    	obj->cache_dirty = false;
    
    	return true;
    }
    
    /** Flushes the GTT write domain for the object if it's dirty. */
    static void
    i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
    {
    	uint32_t old_write_domain;
    
    	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
    		return;
    
    	/* No actual flushing is required for the GTT write domain.  Writes
    	 * to it immediately go to main memory as far as we know, so there's
    	 * no chipset flush.  It also doesn't land in render cache.
    	 *
    	 * However, we do have to enforce the order so that all writes through
    	 * the GTT land before any writes to the device, such as updates to
    	 * the GATT itself.
    	 */
    	wmb();
    
    	old_write_domain = obj->base.write_domain;
    	obj->base.write_domain = 0;
    
    	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
    
    	trace_i915_gem_object_change_domain(obj,
    					    obj->base.read_domains,
    					    old_write_domain);
    }
    
    /** Flushes the CPU write domain for the object if it's dirty. */
    static void
    i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
    {
    	uint32_t old_write_domain;
    
    	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
    		return;
    
    	if (i915_gem_clflush_object(obj, obj->pin_display))
    		i915_gem_chipset_flush(to_i915(obj->base.dev));
    
    	old_write_domain = obj->base.write_domain;
    	obj->base.write_domain = 0;
    
    	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
    
    	trace_i915_gem_object_change_domain(obj,
    					    obj->base.read_domains,
    					    old_write_domain);
    }
    
    /**
     * Moves a single object to the GTT read, and possibly write domain.
     * @obj: object to act on
     * @write: ask for write access or read only
     *
     * This function returns when the move is complete, including waiting on
     * flushes to occur.
     */
    int
    i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
    {
    	uint32_t old_write_domain, old_read_domains;
    	struct i915_vma *vma;
    	int ret;
    
    	ret = i915_gem_object_wait_rendering(obj, !write);
    	if (ret)
    		return ret;
    
    	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
    		return 0;
    
    	/* Flush and acquire obj->pages so that we are coherent through
    	 * direct access in memory with previous cached writes through
    	 * shmemfs and that our cache domain tracking remains valid.
    	 * For example, if the obj->filp was moved to swap without us
    	 * being notified and releasing the pages, we would mistakenly
    	 * continue to assume that the obj remained out of the CPU cached
    	 * domain.
    	 */
    	ret = i915_gem_object_get_pages(obj);
    	if (ret)
    		return ret;
    
    	i915_gem_object_flush_cpu_write_domain(obj);
    
    	/* Serialise direct access to this object with the barriers for
    	 * coherent writes from the GPU, by effectively invalidating the
    	 * GTT domain upon first access.
    	 */
    	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
    		mb();
    
    	old_write_domain = obj->base.write_domain;
    	old_read_domains = obj->base.read_domains;
    
    	/* It should now be out of any other write domains, and we can update
    	 * the domain values for our changes.
    	 */
    	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
    	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
    	if (write) {
    		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
    		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
    		obj->dirty = 1;
    	}
    
    	trace_i915_gem_object_change_domain(obj,
    					    old_read_domains,
    					    old_write_domain);
    
    	/* And bump the LRU for this access */
    	vma = i915_gem_obj_to_ggtt(obj);
    	if (vma &&
    	    drm_mm_node_allocated(&vma->node) &&
    	    !i915_vma_is_active(vma))
    		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
    
    	return 0;
    }
    
    /**
     * Changes the cache-level of an object across all VMA.
     * @obj: object to act on
     * @cache_level: new cache level to set for the object
     *
     * After this function returns, the object will be in the new cache-level
     * across all GTT and the contents of the backing storage will be coherent,
     * with respect to the new cache-level. In order to keep the backing storage
     * coherent for all users, we only allow a single cache level to be set
     * globally on the object and prevent it from being changed whilst the
     * hardware is reading from the object. That is if the object is currently
     * on the scanout it will be set to uncached (or equivalent display
     * cache coherency) and all non-MOCS GPU access will also be uncached so
     * that all direct access to the scanout remains coherent.
     */
    int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
    				    enum i915_cache_level cache_level)
    {
    	struct i915_vma *vma;
    	int ret = 0;
    
    	if (obj->cache_level == cache_level)
    		goto out;
    
    	/* Inspect the list of currently bound VMA and unbind any that would
    	 * be invalid given the new cache-level. This is principally to
    	 * catch the issue of the CS prefetch crossing page boundaries and
    	 * reading an invalid PTE on older architectures.
    	 */
    restart:
    	list_for_each_entry(vma, &obj->vma_list, obj_link) {
    		if (!drm_mm_node_allocated(&vma->node))
    			continue;
    
    		if (i915_vma_is_pinned(vma)) {
    			DRM_DEBUG("can not change the cache level of pinned objects\n");
    			return -EBUSY;
    		}
    
    		if (i915_gem_valid_gtt_space(vma, cache_level))
    			continue;
    
    		ret = i915_vma_unbind(vma);
    		if (ret)
    			return ret;
    
    		/* As unbinding may affect other elements in the
    		 * obj->vma_list (due to side-effects from retiring
    		 * an active vma), play safe and restart the iterator.
    		 */
    		goto restart;
    	}
    
    	/* We can reuse the existing drm_mm nodes but need to change the
    	 * cache-level on the PTE. We could simply unbind them all and
    	 * rebind with the correct cache-level on next use. However since
    	 * we already have a valid slot, dma mapping, pages etc, we may as
    	 * rewrite the PTE in the belief that doing so tramples upon less
    	 * state and so involves less work.
    	 */
    	if (obj->bind_count) {
    		/* Before we change the PTE, the GPU must not be accessing it.
    		 * If we wait upon the object, we know that all the bound
    		 * VMA are no longer active.
    		 */
    		ret = i915_gem_object_wait_rendering(obj, false);
    		if (ret)
    			return ret;
    
