Skip to content
Snippets Groups Projects
Select Git revision
  • cf9b1106c81c45cde02208fca49d3f3e4ab6ee74
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

panic.c

Blame
  • panic.c 14.60 KiB
    /*
     *  linux/kernel/panic.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     */
    
    /*
     * This function is used through-out the kernel (including mm and fs)
     * to indicate a major problem.
     */
    #include <linux/debug_locks.h>
    #include <linux/interrupt.h>
    #include <linux/kmsg_dump.h>
    #include <linux/kallsyms.h>
    #include <linux/notifier.h>
    #include <linux/module.h>
    #include <linux/random.h>
    #include <linux/ftrace.h>
    #include <linux/reboot.h>
    #include <linux/delay.h>
    #include <linux/kexec.h>
    #include <linux/sched.h>
    #include <linux/sysrq.h>
    #include <linux/init.h>
    #include <linux/nmi.h>
    #include <linux/console.h>
    #include <linux/bug.h>
    
    #define PANIC_TIMER_STEP 100
    #define PANIC_BLINK_SPD 18
    
    int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
    static unsigned long tainted_mask;
    static int pause_on_oops;
    static int pause_on_oops_flag;
    static DEFINE_SPINLOCK(pause_on_oops_lock);
    bool crash_kexec_post_notifiers;
    int panic_on_warn __read_mostly;
    
    int panic_timeout = CONFIG_PANIC_TIMEOUT;
    EXPORT_SYMBOL_GPL(panic_timeout);
    
    ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
    
    EXPORT_SYMBOL(panic_notifier_list);
    
    static long no_blink(int state)
    {
    	return 0;
    }
    
    /* Returns how long it waited in ms */
    long (*panic_blink)(int state);
    EXPORT_SYMBOL(panic_blink);
    
    /*
     * Stop ourself in panic -- architecture code may override this
     */
    void __weak panic_smp_self_stop(void)
    {
    	while (1)
    		cpu_relax();
    }
    
    /*
     * Stop ourselves in NMI context if another CPU has already panicked. Arch code
     * may override this to prepare for crash dumping, e.g. save regs info.
     */
    void __weak nmi_panic_self_stop(struct pt_regs *regs)
    {
    	panic_smp_self_stop();
    }
    
    atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
    
    /*
     * A variant of panic() called from NMI context. We return if we've already
     * panicked on this CPU. If another CPU already panicked, loop in
     * nmi_panic_self_stop() which can provide architecture dependent code such
     * as saving register state for crash dump.
     */
    void nmi_panic(struct pt_regs *regs, const char *msg)
    {
    	int old_cpu, cpu;
    
    	cpu = raw_smp_processor_id();
    	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
    
    	if (old_cpu == PANIC_CPU_INVALID)
    		panic("%s", msg);
    	else if (old_cpu != cpu)
    		nmi_panic_self_stop(regs);
    }
    EXPORT_SYMBOL(nmi_panic);
    
    /**
     *	panic - halt the system
     *	@fmt: The text string to print
     *
     *	Display a message, then perform cleanups.
     *
     *	This function never returns.
     */
    void panic(const char *fmt, ...)
    {
    	static char buf[1024];
    	va_list args;
    	long i, i_next = 0;
    	int state = 0;
    	int old_cpu, this_cpu;
    
    	/*
    	 * Disable local interrupts. This will prevent panic_smp_self_stop
    	 * from deadlocking the first cpu that invokes the panic, since
    	 * there is nothing to prevent an interrupt handler (that runs
    	 * after setting panic_cpu) from invoking panic() again.
    	 */
    	local_irq_disable();
    
    	/*
    	 * It's possible to come here directly from a panic-assertion and
    	 * not have preempt disabled. Some functions called from here want
    	 * preempt to be disabled. No point enabling it later though...
    	 *
    	 * Only one CPU is allowed to execute the panic code from here. For
    	 * multiple parallel invocations of panic, all other CPUs either
    	 * stop themself or will wait until they are stopped by the 1st CPU
    	 * with smp_send_stop().
    	 *
    	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
    	 * comes here, so go ahead.
    	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
    	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
    	 */
    	this_cpu = raw_smp_processor_id();
    	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
    