    		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
    			/* Access to snoopable pages through the GTT is
    			 * incoherent and on some machines causes a hard
    			 * lockup. Relinquish the CPU mmaping to force
    			 * userspace to refault in the pages and we can
    			 * then double check if the GTT mapping is still
    			 * valid for that pointer access.
    			 */
    			i915_gem_release_mmap(obj);
    
    			/* As we no longer need a fence for GTT access,
    			 * we can relinquish it now (and so prevent having
    			 * to steal a fence from someone else on the next
    			 * fence request). Note GPU activity would have
    			 * dropped the fence as all snoopable access is
    			 * supposed to be linear.
    			 */
    			ret = i915_gem_object_put_fence(obj);
    			if (ret)
    				return ret;
    		} else {
    			/* We either have incoherent backing store and
    			 * so no GTT access or the architecture is fully
    			 * coherent. In such cases, existing GTT mmaps
    			 * ignore the cache bit in the PTE and we can
    			 * rewrite it without confusing the GPU or having
    			 * to force userspace to fault back in its mmaps.
    			 */
    		}
    
    		list_for_each_entry(vma, &obj->vma_list, obj_link) {
    			if (!drm_mm_node_allocated(&vma->node))
    				continue;
    
    			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
    			if (ret)
    				return ret;
    		}
    	}
    
    	list_for_each_entry(vma, &obj->vma_list, obj_link)
    		vma->node.color = cache_level;
    	obj->cache_level = cache_level;
    
    out:
    	/* Flush the dirty CPU caches to the backing storage so that the
    	 * object is now coherent at its new cache level (with respect
    	 * to the access domain).
    	 */
    	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
    		if (i915_gem_clflush_object(obj, true))
    			i915_gem_chipset_flush(to_i915(obj->base.dev));
    	}
    
    	return 0;
    }
    
    int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
    			       struct drm_file *file)
    {
    	struct drm_i915_gem_caching *args = data;
    	struct drm_i915_gem_object *obj;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	switch (obj->cache_level) {
    	case I915_CACHE_LLC:
    	case I915_CACHE_L3_LLC:
    		args->caching = I915_CACHING_CACHED;
    		break;
    
    	case I915_CACHE_WT:
    		args->caching = I915_CACHING_DISPLAY;
    		break;
    
    	default:
    		args->caching = I915_CACHING_NONE;
    		break;
    	}
    
    	i915_gem_object_put_unlocked(obj);
    	return 0;
    }
    
    int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
    			       struct drm_file *file)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct drm_i915_gem_caching *args = data;
    	struct drm_i915_gem_object *obj;
    	enum i915_cache_level level;
    	int ret;
    
    	switch (args->caching) {
    	case I915_CACHING_NONE:
    		level = I915_CACHE_NONE;
    		break;
    	case I915_CACHING_CACHED:
    		/*
    		 * Due to a HW issue on BXT A stepping, GPU stores via a
    		 * snooped mapping may leave stale data in a corresponding CPU
    		 * cacheline, whereas normally such cachelines would get
    		 * invalidated.
    		 */
    		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
    			return -ENODEV;
    
    		level = I915_CACHE_LLC;
    		break;
    	case I915_CACHING_DISPLAY:
    		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	intel_runtime_pm_get(dev_priv);
    
    	ret = i915_mutex_lock_interruptible(dev);
    	if (ret)
    		goto rpm_put;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj) {
    		ret = -ENOENT;
    		goto unlock;
    	}
    
    	ret = i915_gem_object_set_cache_level(obj, level);
    
    	i915_gem_object_put(obj);
    unlock:
    	mutex_unlock(&dev->struct_mutex);
    rpm_put:
    	intel_runtime_pm_put(dev_priv);
    
    	return ret;
    }
    
    /*
     * Prepare buffer for display plane (scanout, cursors, etc).
     * Can be called from an uninterruptible phase (modesetting) and allows
     * any flushes to be pipelined (for pageflips).
     */
    int
    i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
    				     u32 alignment,
    				     const struct i915_ggtt_view *view)
    {
    	u32 old_read_domains, old_write_domain;
    	int ret;
    
    	/* Mark the pin_display early so that we account for the
    	 * display coherency whilst setting up the cache domains.
    	 */
    	obj->pin_display++;
    
    	/* The display engine is not coherent with the LLC cache on gen6.  As
    	 * a result, we make sure that the pinning that is about to occur is
    	 * done with uncached PTEs. This is lowest common denominator for all
    	 * chipsets.
    	 *
    	 * However for gen6+, we could do better by using the GFDT bit instead
    	 * of uncaching, which would allow us to flush all the LLC-cached data
    	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
    	 */
    	ret = i915_gem_object_set_cache_level(obj,
    					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
    	if (ret)
    		goto err_unpin_display;
    
    	/* As the user may map the buffer once pinned in the display plane
    	 * (e.g. libkms for the bootup splash), we have to ensure that we
    	 * always use map_and_fenceable for all scanout buffers.
    	 */
    	ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
    				       view->type == I915_GGTT_VIEW_NORMAL ?
    				       PIN_MAPPABLE : 0);
    	if (ret)
    		goto err_unpin_display;
    
    	i915_gem_object_flush_cpu_write_domain(obj);
    
    	old_write_domain = obj->base.write_domain;
    	old_read_domains = obj->base.read_domains;
    
    	/* It should now be out of any other write domains, and we can update
    	 * the domain values for our changes.
    	 */
    	obj->base.write_domain = 0;
    	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
    
    	trace_i915_gem_object_change_domain(obj,
    					    old_read_domains,
    					    old_write_domain);
    
    	return 0;
    
    err_unpin_display:
    	obj->pin_display--;
    	return ret;
    }
    
    void
    i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
    					 const struct i915_ggtt_view *view)
    {
    	if (WARN_ON(obj->pin_display == 0))
    		return;
    
    	i915_gem_object_ggtt_unpin_view(obj, view);
    
    	obj->pin_display--;
    }
    
    /**
     * Moves a single object to the CPU read, and possibly write domain.
     * @obj: object to act on
     * @write: requesting write or read-only access
     *
     * This function returns when the move is complete, including waiting on
     * flushes to occur.
     */
    int
    i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
    {
    	uint32_t old_write_domain, old_read_domains;
    	int ret;
    
    	ret = i915_gem_object_wait_rendering(obj, !write);
    	if (ret)
    		return ret;
    
    	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
    		return 0;
    
    	i915_gem_object_flush_gtt_write_domain(obj);
    
    	old_write_domain = obj->base.write_domain;
    	old_read_domains = obj->base.read_domains;
    
    	/* Flush the CPU cache if it's still invalid. */
    	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
    		i915_gem_clflush_object(obj, false);
    
    		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
    	}
    
    	/* It should now be out of any other write domains, and we can update
    	 * the domain values for our changes.
    	 */
    	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
    
    	/* If we're writing through the CPU, then the GPU read domains will
    	 * need to be invalidated at next use.
    	 */
    	if (write) {
    		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
    		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    	}
    
    	trace_i915_gem_object_change_domain(obj,
    					    old_read_domains,
    					    old_write_domain);
    
    	return 0;
    }
    
    /* Throttle our rendering by waiting until the ring has completed our requests
     * emitted over 20 msec ago.
     *
     * Note that if we were to use the current jiffies each time around the loop,
     * we wouldn't escape the function with any frames outstanding if the time to
     * render a frame was over 20ms.
     *
     * This should get us reasonable parallelism between CPU and GPU but also
     * relatively low latency when blocking on a particular request to finish.
     */
    static int
    i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct drm_i915_file_private *file_priv = file->driver_priv;
    	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
    	struct drm_i915_gem_request *request, *target = NULL;
    	int ret;
    
    	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
    	if (ret)
    		return ret;
    
    	/* ABI: return -EIO if already wedged */
    	if (i915_terminally_wedged(&dev_priv->gpu_error))
    		return -EIO;
    
    	spin_lock(&file_priv->mm.lock);
    	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
    		if (time_after_eq(request->emitted_jiffies, recent_enough))
    			break;
    
    		/*
    		 * Note that the request might not have been submitted yet.
    		 * In which case emitted_jiffies will be zero.
    		 */
    		if (!request->emitted_jiffies)
    			continue;
    
    		target = request;
    	}
    	if (target)
    		i915_gem_request_get(target);
    	spin_unlock(&file_priv->mm.lock);
    
    	if (target == NULL)
    		return 0;
    
    	ret = i915_wait_request(target, true, NULL, NULL);
    	i915_gem_request_put(target);
    
    	return ret;
    }
    
    static bool
    i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
    {
    	struct drm_i915_gem_object *obj = vma->obj;
    
    	if (!drm_mm_node_allocated(&vma->node))
    		return false;
    
    	if (vma->node.size < size)
    		return true;
    
    	if (alignment && vma->node.start & (alignment - 1))
    		return true;
    
    	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
    		return true;
    
    	if (flags & PIN_OFFSET_BIAS &&
    	    vma->node.start < (flags & PIN_OFFSET_MASK))
    		return true;
    
    	if (flags & PIN_OFFSET_FIXED &&
    	    vma->node.start != (flags & PIN_OFFSET_MASK))
    		return true;
    
    	return false;
    }
    
    void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
    {
    	struct drm_i915_gem_object *obj = vma->obj;
    	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
    	bool mappable, fenceable;
    	u32 fence_size, fence_alignment;
    
    	fence_size = i915_gem_get_ggtt_size(dev_priv,
    					    obj->base.size,
    					    i915_gem_object_get_tiling(obj));
    	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
    						      obj->base.size,
    						      i915_gem_object_get_tiling(obj),
    						      true);
    
    	fenceable = (vma->node.size == fence_size &&
    		     (vma->node.start & (fence_alignment - 1)) == 0);
    
    	mappable = (vma->node.start + fence_size <=
    		    dev_priv->ggtt.mappable_end);
    
    	obj->map_and_fenceable = mappable && fenceable;
    }
    
    int __i915_vma_do_pin(struct i915_vma *vma,
    		      u64 size, u64 alignment, u64 flags)
    {
    	unsigned int bound = vma->flags;
    	int ret;
    
    	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
    	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
    
    	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
    		ret = -EBUSY;
    		goto err;
    	}
    
    	if ((bound & I915_VMA_BIND_MASK) == 0) {
    		ret = i915_vma_insert(vma, size, alignment, flags);
    		if (ret)
    			goto err;
    	}
    
    	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
    	if (ret)
    		goto err;
    
    	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
    		__i915_vma_set_map_and_fenceable(vma);
    
    	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
    	return 0;
    
    err:
    	__i915_vma_unpin(vma);
    	return ret;
    }
    
    int
    i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
    			 const struct i915_ggtt_view *view,
    			 u64 size,
    			 u64 alignment,
    			 u64 flags)
    {
    	struct i915_vma *vma;
    	int ret;
    
    	if (!view)
    		view = &i915_ggtt_view_normal;
    
    	vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
    	if (IS_ERR(vma))
    		return PTR_ERR(vma);
    
    	if (i915_vma_misplaced(vma, size, alignment, flags)) {
    		if (flags & PIN_NONBLOCK &&
    		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
    			return -ENOSPC;
    