    	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
    		panic_smp_self_stop();
    
    	console_verbose();
    	bust_spinlocks(1);
    	va_start(args, fmt);
    	vsnprintf(buf, sizeof(buf), fmt, args);
    	va_end(args);
    	pr_emerg("Kernel panic - not syncing: %s\n", buf);
    #ifdef CONFIG_DEBUG_BUGVERBOSE
    	/*
    	 * Avoid nested stack-dumping if a panic occurs during oops processing
    	 */
    	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
    		dump_stack();
    #endif
    
    	/*
    	 * If we have crashed and we have a crash kernel loaded let it handle
    	 * everything else.
    	 * If we want to run this after calling panic_notifiers, pass
    	 * the "crash_kexec_post_notifiers" option to the kernel.
    	 *
    	 * Bypass the panic_cpu check and call __crash_kexec directly.
    	 */
    	if (!crash_kexec_post_notifiers) {
    		printk_nmi_flush_on_panic();
    		__crash_kexec(NULL);
    	}
    
    	/*
    	 * Note smp_send_stop is the usual smp shutdown function, which
    	 * unfortunately means it may not be hardened to work in a panic
    	 * situation.
    	 */
    	smp_send_stop();
    
    	/*
    	 * Run any panic handlers, including those that might need to
    	 * add information to the kmsg dump output.
    	 */
    	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
    
    	/* Call flush even twice. It tries harder with a single online CPU */
    	printk_nmi_flush_on_panic();
    	kmsg_dump(KMSG_DUMP_PANIC);
    
    	/*
    	 * If you doubt kdump always works fine in any situation,
    	 * "crash_kexec_post_notifiers" offers you a chance to run
    	 * panic_notifiers and dumping kmsg before kdump.
    	 * Note: since some panic_notifiers can make crashed kernel
    	 * more unstable, it can increase risks of the kdump failure too.
    	 *
    	 * Bypass the panic_cpu check and call __crash_kexec directly.
    	 */
    	if (crash_kexec_post_notifiers)
    		__crash_kexec(NULL);
    
    	bust_spinlocks(0);
    
    	/*
    	 * We may have ended up stopping the CPU holding the lock (in
    	 * smp_send_stop()) while still having some valuable data in the console
    	 * buffer.  Try to acquire the lock then release it regardless of the
    	 * result.  The release will also print the buffers out.  Locks debug
    	 * should be disabled to avoid reporting bad unlock balance when
    	 * panic() is not being callled from OOPS.
    	 */
    	debug_locks_off();
    	console_flush_on_panic();
    
    	if (!panic_blink)
    		panic_blink = no_blink;
    
    	if (panic_timeout > 0) {
    		/*
    		 * Delay timeout seconds before rebooting the machine.
    		 * We can't use the "normal" timers since we just panicked.
    		 */
    		pr_emerg("Rebooting in %d seconds..", panic_timeout);
    
    		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
    			touch_nmi_watchdog();
    			if (i >= i_next) {
    				i += panic_blink(state ^= 1);
    				i_next = i + 3600 / PANIC_BLINK_SPD;
    			}
    			mdelay(PANIC_TIMER_STEP);
    		}
    	}
    	if (panic_timeout != 0) {
    		/*
    		 * This will not be a clean reboot, with everything
    		 * shutting down.  But if there is a chance of
    		 * rebooting the system it will be rebooted.
    		 */
    		emergency_restart();
    	}
    #ifdef __sparc__
    	{
    		extern int stop_a_enabled;
    		/* Make sure the user can actually press Stop-A (L1-A) */
    		stop_a_enabled = 1;
    		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
    	}
    #endif
    #if defined(CONFIG_S390)
    	{
    		unsigned long caller;
    
    		caller = (unsigned long)__builtin_return_address(0);
    		disabled_wait(caller);
    	}
    #endif
    	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
    	local_irq_enable();
    	for (i = 0; ; i += PANIC_TIMER_STEP) {
    		touch_softlockup_watchdog();
    		if (i >= i_next) {
    			i += panic_blink(state ^= 1);
    			i_next = i + 3600 / PANIC_BLINK_SPD;
    		}
    		mdelay(PANIC_TIMER_STEP);
    	}
    }
    