    		WARN(i915_vma_is_pinned(vma),
    		     "bo is already pinned in ggtt with incorrect alignment:"
    		     " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
    		     " obj->map_and_fenceable=%d\n",
    		     upper_32_bits(vma->node.start),
    		     lower_32_bits(vma->node.start),
    		     alignment,
    		     !!(flags & PIN_MAPPABLE),
    		     obj->map_and_fenceable);
    		ret = i915_vma_unbind(vma);
    		if (ret)
    			return ret;
    	}
    
    	return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
    }
    
    void
    i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
    				const struct i915_ggtt_view *view)
    {
    	i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
    }
    
    static __always_inline unsigned int __busy_read_flag(unsigned int id)
    {
    	/* Note that we could alias engines in the execbuf API, but
    	 * that would be very unwise as it prevents userspace from
    	 * fine control over engine selection. Ahem.
    	 *
    	 * This should be something like EXEC_MAX_ENGINE instead of
    	 * I915_NUM_ENGINES.
    	 */
    	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
    	return 0x10000 << id;
    }
    
    static __always_inline unsigned int __busy_write_id(unsigned int id)
    {
    	/* The uABI guarantees an active writer is also amongst the read
    	 * engines. This would be true if we accessed the activity tracking
    	 * under the lock, but as we perform the lookup of the object and
    	 * its activity locklessly we can not guarantee that the last_write
    	 * being active implies that we have set the same engine flag from
    	 * last_read - hence we always set both read and write busy for
    	 * last_write.
    	 */
    	return id | __busy_read_flag(id);
    }
    
    static __always_inline unsigned int
    __busy_set_if_active(const struct i915_gem_active *active,
    		     unsigned int (*flag)(unsigned int id))
    {
    	/* For more discussion about the barriers and locking concerns,
    	 * see __i915_gem_active_get_rcu().
    	 */
    	do {
    		struct drm_i915_gem_request *request;
    		unsigned int id;
    
    		request = rcu_dereference(active->request);
    		if (!request || i915_gem_request_completed(request))
    			return 0;
    
    		id = request->engine->exec_id;
    
    		/* Check that the pointer wasn't reassigned and overwritten.
    		 *
    		 * In __i915_gem_active_get_rcu(), we enforce ordering between
    		 * the first rcu pointer dereference (imposing a
    		 * read-dependency only on access through the pointer) and
    		 * the second lockless access through the memory barrier
    		 * following a successful atomic_inc_not_zero(). Here there
    		 * is no such barrier, and so we must manually insert an
    		 * explicit read barrier to ensure that the following
    		 * access occurs after all the loads through the first
    		 * pointer.
    		 *
    		 * It is worth comparing this sequence with
    		 * raw_write_seqcount_latch() which operates very similarly.
    		 * The challenge here is the visibility of the other CPU
    		 * writes to the reallocated request vs the local CPU ordering.
    		 * Before the other CPU can overwrite the request, it will
    		 * have updated our active->request and gone through a wmb.
    		 * During the read here, we want to make sure that the values
    		 * we see have not been overwritten as we do so - and we do
    		 * that by serialising the second pointer check with the writes
    		 * on other other CPUs.
    		 *
    		 * The corresponding write barrier is part of
    		 * rcu_assign_pointer().
    		 */
    		smp_rmb();
    		if (request == rcu_access_pointer(active->request))
    			return flag(id);
    	} while (1);
    }
    
    static __always_inline unsigned int
    busy_check_reader(const struct i915_gem_active *active)
    {
    	return __busy_set_if_active(active, __busy_read_flag);
    }
    
    static __always_inline unsigned int
    busy_check_writer(const struct i915_gem_active *active)
    {
    	return __busy_set_if_active(active, __busy_write_id);
    }
    
    int
    i915_gem_busy_ioctl(struct drm_device *dev, void *data,
    		    struct drm_file *file)
    {
    	struct drm_i915_gem_busy *args = data;
    	struct drm_i915_gem_object *obj;
    	unsigned long active;
    
    	obj = i915_gem_object_lookup(file, args->handle);
    	if (!obj)
    		return -ENOENT;
    
    	args->busy = 0;
    	active = __I915_BO_ACTIVE(obj);
    	if (active) {
    		int idx;
    
    		/* Yes, the lookups are intentionally racy.
    		 *
    		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
    		 * to regard the value as stale and as our ABI guarantees
    		 * forward progress, we confirm the status of each active
    		 * request with the hardware.
    		 *
    		 * Even though we guard the pointer lookup by RCU, that only
    		 * guarantees that the pointer and its contents remain
    		 * dereferencable and does *not* mean that the request we
    		 * have is the same as the one being tracked by the object.
    		 *
    		 * Consider that we lookup the request just as it is being
    		 * retired and freed. We take a local copy of the pointer,
    		 * but before we add its engine into the busy set, the other
    		 * thread reallocates it and assigns it to a task on another
    		 * engine with a fresh and incomplete seqno.
    		 *
    		 * So after we lookup the engine's id, we double check that
    		 * the active request is the same and only then do we add it
    		 * into the busy set.
    		 */
    		rcu_read_lock();
    
    		for_each_active(active, idx)
    			args->busy |= busy_check_reader(&obj->last_read[idx]);
    
    		/* For ABI sanity, we only care that the write engine is in
    		 * the set of read engines. This should be ensured by the
    		 * ordering of setting last_read/last_write in
    		 * i915_vma_move_to_active(), and then in reverse in retire.
    		 * However, for good measure, we always report the last_write
    		 * request as a busy read as well as being a busy write.
    		 *
    		 * We don't care that the set of active read/write engines
    		 * may change during construction of the result, as it is
    		 * equally liable to change before userspace can inspect
    		 * the result.
    		 */
    		args->busy |= busy_check_writer(&obj->last_write);
    
    		rcu_read_unlock();
    	}
    
    	i915_gem_object_put_unlocked(obj);
    	return 0;
    }
    
    int
    i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
    			struct drm_file *file_priv)
    {
    	return i915_gem_ring_throttle(dev, file_priv);
    }
    
    int
    i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
    		       struct drm_file *file_priv)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct drm_i915_gem_madvise *args = data;
    	struct drm_i915_gem_object *obj;
    	int ret;
    
    	switch (args->madv) {
    	case I915_MADV_DONTNEED:
    	case I915_MADV_WILLNEED:
    	    break;
    	default:
    	    return -EINVAL;
    	}
    
    	ret = i915_mutex_lock_interruptible(dev);
    	if (ret)
    		return ret;
    
    	obj = i915_gem_object_lookup(file_priv, args->handle);
    	if (!obj) {
    		ret = -ENOENT;
    		goto unlock;
    	}
    
    	if (obj->pages &&
    	    i915_gem_object_is_tiled(obj) &&
    	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
    		if (obj->madv == I915_MADV_WILLNEED)
    			i915_gem_object_unpin_pages(obj);
    		if (args->madv == I915_MADV_WILLNEED)
    			i915_gem_object_pin_pages(obj);
    	}
    
    	if (obj->madv != __I915_MADV_PURGED)
    		obj->madv = args->madv;
    
    	/* if the object is no longer attached, discard its backing storage */
    	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
    		i915_gem_object_truncate(obj);
    
    	args->retained = obj->madv != __I915_MADV_PURGED;
    
    	i915_gem_object_put(obj);
    unlock:
    	mutex_unlock(&dev->struct_mutex);
    	return ret;
    }
    
    void i915_gem_object_init(struct drm_i915_gem_object *obj,
    			  const struct drm_i915_gem_object_ops *ops)
    {
    	int i;
    
    	INIT_LIST_HEAD(&obj->global_list);
    	for (i = 0; i < I915_NUM_ENGINES; i++)
    		init_request_active(&obj->last_read[i],
    				    i915_gem_object_retire__read);
    	init_request_active(&obj->last_write,
    			    i915_gem_object_retire__write);
    	init_request_active(&obj->last_fence, NULL);
    	INIT_LIST_HEAD(&obj->obj_exec_link);
    	INIT_LIST_HEAD(&obj->vma_list);
    	INIT_LIST_HEAD(&obj->batch_pool_link);
    
    	obj->ops = ops;
    
    	obj->fence_reg = I915_FENCE_REG_NONE;
    	obj->madv = I915_MADV_WILLNEED;
    
    	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
    }
    
    static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
    	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
    	.get_pages = i915_gem_object_get_pages_gtt,
    	.put_pages = i915_gem_object_put_pages_gtt,
    };
    
    struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
    						  size_t size)
    {
    	struct drm_i915_gem_object *obj;
    	struct address_space *mapping;
    	gfp_t mask;
    	int ret;
    
    	obj = i915_gem_object_alloc(dev);
    	if (obj == NULL)
    		return ERR_PTR(-ENOMEM);
    
    	ret = drm_gem_object_init(dev, &obj->base, size);
    	if (ret)
    		goto fail;
    
    	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
    	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
    		/* 965gm cannot relocate objects above 4GiB. */
    		mask &= ~__GFP_HIGHMEM;
    		mask |= __GFP_DMA32;
    	}
    
    	mapping = file_inode(obj->base.filp)->i_mapping;
    	mapping_set_gfp_mask(mapping, mask);
    
    	i915_gem_object_init(obj, &i915_gem_object_ops);
    
    	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
    
    	if (HAS_LLC(dev)) {
    		/* On some devices, we can have the GPU use the LLC (the CPU
    		 * cache) for about a 10% performance improvement
    		 * compared to uncached.  Graphics requests other than
    		 * display scanout are coherent with the CPU in
    		 * accessing this cache.  This means in this mode we
    		 * don't need to clflush on the CPU side, and on the
    		 * GPU side we only need to flush internal caches to
    		 * get data visible to the CPU.
    		 *
    		 * However, we maintain the display planes as UC, and so
    		 * need to rebind when first used as such.
    		 */
    		obj->cache_level = I915_CACHE_LLC;
    	} else
    		obj->cache_level = I915_CACHE_NONE;
    
    	trace_i915_gem_object_create(obj);
    
    	return obj;
    
    fail:
    	i915_gem_object_free(obj);
    
    	return ERR_PTR(ret);
    }
    
    static bool discard_backing_storage(struct drm_i915_gem_object *obj)
    {
    	/* If we are the last user of the backing storage (be it shmemfs
    	 * pages or stolen etc), we know that the pages are going to be
    	 * immediately released. In this case, we can then skip copying
    	 * back the contents from the GPU.
    	 */
    
    	if (obj->madv != I915_MADV_WILLNEED)
    		return false;
    
    	if (obj->base.filp == NULL)
    		return true;
    
    	/* At first glance, this looks racy, but then again so would be
    	 * userspace racing mmap against close. However, the first external
    	 * reference to the filp can only be obtained through the
    	 * i915_gem_mmap_ioctl() which safeguards us against the user
    	 * acquiring such a reference whilst we are in the middle of
    	 * freeing the object.
    	 */
    	return atomic_long_read(&obj->base.filp->f_count) == 1;
    }
    
    void i915_gem_free_object(struct drm_gem_object *gem_obj)
    {
    	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
    	struct drm_device *dev = obj->base.dev;
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct i915_vma *vma, *next;
    
    	intel_runtime_pm_get(dev_priv);
    
    	trace_i915_gem_object_destroy(obj);
    
    	/* All file-owned VMA should have been released by this point through
    	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
    	 * However, the object may also be bound into the global GTT (e.g.
    	 * older GPUs without per-process support, or for direct access through
    	 * the GTT either for the user or for scanout). Those VMA still need to
    	 * unbound now.
    	 */
    	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
    		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
    		GEM_BUG_ON(i915_vma_is_active(vma));
    		vma->flags &= ~I915_VMA_PIN_MASK;
    		i915_vma_close(vma);
    	}
    	GEM_BUG_ON(obj->bind_count);
    
    	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
    	 * before progressing. */
    	if (obj->stolen)
    		i915_gem_object_unpin_pages(obj);
    
    	WARN_ON(atomic_read(&obj->frontbuffer_bits));
    