    EXPORT_SYMBOL(panic);
    
    
    struct tnt {
    	u8	bit;
    	char	true;
    	char	false;
    };
    
    static const struct tnt tnts[] = {
    	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
    	{ TAINT_FORCED_MODULE,		'F', ' ' },
    	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
    	{ TAINT_FORCED_RMMOD,		'R', ' ' },
    	{ TAINT_MACHINE_CHECK,		'M', ' ' },
    	{ TAINT_BAD_PAGE,		'B', ' ' },
    	{ TAINT_USER,			'U', ' ' },
    	{ TAINT_DIE,			'D', ' ' },
    	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
    	{ TAINT_WARN,			'W', ' ' },
    	{ TAINT_CRAP,			'C', ' ' },
    	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
    	{ TAINT_OOT_MODULE,		'O', ' ' },
    	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
    	{ TAINT_SOFTLOCKUP,		'L', ' ' },
    	{ TAINT_LIVEPATCH,		'K', ' ' },
    };
    
    /**
     *	print_tainted - return a string to represent the kernel taint state.
     *
     *  'P' - Proprietary module has been loaded.
     *  'F' - Module has been forcibly loaded.
     *  'S' - SMP with CPUs not designed for SMP.
     *  'R' - User forced a module unload.
     *  'M' - System experienced a machine check exception.
     *  'B' - System has hit bad_page.
     *  'U' - Userspace-defined naughtiness.
     *  'D' - Kernel has oopsed before
     *  'A' - ACPI table overridden.
     *  'W' - Taint on warning.
     *  'C' - modules from drivers/staging are loaded.
     *  'I' - Working around severe firmware bug.
     *  'O' - Out-of-tree module has been loaded.
     *  'E' - Unsigned module has been loaded.
     *  'L' - A soft lockup has previously occurred.
     *  'K' - Kernel has been live patched.
     *
     *	The string is overwritten by the next call to print_tainted().
     */
    const char *print_tainted(void)
    {
    	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
    
    	if (tainted_mask) {
    		char *s;
    		int i;
    
    		s = buf + sprintf(buf, "Tainted: ");
    		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
    			const struct tnt *t = &tnts[i];
    			*s++ = test_bit(t->bit, &tainted_mask) ?
    					t->true : t->false;
    		}
    		*s = 0;
    	} else
    		snprintf(buf, sizeof(buf), "Not tainted");
    
    	return buf;
    }
    
    int test_taint(unsigned flag)
    {
    	return test_bit(flag, &tainted_mask);
    }
    EXPORT_SYMBOL(test_taint);
    
    unsigned long get_taint(void)
    {
    	return tainted_mask;
    }
    
    /**
     * add_taint: add a taint flag if not already set.
     * @flag: one of the TAINT_* constants.
     * @lockdep_ok: whether lock debugging is still OK.
     *
     * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
     * some notewortht-but-not-corrupting cases, it can be set to true.
     */
    void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
    {
    	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
    		pr_warn("Disabling lock debugging due to kernel taint\n");
    
    	set_bit(flag, &tainted_mask);
    }
    EXPORT_SYMBOL(add_taint);
    
    static void spin_msec(int msecs)
    {
    	int i;
    
    	for (i = 0; i < msecs; i++) {
    		touch_nmi_watchdog();
    		mdelay(1);
    	}
    }
    
    /*
     * It just happens that oops_enter() and oops_exit() are identically
     * implemented...
     */
    static void do_oops_enter_exit(void)
    {
    	unsigned long flags;
    	static int spin_counter;
    
    	if (!pause_on_oops)
    		return;
    
    	spin_lock_irqsave(&pause_on_oops_lock, flags);
    	if (pause_on_oops_flag == 0) {
    		/* This CPU may now print the oops message */
    		pause_on_oops_flag = 1;
    	} else {
    		/* We need to stall this CPU */
    		if (!spin_counter) {
    			/* This CPU gets to do the counting */
    			spin_counter = pause_on_oops;
    			do {
    				spin_unlock(&pause_on_oops_lock);
    				spin_msec(MSEC_PER_SEC);
    				spin_lock(&pause_on_oops_lock);
    			} while (--spin_counter);
    			pause_on_oops_flag = 0;
    		} else {
    			/* This CPU waits for a different one */
    			while (spin_counter) {
    				spin_unlock(&pause_on_oops_lock);
    				spin_msec(1);
    				spin_lock(&pause_on_oops_lock);
    			}
    		}
    	}
    	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
    }
    
    /*
     * Return true if the calling CPU is allowed to print oops-related info.
     * This is a bit racy..
     */
    int oops_may_print(void)
    {
    	return pause_on_oops_flag == 0;
    }
    