    	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
    	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
    	    i915_gem_object_is_tiled(obj))
    		i915_gem_object_unpin_pages(obj);
    
    	if (WARN_ON(obj->pages_pin_count))
    		obj->pages_pin_count = 0;
    	if (discard_backing_storage(obj))
    		obj->madv = I915_MADV_DONTNEED;
    	i915_gem_object_put_pages(obj);
    
    	BUG_ON(obj->pages);
    
    	if (obj->base.import_attach)
    		drm_prime_gem_destroy(&obj->base, NULL);
    
    	if (obj->ops->release)
    		obj->ops->release(obj);
    
    	drm_gem_object_release(&obj->base);
    	i915_gem_info_remove_obj(dev_priv, obj->base.size);
    
    	kfree(obj->bit_17);
    	i915_gem_object_free(obj);
    
    	intel_runtime_pm_put(dev_priv);
    }
    
    struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
    				     struct i915_address_space *vm)
    {
    	struct i915_vma *vma;
    	list_for_each_entry(vma, &obj->vma_list, obj_link) {
    		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
    		    vma->vm == vm)
    			return vma;
    	}
    	return NULL;
    }
    
    struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
    					   const struct i915_ggtt_view *view)
    {
    	struct i915_vma *vma;
    
    	GEM_BUG_ON(!view);
    
    	list_for_each_entry(vma, &obj->vma_list, obj_link)
    		if (i915_vma_is_ggtt(vma) &&
    		    i915_ggtt_view_equal(&vma->ggtt_view, view))
    			return vma;
    	return NULL;
    }
    
    int i915_gem_suspend(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	int ret;
    
    	intel_suspend_gt_powersave(dev_priv);
    
    	mutex_lock(&dev->struct_mutex);
    
    	/* We have to flush all the executing contexts to main memory so
    	 * that they can saved in the hibernation image. To ensure the last
    	 * context image is coherent, we have to switch away from it. That
    	 * leaves the dev_priv->kernel_context still active when
    	 * we actually suspend, and its image in memory may not match the GPU
    	 * state. Fortunately, the kernel_context is disposable and we do
    	 * not rely on its state.
    	 */
    	ret = i915_gem_switch_to_kernel_context(dev_priv);
    	if (ret)
    		goto err;
    
    	ret = i915_gem_wait_for_idle(dev_priv, true);
    	if (ret)
    		goto err;
    
    	i915_gem_retire_requests(dev_priv);
    
    	i915_gem_context_lost(dev_priv);
    	mutex_unlock(&dev->struct_mutex);
    
    	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
    	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
    	flush_delayed_work(&dev_priv->gt.idle_work);
    
    	/* Assert that we sucessfully flushed all the work and
    	 * reset the GPU back to its idle, low power state.
    	 */
    	WARN_ON(dev_priv->gt.awake);
    
    	return 0;
    
    err:
    	mutex_unlock(&dev->struct_mutex);
    	return ret;
    }
    
    void i915_gem_resume(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    
    	mutex_lock(&dev->struct_mutex);
    	i915_gem_restore_gtt_mappings(dev);
    
    	/* As we didn't flush the kernel context before suspend, we cannot
    	 * guarantee that the context image is complete. So let's just reset
    	 * it and start again.
    	 */
    	if (i915.enable_execlists)
    		intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
    
    	mutex_unlock(&dev->struct_mutex);
    }
    
    void i915_gem_init_swizzling(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    
    	if (INTEL_INFO(dev)->gen < 5 ||
    	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
    		return;
    
    	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
    				 DISP_TILE_SURFACE_SWIZZLING);
    
    	if (IS_GEN5(dev))
    		return;
    
    	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
    	if (IS_GEN6(dev))
    		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
    	else if (IS_GEN7(dev))
    		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
    	else if (IS_GEN8(dev))
    		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
    	else
    		BUG();
    }
    
    static void init_unused_ring(struct drm_device *dev, u32 base)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    
    	I915_WRITE(RING_CTL(base), 0);
    	I915_WRITE(RING_HEAD(base), 0);
    	I915_WRITE(RING_TAIL(base), 0);
    	I915_WRITE(RING_START(base), 0);
    }
    
    static void init_unused_rings(struct drm_device *dev)
    {
    	if (IS_I830(dev)) {
    		init_unused_ring(dev, PRB1_BASE);
    		init_unused_ring(dev, SRB0_BASE);
    		init_unused_ring(dev, SRB1_BASE);
    		init_unused_ring(dev, SRB2_BASE);
    		init_unused_ring(dev, SRB3_BASE);
    	} else if (IS_GEN2(dev)) {
    		init_unused_ring(dev, SRB0_BASE);
    		init_unused_ring(dev, SRB1_BASE);
    	} else if (IS_GEN3(dev)) {
    		init_unused_ring(dev, PRB1_BASE);
    		init_unused_ring(dev, PRB2_BASE);
    	}
    }
    
    int
    i915_gem_init_hw(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct intel_engine_cs *engine;
    	int ret;
    
    	/* Double layer security blanket, see i915_gem_init() */
    	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
    
    	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
    		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
    
    	if (IS_HASWELL(dev))
    		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
    			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
    
    	if (HAS_PCH_NOP(dev)) {
    		if (IS_IVYBRIDGE(dev)) {
    			u32 temp = I915_READ(GEN7_MSG_CTL);
    			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
    			I915_WRITE(GEN7_MSG_CTL, temp);
    		} else if (INTEL_INFO(dev)->gen >= 7) {
    			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
    			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
    			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
    		}
    	}
    
    	i915_gem_init_swizzling(dev);
    
    	/*
    	 * At least 830 can leave some of the unused rings
    	 * "active" (ie. head != tail) after resume which
    	 * will prevent c3 entry. Makes sure all unused rings
    	 * are totally idle.
    	 */
    	init_unused_rings(dev);
    
    	BUG_ON(!dev_priv->kernel_context);
    
    	ret = i915_ppgtt_init_hw(dev);
    	if (ret) {
    		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
    		goto out;
    	}
    