    /*
     * Called when the architecture enters its oops handler, before it prints
     * anything.  If this is the first CPU to oops, and it's oopsing the first
     * time then let it proceed.
     *
     * This is all enabled by the pause_on_oops kernel boot option.  We do all
     * this to ensure that oopses don't scroll off the screen.  It has the
     * side-effect of preventing later-oopsing CPUs from mucking up the display,
     * too.
     *
     * It turns out that the CPU which is allowed to print ends up pausing for
     * the right duration, whereas all the other CPUs pause for twice as long:
     * once in oops_enter(), once in oops_exit().
     */
    void oops_enter(void)
    {
    	tracing_off();
    	/* can't trust the integrity of the kernel anymore: */
    	debug_locks_off();
    	do_oops_enter_exit();
    }
    
    /*
     * 64-bit random ID for oopses:
     */
    static u64 oops_id;
    
    static int init_oops_id(void)
    {
    	if (!oops_id)
    		get_random_bytes(&oops_id, sizeof(oops_id));
    	else
    		oops_id++;
    
    	return 0;
    }
    late_initcall(init_oops_id);
    
    void print_oops_end_marker(void)
    {
    	init_oops_id();
    	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
    }
    
    /*
     * Called when the architecture exits its oops handler, after printing
     * everything.
     */
    void oops_exit(void)
    {
    	do_oops_enter_exit();
    	print_oops_end_marker();
    	kmsg_dump(KMSG_DUMP_OOPS);
    }
    
    struct warn_args {
    	const char *fmt;
    	va_list args;
    };
    
    void __warn(const char *file, int line, void *caller, unsigned taint,
    	    struct pt_regs *regs, struct warn_args *args)
    {
    	disable_trace_on_warning();
    
    	pr_warn("------------[ cut here ]------------\n");
    
    	if (file)
    		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
    			raw_smp_processor_id(), current->pid, file, line,
    			caller);
    	else
    		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
    			raw_smp_processor_id(), current->pid, caller);
    
    	if (args)
    		vprintk(args->fmt, args->args);
    
    	if (panic_on_warn) {
    		/*
    		 * This thread may hit another WARN() in the panic path.
    		 * Resetting this prevents additional WARN() from panicking the
    		 * system on this thread.  Other threads are blocked by the
    		 * panic_mutex in panic().
    		 */
    		panic_on_warn = 0;
    		panic("panic_on_warn set ...\n");
    	}
    
    	print_modules();
    
    	if (regs)
    		show_regs(regs);
    	else
    		dump_stack();
    
    	print_oops_end_marker();
    
    	/* Just a warning, don't kill lockdep. */
    	add_taint(taint, LOCKDEP_STILL_OK);
    }
    
    #ifdef WANT_WARN_ON_SLOWPATH
    void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
    {
    	struct warn_args args;
    
    	args.fmt = fmt;
    	va_start(args.args, fmt);
    	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
    	       &args);
    	va_end(args.args);
    }
    EXPORT_SYMBOL(warn_slowpath_fmt);
    
    void warn_slowpath_fmt_taint(const char *file, int line,
    			     unsigned taint, const char *fmt, ...)
    {
    	struct warn_args args;
    
    	args.fmt = fmt;
    	va_start(args.args, fmt);
    	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
    	va_end(args.args);
    }
    EXPORT_SYMBOL(warn_slowpath_fmt_taint);
    
    void warn_slowpath_null(const char *file, int line)
    {
    	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
    }
    EXPORT_SYMBOL(warn_slowpath_null);
    #endif
    
    #ifdef CONFIG_CC_STACKPROTECTOR
    
    /*
     * Called when gcc's -fstack-protector feature is used, and
     * gcc detects corruption of the on-stack canary value
     */
    __visible void __stack_chk_fail(void)
    {
    	panic("stack-protector: Kernel stack is corrupted in: %p\n",
    		__builtin_return_address(0));
    }
    EXPORT_SYMBOL(__stack_chk_fail);
    
    #endif
    
    core_param(panic, panic_timeout, int, 0644);
    core_param(pause_on_oops, pause_on_oops, int, 0644);
    core_param(panic_on_warn, panic_on_warn, int, 0644);
    
    static int __init setup_crash_kexec_post_notifiers(char *s)
    {
    	crash_kexec_post_notifiers = true;
    	return 0;
    }
    early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
    
    static int __init oops_setup(char *s)
    {
    	if (!s)
    		return -EINVAL;
    	if (!strcmp(s, "panic"))
    		panic_on_oops = 1;
    	return 0;
    }
    early_param("oops", oops_setup);