    	/* Need to do basic initialisation of all rings first: */
    	for_each_engine(engine, dev_priv) {
    		ret = engine->init_hw(engine);
    		if (ret)
    			goto out;
    	}
    
    	intel_mocs_init_l3cc_table(dev);
    
    	/* We can't enable contexts until all firmware is loaded */
    	ret = intel_guc_setup(dev);
    	if (ret)
    		goto out;
    
    out:
    	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
    	return ret;
    }
    
    bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
    {
    	if (INTEL_INFO(dev_priv)->gen < 6)
    		return false;
    
    	/* TODO: make semaphores and Execlists play nicely together */
    	if (i915.enable_execlists)
    		return false;
    
    	if (value >= 0)
    		return value;
    
    #ifdef CONFIG_INTEL_IOMMU
    	/* Enable semaphores on SNB when IO remapping is off */
    	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
    		return false;
    #endif
    
    	return true;
    }
    
    int i915_gem_init(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	int ret;
    
    	mutex_lock(&dev->struct_mutex);
    
    	if (!i915.enable_execlists) {
    		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
    	} else {
    		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
    	}
    
    	/* This is just a security blanket to placate dragons.
    	 * On some systems, we very sporadically observe that the first TLBs
    	 * used by the CS may be stale, despite us poking the TLB reset. If
    	 * we hold the forcewake during initialisation these problems
    	 * just magically go away.
    	 */
    	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
    
    	i915_gem_init_userptr(dev_priv);
    
    	ret = i915_gem_init_ggtt(dev_priv);
    	if (ret)
    		goto out_unlock;
    
    	ret = i915_gem_context_init(dev);
    	if (ret)
    		goto out_unlock;
    
    	ret = intel_engines_init(dev);
    	if (ret)
    		goto out_unlock;
    
    	ret = i915_gem_init_hw(dev);
    	if (ret == -EIO) {
    		/* Allow engine initialisation to fail by marking the GPU as
    		 * wedged. But we only want to do this where the GPU is angry,
    		 * for all other failure, such as an allocation failure, bail.
    		 */
    		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
    		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
    		ret = 0;
    	}
    
    out_unlock:
    	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
    	mutex_unlock(&dev->struct_mutex);
    
    	return ret;
    }
    
    void
    i915_gem_cleanup_engines(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	struct intel_engine_cs *engine;
    
    	for_each_engine(engine, dev_priv)
    		dev_priv->gt.cleanup_engine(engine);
    }
    
    static void
    init_engine_lists(struct intel_engine_cs *engine)
    {
    	INIT_LIST_HEAD(&engine->request_list);
    }
    
    void
    i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
    {
    	struct drm_device *dev = &dev_priv->drm;
    
    	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
    	    !IS_CHERRYVIEW(dev_priv))
    		dev_priv->num_fence_regs = 32;
    	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
    		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
    		dev_priv->num_fence_regs = 16;
    	else
    		dev_priv->num_fence_regs = 8;
    
    	if (intel_vgpu_active(dev_priv))
    		dev_priv->num_fence_regs =
    				I915_READ(vgtif_reg(avail_rs.fence_num));
    
    	/* Initialize fence registers to zero */
    	i915_gem_restore_fences(dev);
    
    	i915_gem_detect_bit_6_swizzle(dev);
    }
    
    void
    i915_gem_load_init(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    	int i;
    
    	dev_priv->objects =
    		kmem_cache_create("i915_gem_object",
    				  sizeof(struct drm_i915_gem_object), 0,
    				  SLAB_HWCACHE_ALIGN,
    				  NULL);
    	dev_priv->vmas =
    		kmem_cache_create("i915_gem_vma",
    				  sizeof(struct i915_vma), 0,
    				  SLAB_HWCACHE_ALIGN,
    				  NULL);
    	dev_priv->requests =
    		kmem_cache_create("i915_gem_request",
    				  sizeof(struct drm_i915_gem_request), 0,
    				  SLAB_HWCACHE_ALIGN |
    				  SLAB_RECLAIM_ACCOUNT |
    				  SLAB_DESTROY_BY_RCU,
    				  NULL);
    
    	INIT_LIST_HEAD(&dev_priv->context_list);
    	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
    	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
    	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
    	for (i = 0; i < I915_NUM_ENGINES; i++)
    		init_engine_lists(&dev_priv->engine[i]);
    	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
    		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
    	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
    			  i915_gem_retire_work_handler);
    	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
    			  i915_gem_idle_work_handler);
    	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
    	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
    
    	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
    
    	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
    
    	init_waitqueue_head(&dev_priv->pending_flip_queue);
    
    	dev_priv->mm.interruptible = true;
    
    	spin_lock_init(&dev_priv->fb_tracking.lock);
    }
    
    void i915_gem_load_cleanup(struct drm_device *dev)
    {
    	struct drm_i915_private *dev_priv = to_i915(dev);
    
    	kmem_cache_destroy(dev_priv->requests);
    	kmem_cache_destroy(dev_priv->vmas);
    	kmem_cache_destroy(dev_priv->objects);
    
    	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
    	rcu_barrier();
    }
    
    int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
    {
    	struct drm_i915_gem_object *obj;
    
    	/* Called just before we write the hibernation image.
    	 *
    	 * We need to update the domain tracking to reflect that the CPU
    	 * will be accessing all the pages to create and restore from the
    	 * hibernation, and so upon restoration those pages will be in the
    	 * CPU domain.
    	 *
    	 * To make sure the hibernation image contains the latest state,
    	 * we update that state just before writing out the image.
    	 */
    
    	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
    		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
    		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    	}
    
    	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
    		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
    		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
    	}
    
    	return 0;
    }
    
    void i915_gem_release(struct drm_device *dev, struct drm_file *file)
    {
    	struct drm_i915_file_private *file_priv = file->driver_priv;
    	struct drm_i915_gem_request *request;
    
    	/* Clean up our request list when the client is going away, so that
    	 * later retire_requests won't dereference our soon-to-be-gone
    	 * file_priv.
    	 */
    	spin_lock(&file_priv->mm.lock);
    	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
    		request->file_priv = NULL;
    	spin_unlock(&file_priv->mm.lock);
    
    	if (!list_empty(&file_priv->rps.link)) {
    		spin_lock(&to_i915(dev)->rps.client_lock);
    		list_del(&file_priv->rps.link);
    		spin_unlock(&to_i915(dev)->rps.client_lock);
    	}
    }
    
    int i915_gem_open(struct drm_device *dev, struct drm_file *file)
    {
    	struct drm_i915_file_private *file_priv;
    	int ret;
    
    	DRM_DEBUG_DRIVER("\n");
    
    	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
    	if (!file_priv)
    		return -ENOMEM;
    
    	file->driver_priv = file_priv;
    	file_priv->dev_priv = to_i915(dev);
    	file_priv->file = file;
    	INIT_LIST_HEAD(&file_priv->rps.link);
    
    	spin_lock_init(&file_priv->mm.lock);
    	INIT_LIST_HEAD(&file_priv->mm.request_list);
    
    	file_priv->bsd_engine = -1;
    
    	ret = i915_gem_context_open(dev, file);
    	if (ret)
    		kfree(file_priv);
    
    	return ret;
    }
    
    /**
     * i915_gem_track_fb - update frontbuffer tracking
     * @old: current GEM buffer for the frontbuffer slots
     * @new: new GEM buffer for the frontbuffer slots
     * @frontbuffer_bits: bitmask of frontbuffer slots
     *
     * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
     * from @old and setting them in @new. Both @old and @new can be NULL.
     */
    void i915_gem_track_fb(struct drm_i915_gem_object *old,
    		       struct drm_i915_gem_object *new,
    		       unsigned frontbuffer_bits)
    {
    	/* Control of individual bits within the mask are guarded by
    	 * the owning plane->mutex, i.e. we can never see concurrent
    	 * manipulation of individual bits. But since the bitfield as a whole
    	 * is updated using RMW, we need to use atomics in order to update
    	 * the bits.
    	 */
    	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
    		     sizeof(atomic_t) * BITS_PER_BYTE);
    
    	if (old) {
    		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
    		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
    	}
    
    	if (new) {
    		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
    		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
    	}
    }
    
    /* All the new VM stuff */
    u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
    			struct i915_address_space *vm)
    {
    	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
    	struct i915_vma *vma;
    
    	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
    
    	list_for_each_entry(vma, &o->vma_list, obj_link) {
    		if (i915_vma_is_ggtt(vma) &&
    		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
    			continue;
    		if (vma->vm == vm)
    			return vma->node.start;
    	}
    
    	WARN(1, "%s vma for this object not found.\n",
    	     i915_is_ggtt(vm) ? "global" : "ppgtt");
    	return -1;
    }
    
    u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
    				  const struct i915_ggtt_view *view)
    {
    	struct i915_vma *vma;
    
    	list_for_each_entry(vma, &o->vma_list, obj_link)
    		if (i915_vma_is_ggtt(vma) &&
    		    i915_ggtt_view_equal(&vma->ggtt_view, view))
    			return vma->node.start;
    
    	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
    	return -1;
    }
    
    bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
    			struct i915_address_space *vm)
    {
    	struct i915_vma *vma;
    
    	list_for_each_entry(vma, &o->vma_list, obj_link) {
    		if (i915_vma_is_ggtt(vma) &&
    		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
    			continue;
    		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
    			return true;
    	}
    
    	return false;
    }
    
    bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
    				  const struct i915_ggtt_view *view)
    {
    	struct i915_vma *vma;
    
    	list_for_each_entry(vma, &o->vma_list, obj_link)
    		if (i915_vma_is_ggtt(vma) &&
    		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
    		    drm_mm_node_allocated(&vma->node))
    			return true;
    
    	return false;
    }
    
    unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
    {
    	struct i915_vma *vma;
    
    	GEM_BUG_ON(list_empty(&o->vma_list));
    
    	list_for_each_entry(vma, &o->vma_list, obj_link) {
    		if (i915_vma_is_ggtt(vma) &&
    		    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
    			return vma->node.size;
    	}
    
    	return 0;
    }
    
    bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
    {
    	struct i915_vma *vma;
    	list_for_each_entry(vma, &obj->vma_list, obj_link)
    		if (i915_vma_is_pinned(vma))
    			return true;
    
    	return false;
    }
    
    /* Like i915_gem_object_get_page(), but mark the returned page dirty */
    struct page *
    i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
    {
    	struct page *page;
    
    	/* Only default objects have per-page dirty tracking */
    	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
    		return NULL;
    
    	page = i915_gem_object_get_page(obj, n);
    	set_page_dirty(page);
    	return page;
    }
    
    /* Allocate a new GEM object and fill it with the supplied data */
    struct drm_i915_gem_object *
    i915_gem_object_create_from_data(struct drm_device *dev,
    			         const void *data, size_t size)
    {
    	struct drm_i915_gem_object *obj;
    	struct sg_table *sg;
    	size_t bytes;
    	int ret;
    
    	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
    	if (IS_ERR(obj))
    		return obj;
    
    	ret = i915_gem_object_set_to_cpu_domain(obj, true);
    	if (ret)
    		goto fail;
    
    	ret = i915_gem_object_get_pages(obj);
    	if (ret)
    		goto fail;
    
    	i915_gem_object_pin_pages(obj);
    	sg = obj->pages;
    	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
    	obj->dirty = 1;		/* Backing store is now out of date */
    	i915_gem_object_unpin_pages(obj);
    
    	if (WARN_ON(bytes != size)) {
    		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
    		ret = -EFAULT;
    		goto fail;
    	}
    
    	return obj;
    
    fail:
    	i915_gem_object_put(obj);
    	return ERR_PTR(ret);
    }